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ABSTRACT

In applications of data envelopment analysis (DEA), the inputs and outputs representing environmental
and quality characteristics of the production process are often stated in the form of percentages, ratios
and averages, collectively referred to as ratio measures. It is known that the conventional variable and
constant returns-to-scale (VRS and CRS) DEA models cannot correctly incorporate such ratio inputs and
outputs. This problem has been addressed by the development of Ratio-VRS and Ratio-CRS (R-VRS and
R-CRS) models suitable for the incorporation of both volume and ratio inputs and outputs. Such mod-
els may, however, depending on the application, lack sufficient discriminatory power. In this paper we
address this issue by developing a further extension of the R-VRS and R-CRS models (the latter with
the most common fixed type of ratio inputs and outputs) by allowing the specification of production
trade-offs between volume inputs and outputs, and, similarly, between ratio measures. As in the case
of conventional VRS and CRS models in which the role of production trade-offs is well understood, the
specification of such trade-offs in the R-VRS and R-CRS production technologies leads to their controlled
expansion and results in improved efficiency discrimination of the resulting DEA models. We illustrate the
application of the proposed methodology by the assessment of efficiency of a large sample of secondary

schools in England.

© 2023 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/)

1. Introduction

Applications of data envelopment analysis (DEA) often incor-
porate inputs and outputs stated in the form of ratios. Such ratio
measures may represent various percentages and ratios obtained
by division of volume measures whose values are often unknown
to the analyst. For example, in the context of school education,
which we consider in the application, ratio measures may rep-
resent socio-economic characteristics of the pupil intake, such as
percentage of school pupils eligible for free school meals. Ratio
measures may also represent percentage of pupils achieving good
results in exams and those proceeding to higher education after
the graduation. More broadly, ratio measures are often used as en-
vironmental and quality characteristics of the production process.
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1.1. Existing approaches

It is now well known that ratio inputs and outputs cannot be
correctly incorporated in the conventional variable and constant
returns-to-scale (VRS and CRS) DEA models of Charnes, Cooper, &
Rhodes (1978) and Banker, Charnes, & Cooper (1984). The earlier
concerns for the applicability of ratios in DEA were raised, for ex-
ample, by Dyson et al. (2001) and Cooper, Seiford and Tone (2007).
The examples given by Emrouznejad & Amin (2009) and Olesen,
Petersen, & Podinovski (2015) show that the incorporation of ratio
inputs and outputs in the standard VRS and CRS models is incon-
sistent with the assumption that the underlying technology is con-
vex. In the case of CRS, ratio measures are usually also inconsistent
with the assumption of scalability of data (Olesen et al., 2015).

The Ratio-VRS and Ratio-CRS (R-VRS and R-CRS) models of tech-
nology developed by Olesen et al. (2015) address the described
problem and allow the incorporation of both volume and ratio in-
puts and outputs as native types of data. In this approach, the
standard assumption that the production technology is convex is
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replaced by the assumption of selective convexity of Podinovski
(2005). The R-VRS and R-CRS models allow convex combinations
of decision making units (DMUs) in which the volume measures
are combined in the conventional way. At the same time, the ra-
tio measures are taken at the most conservative level that may
be obtained by accounting for all possible (but typically unknown)
values of their numerators and denominators—see Papaioannou &
Podinovski (2023) for additional results concerning the impact of
different types of information about the numerators and denomi-
nators on the model of technology.

The R-CRS model of Olesen et al. (2015) additionally allows pro-
portional scaling of the volume inputs and outputs. The treatment
of ratio measures is more nuanced and depends on their assumed
type. From a practical perspective, the most common is the fixed
type of ratio inputs and outputs. These represent environmental
and quality characteristics of the production process that can be
assumed constant while the volume inputs and outputs character-
izing the quantity of resources and production levels are scaled up
and down. Olesen et al. (2015) refer to such R-CRS technologies
with fixed ratio inputs and outputs as the F-CRS technologies.

1.2. Motivation

While the R-VRS and F-CRS models allow for appropriately cap-
turing ratio inputs and outputs in the specification of the produc-
tion technology, their use in practice can be hindered by the issue
of lack of discriminatory power. This is a well-documented find-
ing for traditional VRS and CRS DEA models, in response to which
different rules of thumb for the number of inputs and outputs
required for acceptable discrimination of the model exist (Dyson
et al., 2001; Cooper et al. 2007). Since the R-VRS technology is a
subset of the conventional VRS technology based on the same in-
put and output data (including ratio data), the efficiency scores can
only increase when moving from the latter to the former. There-
fore, the discriminating power of the R-VRS model is generally
worse than that of the VRS model. Although the F-CRS technol-
ogy is generally not a subset of the CRS technology,! computations
show that it also generally lacks in discriminating power compared
to the standard CRS model.

A well-established methodology to mitigate against this prob-
lem in the conventional VRS and CRS setting involves incorporating
value or expert judgments in the specification of production tech-
nology, via means of specifying production trade-offs. These were
originally developed by Podinovski (2004) as the dual forms of
weight restrictions in the standard multiplier VRS and CRS models
(see, e.g., Allen, Athanassopoulos, Dyson, & Thanassoulis, 1997, and
Thanassoulis, Portela, & Despic, 2008). Such production trade-offs
are interpretable as simultaneous changes to the inputs or outputs
that are assumed technologically possible for any DMU in the tech-
nology. An example of such a judgement, aligned with the applica-
tion to schools considered in our paper, is the statement that 1 ex-
tra teacher and £20,000 of non-pay school expenses is a sufficient
compensation for a school to accept at least 10 extra pupils. Such
production trade-offs result in a controlled and meaningful expan-
sion of the production technology, leading to potentially lower ef-
ficiency scores and therefore improved discriminatory power.

A question therefore arises as to whether it is possible to ex-
pand the R-VRS and F-CRS models and improve their discriminat-
ing power by defining similar production trade-offs involving both
volume and ratio inputs and outputs. In our paper, we give a pos-

1 To see this, note that the F-CRS technology allows selective proportional in-
crease of volume measures only, which does not require increasing fixed ratio in-
puts. The resulting DMUs are generally outside the standard CRS technology which
only allows simultaneous proportional increase of all inputs and outputs.
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itive answer to this question and illustrate the results by an appli-
cation.

1.3. Contribution

In this paper, we develop extensions of the original R-VRS and
F-CRS technologies of Olesen et al. (2015) by the incorporation of
production trade-offs involving volume and ratio inputs and out-
puts. Any new DMU in such extended technologies can be ex-
plained as a modification of some DMU in the original R-VRS and
F-CRS technology by the application of the assumed trade-offs.

It should be noted that the development of such models is not a
straightforward modification of the R-VRS and F-CRS technologies,
for two reasons.

First, the R-VRS and F-CRS technologies are not convex, the en-
velopment models based on them are not linear and their standard
dual multiplier models are undefined. This means that the notion
of production trade-offs does not arise as the dual form of weight
restrictions and needs to be developed as a stand-alone concept,
based on the envelopment form only. We achieve this by provid-
ing a full axiomatic development of the R-VRS and F-CRS tech-
nologies with production trade-offs entirely in the primal (envel-
opment) space.

Second, we distinguish between the production trade-offs
stated for volume inputs and outputs (as illustrated above), and
trade-offs stated for ratio measures. An example of the latter is the
judgement that, if the percentage of pupils achieving good results
on entry to school increases by 1%, any school should be able to
improve the percentage of pupils achieving good results on exit
by at least 0.5%. It turns out that the production trade-offs stated
for the ratio measures require a different modelling approach com-
pared to the trade-offs stated for the volume measures.

As in the case of conventional VRS and CRS models, the incor-
poration of production trade-offs in the R-VRS and F-CRS technolo-
gies results to their expansion. This in turn leads to improved dis-
crimination on efficiency of the resulting expanded models. We il-
lustrate the usefulness of the new R-VRS and F-CRS models with
production trade-offs by an application to a large sample of sec-
ondary schools in England. Computational results confirm that the
specification of production trade-offs leads to a noticeable im-
provement of the discrimination on efficiency.

We proceed as follows. In Section 2, we briefly outline the idea
of the R-VRS technology of Olesen et al. (2015). In Section 3, we in-
troduce the notion of production trade-offs specified either for the
volume or ratio inputs and outputs. In Sections 4 and 5, we use an
axiomatic approach to develop the R-VRS and F-CRS technologies
with production trade-offs. In Section 6, we discuss DEA models
based on the new technologies and approaches to their solution.
In Section 7, we consider an application to secondary schools in
England. Concluding remarks are given in Section 8. The proofs of
all mathematical statements are given in Appendix A.

2. Preliminaries

In this section, we provide a brief introduction to the R-VRS
technology developed by Olesen et al. (2015) and its axiomatic
foundations.

2.1. Notation

Let T eRT* be a production technology with the set I=
{1,...,m} of inputs and the set O = {1, ..., s} of outputs. Both sets
may generally include volume and ratio measures that require dif-
ferent treatment.

Denote 1Y and 0 the subsets of volume inputs and outputs,
respectively. Similarly, denote IR and OR the subsets of ratio inputs
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and outputs. We obviously have =1V UIR and O = 0Y UOR, and
IYNIR = o and 0 NOR = &. We assume that there is at least one
input and at least one output, i.e., the sets I and O are not empty,
although some of their subsets of volume and ratio measures may
be empty.

