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This paper explores the use of hydrodynamic eigenmode decomposition as a means of generating optimal swimming
kinematics of slender three-dimensional bodies. The eigenvectors of the unsteady hydrodynamic system are used
as basis functions for the response to external forcing, such as perturbations generated by the deformation of the
body. Exploiting the orthogonality of the modes, we show that swimming according to a single appropriately selected
hydrodynamic eigenmode results in high-efficiency swimming. To demonstrate this result, we use an inviscid three-
dimensional vortex lattice model to investigate the hydrodynamic eigenmodes of a selection of geometries. We find
that for all of the body geometries tested, hydrodynamic efficiency far exceeding that of pure heaving or pitching can
be achieved. All eigenmodes tested produce high-efficiency motion, as long as the beat frequency is higher than the
mode’s “cut-in” frequency for thrust generation. The eigenmodes show qualitative similarity to swimming patterns
observed in nature, and also correspond well to the existing classifications of undulatory and oscillatory swimming.
This study demonstrates that hydrodynamic eigenmode analysis can generate high-efficiency swimming kinematics
based only on information about the body and wake geometry, and as such this method has significant potential for
further development and application to autonomous underwater vehicle design.

I. INTRODUCTION

A. Motivation for study

Achieving the high-efficiency swimming motion observed
in marine animals is one of the primary challenges in the field
of bio-mimicking and bio-inspired underwater robotics. Cur-
rent state-of-the-art autonomous underwater vehicles (AUVs)
are generally either torpedo-shaped designs optimised for
high-speed cruising, with low manoeuvrability, or box-shaped
designs with little consideration for hydrodynamic efficiency.
However, the development of more advanced bio-inspired ve-
hicles is being made possible through advances such as soft
robotics, flexible membranes, and improved understanding
of the features of high-efficiency swimming. Historically,
research into swimming efficiency has focused on the op-
timum combination of pitching and heaving motion for the
propulsive efficiency of flapping plates of various shapes1–5,
as well as features of the wake structure associated with
high thrust production3,4,6–9. The importance of body flex-
ibility in generating high-efficiency propulsive motion has
also been demonstrated in several studies10–13. Progress in
these fields has given rise to highly advanced bio-inspired
robots, a notable example being the “tunabot” presented in
White et al. (2021)14.

Despite these recent advances in the understanding of ef-
ficient swimming, significant difficulties are often encoun-
tered in reproducing the swimming motions seen in nature,
and in achieving the associated high propulsive efficiencies.
Pure flapping, pitching or heaving motion have repeatedly
been shown to be insufficient to fully characterise optimal

motion12,15. Also, while the tail fin is generally considered
to be the primary generator of thrust16,17, movement of the
rest of the body is often crucial to reduce “recoil” motion
which would otherwise lead to substantial reductions in swim-
ming efficiency18. The characterisation and the identification
of universal features of high-efficiency swimming kinematics
remains challenging. As such, determining the optimal swim-
ming kinematics for a given body geometry often requires ei-
ther detailed measurements of body motions of real fish19, or
repeated trial-and-error.

This work aims to demonstrate a model able to generate
high-efficiency swimming kinematics for a given geometry,
through the use of hydrodynamic eigenmodes. As will be
demonstrated in Section II, these modes define the set of mu-
tually independent responses of a body to hydrodynamic forc-
ing. The circulation of the lifting surface can be represented
as a weighted sum of such eigenmodes. Using this principle,
it is possible to demonstrate that the most efficient swimming
can be achieved through a body motion defined by a single
hydrodynamic eigenmode. Based on this result, which will be
demonstrated in section II, this paper addresses the following
questions:

1. What are the propulsive properties of the eigenmodes?

2. How does swimmer geometry affect the eigenmodes?

3. Are any known features of efficient swimming found in
the eigenmodes?

To answer these questions, this study uses an inviscid
frequency-domain vortex lattice model (VLM – outlined in
section III) to find the hydrodynamic eigenmodes of various
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3D geometries and evaluate their propulsive properties. While
the VLM used in this paper relies on the simplified assump-
tions of small-amplitude inviscid flow, the outcomes form a
theoretical basis to the hydrodynamic eigenmode problem,
which allows for extension to large-amplitude viscous flows
in future studies.

B. Background: features of efficient swimming

This section contains a summary review of previous work
on bio-inspired swimming, for the purpose of establishing the
known features of efficient propulsion and the common meth-
ods used for characterisation of swimming motion. For a more
complete overview of the history of swimming propulsion re-
search, readers are referred to Sfakiotakis et al. (1999)20 for
historical context, and to Smits (2019)17 for a more recent per-
spective.

Early research into swimming motion utilised inviscid
slender-body theory or lifting surface theory for analysis of
the physics of swimming18,21–23. Slender-body theory divides
the geometry into independent chordwise sections, and con-
siders only added mass forces. Despite these simplifications,
the theory was able to illustrate several features of efficient
swimming motion, such as showing that virtually all thrust
is generated at or near the trailing edge; this finding was
later verified experimentally17. The apparent importance of
the tail has meant that the characteristic velocity for swim-
ming efficiency is generally taken to be the lateral speed of
the trailing edge. This choice of characteristic velocity is
supported by experimental results, such as in the studies of
lamprey swimming by Hultmark et al. (2007)24 and Left-
wich and Smits (2011)25, who demonstrated a close connec-
tion between tail motion and thrust production. The shape and
movements of the tail fin have therefore been assumed to be
of primary importance for thrust generation and have been the
focus of most work. Numerous studies of heaving and pitch-
ing airfoils of various shapes, in 2D4,26,27 and 3D6,7,28–31, have
been carried out in attempts to characterise the kinematic and
geometric features of efficient tail fins. The importance of the
tail fin lateral velocity has also been used to explain why the
amplitude of motion of marine animals tends to follow an ex-
ponential increase from leading edge to trailing edge23,24,32.

However, the characteristics of high-efficiency motion
kinematics are more complex than simply high-speed move-
ment of the trailing edge33. Pure pitch or heave of the tail
fin is not an efficient way of generating thrust; rather, a com-
bination of heave and pitch12,34, or travelling wave motion
involving the whole body22, have been shown to produce
more efficient swimming than pure pitch or heave. Dramatic
changes to swimming dynamics have been observed when
varying the body flexibility, with local peaks in swimming
speeds or propulsive efficiency observed with varying body
flexibility11,33,35.

Another reason for the importance of whole-body swim-
ming motion is the avoidance of “recoil”, identified by
Lighthill (1960)18 as a consequence of the conservation of
lateral and angular momentum. Significant recoil when swim-

ming leads to additional lateral or angular body motion to sat-
isfy momentum conservation, and so causes an overall reduc-
tion in thrust and swimming efficiency36. Lighthill demon-
strated that recoil can be reduced when swimming by using a
travelling wave motion18: if there is both a positive and neg-
ative wave phase present on the body during the motion then
the lateral and angular moments are cancelled out (e.g. in eel
swimming).

The travelling wave swimming motion exhibited by eels
has historically been labelled “anguilliform” locomotion.
Some other classical categories of swimming locomotion are
carangiform (exhibited by e.g. mackerel), sub-carangiform
(e.g. trout) and thunniform (e.g. tuna, sharks) – for an
overview of these notations, see Sfakiotakis et al. (1999)20.
However, a different classification has been proposed by
Webb and Blake (1985)37, who suggested division into “un-
dulatory” and “oscillatory” swimmers. According to the char-
acterisation by Smits (2019)17, the former are characterised
as swimming with a travelling wavelength shorter than the
body (e.g. eels), and the latter as swimming with a wave-
length longer than the body (e.g. tuna). This categorisation
will be shown to be appropriate for the characterisation of the
hydrodynamic eigenmodes studied in this paper, and as such
the undulatory and oscillatory motion classifications will be
used throughout this work.

An issue with oscillatory swimming is the potential for sig-
nificant recoil motion. Lighthill proposed that this issue is
overcome in fish through the use of a high-mass main body
with a narrowing rear section, before extending again into the
lightweight tail fin21. This manipulation of the centre of mass
minimises the recoil motion, despite the absence of a match-
ing pair of positive- and negative-phase waves on the body in
oscillatory swimming. As discussed above, undulatory swim-
mers are considered to have inherently low recoil.

The performance of swimmers has historically been mea-
sured assuming harmonic motion, by calculating the cycle-
average thrust generated (T ) and comparing it with the cycle-
average power required to produce the motion (P). The swim-
ming (or Froude) efficiency is then given by:

η =
UT
P

(1)

where U is the resulting swimming velocity obtained af-
ter overcoming the drag of the body. In the majority of past
analyzes the swimming velocity U has been held constant, for
ease of computation. This approach is also taken in the present
study. However, there are some notable examples of past stud-
ies that used models where U is an output variable19,35,38,
which is arguably more appropriate for swimming motion.
The model developed by Moored (2018)38 was subsequently
used in a number of studies seeking to identify the scaling pa-
rameters and characteristic non-dimensional groups determin-
ing swimming performance28,39. These studies verified previ-
ous observations that the reduced frequency and the Strouhal
number are two key parameters determining propulsive effi-
ciency of tail fins, in this paper respectively defined as:
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κ =
2π f c

U
(2)

St =
2a f
U

=
κa
πc

(3)

where c represents chord length, f the tail beat frequency
and a the maximum amplitude of movement.

