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a b s t r a c t 

In applications of data envelopment analysis (DEA), the inputs and outputs representing environmental 

and quality characteristics of the production process are often stated in the form of percentages, ratios 

and averages, collectively referred to as ratio measures. It is known that the conventional variable and 

constant returns-to-scale (VRS and CRS) DEA models cannot correctly incorporate such ratio inputs and 

outputs. This problem has been addressed by the development of Ratio-VRS and Ratio-CRS (R-VRS and 

R-CRS) models suitable for the incorporation of both volume and ratio inputs and outputs. Such mod- 

els may, however, depending on the application, lack sufficient discriminatory power. In this paper we 

address this issue by developing a further extension of the R-VRS and R-CRS models (the latter with 

the most common fixed type of ratio inputs and outputs) by allowing the specification of production 

trade-offs between volume inputs and outputs, and, similarly, between ratio measures. As in the case 

of conventional VRS and CRS models in which the role of production trade-offs is well understood, the 

specification of such trade-offs in the R-VRS and R-CRS production technologies leads to their controlled 

expansion and results in improved efficiency discrimination of the resulting DEA models. We illustrate the 

application of the proposed methodology by the assessment of efficiency of a large sample of secondary 

schools in England. 

© 2023 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

Applications of data envelopment analysis (DEA) often incor- 

orate inputs and outputs stated in the form of ratios. Such ratio 

easures may represent various percentages and ratios obtained 

y division of volume measures whose values are often unknown 

o the analyst. For example, in the context of school education, 

hich we consider in the application, ratio measures may rep- 

esent socio-economic characteristics of the pupil intake, such as 

ercentage of school pupils eligible for free school meals. Ratio 

easures may also represent percentage of pupils achieving good 

esults in exams and those proceeding to higher education after 

he graduation. More broadly, ratio measures are often used as en- 

ironmental and quality characteristics of the production process. 
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.1. Existing approaches 

It is now well known that ratio inputs and outputs cannot be 

orrectly incorporated in the conventional variable and constant 

eturns-to-scale (VRS and CRS) DEA models of Charnes, Cooper, & 

hodes (1978) and Banker, Charnes, & Cooper (1984) . The earlier 

oncerns for the applicability of ratios in DEA were raised, for ex- 

mple, by Dyson et al. (2001) and Cooper, Seiford and Tone (2007) . 

he examples given by Emrouznejad & Amin (2009) and Olesen, 

etersen, & Podinovski (2015) show that the incorporation of ratio 

nputs and outputs in the standard VRS and CRS models is incon- 

istent with the assumption that the underlying technology is con- 

ex. In the case of CRS, ratio measures are usually also inconsistent 

ith the assumption of scalability of data ( Olesen et al., 2015 ). 

The Ratio-VRS and Ratio-CRS (R-VRS and R-CRS) models of tech- 

ology developed by Olesen et al. (2015) address the described 

roblem and allow the incorporation of both volume and ratio in- 

uts and outputs as native types of data. In this approach, the 

tandard assumption that the production technology is convex is 
nder the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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eplaced by the assumption of selective convexity of Podinovski 

2005) . The R-VRS and R-CRS models allow convex combinations 

f decision making units (DMUs) in which the volume measures 

re combined in the conventional way. At the same time, the ra- 

io measures are taken at the most conservative level that may 

e obtained by accounting for all possible (but typically unknown) 

alues of their numerators and denominators—see Papaioannou & 

odinovski (2023) for additional results concerning the impact of 

ifferent types of information about the numerators and denomi- 

ators on the model of technology. 

The R-CRS model of Olesen et al. (2015) additionally allows pro- 

ortional scaling of the volume inputs and outputs. The treatment 

f ratio measures is more nuanced and depends on their assumed 

ype. From a practical perspective, the most common is the fixed 

ype of ratio inputs and outputs. These represent environmental 

nd quality characteristics of the production process that can be 

ssumed constant while the volume inputs and outputs character- 

zing the quantity of resources and production levels are scaled up 

nd down. Olesen et al. (2015) refer to such R-CRS technologies 

ith fixed ratio inputs and outputs as the F-CRS technologies. 

.2. Motivation 

While the R-VRS and F-CRS models allow for appropriately cap- 

uring ratio inputs and outputs in the specification of the produc- 

ion technology, their use in practice can be hindered by the issue 

f lack of discriminatory power. This is a well-documented find- 

ng for traditional VRS and CRS DEA models, in response to which 

ifferent rules of thumb for the number of inputs and outputs 

equired for acceptable discrimination of the model exist ( Dyson 

t al., 2001 ; Cooper et al. 2007 ). Since the R-VRS technology is a

ubset of the conventional VRS technology based on the same in- 

ut and output data (including ratio data), the efficiency scores can 

nly increase when moving from the latter to the former. There- 

ore, the discriminating power of the R-VRS model is generally 

orse than that of the VRS model. Although the F-CRS technol- 

gy is generally not a subset of the CRS technology, 1 computations 

how that it also generally lacks in discriminating power compared 

o the standard CRS model. 

A well-established methodology to mitigate against this prob- 

em in the conventional VRS and CRS setting involves incorporating 

alue or expert judgments in the specification of production tech- 

ology, via means of specifying production trade-offs. These were 

riginally developed by Podinovski (2004) as the dual forms of 

eight restrictions in the standard multiplier VRS and CRS models 

see, e.g., Allen, Athanassopoulos, Dyson, & Thanassoulis, 1997 , and 

hanassoulis, Portela, & Despi ́c, 2008 ). Such production trade-offs 

re interpretable as simultaneous changes to the inputs or outputs 

hat are assumed technologically possible for any DMU in the tech- 

ology. An example of such a judgement, aligned with the applica- 

ion to schools considered in our paper, is the statement that 1 ex- 

ra teacher and £20,0 0 0 of non-pay school expenses is a sufficient 

ompensation for a school to accept at least 10 extra pupils. Such 

roduction trade-offs result in a controlled and meaningful expan- 

ion of the production technology, leading to potentially lower ef- 

ciency scores and therefore improved discriminatory power. 