Denote |IY| =mY and |I®| = mR the number of volume and ra-
tio inputs, respectively. Then the overall number of inputs is m =
m" + mR. Similarly, we denote |0V| =s" and |OF| = s® the number
of volume and ratio outputs, respectively. The overall number of
outputs is s = sV + sk,

Decision making units (DMUs) are elements of technology T.
They may be stated in the form (X,Y), where X ¢ R and Y € RS,
are the vectors of inputs and outputs, or in the more detailed form
that reflects the division of the inputs and outputs into the volume
and ratio measures, as follows:

X.Y) = (XV.XR YV, YR), (1)

where XV e R, XR e R™" vV ¢ R and YR e RS,

Suppose that we have n observed DMUs. Introducing the in-
dex set J={1,..., n}, we state the observed DMUs as (X;,Y;) =
XY XRYY YD), jel.

In many applications, ratio measures often (but not always)
have natural upper bounds, typically either unity or 100%. Let XR
and YR be the vectors of upper bounds on the ratio inputs and out-
puts. If an upper bound on an input i € IR or output r € OR is not
specified, we formally take the corresponding upper bound )_(I.R or
YR equal to +oco. All DMUs (1) in technology T are naturally as-
sumed to satisfy the two vector inequalities:

XR<XR and YR <VR (2)

(In this paper, including in inequalities (2), vector inequalities
mean that the specified inequality is true for each component. For
example, the vector inequality XR < X® means that the scalar in-
equality X® < XR is true for all i e IR))

2.2. Basic axioms

Banker et al. (1984) show that the conventional VRS technology
is the smallest technology (in the sense of the minimum extrapola-
tion principle) that is generated by the set of observed DMUs and
satisfies the axioms of free disposability and convexity, as speci-
fied formally below. It is known that these two axioms cannot be
assumed if some inputs or outputs are stated as ratio measures
(Emrouznejad & Amin, 2009; Olesen et al., 2015).

To provide an axiomatic foundation of the R-VRS technology
(and the R-CRS technology in a further development), Olesen et al.
(2015) modify the axioms of Banker et al. (1984). The axiom of free
disposability requires a simple modification stating that the wors-
ening of the inputs and outputs of any DMU in technology T is
possible as long as the resulting DMU remains within the bounds
(2) on the ratio measures.

Furthermore, Olesen et al. (2015) note that, although taking
convex combinations of DMUs with ratio inputs and outputs would
be incorrect, there is a special case in which such convex combi-
nations are justified. Let us illustrate this by a simple example.

Example 1. Suppose that we want to define a convex combina-
tion of two schools A and B taken, to be specific, with equal
weights 0.5. We define all volume inputs and outputs of the com-
bined school C as the simple average of the corresponding vol-
ume inputs and outputs of schools A and B. However, we cannot
treat ratio measures in the same way. Indeed, let the percentage of
pupils achieving good results on exit at schools A and B be equal
to ps and pg. Then, for the combined school C, the percentage pc
of such pupils may be anywhere in the range between p, and pg,

[m5G;August 26, 2023;0:6]

European Journal of Operational Research xxx (XXxx) Xxx

which depends on the (unknown to us) numerators and denomina-
tors that define such percentages. However, if py = pg, we always
have pc = ps = pp-

This example shows that we may take convex combinations of
DMUs, provided they have the same subvectors of ratio inputs and
outputs. This observation motivates (Olesen et al., 2015) to replace
the standard axiom of convexity used by Banker et al. (1984) by
the axiom of selective convexity introduced by Podinovski (2005).
This axiom allows convexity with respect to the selected sets of
inputs and outputs (sets IY and OV in our case), assuming the re-
maining inputs and outputs (in the sets IR and OR) are identical for
the combined DMUs.

Olesen et al. (2015) state the following three axioms as the
foundation of the R-VRS technology.

Axiom 1 Feasibility of observed data. For any j €], (X;,Y;) eT.

Axiom 2 Free disposability. Let (X,Y) = (XV,XR YV, YR) e T and
let (X,¥)= (XY, XR YV, ¥R) e R™ x R%.. Suppose that the subvec-
tors XR and YR are within the bounds stated by inequalities (2) and
that Y <Y, X > X. Then (X,Y) e T.

Axiom 3 Selective convexity. Let (X,¥) e T and (X,¥) e T, and let
XR=XR and YR=7R (3)
Then y (X, V) + (1 —y)(X.¥) T, for any y [0, 1].

2.3. The R-VRS technology

Following the minimum extrapolation principle used by Banker
et al. (1984), Olesen et al. (2015) define the R-VRS technology T\}‘RS
as the intersection of all technologies that satisfy Axioms 1-3, i.e.,
as the smallest technology that satisfies these axioms.

As proved by Olesen et al. (2015), technology T\}‘RS coincides
with the set of all DMUs (X,Y) e R x RS for which there exists
a vector A € R" such that the following conditions are true:

n
DoAYy =y, (4a)
j=1
n
> oaX{ <XV, (4b)
j=1
Ai(YR-YR) =0, Vjel (4c)
ri(XF-xF) <0, Vje] (4d)
n
dai=1, (4e)
j=1
XR < XR, (4f)
YR < YR (4g)
A >0. (4h)

(In the statement (4) and elsewhere in this paper, we use bold
notation 0 for vectors of zeros whose dimensions are clear from
the context.)

The role of conditions (4c) and (4d) is straightforward. Namely,
for every j ], if A; > 0, then both vector inequalities YJR > YR and

X]‘? < X® must be satisfied. Let, for example, the ratio inputs rep-
resent the environment in which the DMUs operate and let the
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ratio outputs describe the quality of the outputs produced by the
DMUs. Then conditions (4c) and (4d) mean that the convex combi-
nations of the volume inputs and outputs, taken with the weights
Aj on the left-hand side of inequalities (4a) and (4b), include only
those observed DMUs (X;,Y;), j €J, that do not operate in a more
favourable environment than DMU (X,Y) and whose quality of
production is at least as good as that of DMU (X,Y).

3. Production trade-offs

Podinovski (2004) defines production trade-offs as value judge-
ments stating that certain simultaneous changes to the inputs and
outputs are technologically feasible throughout the entire technol-
ogy. In the case of conventional VRS and CRS technologies, pro-
duction trade-offs are dual to weight restrictions in the multiplier
models based on these technologies.

Our objective is to extend the notion of production trade-offs
to the R-VRS technology. Two differences with the case of conven-
tional VRS technology are worth highlighting. First, the R-VRS tech-
nology is generally not convex and the input and output-oriented
envelopment programs based on it are not linear programs. Conse-
quently, such programs do not have dual multiplier forms in which
weight restrictions could be incorporated. As a result, we introduce
production trade-offs for the R-VRS technology without reference
to weight restrictions. Second, it turns out that the mechanism by
which the trade-offs are specified for volume inputs and outputs
is different from the approach required for the trade-offs involving
ratio measures.

Following notation of Podinovski (2004), a production trade-
off between volume inputs and outputs can be stated by the pair
of vectors PV ¢ R™ and QY ¢ R%, which describe simultaneous
changes to the vectors of volume inputs and outputs of the DMUs
in the technology. Similarly, a production trade-off between ratio
inputs and outputs can be stated by the pair of vectors PR ¢ R
and QR ¢ RSR, which describe simultaneous changes to the vectors
of ratio inputs and outputs of the DMUs. Components of these vec-
tors can be positive, negative or equal to zero.

Suppose we have specified K > 0 production trade-offs between
volume inputs and outputs. We state these as follows:

(P.Q/), t=1,...K (5)

Similarly, we state L > 0 production trade-offs between ratio in-
puts and outputs as

(Pf.QF), I=1,...L (6)

Example 2. To illustrate the idea of production trade-offs, we con-
sider an example in the context of secondary schools, which is
aligned with the application considered in Section 7. Let the vector
of inputs be X = (x/,x%,x%)T. The volume inputs x¥ and x¥ repre-
sent the number of teachers and school expenses, respectively. The
ratio input x3R is the percentage of pupils with good academic re-
sults on entry to the school. Similarly, let Y = (y‘{, y§)T be the vec-
tor of outputs, where the volume output y‘{ represents the num-
ber of pupils and the ratio output y§ is the percentage of pupils
achieving good results on exit from school.

In the described setting, we may consider several value judge-
ments and state them as production trade-offs. (Note that the ex-
act values will obviously need to be assessed and justified in any
particular application. The simple examples provided below are in-
tended for conceptual purposes only, as an illustration of the idea
of a trade-off.)

First, we may judge that it is technologically possible for any
school to increase the intake by extra 10 pupils, provided the
school recruits an additional teacher and is given an extra budget
of £20,000 per year. The corresponding trade-off is now stated as
PV = (1,£20,000)" and Q! = (10).
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Second, we may assume that schools can compensate a loss of
one teacher by a bought-in teacher using their budgets, and specify
a trade-off for this. Suppose that £50,000 should be sufficient to
pay for a substitute teacher. We can now state the second volume
trade-off as PY = (—1,£50,000)" and QY = (0). Note that the zero
component of the vector Qg means that there is no change to the
number of pupils.

Third, we may make a conservative judgement that, if the per-
centage of pupils achieving good results on entry to school in-
creases by 1%, the percentage of pupils achieving good results on
exit should increase by at least 0.5%. On the other hand, if the for-
mer percentage is reduced by 1%, this should not result in more
than 1% fewer pupils achieving good results on exit. These two
judgements are stated in the form of production trade-offs as fol-
lows: PR = (1%), QR = (0.5%), and PR = (-1%), Q¥ = (-1%), respec-
tively.