In observations of a wide range of swimmers in nature, Tri-
antafyllou et al. (1993)40 showed that they all tended to swim
within the range of St = 0.2− 0.5. They further showed that
a heaving and pitching foil exhibited an efficiency peak in
this range. The reduced frequency of propulsive swimming
can generally not be considered quasi-steady (κ > 0.1 for
most swimmers), with the exception of very large mammals41.
Van Buren et al. (2019)34 showed that the propulsive effi-
ciency of an oscillating plate exhibits a peak in the range
κ = 1.4π − 2π , while Floryan et al. (2017)42 observed the
efficiency of different heaving plates to plateau for κ > 1.5π .
Dong et al. (2006)6 also observed peaks in the hydrodynamic
efficiency of oscillating low-aspect-ratio plates; the reduced
frequency at which the peak occurred was found to increase
with the Strouhal number.

In this paper the hydrodynamic eigenmodes of a selection
of geometries will be examined, to demonstrate how they cor-
respond to the features and categories of efficient swimming
outlined in this section. But first the method of eigenmode de-
composition will be outlined in Section II, and the details of
the vortex lattice model introduced in section III.

II. EIGENMODE DECOMPOSITION

A. Theory

This study focuses on the hydrodynamic eigenmodes of lift-
ing surfaces. By contrast, the role of the structural eigenmodes
in determining the response of flexible foils and membranes
to heaving or pitching actuation has been investigated in sev-
eral past studies. For example, Mavroyiakoumou and Al-
ben (2021)43 studied membrane stability for the prediction
of flutter, Quinn et al. (2014)11 experimentally studied the
propulsive efficiency of panels with varying flexibility, and
Floryan and Rowley (2018)13 used a linear inviscid model to
study the effects of flexibility on propulsive performance of
swimmers. In these past studies, either the structural eigen-
modes of the body, or the eigenmodes of the coupled fluid-
structure system were considered. The present study focuses
on the hydrodynamic eigenmodes only, and does not consider
body flexibility or any presupposed forcing actuation. The
purpose is to identify optimal swimming kinematics from a
purely hydrodynamic perspective, by maximising the Froude
efficiency (Equation 1). Having developed a method for gen-
erating swimming kinematics that maximise the Froude ef-
ficiency in the present paper, the role of body flexibility in
achieving the desired kinematics will be explored in future
studies.

The eigenmode decomposition method used in this paper
is based on that developed by Hall et al.44–46 for the pur-
pose of creating reduced order models of unsteady airfoil re-
sponse. The method can be applied to any linearized system
for fluid modelling, including field-discretized CFD solvers44

and boundary-element solvers45.
Consider a flow-surface interaction system with a govern-

ing equation of the form:

AΓ = u=Bh (4)

where u is the vector of surface-normal velocity, Γ is the
vector defining the circulation distribution of the lifting sur-
face, and A is the matrix transform between surface circula-
tion and surface-normal velocity induced by the lifting sur-
face. To translate this to body motion,B transforms the body
displacement vector h into surface-normal velocity. As long
as the hydrodynamic system is expressed in the form given in
Equation 4, the eigenmode analysis given below is applicable.
The present work uses a simple inviscid vortex lattice model,
however more advanced viscous or large-amplitude models
could also be used. The details of matrices A and B as used
in this paper are given in section III.

The basic principle of the eigenmode decomposition used
by Hall et al.44–46 is that the vector defining the surface circu-
lation Γ can be reconstructed as a sum of the right eigenvec-
tors of the aero/hydrodynamic system:

Γ =Rα= ∑
k
vRkαk (5)

HereR represents the matrix of right eigenvectors obtained
from the generalised eigenvalue problem using matrices A
and B in Equation 4, with vRk indicating the right eigen-
vector located in the k’th column. The vector α represents
a weight function, the exact form of which will depend on the
aero/hydrodynamic model. This reconstruction corresponds
to using the eigenvectors as a linear basis for representing the
surface circulation. Note that the circulation is related to the
added mass force through the time derivative dΓ/dt, which
for a harmonic system (as used in this study) is equal to jωΓ

where ω is the harmonic frequency in radians per second and
j =
√
−1. Thus, the eigenmodes also implicitly operate as a

basis for the added mass.
Substituting the expression in Equation 5 into Equation 4,

the following rearrangement of terms is possible:

ARα=Bh (6)

LARα=LBh (7)

HereL represents the Hermitian of the matrix of left eigen-
vectors obtained from the generalised eigenvalue problem.
Noting the following property of the eigenmodes (if correctly
scaled), if Λ is the diagonal matrix of eigenvalues, then:
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LAR= Λ (8)

This expression can then be inserted into Eq. 7, yielding:

Λα=LBh (9)

α= Λ−1LBh (10)

As such, the circulatory (and, by implication, added mass)
response of the hydrodynamic system to any arbitrary pertur-
bation can be obtained from a weighted sum of the right eigen-
vectors, where the weights α are obtained using Equation 10
given knowledge of the perturbation vector u (external flow
perturbation) or h (body motion). This effectively gives the
solution for Γ in the form of a Green’s function.

B. Generating optimal swimming kinematics from the
eigenvectors

Here we will argue that optimal propulsive swimming kine-
matics are achieved by choosing h such that all entries in the
weight function vector α are zero, except for one single en-
try corresponding to an appropriately chosen eigenvector. We
define “optimum” swimming kinematics as the motion that
maximises the Froude efficiency given in Equation 1. Consid-
ering that the left and right eigenvectors are orthogonal (such
that LBR = I), we see that the vector α in Equation 10 is
zero at all but one entry if the body motion h is parallel to a
single right eigenvector:

h= βvRk (11)

where k indicates the mode number of interest and β is a
scalar. An argument for why this results in optimal body
kinematics will now be given for the simplified case of high-
frequency motion dominated by added mass forces. An ex-
tended analysis that includes circulatory forces is demon-
strated in Appendix A.

In the simplified case of high-frequency harmonic motion,
the local pressure on a slender body in the (x,y)-plane can
be approximated from the added mass. We express time-
varying harmonic properties in terms of Fourier components
(e.g. Γ(x,y, t) = Γ̂(x,y)e jωt ), such that the surface pressure
from added mass can be written (with subscript m pertaining
to the added mass components of pressure and force):

pm(x,y, t) = ρ
∂

∂ t

∫ x

0
γ(x,y, t)dx = jωρΓ(x,y, t) (12)

where γ is the circulation per unit span and chord and j =√
−1. The (x,y) notation indicates a surface distribution. The

resulting force acts along the surface normal vector, which for
small-amplitude harmonic motion can be approximated as

n(x,y, t) =

 0
0
1

+ e jωt

 â
b̂
0

(x,y) (13)

where â(x,y) and b̂(x,y) are the amplitudes of the harmonic
variations of the x− and y− components of the local surface
normal. If the surface displacement vector h(x,y, t) is given
by

h(x,y, t) = e jωt

 0
0
ĥ

(x,y) (14)

then â(x,y) and b̂(x,y) are related to the surface displace-
ment as follows:

[
â
b̂

]
(x,y)≈−


∂ ĥ
∂x
∂ ĥ
∂y

(x,y) =−1
c


∂ ĥ
∂ s
∂ ĥ
∂ r

(x,y) (15)

where s and r are non-dimensional streamwise and span-
wise coordinates on the surface and c is the chord length. For
slender bodies we can use s = x/c and r = y/c. The instanta-
neous total thrust force from added mass is then

Tm =
∫

S
−Re[pm]Re[n · i]dS

=
ωρ

c

∫
S

Re[ jΓ(x,y, t)]Re
[

∂h(x,y, t)
∂ s

]
dS

(16)

where S is the surface area and (i j k) are the unit vectors
for the (x,y,z) directions. It can further be demonstrated that
the resulting cycle-average thrust from added mass is given by

T m =−ρω

2c

∫
S

Im[Γ̂∗(x,y)
∂ ĥ(x,y)

∂ s
]dS (17)

where the superscript ∗ indicates the complex conjugate.
The instantaneous power required to produce the body mo-
tion is defined as the inner product of the body force with the
transverse body velocity, which for the added mass is given
by

Pm =
∫

S
Re[pm(x,y, t)(n ·k)]Re[

∂h(x,y, t)
∂ t

·k]dS

= ρω
2
∫

S
Re[ jΓ(x,y, t)]Re[ jh(x,y, t)]dS

(18)

The cycle-average is then given by

Pm =
ρω2

2

∫
S

Re[Γ̂∗(x,y)ĥ(x,y)]dS (19)

Following the definition in Equation 1, the following ex-
pression for efficiency in terms of the added mass forces is
obtained:
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ηm =
UT m

Pm
=− 1

κ

∫
S Im

[
Γ̂∗(x,y) ∂ ĥ(x,y)

∂ s

]
dS∫

S Re[Γ̂∗(x,y)ĥ(x,y)]dS
(20)

It is notable that for the case of uniform travelling sinu-
soidal wave motion in 2D, ∂ ĥ

∂ s = − jκ ĥ (resulting in η = 1)
corresponds to a travelling wave speed equal to the reduced
frequency, which Wu (1961)22 demonstrated has a Froude ef-
ficiency of 1. Thus the present analysis agrees with Wu’s re-
sults.