A question therefore arises as to whether it is possible to ex- 

and the R-VRS and F-CRS models and improve their discriminat- 

ng power by defining similar production trade-offs involving both 

olume and ratio inputs and outputs. In our paper, we give a pos- 
1 To see this, note that the F-CRS technology allows selective proportional in- 

rease of volume measures only, which does not require increasing fixed ratio in- 

uts. The resulting DMUs are generally outside the standard CRS technology which 

nly allows simultaneous proportional increase of all inputs and outputs. 

{  

m

f

r

2 
tive answer to this question and illustrate the results by an appli- 

ation. 

.3. Contribution 

In this paper, we develop extensions of the original R-VRS and 

-CRS technologies of Olesen et al. (2015) by the incorporation of 

roduction trade-offs involving volume and ratio inputs and out- 

uts. Any new DMU in such extended technologies can be ex- 

lained as a modification of some DMU in the original R-VRS and 

-CRS technology by the application of the assumed trade-offs. 

It should be noted that the development of such models is not a 

traightforward modification of the R-VRS and F-CRS technologies, 

or two reasons. 

First, the R-VRS and F-CRS technologies are not convex, the en- 

elopment models based on them are not linear and their standard 

ual multiplier models are undefined. This means that the notion 

f production trade-offs does not arise as the dual form of weight 

estrictions and needs to be developed as a stand-alone concept, 

ased on the envelopment form only. We achieve this by provid- 

ng a full axiomatic development of the R-VRS and F-CRS tech- 

ologies with production trade-offs entirely in the primal (envel- 

pment) space. 

Second, we distinguish between the production trade-offs 

tated for volume inputs and outputs (as illustrated above), and 

rade-offs stated for ratio measures. An example of the latter is the 

udgement that, if the percentage of pupils achieving good results 

n entry to school increases by 1%, any school should be able to 

mprove the percentage of pupils achieving good results on exit 

y at least 0.5%. It turns out that the production trade-offs stated 

or the ratio measures require a different modelling approach com- 

ared to the trade-offs stated for the volume measures. 

As in the case of conventional VRS and CRS models, the incor- 

oration of production trade-offs in the R-VRS and F-CRS technolo- 

ies results to their expansion. This in turn leads to improved dis- 

rimination on efficiency of the resulting expanded models. We il- 

ustrate the usefulness of the new R-VRS and F-CRS models with 

roduction trade-offs by an application to a large sample of sec- 

ndary schools in England. Computational results confirm that the 

pecification of production trade-offs leads to a noticeable im- 

rovement of the discrimination on efficiency. 

We proceed as follows. In Section 2 , we briefly outline the idea 

f the R-VRS technology of Olesen et al. (2015) . In Section 3 , we in-

roduce the notion of production trade-offs specified either for the 

olume or ratio inputs and outputs. In Sections 4 and 5 , we use an

xiomatic approach to develop the R-VRS and F-CRS technologies 

ith production trade-offs. In Section 6 , we discuss DEA models 

ased on the new technologies and approaches to their solution. 

n Section 7 , we consider an application to secondary schools in 

ngland. Concluding remarks are given in Section 8 . The proofs of 

ll mathematical statements are given in Appendix A . 

. Preliminaries 

In this section, we provide a brief introduction to the R-VRS 

echnology developed by Olesen et al. (2015) and its axiomatic 

oundations. 

.1. Notation 

Let T ∈ R 

m + s 
+ be a production technology with the set I = 

 1 , . . . , m } of inputs and the set O = { 1 , . . . , s } of outputs. Both sets

ay generally include volume and ratio measures that require dif- 

erent treatment. 

Denote I V and O 

V the subsets of volume inputs and outputs, 

espectively. Similarly, denote I R and O 

R the subsets of ratio inputs 
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nd outputs. We obviously have I = I V ∪ I R and O = O 

V ∪ O 

R , and

 

V ∩ I R = ∅ and O 

V ∩ O 

R = ∅ . We assume that there is at least one

nput and at least one output, i.e., the sets I and O are not empty,

lthough some of their subsets of volume and ratio measures may 

e empty. 

Denote | I V | = m 

V and | I R | = m 

R the number of volume and ra-

io inputs, respectively. Then the overall number of inputs is m = 

 

V + m 

R . Similarly, we denote | O 

V | = s V and | O 

R | = s R the number

f volume and ratio outputs, respectively. The overall number of 

utputs is s = s V + s R . 

Decision making units (DMUs) are elements of technology T . 

hey may be stated in the form (X, Y ) , where X ∈ R 

m + and Y ∈ R 

s + 
re the vectors of inputs and outputs, or in the more detailed form 

hat reflects the division of the inputs and outputs into the volume 

nd ratio measures, as follows: 

X, Y ) = 

(
X 

V , X 

R , Y V , Y R 
)
, (1) 

here X V ∈ R 

m 

V 

+ , X R ∈ R 

m 

R 

+ , Y V ∈ R 

s V + and Y R ∈ R 

s R + . 
Suppose that we have n observed DMUs. Introducing the in- 

ex set J = { 1 , . . . , n } , we state the observed DMUs as (X j , Y j ) =
 X V 

j 
, X R 

j 
, Y V 

j 
, Y R 

j 
) , j ∈ J. 

In many applications, ratio measures often (but not always) 

ave natural upper bounds, typically either unity or 100%. Let X̄ R 

nd Ȳ R be the vectors of upper bounds on the ratio inputs and out- 

uts. If an upper bound on an input i ∈ I R or output r ∈ O 

R is not

pecified, we formally take the corresponding upper bound X̄ R 
i 

or 

¯
 

R 
r equal to + ∞ . All DMUs (1) in technology T are naturally as-

umed to satisfy the two vector inequalities: 

 

R ≤ X̄ 

R and Y R ≤ Ȳ R . (2) 

(In this paper, including in inequalities (2) , vector inequalities 

ean that the specified inequality is true for each component. For 

xample, the vector inequality X R ≤ X̄ R means that the scalar in- 

quality X R 
i 

≤ X̄ R 
i 

is true for all i ∈ I R .) 

.2. Basic axioms 

Banker et al. (1984) show that the conventional VRS technology 

s the smallest technology (in the sense of the minimum extrapola- 

ion principle) that is generated by the set of observed DMUs and 

atisfies the axioms of free disposability and convexity, as speci- 

ed formally below. It is known that these two axioms cannot be 

ssumed if some inputs or outputs are stated as ratio measures 

 Emrouznejad & Amin, 2009; Olesen et al., 2015 ). 