In line with Podinovski (2004), we consider production trade-
offs as conservative judgements that can be applied to any DMU in
the technology and any (not necessarily integer) number of times,
as long as the inputs and outputs of the resulting DMU remain
nonnegative and within the bounds (2) specified for the ratio mea-
sures. For example, applying trade-off PR = (1%) and QR = (0.5%)
from Example 2 three times, we conclude that it is technologically
possible for any school to increase the percentage of pupils achiev-
ing good results on exit by 3 x 0.5% = 1.5%, if the percentage of
pupils with good results on entry increases by 3 x 1% = 3%.

Let us provide a formal statement of the assumption that the
production trade-offs represent technologically feasible simultane-
ous changes to the vectors of inputs and outputs. Let multipliers
7 >0,t=1,..., K,and p;>0,1=1,..., L, represent the propor-
tions in which we apply the volume and ratio trade-offs (5) and
(6), respectively. The following axiom is a generalization of a sim-
ilar axiom stated by Podinovski (2004) for the conventional VRS
and CRS technologies.

Axiom 4 Feasibility of production trade-offs. Let (X¥,XR YV YR) ¢
T. Consider any scalars 77y >0, for all t =1,...,K, and p; > 0, for
alll=1,...,L Define DMU (XV,XR YV, ¥R), where

K
VW=y'+y mqQ/,
t=1

K
X =Xx"+ ZmPV,
t=1

L
YR=Y*+> pQf,
=1

L
XR=XR+Z,0[PIR. (7)
I=1

Further assume that XV, XR, ¥V, YR > 0 and that the subvectors X
and YR are within the bounds (2). Then (XV, XR ¥V, YR) e T.

Remark 1. We use production trade-offs (5) and (6) to describe
technologically feasible changes to either volume or ratio inputs
and outputs, but not simultaneous changes to both types. There
are two reasons for this.

First, using Example 2 for illustration, we are not stating that
increasing the number of teachers (input x‘l’) by one may lead to a
certain improvement of the percentage of pupils graduating from
school with good results (output y§). This would appear problem-
atic because one additional teacher may make a big difference for
output y§ in a small school and a small difference in a large school.

Second, as shown below, the volume and ratio trade-offs
(5) and (6) are incorporated differently in the R-VRS technology. It
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is not clear how a mixed trade-off involving changes to both vol-
ume and ratio measures could be incorporated. Because, as noted,
the practical meaning of such trade-offs is questionable, this pos-
sibility is not considered.

4. The R-VRS technology with production trade-offs

In this section, we obtain an extension of the R-VRS technology
of Olesen et al. (2015) by the incorporation of production trade-
offs (5) and (6). We denote this technology TVRRS—TO and formally
derive it from the stated Axioms 1-4.

Definition 1. Technology T\I}RS—TO is the intersection of all sets T c
RT x RS, that satisfy Axioms 1-4.

It is straightforward to prove that technology T\]}Rszo satisfies
all Axioms 1-4. It can, therefore, be regarded as the smallest tech-
nology that satisfies these axioms. The following theorem provides
an equivalent explicit statement of this technology.

Theorem 1. Technology T&RS—TO is the set of all DMUs (X,Y) € R x

RS, for which there exist vectors A € R", w € RX and scalars Pji, J €l
I=1,..., L, such that

n K
DoAY+ mQf =YY, (8a)
j=1 t=1
n K
SoaX! +Y mP <XV, (8b)
j=1 t=1
L
MY+ eaQ | -YR =0, Vjel (8¢)
=1

—XR> <0, Vje] (8d)

Ya=1, (8e)

XR < XR (8f)
YR < YR, (88)
AT >0, 05>0, VjL (8h)

Let us consider the meaning of conditions (8). Their structure is
similar to the structure of conditions (4) defining the R-VRS tech-
nology T\}{RS of Olesen et al. (2015).

First, assume that all inputs and outputs are volume measures.
In this case, we remove inequalities (8c), (8d), (8f) and (8g) and
all scalars pj; from the statement (8). The resulting technology is
the VRS technology with production trade-offs (5) of Podinovski
(2004). In this case, the convex combinations of the observed
DMUs are described by the first sums (taken with the weights
Aj) on the left-hand side of inequalities (8a) and (8b). These con-
vex combinations are subsequently modified by the application of

trade-offs (5) taken in proportions m;, t =1, ..., K. As assumed by
Axiom 4, such modifications keep the resulting DMU in the tech-
nology.

Let us now consider the general case of conditions (8). In this
case, the ratio trade-offs (6) are used in conditions (8c) and (8d) to
modify ratio inputs and outputs of individual observed DMUs. This
is reflected by the fact that the proportions pj;; depend both on the
trade-off | and the observed DMU j.
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We can now explain the meaning of conditions (8). The in-
equalities (8a) and (8b) mean that the convex combinations of
the vectors XV and YV of volume inputs and outputs of the ob-
served DMUs (X;,Y;), j € ], which are further modified by produc-
tion trade-offs (5) taken in proportions m;, t =1, ..., K, outperform
the vectors of volume measures XV and YV of the DMU (X,Y).

If we do not have ratio trade-offs (6), the inequalities (8c) and
(8d) become (4c) and (4d). The latter mean that the ratio inputs
and outputs of the observed DMUs (X;,Y;) that enter the convex
combinations in (8a) and (8b) with a A; > 0, are not worse than
the corresponding ratio measures of the DMU (X,Y). In a typi-
cal practical application, this means that every observed DMU j
with a positive A; operates in an environment, which is not more
favourable (less harsh) than the environment of DMU (X,Y), and
the quality of its outputs is not lower than the quality of outputs
of DMU (X, Y).

If the ratio trade-offs (6) are specified, then a similar interpre-
tation remains valid, with an additional step. Namely, as seen from
inequalities (8c) and (8d), the ratio inputs and outputs of the ob-
served DMUs are first adjusted by the ratio trade-offs (6). If the
ratio measures of the observed DMU (X;,Y;) can be modified by
the ratio trade-offs (6) in such a way that they are not worse than
the ratio measures of the DMU (X, Y), then such modified observed
DMU may enter the convex combination of the volume measures
in (8a) and (8b) with a A; > 0. Otherwise, such observed DMU has
a zero weight A; in the convex combination of the volume mea-
sures.

It is clear that the original R-VRS technology T\‘}RS of Olesen
et al. (2015) is a subset of technology TvRRszo' i.e, we have the
following embedding:

Tugs < Tuks_To- (9)

To see this, note that any DMU (X,Y) ¢ T\}‘RS satisfies conditions
(4) with some vector A € R". Then the DMU (X, Y) satisfies condi-
tions (8) with the same vector A and all scalars 7 and pj; taken
equal to zero, for all t, j,I. By Theorem 1, DMU (X,Y) e T\‘}RHO,
and the embedding (9) follows.

This result means that the efficiency of any DMU assessed in
technology T\}{quo cannot be higher (and, as shown by an applica-
tion in Section 7, is often lower) than its efficiency in technology
TVRRS' In other words, the specification of production trade-offs gen-
erally leads to improved discrimination on efficiency.

We now obtain two useful properties of technology T\‘}RS_TO,
which are generalizations of similar properties of technology T\I;RS
proved by Olesen, Petersen, & Podinovski (2022b).

Theorem 2. Technology T\E{quo is the union of a finite number of
polyhedral sets.

Corollary 1. Technology T\]}RS—TO is a closed set.

5. The F-CRS technology with production trade-offs

The conventional CRS technology may be viewed as the exten-
sion of the VRS technology in which we allow all DMUs to be
scaled with a nonnegative scalar «. Olesen et al. (2015) develop
a similar extension of the R-VRS technology, referred to as the
Ratio-CRS (R-CRS) technology. In the R-CRS technology, the volume
inputs and outputs are assumed scalable, as in the standard CRS
technology. However, the ratio inputs and outputs may change or
remain constant, according to one of the four types of ratio mea-
sures.

Of particular practical importance is the R-CRS technology in
which the volume inputs and outputs are scalable, provided the
ratio inputs and outputs do not change. This is the fixed type of
ratio measures in the classification of Olesen et al. (2015). Such
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fixed ratios are typically used to capture environmental conditions
(e.g., socio-economic characteristics of the production process) or
quality of resources, goods and services provided. We use the fixed
type of ratio measures to model the production process with fully
scalable volume inputs and outputs, provided the environmental
and quality characteristics of the production process are kept un-
changed.

The scalability of volume inputs and outputs with the fixed ra-
tio measures is stated by the following axiom.

Axiom 5 Scalability of volume inputs and outputs. Let
(XV,XR YV YR) € T. Then, for all « > 0, (aXV,XR, oYV, YR) e T.

Olesen et al. (2015) refer to the R-CRS technology in which all
ratio inputs and outputs are of the fixed type as the F-CRS tech-
nology and denote it TCFRS‘ They obtain three explicit operational
statements of the F-CRS technology. In order to avoid lengthy repe-
titions, we do not reproduce these statements and develop a stand-
alone extension of the F-CRS technology by production trade-offs.
The original F-CRS technology is a special case of this extension
obtained by simply omitting all production trade-offs from the
model.