At this point we can approximate Equation 20 for a dis-
crete surface distribution with N cells, allowing us to express
the surface distribution of properties as column vectors. The
Froude efficiency is then approximated as:

ηm ≈−
1
κ

∑k Im[Γ̂∗k(
∂ ĥ
∂ s )k]

∑k Re[Γ̂∗k ĥk]
(21)

We can now express the circulation vector Γ̂ as a sum of
eigenvectors according to Equation 5. We also express the
arbitrary displacement vector ĥ as a sum of the eigenvectors,
such that

ĥ=Rβ (22)

where β is the vector of weight functions required to pro-
duce the desired perturbation vector. The vector β can be cho-
sen freely, to give any arbitrary surface motion. Thus we ob-
tain:

ηm ≈−
1
κ

∑k Im[(Rα)∗k(
∂R
∂ s β)k]

∑k Re[(Rα)∗k(Rβ)k]
(23)

Without loss of generality, we can expand the differential
( ∂R

∂ s ) as follows:

∂R

∂ s
=− jκ(R−Rε) (24)

where the matrix ε represents the deviation of the differen-
tial ∂R

∂ s from − jκR. This allows for further simplification of
Equation 23:

ηm ≈ 1− ∑k Im[(Rα)∗k( jRεβ)k]

∑k Re[(Rα)∗k(Rβ)k]
(25)

Thus the propulsive efficiency is fully determined by the
matrix ε, which is an [N×N] matrix where N is the number
of columns in the matrix of eigenvectors R. It can be ob-
tained as follows (noting that, if the eigenvectors are scaled
appropriately, LBR produces the identity matrix I):

ε= I+
1
jk
LB

∂R

∂ s
(26)

Equation 25 shows that the propulsive efficiency of any ar-
bitrary harmonic body motion will depend on ε, the entries of
which will appear as a sum in the numerator of the fraction
in Equation 25. In order to maximise the Froude efficiency,
the fraction in Equation 25 should be minimised, through an
appropriate choice of the weight function β which determines
the body motion.

One way to obtain the body motion vector h resulting in
the highest efficiency is to choose β to be a vector in the null
space of ε. However, in the present study the ε-matrices eval-
uated generally have full rank. An alternative method is to
choose β to be zero everywhere except for the single entry
corresponding to the smallest diagonal value of ε. In this sce-
nario only this single entry from the diagonal of ε will appear
in Equation 25 since the rest will be multiplied by the zero-
entries in β. The single entry of ε thus determines the overall
efficiency. By contrast, if β is zero everywhere except at M
entries, then M×M terms from ε will contribute to the nu-
merator in Equation 25, including both diagonal entries and
off-diagonal entries. The sum of all these M×M entries will
then determine the efficiency. As such, in the absence of a null
space of ε, adding more entries in β will always be detrimen-
tal to the overall efficiency. From Equation 22, if β is nonzero
only at a single entry the body motion is given by the corre-
sponding right eigenvector (as in Equation 11). The analysis
thus suggests that Froude efficiency is maximised by swim-
ming according to a single appropriately chosen eigenvector.

An illustration of the effects of ε on propulsive efficiency
is shown in Figure 1. The results are obtained using the vor-
tex lattice model outlined in Section III, for a square plate
discretized on a 10× 10 grid for κ = 10. The grey bars in
Figure 1a give the propulsive efficiencies of all eigenmodes
that produce positive cycle-average thrust T m. Light grey bars
represent efficiency from added mass forces only (ηm), while
dark grey bars represent efficiency including both added mass
and circulatory forces (η). Overlaid as a line plot is the neg-
ative imaginary component of the diagonal entry of ε, which
can be seen to correspond inversely to ηm as expected.

When considering the full propulsive efficiency η , ε is not a
good indicator of efficiency for modes 1-5 in Figure 1a since
these have significant contributions from circulatory forces.
As is demonstrated in Appendix A, it is not possible to ex-
press η as a function of a single parameter as it is for ηm in
Equation 25. However, we demonstrate that the optimum is
still to swim according to a single eigenvector, rather than a
combination of multiple eigenvectors. This is further illus-
trated in Figure 1b, showing the ε-matrix corresponding to
the modes in Figure 1a as a heat map. There are a number of
off-diagonal entries with comparable magnitudes to the diag-
onal entries, further showing the benefit of that having only
one non-zero entry in β. Because ε is not always a good pre-
dictor of η , and because we have demonstrated that single-
eigenvector solutions are optimal, in the remainder of this pa-
per we identify high-efficiency body motion by directly evalu-
ating the efficiency of every thrust-producing mode, including
both added mass and circulatory forces. This process will be
demonstrated in Section IV, and the vortex lattice model used
to produce the results is outlined in Section III.
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FIG. 1. a) The efficiency of all thrust-producing eigenvectors generated from a square plate on a 10× 10 grid at κ = 10, in comparison to
the corresponding on-diagonal value of ε. b) Heat map of log(|Im[ε]/Im[ε]max|) corresponding to the thrust-producing modes, showing the
relative magnitudes of the entries of the ε matrix.

III. THE VORTEX LATTICE MODEL

A. Methodology

The inviscid vortex lattice model (VLM) used in this work
is based on that outlined by Katz and Plotkin (2001)47, as-
suming small-amplitude motion and with modifications to en-
able frequency-domain modelling. Both 2D and 3D VLMs
have been used extensively for first-order estimates of steady
and unsteady airfoil loading, in a variety of applications such
as wind and tidal energy48,49, boat propellers50, and aircraft
wing modelling51. More recently, they have seen extensive
use in the study of oscillating airfoils, propulsive kinemat-
ics and fluid-structure interaction39,52–54. VLM in the format
used in this paper gives results identical to classical inviscid
airfoil theory such as the Theodorsen and Sears functions, for
both steady and unsteady flow50,55, and also performs well
compared to high-order CFD simulations as long as separated
flow effects are not dominant49,51. The model presented below
has been validated against both inviscid low-order and vis-
cous high-order steady and unsteady simulations49,55. Small-
amplitude harmonic motion is assumed throughout.

As illustrated in Figure 2, the geometry is divided into
panels (shown in grey) with associated vortex rings each
made up of four vortex lines (shown in blue), and collo-
cation points (marked in red). The surface coincides with
the (x,y)-plane, and body thickness is not included in the
model. The Kutta condition is implicitly enforced through
the placement of the collocation point at 3/4th of each panel
length, and the spanwise vortex lines at 1/4th panel length
(see Katz and Plotkin47). The wake vortices are formed as
bound vorticity from the trailing edge panel is shed into the
wake, moving along the horizontal coordinate at the steady
relative freestream velocity U . Additional deformation of the
wake through self-interaction (“vortex rollup”) is not included
– this is not expected to significantly impact the results for
small-amplitude perturbations, which are assumed through-

out this work. Because this paper uses a frequency-domain
formulation, the relative freestream velocity U (representing
the swimming speed) and the beat frequency ω (radians per
second) are input variables.

The Biot-Savart law is used to find the velocity induced by
each lattice vortex ring on each collocation point, such that
the induced surface-normal velocity w on the m’th collocation
point by the n’th vortex ring is given by

wmn = ΓnKmn (27)

where K is a kernel function based on the Biot-Savart law,
determined by the geometry. If the n’th vortex ring is made
up of four vortex lines (see Figure 2) with the four cor-
ner locations connecting each vortex line having coordinates
pn1 = [xn1,yn1,zn1], pn2 = [xn2,yn2,zn2] etc., and the m’th col-
location point has coordinates cm = [xm,ym,zm], then the ker-
nel function is:

Kmn =
4

∑
k=1

[
rnk×rn(k+1)

4π|rnk×rn(k+1)|2

(
r0 ·rnk

|rnk|
−
r0 ·rn(k+1)

|rn(k+1)|

)]
·nm

(28)
where r0 = (pn(k+1)−pnk), rnk = (cm−pnk) and rn(k+1) =

(cm−pn(k+1)). The vector nm is the unit surface normal vec-
tor of the vortex panel at the m’th collocation point. The rela-
tion between bound vorticity and wake vorticity is established
by noting that the circulation of a wake panel at time t is the
same as that of the trailing edge panel at time t− k∆t, where
k is the number of time steps since the wake panel was shed
from the trailing edge, such that for a harmonic system

Γk = ΓT Ee−( jω∆t)k (29)

where ΓT E is the bound circulation at the upstream trail-
ing edge panel. The time step ∆t is an input variable in the
present model, effectively determining the wake lattice reso-
lution. Note that Equation 29 is dependent on ω , and thus on
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FIG. 2. Illustration of the vortex lattice model as applied to a rectangular wing.

the reduced frequency κ (Equation 2). As a result, the influ-
ence matrix in Equation 32 below – and its eigenmodes – will
be κ-dependent.