To provide an axiomatic foundation of the R-VRS technology 

and the R-CRS technology in a further development), Olesen et al. 

2015) modify the axioms of Banker et al. (1984) . The axiom of free

isposability requires a simple modification stating that the wors- 

ning of the inputs and outputs of any DMU in technology T is 

ossible as long as the resulting DMU remains within the bounds 

2) on the ratio measures. 

Furthermore, Olesen et al. (2015) note that, although taking 

onvex combinations of DMUs with ratio inputs and outputs would 

e incorrect, there is a special case in which such convex combi- 

ations are justified. Let us illustrate this by a simple example. 

xample 1. Suppose that we want to define a convex combina- 

ion of two schools A and B taken, to be specific, with equal 

eights 0.5. We define all volume inputs and outputs of the com- 

ined school C as the simple average of the corresponding vol- 

me inputs and outputs of schools A and B . However, we cannot 

reat ratio measures in the same way. Indeed, let the percentage of 

upils achieving good results on exit at schools A and B be equal 

o p A and p B . Then, for the combined school C, the percentage p C 
f such pupils may be anywhere in the range between p and p ,
A B 

3 
hich depends on the (unknown to us) numerators and denomina- 

ors that define such percentages. However, if p A = p B , we always 

ave p C = p A = p B . 

This example shows that we may take convex combinations of 

MUs, provided they have the same subvectors of ratio inputs and 

utputs. This observation motivates ( Olesen et al., 2015 ) to replace 

he standard axiom of convexity used by Banker et al. (1984) by 

he axiom of selective convexity introduced by Podinovski (2005) . 

his axiom allows convexity with respect to the selected sets of 

nputs and outputs (sets I V and O 

V in our case), assuming the re- 

aining inputs and outputs (in the sets I R and O 

R ) are identical for 

he combined DMUs. 

Olesen et al. (2015) state the following three axioms as the 

oundation of the R-VRS technology. 

xiom 1 Feasibility of observed data . For any j ∈ J, ( X j , Y j ) ∈ T . 

xiom 2 Free disposability . Let (X, Y ) = (X V , X R , Y V , Y R ) ∈ T and

et ( ̃  X , ̃  Y ) = ( ̃  X V , ˜ X R , ̃  Y V , ̃  Y R ) ∈ R 

m + × R 

s + . Suppose that the subvec-

ors ˜ X R and 

˜ Y R are within the bounds stated by inequalities (2) and 

hat ˜ Y ≤ Y , ˜ X ≥ X . Then ( ̃  X , ̃  Y ) ∈ T . 

xiom 3 Selective convexity . Let ( ̃  X , ̃  Y ) ∈ T and ( ̂  X , ̂  Y ) ∈ T , and let

˜ 
 

R = 

ˆ X 

R and 

˜ Y R = 

ˆ Y R . (3) 

hen γ ( ̃  X , ̃  Y ) + (1 − γ )( ̂  X , ̂  Y ) ∈ T , for any γ ∈ [0 , 1] . 

.3. The R-VRS technology 

Following the minimum extrapolation principle used by Banker 

t al. (1984) , Olesen et al. (2015) define the R-VRS technology T R 
VRS 

s the intersection of all technologies that satisfy Axioms 1 –3 , i.e., 

s the smallest technology that satisfies these axioms. 

As proved by Olesen et al. (2015) , technology T R 
VRS 

coincides 

ith the set of all DMUs (X, Y ) ∈ R 

m + × R 

s + for which there exists

 vector λ ∈ R 

n such that the following conditions are true: 

n 
 

j=1 

λ j Y 
V 
j ≥ Y V , (4a) 

n 
 

j=1 

λ j X 

V 
j ≤ X 

V , (4b) 

j 

(
Y R j − Y R 

)
≥ 0 , ∀ j ∈ J, (4c) 

j 

(
X 

R 
j − X 

R 
)

≤ 0 , ∀ j ∈ J, (4d) 

n 
 

j=1 

λ j = 1 , (4e) 

 

R ≤ X̄ 

R , (4f) 

 

R ≤ Ȳ R , (4g) 

≥ 0 . (4h) 

(In the statement (4) and elsewhere in this paper, we use bold 

otation 0 for vectors of zeros whose dimensions are clear from 

he context.) 

The role of conditions (4c) and (4d) is straightforward. Namely, 

or every j ∈ J, if λ j > 0 , then both vector inequalities Y R 
j 

≥ Y R and

 

R 
j 

≤ X R must be satisfied. Let, for example, the ratio inputs rep- 

esent the environment in which the DMUs operate and let the 
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atio outputs describe the quality of the outputs produced by the 

MUs. Then conditions (4c) and (4d) mean that the convex combi- 

ations of the volume inputs and outputs, taken with the weights 

j on the left-hand side of inequalities (4a) and (4b) , include only 

hose observed DMUs (X j , Y j ) , j ∈ J, that do not operate in a more

avourable environment than DMU (X, Y ) and whose quality of 

roduction is at least as good as that of DMU (X, Y ) . 

. Production trade-offs 

Podinovski (2004) defines production trade-offs as value judge- 

ents stating that certain simultaneous changes to the inputs and 

utputs are technologically feasible throughout the entire technol- 

gy. In the case of conventional VRS and CRS technologies, pro- 

uction trade-offs are dual to weight restrictions in the multiplier 

odels based on these technologies. 

Our objective is to extend the notion of production trade-offs 

o the R-VRS technology. Two differences with the case of conven- 

ional VRS technology are worth highlighting. First, the R-VRS tech- 

ology is generally not convex and the input and output-oriented 

nvelopment programs based on it are not linear programs. Conse- 

uently, such programs do not have dual multiplier forms in which 

eight restrictions could be incorporated. As a result, we introduce 

roduction trade-offs for the R-VRS technology without reference 

o weight restrictions. Second, it turns out that the mechanism by 

hich the trade-offs are specified for volume inputs and outputs 

s different from the approach required for the trade-offs involving 

atio measures. 