We start by defining the extension of technology TCFRS obtained
by the incorporation of production trade-offs (5) and (6), which we
denote Tfq 10

Definition 2. Technology TCFRS—TO is the intersection of all sets T c

R x RS that satisfy Axioms 1-5.

Similar to the case of R-VRS, it is straightforward to prove that
technology TCFRSJFo satisfies all Axioms 1-5 and can therefore be
viewed as the smallest among all technologies that satisfy these
axioms.

5.1. A nonlinear statement

The following theorem provides an equivalent explicit state-
ment of technology TcFRszo- It can be regarded as an extension (al-
lowing additional production trade-offs) of Theorem 2 of Olesen
et al. (2015) for the case in which all ratio measures are of the

fixed type.

Theorem 3. Technology TCFRszO is the set of all DMUs (X,Y) € R x
RS, for which there exist vectors A,« € R", € RX and scalars Pt
jel, I=1,...,L such that

n K
D ohjaYy 4+ mQl =YY, (10a)
j=1 t=1
n K
D orjaX) + Y P <XV, (10b)
j=1 t=1
L
Ml YF+DpuQR | -YR) =0, Vje] (10c)
=1
L
Ml | XF+Y Pt -XR) <0, Vje] (10d)
=1
n
=1, (10e)
j=1
XR < XR, (10f)
YR < YR, (10g)
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Aa,=0,05>0, VjL (10h)

The meaning of the above conditions is similar to the meaning
of the corresponding conditions in the statement (8) of technology
TVRRS—TO' The obvious difference is the specification of the scaling
factors «j, j €, in the statement (10). In line with Axiom 5, these
factors allow proportional scaling of the volume inputs and outputs
of the observed DMUs, without changing their ratio measures.

Let us make two useful remarks. First, the original F-CRS tech-

nology TCFRS of Olesen et al. (2015) is a subset of technology TCFRS—TO‘
ie.,

Ters < Ters_10- (11)

(The proof follows from the fact that the statement of technol-
ogy TCFRS corresponds to the special case of the statement (10) of
technology TcFRszo in which all scalars 7 and pj are taken equal
to zero.)

The embedding (11) means that the efficiency of any DMU
(X.Y) in technology Tfy 1o is not higher than in technology Tf.
Therefore, similar to the case of R-VRS, the use of production
trade-offs in the case of F-CRS generally results in improved dis-
crimination on efficiency.

Second, it is clear that, if we consider technologies TVRRS—TO and
TCl:RszO generated by the same set of observed DMUs and incorpo-
rating the same set of production trade-offs (5) and (6), then the
former technology is a subset of the latter, i.e., we always have:

Tirs_to < Tes_0- (12)

Indeed, according to Theorem 1, any DMU (X,Y) € T\l/{RS—TO sat-
isfies conditions (8), together with some vector A € R" and scalars
7w, t=1,...,K and pj, jeJ, I=1,...,L Then this DMU also sat-
isfies all conditions (10) with the same parameters A, ¢ and pj;,
if we take all scalars «j =1, for all j e]. By Theorem 3, (X,Y)
Ths 1o, and the embedding (12) follows.

5.2. A partly linearized statement

We now partly linearize the statement (10) of technology
TCFR57TO‘ by adapting the approach of Olesen et al. (2015). In this
approach, we introduce three nonnegative vectors «, i, v € R’} and
make the substitution Ajo; =« —v;+ uj, for all j €], which ex-
plains the new conditions (13a) and (13b). As the proof of the next
theorem shows, this substitution requires some further changes to
the statement of the technology.

Theorem 4. Technology TCFRS—TO is the set of all DMUs (X,Y) € RT x
RS, for which there exist vectors k, u,v e R", 7 € RK and scalars Pjbs
jel, l=1,... L such that

n K
D k4 —vp)Y, +Y mQl =YY,

(13a)
j=1 t=1
n K
j=1 t=1
L
(V4 Yot -¥*) 20 vien (o
=1
L
(ki + ) XJR-FZ,O]'IPIR -Xxk] <o, Vjel (13d)
=1
n
> k=1, (13e)
j=1
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Kj—v; >0, Vje], (13f)
XR < Xk, (13g)
YR < YR, (13h)
K, v, 7 >00;>0, VjL (13i)

Theorem 4 states technology TCFRS—TO in an “almost” linear form.
(The nonlinear conditions (13c) and (13d) are easy to linearize
by using the “Big M” approach—see Section 6.) It also allows us
to obtain the following properties of technology TcFRszo' which
represent a generalization of the results proved by Olesen et al.
(2022b) for the F-CRS technology without trade-offs.

Theorem 5. Technology TCFRS—TO is the union of a finite number of
polyhedral sets.

Corollary 2. Technology TCFRS—TO is a closed set.
5.3. An imperfect simplified statement

Theorems 3 and 4 present two alternative but equivalent state-
ments (10) and (13) of technology TCFRS—TO' The former is useful
for exploring axiomatic properties of technology TcFRszo and for
explaining the meaning of DMUs in this technology. The latter is
useful for establishing some further theoretical properties as in
Theorem 5 and Corollary 2 and also for practical computations.

Below we obtain an alternative simplified statement of technol-
ogy TCFRS—TO in which only one intensity vector A is used, instead
of the three vectors «, © and v as in statement (13). This state-
ment has obvious computational advantages but should be used
with caution. The potential problem is that the simplified state-
ment defines a set that is slightly larger than the F-CRS technology
TCFRS—TO' Whether this affects the results of efficiency calculations
can be established by a simple check of the optimal solution, as
discussed below.

Consider the following technology which is defined by the same
conditions (8) as the R-VRS technology from which the normalizing
equality (8e) is removed. This definition may appear to be an intu-
itive extension of the R-VRS technology with production trade-offs
to its F-CRS analogue. Surprisingly, as discussed below, this is not
a perfect extension, although it may be good enough for practical
computations.

Definition 3. Technology iy ., is the set of all DMUs (X.Y) €
R x RS, for which there exist vectors A € R", 7 e RX and scalars

pji j€l, 1=1,...,L, such that

n K
SOyl +y mQf =YY, (14a)
j=1 t=1
n K
DX+ mP <X, (14b)
j=1 t=1
L
Ml YF+Y pnQf | -YR) =0, Vel (14c)
=1
L
Ml | XF+ D puPt | -XF) <0, Vje], (14d)
=1

XR < XR,

(14e)
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YR < YR,

(14f)

A =0053>0, VjlL (14g)

Theorem 6. We have Tfo o € Ths 10- If DMU (X.Y) € T 1o sat-
isfies conditions (14) with some vectors A, 7t and scalars p;; such that
L #0, then (X,Y) € The 10-

According to Theorem 6, technology TcFRszo is slightly larger
than technology TCFRS—TO' The reason of this discrepancy is that the
statement (14) allows A to be a zero vector, while this is disallowed
by the statements (10) and (13). This in turn means that, if A =0,
all inequalities for the ratio measures (14c) and (14d) are trivially
satisfied for all j ], regardless of the vectors XR and YR of the
DMU (X,Y), while this is not so for the corresponding inequalities
in the statements (10) and (13).

It is clear that the situations in which a DMU (X,Y) satisfies
conditions (14) with a zero vector A should be rare in practical ap-
plications. Indeed, if A = 0, the inequalities (14a) and (14b) imply
that the vectors YV and X" are outperformed purely by a combi-
nation of trade-off vectors Q}’ and PtV, taken with the weights ¢,
t =1,...,K. This means that either the DMU (X, Y) satisfying con-
ditions (14) with A = 0 is extremely inefficient or that the produc-
tion trade-offs are too demanding.

In the application discussed in Section 7, we originally used
both the full and simplified statements (13) and (14). The results
of thousands of computations using both statements were identi-
cal, except a few rare cases. In all such cases, the reason of dis-
crepancy was that the optimal vector A in the simplified model
was a zero vector, and the results obtained by solving the simpli-
fied model were incorrect.

The lesson learned was that, if we use the simplified model of
technology (14), we need to perform an additional check of the
vectors A in all optimal solutions. The case in which A is a zero
vector should be a rare occurrence, which may point to a prob-
lem with the data set or value judgements stated as production
trade-offs. If both the data and assumed trade-offs are unproblem-
atic but all components of the optimal vector A are equal to zero,
the only theoretically sound alternative is to perform calculations
using statement (13). In our application in Section 7, we eventually
performed all computations using statement (13).

Remark 2. Olesen et al. (2015) consider the full and simplified
statements of the F-CRS technology without production trade-offs.
In this case, the trade-off terms in the inequalities (14a) and
(14b) do not appear, and the case A = 0 implies that YV = 0. This
case is clearly irrelevant for practical applications and the possibil-
ity of A being a zero vector can be ignored. Therefore, if no pro-
duction trade-offs are specified, the simplified model of technology
can be used for all practical computations.

6. Solving R-VRS and F-CRS models with production trade-offs

In this section, we consider solving DEA models based on the R-
VRS and F-CRS technologies expanded by production trade-offs. To
be specific, we consider the assessment of output radial efficiency
of the DMUs in the R-VRS technology and only briefly comment on
the case of F-CRS technology afterwards. The case of input radial
efficiency and other, including nonradial, measures is similar and
is not discussed.

To unify the discussion and avoid the consideration of special
cases, consider the assessment of output radial efficiency of DMU
(X0, Yo) in technology T\‘}RS_TO with respect to all, volume and ratio,
outputs. In this case, we attach the output improvement factor n
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to all outputs. (In practice, we may consider improvements to the
volume and ratio outputs separately, as illustrated by the applica-
tion in Section 7.)