The body motion is given by h which indicates the surface
distribution of displacement along the z-coordinate. The local
velocity u is obtained from the heaving velocity ∂h/∂ t = jωh
and the surface-normal component of the freestream velocity.
For small-amplitude motion, the relative surface-normal ve-
locity due to the local pitch angle θ can be expressed as

Usin(θ(x,y, t))≈Utan(θ(x,y, t)) =−U
∂h(x,y, t)

∂x
(30)

In matrix notation, this gives the surface-normal velocity
from body movement as:

u= ( jωI−UD)h=Bh (31)

where the matrix D represents a numerical differentiation
scheme for the vector h. The eigenmode analysis was found
to be sensitive to the choice ofD. Using forward or backward
difference schemes produced significant scheme-dependent
errors in the resulting eigenvector shapes, while a central dif-
ference scheme rectified the errors. All results presented be-
low were obtained using a 6th order central difference scheme,
with forward and backward schemes at the boundaries.

Finally, noting that Γ = Γ̂e jωt and h = ĥe jωt , and that the
exponentials will therefore cancel out, we relate the amplitude
distributions of circulation to the body displacement through
the following governing equation:

AΓ̂ =Bĥ (32)

The matrixA represents the transform of bound circulation
to induced surface-normal velocity, and consists of combina-
tions of Equations 28 and 29 for each lattice panel. Conven-
tionally, the matrix A would be inverted to find the vector of

unknown vortex circulation Γ̂, given a displacement ĥ. How-
ever, in this study the eigenmodes obtained from the general
eigenmode problem are found instead, and analyzed accord-
ing to the method outlined in Section II. Having obtained the
circulation vector Γ̂, in this case from Equation 5, the cir-
culatory force is found from the vector form of the Kutta-
Joukowski theorem (see Equation A1), and the added mass
from Equation 12.

Lattice resolution studies were performed to remove mesh
dependency. The convergence criteria used were applied to
the main modes of interest (shown in the results sections
below). They two criteria used were thrust coefficients not
changing more than 5% when the mesh resolution was dou-
bled, and that the eigenvector shapes did not visibly change.
The most important parameters for convergence were found to
be the chordwise lattice resolution, the streamwise wake reso-
lution and the downstream extent of the wake. The chordwise
resolution was consistently set to be as high as possible while
maintaining achievable computational times (see Table I for
the lattice resolutions used). The wake lattice resolution was
set by specifying the implicit time step ∆t. Two criteria on ∆t
were found necessary for accurate results. First, for Nc chord-
wise lattice panels:

∆t <
c

NcU
(33)

Second, it was necessary to ensure a minimum number of
implicit time steps per harmonic period. In this study, this
minimum limit was set to 300 time steps, such that:

∆t <
2π

300 ω
(34)

The streamwise extent of the wake was set to be 40 times
the maximum chord or span length of the body geometry,
whichever was the greater distance.



8

0 2 4 6 8 10
0

0.5

1

0
/h

0
=1, =90

0
/h

0
=4, =90

0
/h

0
=1, =-90

0
/h

0
=4, =-90

0 2 4 6 8 10
0

0.5

1

0 2 4 6 8 10
-0.2

0

0.2

0.4

0.6
Heave

Pitch

Heave

Pitch

a) b)

c)

C
T

/a
2

2
κ

FIG. 3. 2D validation cases. Solid and dashed lines represent the analytical solution obtained by Garrick (1936)56, while markers indicate the
VLM solution. a) Normalised thrust coefficient of pure heave and pitch (for heave the amplitude a is in meters, while for pitch a is in radians),
b) hydrodynamic efficiency of pure heave and pitch, c) hydrodynamic efficiency of combined heave and pitch, for heave amplitude h0 and
pitch amplitude α0.

B. Analysis of propulsive properties

The vortex lattice model outlined above was implemented
in Matlab. The eigenmode decomposition is carried out as
described in Section II, using the relevant Matlab functions
to obtain the eigenvalues and eigenvectors of A and B. The
thrust generated by each eigenmode is found by sequentially
setting h = vR for each individual eigenvector and obtaining
the corresponding circulation Γ. The results are expressed in
terms of the cycle-averaged thrust coefficient, defined as:

CT =
T

1
2 ρU2S

(35)

In order to evaluate the Froude efficiency (Equation 1) the
cycle-average power coefficient is also evaluated, defined as:

CP =
P

1
2 ρU3S

(36)

The power is defined as the inner product of the body force
with the transverse body velocity (see Equations 18 and A5).
The efficiency is then given as:

η =
CT

CP
(37)

In the results below the thrust coefficient is normalised by
a2 to remove the dependence on beat amplitude from the re-

sults, which is trivial for small-amplitude inviscid modelling.
It is further normalised by κ2.

Since the present study uses an inviscid vortex lattice
model, assuming small-amplitude motion, the Strouhal num-
ber (Equation 3) is of value only as it relates to the reduced
frequency, since the cycle-average thrust scales with ampli-
tude as T ∝ a2. As such, the effects of Strouhal number are not
considered below, but only the effects of reduced frequency κ

(Equation 2).

C. Validation

Previous validation of the VLM code focused on predic-
tion of lift as a result of unsteady gust forcing49,55. The code
used in the present study is also validated against the work of
Garrick (1936)56, who extended Theodorsen’s analysis to in-
clude thrust prediction for heaving and pitching plates. The set
of assumptions underlying Garrick’s model – inviscid small-
amplitude flow with a planar wake, also used for the VLM in
Section III – have been shown to be limited in its ability to pre-
dict thrust and propulsive efficiency by several past and recent
studies4,28,57, suggesting that these assumptions may not accu-
rately represent the flow physics of oscillating airfoils. While
acknowledging these limitations, the assumptions of inviscid
small-amplitude flow may still have value in providing a the-
oretical upper limit on swimming efficiency, which justifies
its use in this paper for demonstrating the eigenmode analysis
presented in Section II. As mentioned above, the eigenmode
analysis can also be applied to more advanced hydrodynamic



9

Shape Resolution

Square [120×40]
Rectangle [200×31]

Rectangular wing [80×30]
Ellipse [80×60]

Tapered wing [80×80]

TABLE I. Lattice resolutions for the geometries shown in Figure 4,
shown as [number of chordwise panels × number of spanwise pan-
els].

models including more realistic flow physics, which is a topic
for further work.

The cycle-average thrust coefficient given by VLM is
shown in Figure 3a for a 2D plate in pure heave and when
pitching about the quarter-chord. The corresponding propul-
sive efficiencies are given in Figure 3b. The propulsive effi-
ciencies resulting from a combination of pitch at amplitude α0
and heave at amplitude h0, for various relative amplitudes and
phases, are shown in Figure 3c. The 2D results were obtained
from the 3D VLM by evaluating the result at mid-span of a
large aspect ratio wing (AR = 100 with 100 chordwise pan-
els and 5 spanwise panels). The results show good agreement
with Garrick’s analytical function.

D. Body planforms

Figure 4 illustrates the geometries analyzed in this paper.
Figure 4a shows the square plate used to demonstrate the
salient properties of the eigenmodes. The rectangle geome-
tries in Figures 4b and 4c are used to study the effects of as-
pect ratio (0.25 and 2.85 respectively). The two remaining
planforms were chosen to have qualitatively similar features
to swimmers found in nature; the ellipse in Figure 4d repre-
sents the simplified outline of a marine flatworm, while Fig-
ure 4e shows a tapered wing inspired by the shape of a manta
ray. The tips of the tapered wing are cut off (an approach also
used successfully by Ayancik et al. (2020)39 to study tail fin
propulsion), since the VLM cannot model the chord length
tapering to zero.

IV. HYDRODYNAMIC EIGENMODE ANALYSIS OF A
SQUARE PLATE

A. Eigenvalues and eigenvector shapes

Figure 5 shows the eigenvalues of the governing equation
(Eq. 32) for κ = 1.0 for the square plate geometry. A selection
of associated right eigenvectors are shown in Figure 6. The
eigenvalues are normalised by the chordwise number of vortex
lattice panels n.

The eigenvalues visible in Figure 5 can be separated into
two groups: the “core” eigenvalues (expanded view), and the
“outer” eigenvalues which are two orders of magnitude larger
than those in the core. The former are of primary interest in

this study, as the outer eigenvalues are highly grid-dependent
and as such are likely to be an artefact of the discretized do-
main. By contrast, the core modes do not change significantly
with increasing grid resolution. As such, in the rest of the pa-
per only the core modes will be considered for each geometry.