Following notation of Podinovski (2004) , a production trade- 

ff between volume inputs and outputs can be stated by the pair 

f vectors P V ∈ R 

m 

V 
and Q 

V ∈ R 

s V , which describe simultaneous 

hanges to the vectors of volume inputs and outputs of the DMUs 

n the technology. Similarly, a production trade-off between ratio 

nputs and outputs can be stated by the pair of vectors P R ∈ R 

m 

R 

nd Q 

R ∈ R 

s R , which describe simultaneous changes to the vectors 

f ratio inputs and outputs of the DMUs. Components of these vec- 

ors can be positive, negative or equal to zero. 

Suppose we have specified K ≥ 0 production trade-offs between 

olume inputs and outputs. We state these as follows: 

P V t , Q 

V 
t 

)
, t = 1 , . . . , K. (5) 

Similarly, we state L ≥ 0 production trade-offs between ratio in- 

uts and outputs as 

P R l , Q 

R 
l 

)
, l = 1 , . . . , L. (6) 

xample 2. To illustrate the idea of production trade-offs, we con- 

ider an example in the context of secondary schools, which is 

ligned with the application considered in Section 7 . Let the vector 

f inputs be X = (x V 1 , x 
V 
2 , x 

R 
3 ) 


 . The volume inputs x V 1 and x V 2 repre-

ent the number of teachers and school expenses, respectively. The 

atio input x R 
3 

is the percentage of pupils with good academic re- 

ults on entry to the school. Similarly, let Y = (y V 1 , y 
R 
2 ) 


 be the vec-

or of outputs, where the volume output y V 
1 

represents the num- 

er of pupils and the ratio output y R 
2 

is the percentage of pupils 

chieving good results on exit from school. 

In the described setting, we may consider several value judge- 

ents and state them as production trade-offs. (Note that the ex- 

ct values will obviously need to be assessed and justified in any 

articular application. The simple examples provided below are in- 

ended for conceptual purposes only, as an illustration of the idea 

f a trade-off.) 

First, we may judge that it is technologically possible for any 

chool to increase the intake by extra 10 pupils, provided the 

chool recruits an additional teacher and is given an extra budget 

f £20,0 0 0 per year. The corresponding trade-off is now stated as 

 

V = (1 , £20 , 0 0 0) 
 and Q 

V = (10) . 

1 1 

4

Second, we may assume that schools can compensate a loss of 

ne teacher by a bought-in teacher using their budgets, and specify 

 trade-off for this. Suppose that £50,0 0 0 should be sufficient to 

ay for a substitute teacher. We can now state the second volume 

rade-off as P V 2 = (−1 , £50 , 0 0 0) 
 and Q 

V 
2 = (0) . Note that the zero

omponent of the vector Q 

V 
2 

means that there is no change to the 

umber of pupils. 

Third, we may make a conservative judgement that, if the per- 

entage of pupils achieving good results on entry to school in- 

reases by 1%, the percentage of pupils achieving good results on 

xit should increase by at least 0.5%. On the other hand, if the for- 

er percentage is reduced by 1%, this should not result in more 

han 1% fewer pupils achieving good results on exit. These two 

udgements are stated in the form of production trade-offs as fol- 

ows: P R 1 = (1%) , Q 

R 
1 = (0 . 5%) , and P R 2 = (−1%) , Q 

R 
2 = (−1%) , respec-

ively. 

In line with Podinovski (2004) , we consider production trade- 

ffs as conservative judgements that can be applied to any DMU in 

he technology and any (not necessarily integer) number of times, 

s long as the inputs and outputs of the resulting DMU remain 

onnegative and within the bounds (2) specified for the ratio mea- 

ures. For example, applying trade-off P R 1 = (1%) and Q 

R 
1 = (0 . 5%) 

rom Example 2 three times, we conclude that it is technologically 

ossible for any school to increase the percentage of pupils achiev- 

ng good results on exit by 3 × 0 . 5% = 1 . 5% , if the percentage of

upils with good results on entry increases by 3 × 1% = 3% . 

Let us provide a formal statement of the assumption that the 

roduction trade-offs represent technologically feasible simultane- 

us changes to the vectors of inputs and outputs. Let multipliers 

t ≥ 0 , t = 1 , . . . , K, and ρl ≥ 0 , l = 1 , . . . , L , represent the propor-

ions in which we apply the volume and ratio trade-offs (5) and 

6) , respectively. The following axiom is a generalization of a sim- 

lar axiom stated by Podinovski (2004) for the conventional VRS 

nd CRS technologies. 

xiom 4 Feasibility of production trade-offs . Let (X V , X R , Y V , Y R ) ∈
 . Consider any scalars πt ≥ 0 , for all t = 1 , . . . , K, and ρl ≥ 0 , for

ll l = 1 , . . . , L . Define DMU ( ̃  X V , ˜ X R , ̃  Y V , ̃  Y R ) , where 

˜ Y V = Y V + 

K ∑ 

t=1 

πt Q 

V 
t , 

˜ X 

V = X 

V + 

K ∑ 

t=1 

πt P 
V 
t , 

˜ Y R = Y R + 

L ∑ 

l=1 

ρl Q 

R 
l , 

˜ X 

R = X 

R + 

L ∑ 

l=1 

ρl P 
R 
l . (7) 

urther assume that ˜ X V , ˜ X R , ̃  Y V , ̃  Y R ≥ 0 and that the subvectors ˜ X R 

nd 

˜ Y R are within the bounds (2) . Then 

(
˜ X V , ˜ X R , ̃  Y V , ̃  Y R 

)
∈ T . 

emark 1. We use production trade-offs (5) and (6) to describe 

echnologically feasible changes to either volume or ratio inputs 

nd outputs, but not simultaneous changes to both types. There 

re two reasons for this. 

First, using Example 2 for illustration, we are not stating that 

ncreasing the number of teachers (input x V 
1 

) by one may lead to a 

ertain improvement of the percentage of pupils graduating from 

chool with good results (output y R 2 ). This would appear problem- 

tic because one additional teacher may make a big difference for 

utput y R 
2 

in a small school and a small difference in a large school. 