The output radial efficiency of DMU (X,, Y,) is the inverse to the
optimal value n* of the output-oriented R-VRS program:

n*=max 7 (15a)
n K
st DAY+ mQl =0y, (15b)
j=1 t=1
n K
DOaX Y P <X, (15¢)
j=1 t=1
L
MY+ enQF | =Y | =0, Viel (15d)
=1
L
M [XF+D Pt | -X§) <0, Viel (15e)
=1
n
dai=1, (15f)
j=1
Yy < Y&, (15g)
AT =0, 05 =0, Vj I n sign-free. (15h)

Note that constraint (15g) specifies the upper bound on the im-
proved subvector nYR. Also note that program (15) does not in-
clude inequality (8f) because the ratio input vector X} of DMU
(Xo, Yo) does not change.

The nonlinear inequalities (15d) and (15e) of program (15) can
be linearized using the well-known “Big M” approach. Namely, we
first restate conditions (15d) and (15e) in the following “either-or”
form:

either A;=0

L
or {UYOR— |:Y]R+ZPJIQIR:| <0

=1
L
and | Xf+) puPf|-XF<0,  Vje] (16)
=1

Introducing binary variables §;, j €J, we linearize conditional
statements (16) as

)\'j§5jv VjE_], (173)
L
Y= [ YR+ puQf | <Li(1-65).  Vjel (17b)
1=1
L
X+ oabf | = XS <L(1-8).  Vjel. (17¢)
1=1

where the vectors L; eRff and L, eRTR have sufficiently large
positive components.

Following the “Big M” approach, the components of vectors L;
and L, should be so large that the inequalities (17b) and (17c) be-
come redundant in the case §; = 0. Details of this approach can be
found in Olesen, Petersen, & Podinovski (2017).

[m5G;August 26, 2023;0:6]

European Journal of Operational Research xxx (XXxx) Xxx

Remark 3. The described linearization approach is also applica-
ble in the case of F-CRS technology with trade-offs, whose full
statement is given by conditions (13) or, in a simplified form, by
conditions (14). In the latter case, we solve program (15) from
which the normalizing equality (15f) is removed. Following the
“Big M” approach, we introduce binary variables §;, j €], and re-
place the nonlinear inequalities (15d) and (15e) by the inequali-
ties (17), in which the inequality (17a) requires the following cor-
rection. Namely, because the variables A; are no longer bounded
above by 1 as in the case of R-VRS, the inequality (17a) is replaced
by

Aij]Sj, V] EJ,

with a sufficiently large constant M; > 0. If we solve the output-
oriented program based on the full statement of technology (13),
we replace the inequality (17a) by the conditions

Vjel

with a sufficiently large constant M, > 0.

)»j + U< M25j,

Remark 4. The authors are grateful to the anonymous reviewer
who pointed out that, as an alternative to the “Big M” method,
the nonlinear conditions (15d) and (15e) may be restated using the
special ordered sets (SOS) of Beale & Tomlin (1970). Exploring this
possibility is left outside the scope of our paper for future research.

7. Application to secondary schools in England

In this section, we illustrate the methodology developed in our
paper by its application to the assessment of efficiency of a large
sample of secondary schools in England. In this country, pupils
enter secondary education at the age of 11. They are expected to
take national exams for General Certificate of Secondary Education
(GCSE) at the age of 16. After completing GCSEs, many pupils pro-
ceed to the sixth form to obtain A-level qualifications, typically at
the age of 18, used as admissions criteria by the universities.

7.1. Data

For homogeneity reasons, we consider only the secondary
schools classed as academies and free schools, collectively referred
to as academies. Approximately 80% of secondary schools in Eng-
land are academies, covering 79% of secondary school pupils (DfE,
2022). We further limit the sample only to academies with the
sixth forms and non-selective admissions policies. We also exclude
London schools because of the known “London effect”, i.e., tak-
ing into account that London schools typically outperform schools
in the rest of England, especially among disadvantaged areas and
pupils (Ross, Lessof, Brind, Khandker, & Aitken, 2020).

The final sample for this study includes 891 academies. All data
were collected in the academic year 2018-2019 and provided to us
by the Department for Education. Table 1 shows descriptive statis-
tics for the four inputs and three outputs used in this application.

Following the literature on school efficiency (see, e.g., Brennan,
Haelermans, & Ruggiero, 2014, and Silva, Camanho, & Barbosa,
2020), we use volume inputs 1 and 2 to account for the number
of teachers and school expenditure (excluding teacher salaries), re-
spectively. We also include two ratio inputs. Namely, input 3 rep-
resents the percentage of pupils with middle or high prior attain-
ment at the beginning of secondary education. Input 4 shows the
percentage of pupils not receiving free school meals. Both ratio in-
puts are commonly considered as having a positive impact on the
attainment of school leavers and are often used in reported appli-
cations (Bradley, Johnes, & Millington, 2001; Brennan et al., 2014;
Thanassoulis & Dunstan, 1994).

We consider the total number of pupils in all years as the sin-
gle volume output 1 (see Remark 5). The ratio output 2 represents
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Table 1

Descriptive statistics for 891 academies in application.
Inputs and outputs Mean Standard deviation =~ Minimum  Maximum
Input 1: Teachers 73.77 22.43 20.5 155.1
Input 2: Expenditure (thousand pounds) 3,053 1,047.03 326 9,244
Input 3: Good attainment on entry (%) 89.57 6.34 0 100
Input 4: No free school meals (%) 88.18 7.99 47.9 99.2
Output 1: Pupils 1,205.65  359.25 204 2,500
Output 2: Good GCSEs (%) 432 14.14 0 89
Output 3: Top universities (%) 20 13.34 0 75

the percentage of pupils achieving strong passes in both GCSE En-
glish and Mathematics. The ratio output 3 shows the percentage of
pupils admitted to the top third of universities. These ratio outputs
are included as quality characteristics of the two different stages
of the education process and are calculated according to the estab-
lished methodology of the Department for Education.

Remark 5. The treatment of the number of pupils as an output
and not as an input is consistent with the assumed Axiom 2 of free
disposability. Namely, for the given input levels, any school should,
if required, be able to teach fewer students but not more. The latter
would be assumed by the model if pupils were treated as an input,
which is clearly problematic.

Another consideration is the association of larger pupil numbers
with higher efficiency of the schools. To illustrate this, assume that
we have two schools A and B that have identical number of teach-
ers and expenditures, and whose ratio inputs and outputs are also
the same. Suppose that the only difference is that school A teaches
500 pupils and school B teaches 1000 pupils. We regard school B
as more efficient than school A, which is consistent with the treat-
ment of the number of pupils as an output.

7.2. Identification of production trade-offs

We use seven production trade-offs that reflect the assumed re-
lationship between different inputs and outputs. Below, we state
these trade-offs formally and explain their meaning.

Judgement 1. If required, any school should be able to increase
its number of pupils by 10, provided the school employs 1 extra
teacher and its budget is increased by £20,000, while the remain-
ing inputs and outputs are kept unchanged.

In line with notation (5), and taking into account that data
on expenditure is represented in thousands of pounds, the above
judgement is stated as the following production trade-off:

PV =(1,20)7,QY = (10).

The stated trade-off is deemed to be a sufficiently conserva-
tive judgement which all schools (especially the efficient ones that
form the frontier against which all other schools are benchmarked)
should find unproblematic. For example, in our data set, the pupil-
to-teacher ratio for individual schools ranges between 7 and 33,
and the assumed trade-off, which requires an increase of the num-
ber of teachers and the funding, appears to be a sufficient compen-
sation to the school for the increase of its pupil cohort by 10.

It is also worth highlighting that the simultaneous change
stated by this trade-off assumes that the ratio inputs and out-
puts remain unchanged. In other words, the assumed change of
the volume measures is possible without any change to the socio-
economic and quality characteristics of the school cohorts and the
teaching process.

Judgement 2. If required, the simultaneous reduction of the num-
ber of teachers by 1 and the number of pupils by 15 is technolog-
ically possible for any school, provided the remaining inputs and
outputs are kept unchanged.

We can restate the above judgement as follows:
P =(-1.0)". Q) = (-15).

As a variant, we could modify the above judgement by includ-
ing a simultaneous reduction of the budget of the school. How-
ever, such trade-off would be more demanding because, after its
application, the resulting school would be assumed technologically
possible with both the reduced number of teachers and, addition-
ally, the reduced budget. To keep our judgements more conserva-
tive, we do not require any reduction of the budget. (Note that, in
Judgement 1, we include an increase of the budget for exactly the
same reason of making the trade-off reasonably conservative.)

Judgement 3. A loss of 1 teacher at any school can be compen-

sated by the additional budget of £50,000 (which, for example,

could be used to pay for an external substitution teacher), assum-

ing the remaining inputs and outputs are kept unchanged.
Judgement 3 is formally stated as:

PY = (~1.50)",QY = (0).

We now proceed to stating trade-offs between ratio measures.
The underlying judgements take into account the fact that prior
achievement and socio-economic background of pupils can almost
completely explain academic differences between schools—see, e.g.,
Gorard (2014).

Judgement 4. If the percentage of pupils with good attainment
levels on entry to school increases by 1%, then the percentage of
pupils achieving good GCSE results should go up by at least 0.5%
and the percentage of pupils proceeding to the top third of uni-
versities should increase by at least 0.25%, provided the remaining
inputs and outputs are kept unchanged.