The core eigenvalues in Figure 5 show clear groupings
into radial segments, or “branches”. Four such segments
have been chosen for illustration and are marked 1-4 in Fig-
ure 5, with successive eigenvalues within a segment marked
.a, .b, .c, etc. starting from the innermost eigenvalue. The
corresponding right eigenvectors for these modes are shown
in Figure 6, illustrated as contour plots of surface displace-
ment. Figure 6 shows that moving outward along the branch
(from .a→ .b→ .c,etc.) corresponds to a stepwise increase
in spanwise wavenumber in the eigenvectors, in increments of
half-wavenumbers. This trend is consistent for all the eigen-
vectors identified from all the geometries used in this study.
Moving further radially outwards, eventually the wavelengths
become too short to be properly resolved, and the modes re-
semble noise. The mode shapes from the various branches
1, 2, 3 and 4 in Figure 6 are qualitatively similar, with sub-
tle differences in amplitude distributions and in phase. 3D
visualisation of the swimming kinematics resulting from the
eigenvectors in Figure 6 can be seen in Figure 7 (multimedia
view).

The modes observed in Figures 5 and 6 undergo substantial
change with increasing reduced frequency. Figure 8 shows
the eigenvalues for κ = 1.0, 2.0, 3.0 and 4.0. The eigenvalue
branches shift positions in the complex plane; of particular
interest is the movement of branch 3 from positive to nega-
tive complex semi-plane. As κ is increased further, successive
branches continue to move from positive to negative complex
components. It will be shown below that when the imaginary
component of an eigenvalue moves from positive to negative,
the corresponding eigenvector starts to produce thrust. Note
that the positional shift of branch 2 in Figure 8 is distinct from
the others. It will be shown below that the associated eigen-
vectors have unique properties compared to the other modes.

Looking at the eigenvectors, at low κ (as in Figure 6) there
is limited chordwise variation in the motion amplitude, such
that the modes exhibit relatively uniform “flapping” motion
(see Figure 7 – multimedia view). Figure 9 shows how two
vectors from Figure 6 change shape as κ increases. Figure 9a
shows Mode 2.a for increasing κ , and Figure 9b shows the 3D
visualisation of the kinematics of the same mode (multimedia
view). The chordwise wavelength of the mode can be seen to
gradually decrease with increasing κ . The same behaviour is
seen for Mode 3.a in Figure 9c, with Figure 9d showing the
3D visualisation of the kinematics (multimedia view). Using
the terminology of Smits (2019)17, the eigenvectors produce
“oscillatory” kinematics at low reduced frequencies, and as
the frequency increases the motion pattern gradually shifts to
“undulatory”. This is a consistent behaviour for all modes
identified in this study.

A notable difference between Mode 2.a and Mode 3.a in
Figure 9 is in the location of peak motion amplitude. As κ in-
creases, the peak amplitude of Mode 2.a shifts to the trailing
edge. Mode 3.a, by contrast, retains a uniform amplitude dis-
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a)

b)

c)
d)

e)

FIG. 4. The geometries analyzed (black), with corresponding streamwise wake vortex lines (blue). a) Square plate, b) elongated rectangular
plate (aspect ratio 0.25), c) rectangular wing (aspect ratio 2.85), d) elliptical geometry, and d) tapered wing. See Table I for details of the lattice
resolution.
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FIG. 5. The square plate eigenvalues for κ = 1. The eigenvalue
branches of interest are marked 1-4, with the three innermost eigen-
values of each branch marked .a, .b and .c.

tribution along the chord at all frequencies. The kinematics of
Mode 2.a is qualitatively similar to swimming motions seen in
many marine animals, in which the amplitude of motion tends
to gradually increase along the body and peak at the trail-
ing edge. Only the eigenvectors associated with eigenvalue
branch 2 exhibited this behaviour, and it will be shown that
the other geometries evaluated below exhibit a similar trend
in a small selection of eigenvectors.

B. Propulsive properties: thrust and efficiency

Figure 10 shows the thrust coefficients and Froude efficien-
cies resulting from the eigenvector kinematics obtained from
the square plate, for κ = 5.0. Prior to analysis a filtering pro-
cess was applied to identify and discard modes with spanwise
and chordwise wavenumbers too high to be physically feasi-
ble. A limit on the second derivative of surface displacement
was set, in order to limit the maximum allowable body cur-
vature. At the top of Figure 10 two eigenvectors are included
as examples of modes which did or did not pass the filtering
process. It can be seen in Figure 10a that just over half of
the modes identified produce positive thrust at this frequency.
The propulsive efficiencies in Figure 10b are above 70% for
all modes, and exceeds 95% for a majority.

Having identified a subset of potentially viable modes
through the filtering process, we can now study mode proper-
ties with changing κ . All eigenvectors in Figure 6 have phys-
ically realistic spanwise and chordwise wavenumbers, and so
the propulsive properties of Modes 1-4.a are shown in Fig-
ure 11 to illustrate the effect of κ (legend notation as in Fig-
ures 5 and 6).

Looking at the thrust (Figure 11a), at low κ there are sub-
stantial differences between the modes, while all modes ap-
proach a similar trend at higher κ . The eigenvalues of Mode
1.a and Mode 2.a have negative complex components through-
out the tested frequency range (see Figure 8), and they can be
seen to always produce positive thrust. Mode 2.a reaches and
maintains a level value of about 0.01 as κ increases, suggest-
ing that the thrust is proportional to κ2. Modes 3.a and 4.a
start producing thrust at κ = 3.0 and κ = 7.0 respectively;
these are the frequencies at which their corresponding eigen-
values shifts from positive to the negative complex space.

In the Froude efficiency (Figure 11b) the modes fall in two
clear categories, where Modes 1.a, 3.a and 4.a all have effi-
ciencies of 95% or higher while Mode 2.a varies at lower κ

and then approaches a level value in the range 75-80%. While
the efficiency of Mode 2.a is lower than the others, it is higher
than that of heaving and pitching motion at similar frequen-
cies (see Figure 3). The benefit of Mode 2.a is that its motion
amplitude increases gradually from leading to trailing edge, as
can be seen in Figure 9b, while the other modes have consis-
tently large leading-edge amplitudes. As such, Mode 2.a has
an advantage in a viscous flow where leading edge stall must
be avoided.
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κ = 1.

FIG. 7. 3D illustrations of the swimming kinematics corresponding
to the eigenvectors in Figure 6 (multimedia view).

C. Summary of notable features

A number of features found in the eigenmodes of the square
plate recur in the other geometries tested. They are summa-
rized here.

The eigenvalues are grouped together in separate distinct

“branches”, the positions of which shift in complex space as
the reduced frequency increases. The modes of “branch 2”
have distinct properties compared to the other modes.

Moving outwards along a branch of eigenvalues corre-
sponds to a stepwise increase in spanwise wavenumber of the
corresponding eigenvector. Increasing κ results in an increase
in the chordwise wavenumber of all eigenvectors.

The eigenvectors associate with branch 2 uniquely have the
feature of increasing motion amplitude from the leading to the
trailing edge, which is a feature often seen in marine animal
swimming. All other modes have amplitudes more uniformly
distributed in the chordwise direction.

The modes start producing thrust at a certain “cut-in fre-
quency” κc, which corresponds to the complex component of
the corresponding eigenvalue going from positive to negative.
Above the cut-in frequency the modes generally have propul-
sive efficiencies of over 90%, the exception being the kine-
matics obtained from modes in branch 2, which give efficien-
cies of over 70%. The high efficiencies persist for increasing
κ , in contrast to pure heaving or pitching motion for which
the propulsive efficiency decreases at high κ (see Figure 3).
While the efficiencies of the various modes are similar (apart
from modes in branch 2) the differences in their thrust coeffi-
cients are more significant.

V. HYDRODYNAMIC EIGENMODE ANALYSIS OF
RECTANGULAR PLATES

A. Analysis of elongated plate planform

Figure 12 shows summary results of the hydrodynamic
eigenmode analysis for the elongated plate in Figure 4b. The
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FIG. 9. Illustration of the changing shapes of Mode 2.a and Mode 3.a (see Figures 5 and 6) with increasing reduced frequency κ . a) Real and
imaginary contours of Mode 2.a, b) 3D illustrations of the swimming kinematics corresponding to Mode 2.a, obtained by multiplying the real
component by exp( jωt) for a range of t (multimedia view), c) Real and imaginary contours of Mode 3.a, d) 3D illustrations of the swimming
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frequency κ for a selection of eigenvectors from the square plate. Legend notation corresponds to that of Figure 5.

eigenvalues (Figure 12a), shown for κ = 1.0, are structured
in radial branches similar to those of the square plate in Fig-
ure 5. Three associated eigenvectors (Modes 2.a, 3.a and 5.a)
are shown in Figure 12b, all representing the innermost eigen-
value in their respective branch. The eigenvectors are eval-
uated at κ = 1.0, 5.0 and 9.0. Note that these eigenvectors
do not necessarily correspond to the peak-performing modes,
but are chosen to illustrate general trends in the eigenvector
shapes.

As for the square plate in Figure 9, the chordwise
wavenumbers of the eigenvectors in Figure 12b increase with
κ . There are subtle differences between the eigenvectors; the
chordwise wavenumber of Mode 5.a is about 25% higher than
Mode 3.a for κ = 5.0 and 9.0. As κ increases, the maximum
motion amplitude of Mode 2.a shifts to the trailing edge (as
was the case for Mode 2.a in Figure 9).