Second, as shown below, the volume and ratio trade-offs 

5) and (6) are incorporated differently in the R-VRS technology. It 
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s not clear how a mixed trade-off involving changes to both vol- 

me and ratio measures could be incorporated. Because, as noted, 

he practical meaning of such trade-offs is questionable, this pos- 

ibility is not considered. 

. The R-VRS technology with production trade-offs 

In this section, we obtain an extension of the R-VRS technology 

f Olesen et al. (2015) by the incorporation of production trade- 

ffs (5) and (6) . We denote this technology T R VRS −TO and formally 

erive it from the stated Axioms 1 –4 . 

efinition 1. Technology T R 
VRS −TO 

is the intersection of all sets T ⊂
 

m + × R 

s + that satisfy Axioms 1 –4 . 

It is straightforward to prove that technology T R 
VRS −TO 

satisfies 

ll Axioms 1 –4 . It can, therefore, be regarded as the smallest tech- 

ology that satisfies these axioms. The following theorem provides 

n equivalent explicit statement of this technology. 

heorem 1. Technology T R 
VRS −TO 

is the set of all DMUs (X, Y ) ∈ R 

m + ×
 

s + for which there exist vectors λ ∈ R 

n , π ∈ R 

K and scalars ρ jl , j ∈ J,

 = 1 , . . . , L , such that 

n 
 

j=1 

λ j Y 
V 
j + 

K ∑ 

t=1 

πt Q 

V 
t ≥ Y V , (8a) 

n 
 

j=1 

λ j X 

V 
j + 

K ∑ 

t=1 

πt P 
V 
t ≤ X 

V , (8b) 

j 

( [ 

Y R j + 

L ∑ 

l=1 

ρ jl Q 

R 
l 

] 

− Y R 

) 

≥ 0 , ∀ j ∈ J, (8c) 

j 

( [ 

X 

R 
j + 

L ∑ 

l=1 

ρ jl P 
R 
l 

] 

− X 

R 

) 

≤ 0 , ∀ j ∈ J, (8d) 

n 
 

j=1 

λ j = 1 , (8e) 

 

R ≤ X̄ 

R , (8f) 

 

R ≤ Ȳ R , (8g) 

, π ≥ 0 , ρ jl ≥ 0 , ∀ j, l. (8h) 

Let us consider the meaning of conditions (8) . Their structure is 

imilar to the structure of conditions (4) defining the R-VRS tech- 

ology T R 
VRS 

of Olesen et al. (2015) . 

First, assume that all inputs and outputs are volume measures. 

n this case, we remove inequalities (8c), (8d), (8f) and (8g) and 

ll scalars ρ jl from the statement (8) . The resulting technology is 

he VRS technology with production trade-offs (5) of Podinovski 

2004) . In this case, the convex combinations of the observed 

MUs are described by the first sums (taken with the weights 

j ) on the left-hand side of inequalities (8a) and (8b) . These con- 

ex combinations are subsequently modified by the application of 

rade-offs (5) taken in proportions πt , t = 1 , . . . , K. As assumed by

xiom 4 , such modifications keep the resulting DMU in the tech- 

ology. 

Let us now consider the general case of conditions (8) . In this 

ase, the ratio trade-offs (6) are used in conditions (8c) and (8d) to 

odify ratio inputs and outputs of individual observed DMUs. This 

s reflected by the fact that the proportions ρ jl depend both on the 

rade-off l and the observed DMU j. 
5 
We can now explain the meaning of conditions (8) . The in- 

qualities (8a) and (8b) mean that the convex combinations of 

he vectors X V 
j 

and Y V 
j 

of volume inputs and outputs of the ob- 

erved DMUs (X j , Y j ) , j ∈ J, which are further modified by produc-

ion trade-offs (5) taken in proportions πt , t = 1 , . . . , K, outperform

he vectors of volume measures X V and Y V of the DMU (X, Y ) . 

If we do not have ratio trade-offs (6) , the inequalities (8c) and 

8d) become (4c) and (4d) . The latter mean that the ratio inputs 

nd outputs of the observed DMUs (X j , Y j ) that enter the convex 

ombinations in (8a) and (8b) with a λ j > 0 , are not worse than

he corresponding ratio measures of the DMU (X, Y ) . In a typi-

al practical application, this means that every observed DMU j

ith a positive λ j operates in an environment, which is not more 

avourable (less harsh) than the environment of DMU (X, Y ) , and 

he quality of its outputs is not lower than the quality of outputs 

f DMU (X, Y ) . 

If the ratio trade-offs (6) are specified, then a similar interpre- 

ation remains valid, with an additional step. Namely, as seen from 

nequalities (8c) and (8d) , the ratio inputs and outputs of the ob- 

erved DMUs are first adjusted by the ratio trade-offs (6) . If the 

atio measures of the observed DMU (X j , Y j ) can be modified by 

he ratio trade-offs (6) in such a way that they are not worse than

he ratio measures of the DMU (X, Y ) , then such modified observed

MU may enter the convex combination of the volume measures 

n (8a) and (8b) with a λ j > 0 . Otherwise, such observed DMU has

 zero weight λ j in the convex combination of the volume mea- 

ures. 

It is clear that the original R-VRS technology T R 
VRS 

of Olesen 

t al. (2015) is a subset of technology T R VRS −TO , i.e., we have the 

ollowing embedding: 

 

R 
VRS ⊆ T R VRS −TO . (9) 

To see this, note that any DMU (X, Y ) ∈ T R VRS satisfies conditions

4) with some vector λ ∈ R 

n . Then the DMU (X, Y ) satisfies condi- 

ions (8) with the same vector λ and all scalars πt and ρ jl taken 

qual to zero, for all t, j, l. By Theorem 1 , DMU (X, Y ) ∈ T R VRS −TO ,

nd the embedding (9) follows. 

This result means that the efficiency of any DMU assessed in 

echnology T R VRS −TO cannot be higher (and, as shown by an applica- 

ion in Section 7 , is often lower) than its efficiency in technology 

 

R 
VRS 

. In other words, the specification of production trade-offs gen- 

rally leads to improved discrimination on efficiency. 

We now obtain two useful properties of technology T R 
VRS −TO 

, 

hich are generalizations of similar properties of technology T R 
VRS 

roved by Olesen, Petersen, & Podinovski (2022b) . 

heorem 2. Technology T R VRS −TO is the union of a finite number of 

olyhedral sets. 

orollary 1. Technology T R 
VRS −TO 

is a closed set. 