We present the above judgement as the following trade-off:

PR=(1,0)",QF = (0.5,0.25)".

Judgement 5. If the percentage of pupils with good attainment lev-
els on entry to school is reduced by 1%, then the percentage of
pupils achieving good GCSE results and those going to top univer-
sities should not decline by more than the same percentage, i.e.,
by 1% each, provided the remaining inputs and outputs are kept
unchanged.

We state this judgement as:

PR=(-1,0)T,Qf = (-1,-1)".

The final two judgements represent the assumption that the
percentage of pupils not receiving free school meals has a simi-
lar impact on the quality of the teaching process as the percentage
of pupils with good attainment on entry to school.

Judgement 6. If the percentage of pupils not receiving free school
meals increases by 1%, then the percentage of pupils achieving
good GCSE results should go up by at least 0.5% and the percentage
of pupils proceeding to the top third of universities should increase
by at least 0.25%, provided the remaining inputs and outputs are
kept unchanged.
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Table 2
Efficiency with respect to the volume output in the R-VRS models.
Statistics No trade-offs  J1 J1-J2 -3 -4 -5 Jj1-j6 J1-)7
Average efficiency (%) 94.23 93.76 9319 9153 90.81 89.04 88.50 82.36
Minimum efficiency (%) 58.44 5844 4125 2502 2489 2489 24.89 24.89
Number of efficient schools 443 412 393 343 309 231 209 96
% of inefficient schools 50.28 53.76 5589 6150 6532 74.07 76.54 89.23
Table 3
Efficiency with respect to the volume output in the F-CRS models.
Statistics No trade-offs  J1 J1-J2 -3 -4 n-j5 -6 J1-J7
Average efficiency (%) 90.45 90.35 89.34 87.47 86,54 8447 83.65 74.72
Minimum efficiency (%) 40.97 40.97 18.79 175 17.5 17.5 17.5 17.5
Number of efficient schools 299 290 285 245 225 146 131 35
% of inefficient schools 66.44 6745 68.01 7250 7486 83.61 8530 96.07
Table 4
Efficiency with respect to the vector of ratio outputs in the R-VRS models.
Statistics No trade-offs  J1 J1-J2 -3 -4 n-j5 -6 J1-J7
Average efficiency (%) 89.4 88.25 873 85.6 8393 8054 78.08 70.35
Minimum efficiency (%) 15.91 15.91 15.91 15.91 1556 1556 1212 12.12
Number of efficient schools 472 446 420 368 318 243 209 97
% of inefficient school 47.03 4994 5286 5870 64.31 72.73 76.54  89.11

We convert the above judgement to the following trade-off:
PR=(0,1)",QF = (0.5,0.25)".

Judgement 7. If the percentage of pupils not receiving free school
meals is reduced by 1%, then the percentage of pupils achieving
good GCSE results and those going to top universities should not
decline by more than the same percentage, i.e., by 1% each, pro-
vided the remaining inputs and outputs are kept unchanged.

This judgement is stated as follows:

PR=(0,-1)",Qf = (-1,-1)".
7.3. Efficiency with respect to the volume output

We first consider the following question: what is the maximum
number of pupils that a school can teach, for the given level of
its resources (teachers and expenditure) and assuming that the
socio-economic and quality characteristics of the teaching process
(represented by the two ratio inputs and two ratio outputs) do
not change? This question should be of interest to local education
authorities who may consider allocating additional pupils to the
schools.

We explore this question in the R-VRS and F-CRS technologies.
In both cases, we first consider the technology without trade-offs
and then the technologies obtained from it by consecutive incorpo-
ration of the trade-offs representing Judgements 1-7, as discussed
in Section 7.2. The general statement of all such R-VRS models is
given by program (15) in which we keep the improvement factor n
attached to the volume output vector Y} in constraints (15a) and
remove 7 from constraints (15d). In the case of F-CRS, we solve
similar programs based on its statement (13).

Tables 2 and 3 present a summary of computational results.
(We convert the efficiency scores in the range [0,1] obtained by
solving the R-VRS and F-CRS models to percentages and round the
results to two decimal places.) Their second columns correspond
to the models solved without trade-offs. The remaining columns
correspond to the models in which we progressively incorporate
additional trade-offs based on Judgements 1-7, denoted ]J1-]7. For
example, the columns “J1” correspond to the models in which we
use the single trade-off based on Judgement 1. The columns “J1-
J2” correspond to the use of the trade-offs based on Judgements 1

10

and 2. The last column corresponds to the use of all seven produc-
tion trade-offs.

In line with the theoretical embeddings (9) and (11), the two
tables show that the incorporation of production trade-offs has a
significant impact on the discriminating power of the model. Thus,
the average efficiency across all schools, as assessed by the stan-
dard R-VRS model of Olesen et al. (2017) used without trade-offs,
is 94.33%, and just over one half (50.28%) of all schools are in-
efficient. The incorporation of production trade-offs gradually im-
proves discrimination. The final R-VRS model with all seven trade-
offs reduces the average efficiency to 82.36% and identifies ineffi-
ciency in 89.23% of all schools. A similar pattern is seen in the case
of F-CRS model, in which the average efficiency is reduced from
90.45% to 74.72%, and the number of inefficient schools increases
from 66.44% to 96.07%.

We also note that, in line with the embedding (12), the effi-
ciency of schools evaluated in the F-CRS technology used with any
set of trade-offs is generally lower than in the R-VRS technology
used with the same trade-offs.

7.4. Efficiency with respect to the ratio outputs

We now consider a different question: what is the maximum
proportional increase to the two ratio outputs representing the
quality of the teaching process (percentage of pupils achieving
good GCSE results and proceeding to top universities) that the
school should be able to achieve, given its resources (teachers and
expenditure), the number of pupils and the socio-economic char-
acteristics of the school cohorts, represented by the two ratio in-
puts. This assessment scenario is particularly relevant when, out of
all volume and ratio measures, only the two ratio outputs repre-
senting quality of education are discretionary, while the other are
exogenous and are not under the school’s control.

To answer the stated question in the R-VRS technology with dif-
ferent sets of trade-offs, we solve program (15) in which we keep
the improvement factor in constraints (15d) but remove it from
constraints (15a). In the case of F-CRS technology, we use similar
programs based on its statement (13).

Tables 4 and 5 present a summary of computational results in
this scenario. Similar to the previous case, it is clear that the incor-
poration of production trade-offs in the R-VRS and F-CRS technolo-
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Table 5

Efficiency with respect to the vector of ratio outputs in the F-CRS models.
Statistics No trade-offs  J1 J1-)2 J1-J3 J1-]4 -5 J1-J6 J1-7
Average efficiency (%) 83.57 8325 8293 81.62 80.09 7644 7388 65.81
Minimum efficiency (%) 15.91 15.91 15.91 15.91 1556 1556 1212 12.12
Number of efficient schools 316 309 300 278 244 171 137 39
% of inefficient schools 64.53 6532 6633 68.8 72.62 80.81 84.62 9562

gies leads to significantly improved efficiency discrimination of the
resulting models.

8. Conclusion

The use of value judgements in the form of weight restric-
tions and dual to them production trade-offs has been reported in
many applications of the conventional VRS and CRS models. Such
judgements allow the analyst to obtain a meaningful extension of
the underlying technology, by specifying that certain simultane-
ous changes to the inputs and outputs should be possible for any
DMU. This creates additional potential comparators for the DMUs
and generally results in improved discrimination on efficiency.

In this paper, we introduce a similar notion of production trade-
offs to the R-VRS and R-CRS models developed by Olesen et al.
(2015) that allow the inputs and outputs to be specified by either
volume or ratio measures. In the case of R-CRS, we focus on the
most common situation in which the ratio inputs and outputs rep-
resent contextual (e.g., socio-economic) and quality characteristics
of the production process. Such ratio measures remain constant
while allowing the volume inputs and outputs to be scaled as in
the standard CRS technology. We refer to such R-CRS technology
with fixed ratio measures as the F-CRS technology.

In contrast with the conventional VRS and CRS models which
can be stated as both primal and dual (envelopment and multi-
plier) linear programs, the R-VRS and F-CRS models are nonlinear
and have only the envelopment form. Therefore, the value judge-
ments traditionally stated in alternative but equivalent forms of
weight restrictions and production trade-offs can now be stated
only using the latter (trade-off) interpretation.

We define extensions of the R-VRS and F-CRS technologies by
production trade-offs using the axiomatic approach. This means
that every hypothetical DMU in the new technology can be ex-
plained by the explicitly stated assumptions about the technology.
Namely, every DMU is either included in the R-VRS or F-CRS tech-
nology of Olesen et al. (2015) or is obtained from one of DMUs
in the respective original technology by the application of the as-
sumed production trade-offs. This in turn means that the target
DMUs (e.g., radial targets) of inefficient DMUs are producible and,
in line with the assumed axioms, should be regarded as valid
benchmarks.

We distinguish between the production trade-offs specified for
the volume inputs and outputs and production trade-offs involving
changes to ratio measures. The mathematical approach to the in-
corporation of the former is similar to their use in the standard
VRS and CRS models. However, the incorporation of production
trade-offs between ratio measures requires a different mathemati-
cal approach.