Figure 12c shows the thrust produced by Modes 1-

5.a (corresponding to the innermost eigenvalues of each
branch marked in Figure 12a) for increasing κ . Again the
modes whose eigenvalues have negative complex components
throughout this frequency range (Modes 1.a and 2.a) always
produce positive thrust, while Modes 3.a, 4.a and 5.a produce
thrust only above a certain cut-in frequency κc which coin-
cides with their eigenvalues moving from positive to negative
complex space. Interestingly, the cut-in frequencies for the
modes in Figure 12c are the same as for the corresponding
square plate modes in Figure 11a, e.g. κc ≈ 7.0 for Mode
4.a in both cases. While the trends of the elongated plate are
similar to those of the square plate, the magnitude of the nor-
malised thrust coefficient in Figure 12c settles on a value ap-
proximately half that of the square plate in Figure 11a at com-
parable κ . There is more significant variation in the thrust
coefficient of the different modes in Figure 12c compared to
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FIG. 12. a) Eigenvalues, b) eigenvectors, c) thrust and d) efficiency of a selection of eigenvectors from the elongated plate geometry. The
eigenvalue branches of interest are marked 1-5 in the eigenvalue plot.

the variation in efficiency in Figure 12d, apart from Mode 2.a.
Looking at the Froude efficiency in Figure 12d, the trends

are again similar to those of the square plate in Figure 11b.
Modes 1.a, 3.a, 4.a and 5.a all have efficiencies close to 100%,
while Mode 2.a has efficiency near 100% at κ = 1.0 and then
decreases to reach a level value of about 80%. This again
demonstrates that the eigenmodes can reach efficiencies sig-
nificantly higher than pure pitching or heaving motion (see
Figure 3).

B. Analysis of rectangular wing planform

Figure 13 shows summary results from hydrodynamic
eigenmode analysis of the rectangular wing geometry in Fig-
ure 4c. Figure 13a shows the eigenvalues at κ = 1.0, while
Figure 13b shows eigenvectors corresponding to the three in-
nermost eigenvalues on branch 2 and 3, marked Mode 2.a-c
and Mode 3.a-c, for different frequencies. Again, the modes
shown are not necessarily the peak-performing modes, but are
chosen to illustrate general properties of the eigenvectors.

As in Figure 6, the eigenvectors exhibit a stepwise increase
in spanwise wavenumber, with a half-wavenumber added for
each outward step in the branch of eigenvalues (.a→ .b→ .c).
The spanwise wavenumber is unchanged with κ , while the

chordwise wavenumber increases with increasing κ as before.
The maximum movement amplitudes of Modes 2.a-c shifts to
the trailing edge with increasing κ , while Modes 3.a-c retain
a uniform amplitude distribution.

Figures 13c and 13d respectively show the thrust and
Froude efficiency of Modes 1.a and 4.a, while Figures 13e
and 13f show that of Modes 2.a-c and 3.a-c. The thrust results
(Figures 13c and 13e) show varying cut-in frequencies κc be-
tween the modes, and as before κc corresponds to a shift of
the corresponding eigenvalue from positive to negative com-
plex space. Modes originating from the same branch of eigen-
values appear to have close to identical propulsive properties
according to Figures 13e-f, except for the low-κ response of
Modes 2.a-c. Mode 3.a and 4.a again have the same cut-in
frequencies as the corresponding modes from the square and
elongated plates above (Figures 11 and 12), at κc ≈ 3.0 and
7.0 respectively. The thrust magnitudes for the modes in Fig-
ures 13c and 13e are slightly larger than that of the square
plate, with Modes 2.a-c settling at about CT/a2κ2 = 0.017.

The Froude efficiencies in Figures 13d and 13f are con-
sistently high, exceeding 70% everywhere except at κ = 2.0
and 3.0 for Mode 2.a, which is higher than can be achieved
through pure pitching or heaving. As before, the modes asso-
ciated with eigenvalue branch 2 have lower efficiencies than
the other modes.
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FIG. 13. a) Eigenvalues and b) eigenvectors of a selection of eigenvectors from the rectangular wing geometry. c) and e) shows normalised
thrust, while d) and f) shows Froude efficiency. The eigenvalue branches of interest are marked 1-4 in the eigenvalue plot, with the three
innermost eigenvalues in a branch marked a, b and c.

VI. HYDRODYNAMIC EIGENMODE ANALYSIS OF
BIO-INSPIRED GEOMETRIES

A. Analysis of elliptical planform

Figure 14 shows eigenvalues for the elliptical plate (Fig-
ure 4d), evaluated at different frequencies. The structure of
the eigenvalues is similar to that of the rectangular geometries
above (e.g. in Figure 5), but additional features emerge with
increasing κ . Each branch of eigenvalues divides into “sub-
branches” as the eigenvalues move from positive to negative

complex space, as can be seen for the eigenvalues associated
with branch 3 in Figure 14. The eigenvectors associated with
these sub-branches were generally found to be “noisy” with
high surface curvatures, and so were discarded in the mode
filtering process described in Section IV.

Figure 14 also shows three eigenvectors each evaluated at
different κ; Modes 3.a, 4.a and 5.a, corresponding to the in-
nermost eigenvalue in branches 3-5. The spanwise wavenum-
ber changes with κ for all three modes, in contrast to the
eigenvectors of the rectangular geometries above. Looking
at Mode 3.a, the amplitude of motion becomes increasingly
concentrated around the centreline as κ increases. The mo-
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FIG. 14. Eigenvalues and right eigenvectors obtained from the elliptical geometry. The eigenvalue branches of interest are marked 1-5 in the
eigenvalue plots.

tion amplitudes of Modes 4.a and 5.a on the other hand shift
towards the spanwise edges as κ increases, such that eventu-
ally the centreline is stationary. The outcome is an effective
increase in the spanwise wavenumber with increasing κ for all
three modes. There is an increase in chordwise wavenumber
with increasing κ as before, but the change is dominated by
the spanwise wavenumber.

Figure 15 shows the thrust and propulsive efficiency of
Modes 1.a-5.a, representing the innermost eigenvalue of each
branch marked in Figure 14, against κ . The normalised thrust
coefficient (Figure 15a) undergoes substantial change at low
κ , and approaches a settled value as κ increases, indicating
a κ2 proportionality in the cycle-average thrust. The highest
settled thrust value, approximately CT/a2κ2 = 0.02 produced
by Mode 1.a, is higher than that achieved by the square plate
in Section IV. The eigenvalues of Modes 4.a and 5.a are in the
positive complex plane at low κ , but in contrast to the rectan-
gular geometries above they do not shift to the negative com-
plex plane as κ increases. Consequently, they do not produce
net positive thrust at any of the frequencies evaluated.

The Froude efficiency is given in Figure 15b. As for the
rectangular geometries, the efficiencies are generally above

70%, with Modes 1.a and 3.a outperforming Mode 2.a. Once
again, the eigenmodes consistently produce propulsive motion
with efficiencies higher than that of pure heaving or pitching.

B. Analysis of tapered wing planform

Figure 16 shows the eigenvalues of the tapered wing ge-
ometry (Figure 4e) evaluated at κ = 3.0, and also a selection
of eigenvectors for different frequencies. As with the ellipti-
cal geometry above, the eigenvalues are grouped in branches
with new “sub-branches” emerging when moving from posi-
tive to negative complex space. The main region of interest in
the eigenvalue plot in Figure 16 is expanded.

Looking at the eigenvectors in Figure 16, Mode 2.a-c (cor-
responding to the three innermost eigenvalues of branch 2)
follow the same pattern as the square plate and rectangular
wing above: there is a stepwise increase in wavenumber in
increments of 0.5 when moving outwards in the eigenvalue
branch (.a→ .b→ .c). As κ increases this pattern persists
while the chordwise wavenumber increases. However, sim-
ilar to the elliptical geometry, the amplitude of motion also
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FIG. 15. Propulsive properties against reduced frequency κ for a selection of eigenvectors from the elliptical geometry. The legend notation
corresponds to that of Figure 14. a) Normalised thrust, b) Froude efficiency (note that only efficiencies from positive-thrust cases are included).

becomes increasingly concentrated around the centreline.
Modes 1.a* and 2.a* are associated with the eigenvalue

“sub-branches”, and do not correspond in nature to any other
modes found in other geometries evaluated in this paper. As
was the case for some modes from the elliptical geometry, the
motion amplitudes of these modes become increasingly con-
centrated near the spanwise edges with increasing κ , while the
centreline is stationary. The spanwise wavenumber of Mode
2.a* increases rapidly with increasing κ , such that the sur-
face curvature quickly becomes non-physical and the mode is
rejected by the filtering process. The spanwise wavenumber
of Mode 1.a* undergoes less change, and the surface curva-
ture remains physically viable. For both Modes 1.a* and 2.a*
the change to the spanwise wavenumber exceeds that of the
chordwise wavenumber as κ increases.

Figure 17 shows the propulsive properties of the modes in-
cluded in Figure 16, with the thrust and Froude efficiency of
modes from branch 1 shown in Figures 17a-b and those of
modes in branch 2 in Figures 17c-d. Note that only motion
frequencies up to κ = 10.0 were evaluated for this geome-
try, since higher frequencies resulted in large surface curva-
tures across virtually all modes, rendering these frequencies
less physically meaningful.