. The F-CRS technology with production trade-offs 

The conventional CRS technology may be viewed as the exten- 

ion of the VRS technology in which we allow all DMUs to be 

caled with a nonnegative scalar α. Olesen et al. (2015) develop 

 similar extension of the R-VRS technology, referred to as the 

atio-CRS (R-CRS) technology. In the R-CRS technology, the volume 

nputs and outputs are assumed scalable, as in the standard CRS 

echnology. However, the ratio inputs and outputs may change or 

emain constant, according to one of the four types of ratio mea- 

ures. 

Of particular practical importance is the R-CRS technology in 

hich the volume inputs and outputs are scalable, provided the 

atio inputs and outputs do not change. This is the fixed type of 

atio measures in the classification of Olesen et al. (2015) . Such 
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xed ratios are typically used to capture environmental conditions 

e.g., socio-economic characteristics of the production process) or 

uality of resources, goods and services provided. We use the fixed 

ype of ratio measures to model the production process with fully 

calable volume inputs and outputs, provided the environmental 

nd quality characteristics of the production process are kept un- 

hanged. 

The scalability of volume inputs and outputs with the fixed ra- 

io measures is stated by the following axiom. 

xiom 5 Scalability of volume inputs and outputs . Let 

X V , X R , Y V , Y R ) ∈ T . Then, for all α ≥ 0 , (αX V , X R , αY V , Y R ) ∈ T . 

Olesen et al. (2015) refer to the R-CRS technology in which all 

atio inputs and outputs are of the fixed type as the F-CRS tech- 

ology and denote it T F 
CRS 

. They obtain three explicit operational 

tatements of the F-CRS technology. In order to avoid lengthy repe- 

itions, we do not reproduce these statements and develop a stand- 

lone extension of the F-CRS technology by production trade-offs. 

he original F-CRS technology is a special case of this extension 

btained by simply omitting all production trade-offs from the 

odel. 

We start by defining the extension of technology T F 
CRS 

obtained 

y the incorporation of production trade-offs (5) and (6) , which we 

enote T F CRS −TO . 

efinition 2. Technology T F 
CRS −TO 

is the intersection of all sets T ⊂
 

m + × R 

s + that satisfy Axioms 1 –5 . 

Similar to the case of R-VRS, it is straightforward to prove that 

echnology T F 
CRS −TO 

satisfies all Axioms 1 –5 and can therefore be 

iewed as the smallest among all technologies that satisfy these 

xioms. 

.1. A nonlinear statement 

The following theorem provides an equivalent explicit state- 

ent of technology T F CRS −TO . It can be regarded as an extension (al- 

owing additional production trade-offs) of Theorem 2 of Olesen 

t al. (2015) for the case in which all ratio measures are of the

xed type. 

heorem 3. Technology T F 
CRS −TO 

is the set of all DMUs (X, Y ) ∈ R 

m + ×
 

s + for which there exist vectors λ, α ∈ R 

n , π ∈ R 

K and scalars ρ jl ,

j ∈ J, l = 1 , . . . , L , such that 

n 
 

j=1 

λ j α j Y 
V 
j + 

K ∑ 

t=1 

πt Q 

V 
t ≥ Y V , (10a) 

n 
 

j=1 

λ j α j X 

V 
j + 

K ∑ 

t=1 

πt P 
V 
t ≤ X 

V , (10b) 

j 

( [ 

Y R j + 

L ∑ 

l=1 

ρ jl Q 

R 
l 

] 

− Y R 

) 

≥ 0 , ∀ j ∈ J, (10c) 

j 

( [ 

X 

R 
j + 

L ∑ 

l=1 

ρ jl P 
R 
l 

] 

− X 

R 

) 

≤ 0 , ∀ j ∈ J, (10d) 

n 
 

j=1 

λ j = 1 , (10e) 

 

R ≤ X̄ 

R , (10f) 

 

R ≤ Ȳ R , (10g) 
6 
, α, π ≥ 0 , ρ jl ≥ 0 , ∀ j, l. (10h) 

The meaning of the above conditions is similar to the meaning 

f the corresponding conditions in the statement (8) of technology 

 

R 
VRS −TO . The obvious difference is the specification of the scaling 

actors α j , j ∈ J, in the statement (10) . In line with Axiom 5 , these

actors allow proportional scaling of the volume inputs and outputs 

f the observed DMUs, without changing their ratio measures. 

Let us make two useful remarks. First, the original F-CRS tech- 

ology T F 
CRS 

of Olesen et al. (2015) is a subset of technology T F 
CRS −TO 

,

.e., 

 

F 
CRS ⊆ T F CRS −TO . (11) 

(The proof follows from the fact that the statement of technol- 

gy T F 
CRS 

corresponds to the special case of the statement (10) of 

echnology T F 
CRS −TO 

in which all scalars πt and ρ jl are taken equal 

o zero.) 

The embedding (11) means that the efficiency of any DMU 

X, Y ) in technology T F 
CRS −TO 

is not higher than in technology T F 
CRS 

. 

herefore, similar to the case of R-VRS, the use of production 

rade-offs in the case of F-CRS generally results in improved dis- 

rimination on efficiency. 

Second, it is clear that, if we consider technologies T R 
VRS −TO 

and 

 

F 
CRS −TO generated by the same set of observed DMUs and incorpo- 

ating the same set of production trade-offs (5) and (6) , then the 

ormer technology is a subset of the latter, i.e., we always have: 

 

R 
VRS −TO ⊆ T F CRS −TO . (12) 

Indeed, according to Theorem 1 , any DMU (X, Y ) ∈ T R 
VRS −TO 

sat-

sfies conditions (8) , together with some vector λ ∈ R 

n and scalars 

t , t = 1 , . . . , K, and ρ jl , j ∈ J, l = 1 , . . . , L . Then this DMU also sat-

sfies all conditions (10) with the same parameters λ, πt and ρ jl , 

f we take all scalars α j = 1 , for all j ∈ J. By Theorem 3 , (X, Y ) ∈
 

F 
CRS −TO , and the embedding (12) follows. 