We use an application in the context of school education to dis-
cuss the practical meaning of production trade-offs. As expected
from theory, computational results confirm that the incorporation
of production trade-offs in the R-VRS and F-CRS models results in
improved discrimination on efficiency between the schools. It is
clear that the proposed models with production trade-offs should
provide similar advantages in applications in other contexts and
sectors.

1

Our paper opens up further research avenues that have already
been extensively explored in the case of conventional VRS and CRS
models, and, more recently, in the R-VRS and R-CRS technologies.
This includes exploring the notion of returns to scale and scale ef-
ficiency in the R-VRS technology (Olesen, Petersen, & Podinovski,
2022a) and issues of inconsistent trade-offs resulting in the in-
troduction of “free production” in the VRS and CRS technologies
(Podinovski & Bouzdine-Chameeva, 2013). Investigation of these is-
sues in the R-VRS and F-CRS technologies expanded by production
trade-offs is left for future research.
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Appendix A. Proofs

Proof of Theorem 1. Denote T* the set of all DMUs (X,Y) e
RT x RS for which there exists a vector A € R" and scalars ¢
and pj, VjI,t, such that conditions (8) are true. We need to
prove that T§RS_TO = T*. We first prove that T* satisfies Axioms 1-
4. Axioms 1 and 2 are straightforward. For example, Axiom 2 is
true because, if DMU (X,Y) satisfies (8) with some scalars A;,
7e, pj. then (X.¥) also satisfies (8) with the same scalars.
Lemmas 1 and 2 establish that T* satisfies Axioms 3 and 4. There-
fore, TR 1o € T*. The opposite embedding T* ¢ TR 1 is estab-
o=T% O

lished by Lemma 4. Therefore, T\I}RS—T

Lemma 1. Technology T* satisfies Axiom 3.
Proof of Lemma 1. To prove that T* satisfies Axiom 3, consider
any two DMUs (X,Y) e T* and (X,Y) € T*. These DMUs satisfy

conditions (8) with some vectors A and * and scalars 7, Pj and
7t and Py, Vj.t, 1, respectively. Consider any y € [0, 1]. Define

(RY,RR PV R) = 3 (%Y RE 9V %) 4+ (1 — ) (RY, R 9V, %),
(A1)

We need to prove that (XY, XR YV, YR) e T*, i.e, that it satisfies
(8) with some vector A and scalars 7, pj, Vj.t,l. Define

A=yi+(A =)k, T=yi+(0-p)7. (A2)
To define multipliers pj, first define the sets
J={iellk;>0}. J={jeJlX; >0} (A3)
Foreachl=1,...,L, let:
i Ojts ]'sz ;
Pjt=19Pj. Jjel\J. (A4)
0, otherwise.

Let us prove that the DMU (XY, XR, YV, YR) defined by (A.1) sat-
isfies all conditions (8) with the vectors A and 7 defined by
(A.2) and scalars pj; defined by (A.4).

To prove (8a) and (8b), we state these conditions twice, for the

DMU (X,Y) and vectors A and 7, and for the DMU (X,Y) and
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vectors A and #. The proof is finalized by multiplying these in-
equalities by y and 1 — y, respectively, adding and rearranging the
terms. )

Let us prove (8¢). It suffices to assume that A; > 0. By (A.2),
either X; > 0 or A; > 0, or both. Then either j ] or jej\J To
be specific, let j e J. Because DMU (X,Y) satisfies (8) with X and
scalars fj;, and because Aj > 0, (8c) implies

L ~
YR+ puQR | -YR = 0. (A.5)
I=1

Taking into account (3) and (A.1), we replace YR by YR. Also,
by (A.4), because j <j, we replace Pji by pj, VI. With these re-
placements, and because 5\] >0, (A.5) implies (8c) for any j €.
The proof for j e /\ [is similar. The proof of conditions (8d) is also
similar. The proof of conditions (8e)-(8g) is straightforward and is
omitted. O

Lemma 2. Technology T*satisfies Axiom 4.

Proof of Lemma 2. Consider any DMU (X,Y) € T*, and the DMU
(X,Y) obtained from it as specified by Axiom 4. We need to prove
that (X,Y) e T*. DMU (X, Y) satisfies conditions (8) with some vec-
tor J and scalars 7, pj. Let us prove that the DMU (X, V) stated
by (7) satisfies conditions (8) with the vector A = % and the scalars
Fir =7+ A and = pj + Pji, V.1, t. The proof that conditions
(8e)-(8h) are satisfied follows from the definition of A, 7, and Pl
and the assumptions of Axiom 4. Let us prove conditions (8a)-(8d).
Consider condition (8a) stated for DMU (X,Y):

n K
YAy Y AaQ =YY (A6)
j=1 t=1

Adding the sum YX | 7:QY to both sides of (A.6), rearranging
and noting the definition of YV by (7), we have

n K
DoAY+ mQl =Y.
j=1 t=1
Consider conditions (8c) stated for DMU (X,Y). For any j €],
we have

A ([yﬁ + Z@,Qf} - YR) > 0.
=1

Adding and subtracting the sum ZIL:1 pj,QIR inside the paren-

theses, rearranging the terms and using the definition of vector i
and scalars 7;, we have

K
A <|:Y]R +y ﬁﬁQtR} - ?R) > 0.
t=1

The proofs of conditions (8b) and (8d) is similar. Also, by the as-
sumption of Axiom 4, (X,Y) € R x R%. Therefore, (X,¥) e T*. O

Lemma 3. Let technology T satisfy Axioms 2 and 4, and let
(XV,XR YV YR) e T. Define DMU (XV,XR YV, YR) by the following
equalities, where scalars ¢, p; > 0, Vt, 1, and SY, S¥, SR, SR > 0 are
slack vectors of appropriate dimensions:

K

VW=ov'4 ZmQtV -y, (A.7a)
t=1

5 K

X=X+ mP +Sy. (A.7b)

t=1
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L
?R :YR+Z/OIQ{R _55’
I=1

(A.7¢)

L
XR=XR+> " pPf+S§.
=1

(A.7d)

Further assume that XV, XR YV, YR > 0 and that the subvectors X®
and YR are within the bounds (2). Then (XV,XR, YV, YR) eT.

Proof of Lemma 3. It suffices to prove that the DMU
(XV,XR ¥V YR) can be obtained as a result of several consec-
utive modifications, starting with the DMU (XY, Xk YV YR) by
the trade-offs and slack variables such that all inputs and outputs
of all intermediate DMU are nonnegative and within the bounds
stated as (2). Then the proof is completed by noting Axioms 2 and
4,

Note that the DMU (X, XR ¥V, ¥R) does not have to be com-
puted in the stated order, i.e., applying the trade-offs in full pro-
portions 7y and pj first and subsequently adding or subtracting the
full slack vectors. Instead, we can consecutively add the trade-offs
and slack vectors in smaller proportions and in a different order,
while keeping all intermediate DMUs nonnegative and satisfying
the bounds (2). Different procedures implementing this idea can
be suggested, but their precise description is tedious and is not
given. O
Tiks—To-
Proof of Lemma 4. Consider any DMU (X,Y) € T*. We need to
prove that (X,¥) e T&¢ ;0. DMU (X,Y) satisfies (8) with some
vector A and scalars 7; and Pji, Vi, t, 1. Without loss of generality,
let 5»]» > 0, Vj e J. Then conditions (8) can be restated as equalities,
in which the slack vectors S, SY, S~§j, §§j > 0 are of appropriate
dimensions:

Lemma 4. The following embedding is true: T* C

n K
YY) Y mQ - =YY, (A8a)
j=1 t=1
no K 5
YoAX] + Y Ak +5 =X, (A.8b)
j=1 t=1
L ~ ~
YR+ 5iQf -85, =Yk Vjey (A.8¢)
=1
L ~ ~
XE+ Y puPt+ S5, =Xk Vje] (A.8d)
1=1
n ~
Yoki=1, (A.8e)
j=1
XR < XK, (A.8f)
YR < YR (A.8g)

For each observed DMU (X;,Y;), j €], conditions (A.8c) and
(A.8d) are a special case of conditions (A.7c) and (A.7d). By
Lemma 3, for each je], we have (XJV,XR,YJV,YR) € TRs 10- BY
Axiom 3,

n n
XV, XR YV, YR) = <Zijx‘/,)?", ZXJYJV,Y'R> e TRs 10-

j=1 j=1
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Conditions (A.8a) and (A.8b) are a special case of equali-
ties (A.7a) and (A.7b). By Lemma 3, the DMU (XY, XK ¥V ¥K) e

R
TVRS -TO" 0

Proof of Theorem 2. Consider any non-empty subset J/ CJ=
n}. Define technology T(J’) as the set of all DMUs (X,Y)
R? x RS for which there exists a vector A € R", scalars 7y and pj,
Vj,1,t, and slack vectors SY, S, S{}j, Sﬁj, Vj, such that

K
DAY+ mQf -Sy =YY,

(A.9a)
jeJ’ t=1
K
DOAX] + P+ Sy =X, (A.9Db)
jel’ t=1
L
YR+ paQf =S5, =YR  VjeJ, (A.9¢)
=1
L
XF+ > puPf+S5,=X8 Vjel, (A.9d)
=1
da=1, (A.9e)
jel’
XR < xR, (A.9f)
YR < YR, (A.9g)
A, pp =0, VjeJ, t=1,... K I=1,... L (A.9h)
Sy, Sx. S5 Sk;j=0.¥je]J. (A.90)

The proof now follows from Lemmas 5 and 6. O

Lemma 5. Technology T(J') defined by conditions (A.9) is a polyhe-
dral set.