Looking at the thrust in Figures 17a and 17c, the nor-
malised thrust coefficient approaches a level value in the range
CT/a2κ2 ≈ 0.01− 0.02 with increasing κ (exceptions being
Mode 1.a* and Mode 2.a*, which settle at lower values). Both
the behaviour and the settling range of the normalised thrust
coefficient are remarkably similar to those of the modes asso-
ciated with the other geometries analyzed in this study. Look-
ing at the Froude efficiency, the modes associated with branch
1 (Figure 17b) have higher efficiencies than those of branch
2 (Figure 17d) – 95% vs η ≈ 80%. Note that the proper-
ties of Mode 2.a* are shown only up to κ = 4.0, since beyond
this frequency the spanwise wavenumber of this mode was too
high to be physically meaningful. The same applies to Mode
1.a-c, which are only included up to κ = 7.0.

The results in this section and Section VI A show that while
the eigenmodes of the different geometries in Figure 4 have
many propulsive features in common, changing body plan-

form has the potential to produce new eigenmodes or mode
behaviours. Examples of this include Mode 1.a* and Mode
2.a* for the tapered wing in Figure 16, and Mode 4.a and
Mode 5.a from the elliptical geometry (Figure 14).

VII. DISCUSSION

In this paper we use well-established hydrodynamic mod-
elling methods to numerically compute the eigenmodes of the
unsteady potential flow problem for a thin-bodied swimmer
of arbitrary three-dimensional planform, and we demonstrate
that high-efficiency swimming kinematics can be generated
from these eigenmodes.

The results in Sections IV-VI show that the eigenmodes
can generate high-efficiency kinematics, and also that high
hydrodynamic efficiency can be achieved for any body ge-
ometry as long as the appropriate swimming kinematics are
used: the peak efficiency resulting from the eigenmodes was
the same for all geometries tested (> 95% – note that this re-
sult is obtained from an inviscid model). This is similar to
the conclusions drawn by Zurman-Nasution et al. (2021)58,
who found no significant variation in efficiency across tail fin
sweep angle, and Ayancik et al. (2020)39 who similarly found
little variation in efficiency across a selection of tail fin shapes
from marine animals. In both cases, as long as the kinematics
of the fin motion was appropriate, high-efficiency swimming
could be achieved for any fin geometry.

The results from Sections IV-V of this paper suggest that
both low and high aspect ratio geometries can generate motion
of high inviscid propulsive efficiency, as long as an appropri-
ate mode is used and the frequency is above the cut-in fre-
quency. This contrasts with traditional understanding which
states that decreasing the aspect ratio reduces propulsive
efficiency20. However, Dong et al. (2006)6 showed through
numerical simulations that the hydrodynamic efficiency of
flapping wings with different aspect ratios approached the
same value when κ was increased, although the wing with
the highest aspect ratio still exhibited the highest overall ef-
ficiency and the lowest aspect ratio tested did not reach the
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FIG. 16. Eigenvalues and right eigenvectors obtained from the tapered wing geometry. The eigenvalue branches of interest are marked 1 and
2 in the eigenvalue plot, with two modes of special interest being marked 1.a* and 2.a*.

same efficiency as the remaining wings. While their results
do not fully support the idea that aspect ratio is unimportant
for efficiency, it does bear similarity to the concept of a cut-in
frequency beyond which the efficiencies of different geome-
tries are similar.

It is notable that the efficiencies of all eigenmodes from all
geometries studied in this paper settle to approximately the

same hydrodynamic efficiency: either around 95% or around
80%, depending on the eigenvalue category. The high ef-
ficiency is maintained for increasing κ , which differs from
heaving and pitching motion, for which efficiency decreases
with increasing κ . Since the eigenmodes in general resemble
travelling waves, the most relevant comparison is to the anal-
ysis by Wu (1961)22 of 2D waving plates, considering only
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FIG. 17. Propulsive properties against reduced frequency κ for a selection of eigenvectors from the elliptical geometry. The legend notation
corresponds to that of Figure 16. a) & d) Normalised thrust, b) & e) Froude efficiency.

added mass forces. Wu found that the propulsive efficiency is
1 for a uniform travelling wave when the wavenumber is equal
to the reduced frequency, but zero thrust is generated in this
case. The chordwise wavenumbers of the eigenvectors follow
this principle: the wavenumber increases with κ in order to
maintain the high-efficiency motion (see Figure 9). The eigen-
vectors do however produce a finite thrust force, and main-
tains high propulsive efficiency even as the thrust increases.
The present method has the benefit of accounting for 3D ge-
ometries and circulatory forces.

A remarkable outcome of the eigenmode analysis is the
qualitative similarity of some eigenmodes to swimming mo-
tions seen in nature, despite the simpliciy of the small-
amplitude inviscid VLM used in this paper. This is high-
lighted in Figure 18, showing selected eigenvectors from three
geometries. Note that the selection in Figure 18 is based on
similarity to swimming seen in marine animals, not on the
performance of the mode. Indeed, in some cases the VLM did
not find these modes to have good propulsive performance.
However, the purpose of the results in Figure 18 is not to pro-
vide a validation of the predictive capabilities of the model
– the VLM is much too simple for such comparison – but
to merely note the presence of modes that exhibit similarities
to swimming kinematics seen in nature among the generated
kinematics, despite the simplicity of the VLM.

Figure 18a shows a mode from the elliptical geometry
and a marine flatworm. Using data presented by Dono-
van et al. (2006)59 to indicate an approximate representative
range of reduced frequencies for flatworms swimming in na-

ture, their measurements of the “sea hare” indicate a range of
κ = 10.0−34.0 assuming a specimen length of 30cm. Based
on this approximation, the eigenvector has been evaluated at
κ = 15.0. Both the eigenvector and the flatworm show undu-
latory motion concentrated along the spanwise edges, a phe-
nomenon that occurred at high reduced frequencies for the el-
liptical geometry in Section VI A. It is notable that flatworms
observed in nature tend to swim at high reduced frequencies,
and also generally exhibit these motion kinematics.

The VLM used in this paper predicted that the eigenmode
shown in Figure 18a did not produce thrust. However, this
may be due to limitations in the small-amplitude inviscid vor-
tex lattice model used in this study, or the elliptical geom-
etry not being representative enough of flatworms in nature.
Further work is needed to increase the complexity of the un-
derlying hydrodynamic model to include e.g. large-amplitude
or viscous effects, and to perform more detailed parametric
studies of body geometry effects. Both of these developments
are outside the scope of the present study, which aims only to
outline and demonstrate the eigenmode analysis described in
Section II.

All eigenmodes associated with eigenvalues from “branch
2”, for all geometries, show an increase in motion am-
plitude from the leading to the trailing edge. The mo-
tion amplitude becomes more concentrated at the trailing
edge as κ increases. This is a feature commonly seen in
swimming animals, and the similarity is illustrated in Fig-
ure 18b for the elongated plate, comparing the motion pat-
tern of Mode 2.a to that of a sea snake. The similarity
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FIG. 18. Qualitative comparison of a selection of eigenvectors with marine animal swimming patterns. a) Ellipse/flatworm (Image credit: The
Ocean Agency, stock.adobe.com), b) elongated plate/sea snake (Image credit: The Ocean Agency, stock.adobe.com), c) tapered wing/manta
ray (Image credit: Alex Rose, unsplash.com), d) 3D illustrations of the swimming kinematics corresponding to the eigenvectors in a)-c)
(multimedia view).

in terms of both wavenumber and the gradual increase of
amplitude from leading to trailing edge is notable. The
eigenvector is evaluated at κ = 14.0, which is representa-
tive of eel swimming in nature: Tytell and Lauder (2004)60

measured κ = 14.18, Tytell (2004)32 measured κ = 12.24,
and Gillis (1998)61 measured κ = 15.61 in their experimen-
tal studies of eels at different swimming speeds. Further-
more, Tytell and Lauder (2004)60 measured the wavelength
of movement to be 0.60 body lengths (wavenumber 1.67),
Tytell (2004)32 measured the majority of wavelengths in the
range 0.5− 0.7 body lengths (wavenumber 0.5− 1.43), and
Gillis (1998)61 measured wavelengths in the range 0.4−0.64
body lengths (wavenumber 1.56−2.5). Given that the eigen-
vectors are strongly dependent on κ , the qualitative similarity
of the eigenvector in Figure 18b to eel swimming when evalu-
ated at similar κ is striking. Note also that while other modes,
such as Mode 3.a in Figure 12, have higher predicted efficien-
cies than that of Mode 2.a used in Figure 18b, these other
modes generally have large leading edge motion amplitudes
and are thus liable to cause separation in a viscous flow. This
would likely reduce their suitability for swimming kinematics

in favour of Mode 2.a despite its lower inviscid efficiency.

Finally, Figure 18c shows an eigenvector from the tapered
wing geometry, in qualitative comparison with a manta ray.
The eigenvector has been evaluated at κ = 1.0, based on a
study by Fish et al. (2016)62 where the representative swim-
ming speed was set to 1 body length per flapping cycle.
The eigenmode kinematics in Figure 18c are oscillatory in
the chordwise direction (the wavelength of motion is longer
than the chord) and undulatory in the spanwise direction (mo-
tion wavelength is shorter than the span), which according to
Fish et al. (2016)62 is also observed in swimming manta rays.