.2. A partly linearized statement 

We now partly linearize the statement (10) of technology 

 

F 
CRS −TO 

, by adapting the approach of Olesen et al. (2015) . In this

pproach, we introduce three nonnegative vectors κ, μ, ν ∈ R 

n + and 

ake the substitution λ j α j = κ j − ν j + μ j , for all j ∈ J, which ex- 

lains the new conditions (13a) and (13b) . As the proof of the next 

heorem shows, this substitution requires some further changes to 

he statement of the technology. 

heorem 4. Technology T F 
CRS −TO 

is the set of all DMUs (X, Y ) ∈ R 

m + ×
 

s + for which there exist vectors κ, μ, ν ∈ R 

n , π ∈ R 

K and scalars ρ jl ,

j ∈ J, l = 1 , . . . , L , such that 

n 
 

j=1 

(κ j + μ j − ν j ) Y 
V 
j + 

K ∑ 

t=1 

πt Q 

V 
t ≥ Y V , (13a) 

n 
 

j=1 

(κ j + μ j − ν j ) X 

V 
j + 

K ∑ 

t=1 

πt P 
V 
t ≤ X 

V , (13b) 

κ j + μ j ) 

( [ 

Y R j + 

L ∑ 

l=1 

ρ jl Q 

R 
l 

] 

− Y R 

) 

≥ 0 , ∀ j ∈ J, (13c) 

κ j + μ j ) 

( [ 

X 

R 
j + 

L ∑ 

l=1 

ρ jl P 
R 
l 

] 

− X 

R 

) 

≤ 0 , ∀ j ∈ J, (13d) 

n 
 

j=1 

κ j = 1 , (13e) 
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b

o
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o

j − ν j ≥ 0 , ∀ j ∈ J, (13f) 

 

R ≤ X̄ 

R , (13g) 

 

R ≤ Ȳ R , (13h) 

, μ, ν, π ≥ 0 , ρ jl ≥ 0 , ∀ j, l. (13i) 

Theorem 4 states technology T F 
CRS −TO 

in an “almost” linear form. 

The nonlinear conditions (13c) and (13d) are easy to linearize 

y using the “Big M” approach—see Section 6 .) It also allows us 

o obtain the following properties of technology T F 
CRS −TO 

, which 

epresent a generalization of the results proved by Olesen et al. 

2022b) for the F-CRS technology without trade-offs. 

heorem 5. Technology T F 
CRS −TO 

is the union of a finite number of 

olyhedral sets. 

orollary 2. Technology T F CRS −TO is a closed set. 

.3. An imperfect simplified statement 

Theorems 3 and 4 present two alternative but equivalent state- 

ents (10) and (13) of technology T F 
CRS −TO 

. The former is useful 

or exploring axiomatic properties of technology T F CRS −TO and for 

xplaining the meaning of DMUs in this technology. The latter is 

seful for establishing some further theoretical properties as in 

heorem 5 and Corollary 2 and also for practical computations. 

Below we obtain an alternative simplified statement of technol- 

gy T F 
CRS −TO 

in which only one intensity vector λ is used, instead 

f the three vectors κ , μ and ν as in statement (13) . This state- 

ent has obvious computational advantages but should be used 

ith caution. The potential problem is that the simplified state- 

ent defines a set that is slightly larger than the F-CRS technology 

 

F 
CRS −TO . Whether this affects the results of efficiency calculations 

an be established by a simple check of the optimal solution, as 

iscussed below. 

Consider the following technology which is defined by the same 

onditions (8) as the R-VRS technology from which the normalizing 

quality (8e) is removed. This definition may appear to be an intu- 

tive extension of the R-VRS technology with production trade-offs 

o its F-CRS analogue. Surprisingly, as discussed below, this is not 

 perfect extension, although it may be good enough for practical 

omputations. 

efinition 3. Technology ˆ T F CRS −TO is the set of all DMUs (X, Y ) ∈ 

 

m + × R 

s + for which there exist vectors λ ∈ R 

n , π ∈ R 

K and scalars 

jl , j ∈ J, l = 1 , . . . , L , such that 

n 
 

j=1 

λ j Y 
V 
j + 

K ∑ 

t=1 

πt Q 

V 
t ≥ Y V , (14a) 

n 
 

j=1 

λ j X 

V 
j + 

K ∑ 

t=1 

πt P 
V 
t ≤ X 

V , (14b) 

j 

( [ 

Y R j + 

L ∑ 

l=1 

ρ jl Q 

R 
l 

] 

− Y R 

) 

≥ 0 , ∀ j ∈ J, (14c) 

j 

( [ 

X 

R 
j + 

L ∑ 

l=1 

ρ jl P 
R 
l 

] 

− X 

R 

) 

≤ 0 , ∀ j ∈ J, (14d) 

 

R ≤ X̄ 

R , (14e) 
7

 

R ≤ Ȳ R , (14f) 

, π ≥ 0 , ρ jl ≥ 0 , ∀ j, l. (14g) 

heorem 6. We have T F 
CRS −TO 

⊆ ˆ T F 
CRS −TO 

. If DMU (X, Y ) ∈ 

ˆ T F 
CRS −TO 

sat- 

sfies conditions (14) with some vectors λ, π and scalars ρ jl such that 


 = 0 , then (X, Y ) ∈ T F CRS −TO . 

According to Theorem 6 , technology ˆ T F 
CRS −TO 

is slightly larger 

han technology T F 
CRS −TO 

. The reason of this discrepancy is that the 

tatement (14) allows λ to be a zero vector, while this is disallowed 

y the statements (10) and (13) . This in turn means that, if λ = 0 ,

ll inequalities for the ratio measures (14c) and (14d) are trivially 

atisfied for all j ∈ J, regardless of the vectors X R and Y R of the 

MU (X, Y ) , while this is not so for the corresponding inequalities

n the statements (10) and (13) . 

It is clear that the situations in which a DMU (X, Y ) satisfies

onditions (14) with a zero vector λ should be rare in practical ap- 

lications. Indeed, if λ = 0 , the inequalities (14a) and (14b) imply 

hat the vectors Y V and X V are outperformed purely by a combi- 

ation of trade-off vectors Q 

V 
t and P V t , taken with the weights πt , 

 = 1 , . . . , K. This means that either the DMU (X, Y ) satisfying con-

itions (14) with λ = 0 is extremely inefficient or that the produc- 

ion trade-offs are too demanding. 