Proof of Lemma 5. Restate conditions (A.9¢) and (A.9d) by the fol-
lowing conditions:

yE=vE, (A10a)
Xf = XE, (A.10b)
L ~
YR+ piQf = Sh -V =0, VjeJ, (A10¢)
=1
L ~
XF+ 3" piPf +S5, - Xk =0, VjeJ, (A.10d)

=1

where Xk ¢ R™ and YR e R*" are variable vectors. Consider the set
C of all vectors whose components include variable vectors and
scalars A, 7w, pj, jel, I=1,..., L, and XR, VR, sy, S¥, S8, SR jel,
that satisfy conditions (A.9e), (A.9h), (A.9i) and (A.10c), (A.10d). By
definition, C is a polyhedral set (Rockafellar, 1970).

Define W as the set of all vectors w = (YV, X", YR XR) obtain-
able by the linear transformation described by equalities (A.9a),
(A.9b), (A.10a) and (A.10b) from the elements of C. By Theo-
rem 19.3 in Rockafellar (1970), the set W is polyhedral. Then tech-
nology T(J') is a polyhedral set as the intersection of the set W
with the polyhedral set defined by the nonnegativity conditions
XV, XR YV, YR > 0 and conditions (A.9f) and (A.9g). O
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Lemma 6. Technology T\‘}RS_TO is the union of the finite number of
technologies T(J') formed by all non-empty subsets J'  J.

Proof of Lemma 6. Consider any DMU (X,Y) ¢ TVRRS—TO' By
Theorem 1, it satisfies conditions (8) with some vector A’ € R" and
scalars 7/, t=1,...,K, and p;l, j=1,....n,1=1,...,L Define J/
as the set of all j €] such that )»;. > 0. Then (X,Y) satisfies con-
ditions (A.9) with the vector A obtained from A’ by omitting its
zero components, and with the same scalars =/, and p]’.l, Vi, l,t.
Therefore, (X,Y) € T(J'), and (X,Y) belongs to the union of all such
technologies T(J').

Conversely, let (X,Y) e T(J’) for some set J'. Then (X,Y) satis-
fies (A.9) with some vector A € R", scalars 7, and Pji, Vi, 1,t, and
slack vectors SV, S, §§j, §§j, Vj eJ'. Define vector A’ € R" as fol-
lows: )\} = Xj, for all j eJ/, and )»;, =0, for all jeJ\J. Then (X,Y)
satisfies conditions (8) with the so defined A’ and the same 7; and

Pji» Vi. 1. t. Therefore, (X,Y) € T 1o- O

Proof of Corollary 1. By Theorem 2, technology TVRRS—TO is a fi-
nite union of polyhedral and, therefore, closed technologies. Their
union is a closed set. O

Proof of Theorem 3. Denote T’ the technology defined by con-
ditions (10). More precisely, T’ is the set of all DMUs (X.Y) e
RT x RS for which there exist vectors A, € R" and scalars m,
t=1,..., K, and Pits j=1,..., nl=1,..., L, such that all condi-
tions (10) are satisfied. We need to prove that TcFRszo =T.

Let us first prove that T’ satisfies Axioms 1-5. The proofs of
Axioms 1,2 and 4 are similar to the case of R-VRS. The proofs that
T’ satisfies Axioms 3 and 5 are given separately, in Lemmas 7 and
8. Therefore, we have Tf o S T'. The opposite embedding T’ <
TCFRS_TO is established by Lemma 9. The two proved embeddings

imply that T 1o =T". O

Lemma 7. Technology T’ satisfies Axiom 3.

Proof of Lemma 7. Let DMUs (X,V) and (X,¥) satisfy (10) with
the combined vectors (K,d,ﬁ;,ﬁﬂ | Vj, 1) and (1,&,7‘1;,5]-, |V D),
respectively. Let the equalities (3) assumed by Axiom 3 be true.
Select any y < [0, 1] and define the convex combination

(RYXE P 78) =y (RY.RE 9V 9%) 4 (1= ) (RV. R0V 9).

Note that X and Y are nonnegative. It remains to be proved that
DMU (X,Y) satisfies conditions (10) with some vectors A, &, 77 and
scalars pj;.

First, as in the proof of Lemma 1, define vectors A and 7 by
formula (A.2). Further define the sets J and j by formulae (A.3) and
the multipliers p; by formula (A.4). To define vector &, first de-
fine the set J* ={j ]| 5\j >0} =fUJ. Note that the set J* is not
empty. For each j € J*, define &; from the following equality:

5\,]'(5[]‘ = ]/5»]'&]‘ +(1- )/)5\,]&]
Using (A.2) and (A.11), for each j € J*, we have

(A11)

! Aj YA+ (1 =y)A

For each j €]\ J* (i.e., for each j such that ij = 0), we arbitrar-
ily define &; = 1. Let us prove that DMU (X, Y) satisfies (10) with
the vectors A @, 77 and scalars Pit-

To prove that inequalities (10a) and (10b) are true, we state
them twice, for DMU (X, ¥) and vectors A, @ and 7, and for DMU
(X,¥) and vectors %, @ and #. Multiply these inequalities by y and
1 — y, respectively. The proof is completed by adding the resulting
inequalities and noting (A.2) and (A.11). The proof of the remaining
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conditi_on_s (10c)-(10h) is similar to their proof in Lemma 1. There-
fore, X,Y)eT'. O

Lemma 8. Technology T’ satisfies Axiom 5.

Proof of Lemma 8. Any DMU (XY, XR YV YR) ¢ T’ satisfies con-
ditions (10) with some vectors A, @ and 7, and scalars pj;, j =
1,....,n,1=1,...,L Consider any scaling factor y > 0 and define
the scaled DMU (yX",XR, yYV,YR). This scaled DMU satisfies all
conditions (10) with the vectors A = A, & = yo and the scalars
ffy=ym and pj; = pj, Vj. I, t. It is, therefore, in T’, and T’ satisfies
Axiom 5. O

TF

Lemma 9. The following embedding is true: T' € Tfpq 1o

Proof of Lemma 9. The proof follows closely the proof of
Lemma 4, in which we replace the observed DMUs (X]‘/,X]R, Y]V, Y]R)

by their scaled analogues (osz‘/,XJR, OlY]‘./, Y]R). ]

Proof of Theorem 4. The proof follows from Lemmas 10 and
11. O

Lemma 10. Let DMU (X,Y) satisfy conditions (10) with vectors A, «
and scalars 7t¢ and pj. Then (X,Y) satisfies conditions (13) with some
vectors k, i, v € R" and the same scalars m; and Pijt-

Proof of Lemma 10. Consider any jeJ and let kj =A;. If A;=
0, let u;=v;=0. If ;> 0, consider two cases. If « > 1, define
Hj =)\.jO[j _)"j =)\.](Ol] —1) and Vj =0.If0 <« < 1, define Mj =0
and v; =A; — Ajaj = A;(1 — ;). In both cases, uj, v; = 0. Further-
more, we always have Ao = k;—v;+ u; and k; — v; > 0. Replac-
ing Aja; in inequalities (10a) and (10b) by the terms «; — v; + ],
for all j €], we observe that the DMU (X,Y) satisfies conditions
(13) with the vectors «, , v and scalars 7r¢ and pj. O

Lemma 11. Let DMU (X,Y) satisfy conditions (13) with vectors «, [,
v and scalars 7ty and pj. Then (X,Y) satisfies conditions (10) with
some vectors A, « € R" and the same scalars 7r; and pj;.

Proof of Lemma 11. Define A = Z'}:] (j + uj). By (13e), we have
A = 1. For each je], define A; = (kj+ u;)/A. Two further cases
arise. If 1; > 0, let o = (kj 4+ pj—vj)/Aj. I A; =0, then kj = pj =
0 and, by (13f), v; =0. It does not matter how «; is defined
in this case. To be specific, let oj =1. In both cases, we have
Ajotj = Kj—vj+ uj. It is straightforward to verify that conditions
(13) stated for the vectors «, w, v and scalars 7¢ and pj, im-
ply conditions (10) stated in terms of vectors A, o and scalars ¢
and p;. O

Proof of Theorem 5. The proof is similar to the proof of
Theorem 2 and requires a minor adjustment to Lemmas 5 and 6.
In particular, we replace the statement (A.9) by a similar statement
based on (13) and, in Lemma 6, we redefine the set J' as the set of
all j e J such that «;j + u; > 0. The rest of the proof is similar and
is omitted. O

Proof of Theorem 6. Let DMU (X,Y) e TCFR57TO' By Theorem 3, it
satisfies conditions (10) with some vectors A, &, 7 and scalars pj;.

Then (X,Y) satisfies all conditions (14) with the vector * whose
components are defined as A; = A;a;, Vj e, and the same vec-

tor 7 and scalars pj. In particular, A; >0 implies A; >0, and
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conditions (14c) and (14d) follow from (10c) and (10d). Therefore,

TF
X.Y) € Ts_1o-

Conversely, let (X,Y) e TCFRS—TO satisfy conditions (14) with
some vectors A # 0, 7 and scalars pj;. Then A* =37, 4; > 0. For
all jej, define A; =A;/A* and &; =a;A*. Then (X,Y) satisfies
(10) with A, @ and the same 7 and p;. O
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