For 3D visualisation of the swimming kinematics given by
the eigenvectors in Figure 18a-c, see Figure 18d (multime-
dia view). While the present study makes only brief quali-
tative comparison between eigenmode kinematics and swim-
ming motion found in nature, overall the results visualised in
Figure 18 show the potential of hydrodynamic eigenmode de-
composition to potentially explore and identify features of ef-
ficient swimming motion as observed in marine life.
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VIII. CONCLUSIONS

This study has investigated the use of hydrodynamic eigen-
modes for generating swimming kinematics resulting in high
propulsive (Froude) efficiency, given a 3D body geometry. By
assuming a linear system, and using the hydrodynamic eigen-
vectors as basis functions for the circulation distribution, we
have demonstrated that swimming according to a single ap-
propriately selected eigenvector maximises the propulsive ef-
ficiency. The analysis was then carried out for a selection of
simple geometries, using an inviscid frequency-domain vor-
tex lattice model to represent the hydrodynamic system (more
advanced hydrodynamic models can be used in conjunction
with the eigenmode analysis, such that the simplicity of the
underlying model is not a limitation of the method).

The efficiencies achieved were consistently high for all
thrust-producing eigenmodes, with very little variation be-
tween the different geometries. Two primary categories of
modes were identified; in the first category (modes associated
with “eigenvalue branch 2”) the motion amplitude of the as-
sociated eigenvector kinematics increased from the leading to
trailing edge, similar to the motion pattern of marine animals
in nature. In the second category, the motion amplitudes were
uniform in the chordwise direction. The Froude efficiency
of the former was in the range 70-80%, while the latter was
generally 95% or higher (note that these efficiencies are ob-
tained from an inviscid model). This exceeds peak efficien-
cies achieved by heaving and pitching motion, especially at
high frequencies. Changes to aspect ratio or planform had lit-
tle discernible effect on the maximum achievable efficiency in
this study. This suggests that high-efficiency inviscid swim-
ming motion can be achieved irrespective of geometry, by us-
ing the kinematics generated using hydrodynamic eigenmode
decomposition.

The kinematics generated through the eigenmodes were
strongly dependent on reduced frequency κ . The kinemat-
ics were generally similar to travelling waves. The chordwise
wavenumber of the motion increased with increasing κ , mean-
ing that as κ increased the eigenmodes shifted from producing
oscillatory to undulatory motion. The rectangular geometries
tested had no change in spanwise wavenumber with increas-
ing κ , while for the two bio-inspired geometries changes to
the spanwise wavenumber were often more significant than
those to the chordwise. These results suggest that the opti-
mum swimming kinematics for a given body planform will
depend strongly on both the 3D geometry and the beat fre-
quency.

Despite the simplicity of the underlying inviscid model
used for this study, some of the hydrodynamic eigenmodes
bore remarkable similarity to swimming motion seen in na-
ture. While improvements to the underlying hydrodynamic
model will make the method more appropriate for real-world
applications, the above findings demonstrate the potential of
eigenmode analysis for generating high-efficiency swimming
kinematics for the study of marine animal gaits or AUV de-
sign.
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Appendix A: Eigenmode analysis including circulatory forces

In Section II B it was demonstrated that the hydrodynamic
eigenmodes can be used to generate high-efficiency swim-
ming kinematics if the forces are dominated by added mass.
This Appendix demonstrates that the analysis also applies to
cases that include circulatory forces.

We retain the notation from Section II B, including express-
ing time-varying harmonic properties in terms of Fourier com-
ponents (e.g. Γ(x,y, t) = Γ̂(x,y)e jωt ). The circulatory forces
caused by a surface vorticity distribution can be written as
(with subscript c indicating circulatory force components):

Fc(x,y, t)
dS

=−ρRe[UT (x,y, t)]×Re[γ(x,y, t)] (A1)

The total velocityUT consists of the freestream velocityU ,
body velocity jωh and wake-induced velocity uw:

UT (x,y, t) =

 U
0
0

+ e jωt

 0
0

jω ĥ+ ûw

(x,y) (A2)

The instantaneous circulatory thrust force is then given by:

Tc =
∫

S

[
−Fc(x,y, t)

dS
· i
]

dS

= ρ

∫
S

Re[ jωh(x,y, t)+uw(x,y, t)]Re[γ(x,y,z)]dS
(A3)

It can be shown that the resulting cycle-average circulatory
force is
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T c =
ρ

2

∫
S

{
ωIm[γ̂∗(x,y)ĥ(x,y)]+Re[γ̂∗(x,y)ûw(x,y)]

}
dS

(A4)
Circulatory power is given by the inner product of the cir-

culatory force with the transverse body velocity:

Pc =
∫

S

[
Fc(x,y, t)

dS
·k
]

Re
[

∂h(x,y, t)
∂ t

·k
]

dS

= ρUω

∫
S

Re[γ(x,y, t)]Re[ jh(x,y, t)]dS
(A5)

The resulting cycle-average circulatory power can be
shown to be

Pc =
ρUω

2

∫
S

Im[γ̂∗(x,y)ĥ(x,y)]dS (A6)

Following the definition in Equation 1, we can then define
the efficiency of the circulatory forces as follows:

ηc =

∫
S
{

ωIm[γ̂∗(x,y)ĥ(x,y)]+Re[γ̂∗(x,y)ûw(x,y)]
}

dS

ω
∫

S Im[γ̂∗(x,y)ĥ(x,y)]dS
(A7)

Following the analysis in Section II B for Equation 21, we
can approximate the efficiency by defining the surface distri-
butions at discrete points, represented by column vectors. We
also note that the wake-induced velocity ûw is linearly related
to the bound circulation γ̂ through Equation 29. As such, we
can express the wake-induced velocity at each point as

ûw = A γ̂ (A8)

where the matrix A represents the linear transform from
the bound vorticity to the wake-induced velocity, given by
Equations 27-29. Then we obtain the following:

ηc ≈
∑k
{

ωIm[γ̂∗k ĥk]+Re[γ̂∗k (A γ̂)k]
}

∆S

ω ∑k Im[γ̂∗k ĥk]∆S
(A9)

Replicating the method in section II B such that Γ̂ = Rα

and ĥ=Rβ, and noting that γ = ∂Γ/∂x and that α= Λ−1β,
we obtain the following expression:

ηc ≈ 1+
∑k Re[( ∂R

∂ s α)
∗
k(ARΛ−1β)k]

ω ∑k Im[( ∂R
∂ s α)

∗
k(Rβ)k]

(A10)

This expression shows that the influence of the wake, rep-
resented by the numerator in the fraction in Equation A10, is
the sole determinant of the circulatory efficiency. Any wake
downwash will cause either a reduction in circulatory effi-
ciency from unity (wake damping) or an increase above 1
(wake-induced flutter). We can simplify the expression for
wake influence further, in terms of a parameter φ such that

ARΛ−1 =− jωRφ (A11)

giving the efficiency as:

ηc ≈ 1−
∑k Re[( ∂R

∂ s α)
∗
k( jRφβ)k]

∑k Im[( ∂R
∂ s α)

∗
k(Rβ)k]

(A12)

Similar to the role of the parameter ε in Equation 25, the
circulatory efficiency is then fully determined by the entries
in the matrix φ, which is given by:

φ=
−1
jω
LBARΛ−1 (A13)

As was concluded in Section II B, if only a single entry of
β is nonzero, such that the body motion is given by the cor-
responding eigenvector, then only one entry on the diagonal
of φ will contribute to the overall efficiency in Equation A12.
If N entries of β are nonzero, then [N×N] entries of φ will
appear as a sum in the numerator of Equation A12, including
both on-and off-diagonal values. Thus it is desirable to choose
β to be nonzero only at the single entry that corresponds to the
lowest wake influence.

It is not possible to combine ε and φ, such that a single
parameter determines the efficiency of the combined added
mass and circulatory forces. It can be demonstrated that the
full efficiency is given by:

ηm+c≈ 1−
∑k

{
Im[(Rα)∗k( jRεβ)k]− 1

κ
Re[( ∂R

∂ s α)
∗
k( jRφβ)k]

}
∑k

{
Re[(Rα)∗k(Rβ)k]− 1

κ
Im[( ∂R

∂ s α)
∗
k(Rβ)k]

}
(A14)

Thus both ε and φ determine the overall efficiency, but if
the wake influence is low or the reduced frequency κ is large
the efficiency can be approximated using the added mass only.
It is not straightforward to identify high-efficiency modes by
directly studying the ε and φ matrices. However, it remains
the case that it is beneficial to select β to be nonzero only
at a single entry, rather than at multiple entries, such that the
body motion is given by a single eigenvector. Thus the method
of evaluating the efficiency of each individual eigenvector, as
adopted in the results sections of this paper, is the most prac-
tical way of identifying high-efficiency kinematics from the
eigenmodes.
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