In the application discussed in Section 7 , we originally used 

oth the full and simplified statements (13) and (14) . The results 

f thousands of computations using both statements were identi- 

al, except a few rare cases. In all such cases, the reason of dis- 

repancy was that the optimal vector λ in the simplified model 

as a zero vector, and the results obtained by solving the simpli- 

ed model were incorrect. 

The lesson learned was that, if we use the simplified model of 

echnology (14) , we need to perform an additional check of the 

ectors λ in all optimal solutions. The case in which λ is a zero 

ector should be a rare occurrence, which may point to a prob- 

em with the data set or value judgements stated as production 

rade-offs. If both the data and assumed trade-offs are unproblem- 

tic but all components of the optimal vector λ are equal to zero, 

he only theoretically sound alternative is to perform calculations 

sing statement (13) . In our application in Section 7 , we eventually 

erformed all computations using statement (13) . 

emark 2. Olesen et al. (2015) consider the full and simplified 

tatements of the F-CRS technology without production trade-offs. 

n this case, the trade-off terms in the inequalities (14a) and 

14b) do not appear, and the case λ = 0 implies that Y V = 0 . This

ase is clearly irrelevant for practical applications and the possibil- 

ty of λ being a zero vector can be ignored. Therefore, if no pro- 

uction trade-offs are specified, the simplified model of technology 

an be used for all practical computations. 

. Solving R-VRS and F-CRS models with production trade-offs 

In this section, we consider solving DEA models based on the R- 

RS and F-CRS technologies expanded by production trade-offs. To 

e specific, we consider the assessment of output radial efficiency 

f the DMUs in the R-VRS technology and only briefly comment on 

he case of F-CRS technology afterwards. The case of input radial 

fficiency and other, including nonradial, measures is similar and 

s not discussed. 

To unify the discussion and avoid the consideration of special 

ases, consider the assessment of output radial efficiency of DMU 

X o , Y o ) in technology T R VRS −TO with respect to all, volume and ratio, 

utputs. In this case, we attach the output improvement factor η
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o all outputs. (In practice, we may consider improvements to the 

olume and ratio outputs separately, as illustrated by the applica- 

ion in Section 7 .) 

The output radial efficiency of DMU (X o , Y o ) is the inverse to the

ptimal value η∗ of the output-oriented R-VRS program: 

∗ = max η (15a) 

s.t. 

n ∑ 

j=1 

λ j Y 
V 
j + 

K ∑ 

t=1 

πt Q 

V 
t ≥ ηY V o , (15b) 

n 
 

j=1 

λ j X 

V 
j + 

K ∑ 

t=1 

πt P 
V 
t ≤ X 

V 
o , (15c) 

j 

( [ 

Y R j + 

L ∑ 

l=1 

ρ jl Q 

R 
l 

] 

− ηY R o 

) 

≥ 0 , ∀ j ∈ J, (15d) 

j 

( [ 

X 

R 
j + 

L ∑ 

l=1 

ρ jl P 
R 
l 

] 

− X 

R 
o 

) 

≤ 0 , ∀ j ∈ J, (15e) 

n 
 

j=1 

λ j = 1 , (15f) 

Y R o ≤ Ȳ R , (15g) 

, π ≥ 0 , ρ jl ≥ 0 , ∀ j, l; η sign-free . (15h) 

Note that constraint (15g) specifies the upper bound on the im- 

roved subvector ηY R o . Also note that program (15) does not in- 

lude inequality (8f) because the ratio input vector X R o of DMU 

X o , Y o ) does not change. 

The nonlinear inequalities (15d) and (15e) of program (15) can 

e linearized using the well-known “Big M” approach. Namely, we 

rst restate conditions (15d) and (15e) in the following “either-or”

orm: 

either λ j = 0 

or 

{ 

ηY R o −
[ 

Y R j + 

L ∑ 

l=1 

ρ jl Q 

R 
l 

] 

≤ 0 

and 

[ 

X 

R 
j + 

L ∑ 

l=1 

ρ jl P 
R 
l 

] 

− X 

R 
o ≤ 0 

} 

, ∀ j ∈ J. (16) 

Introducing binary variables δ j , j ∈ J, we linearize conditional 

tatements (16) as 

j ≤ δ j , ∀ j ∈ J, (17a) 

Y R o −
[ 

Y R j + 

L ∑ 

l=1 

ρ jl Q 

R 
l 

] 

≤ L 1 (1 − δ j ) , ∀ j ∈ J, (17b) 

 

X 

R 
j + 

L ∑ 

l=1 

ρ jl P 
R 
l 

] 

− X 

R 
o ≤ L 2 (1 − δ j ) , ∀ j ∈ J, (17c) 

here the vectors L 1 ∈ R 

s R + and L 2 ∈ R 

m 

R 

+ have sufficiently large 

ositive components. 

Following the “Big M” approach, the components of vectors L 1 
nd L 2 should be so large that the inequalities (17b) and (17c) be- 

ome redundant in the case δ j = 0 . Details of this approach can be

ound in Olesen, Petersen, & Podinovski (2017) . 
8

emark 3. The described linearization approach is also applica- 

le in the case of F-CRS technology with trade-offs, whose full 

tatement is given by conditions (13) or, in a simplified form, by 

onditions (14) . In the latter case, we solve program (15) from 

hich the normalizing equality (15f) is removed. Following the 

Big M” approach, we introduce binary variables δ j , j ∈ J, and re- 

lace the nonlinear inequalities (15d) and (15e) by the inequali- 

ies (17) , in which the inequality (17a) requires the following cor- 

ection. Namely, because the variables λ j are no longer bounded 

bove by 1 as in the case of R-VRS, the inequality (17a) is replaced

y 

j ≤ M 1 δ j , ∀ j ∈ J, 

ith a sufficiently large constant M 1 > 0 . If we solve the output- 

riented program based on the full statement of technology (13) , 

e replace the inequality (17a) by the conditions 

j + μ j ≤ M 2 δ j , ∀ j ∈ J, 

ith a sufficiently large constant M 2 > 0 . 

emark 4. The authors are grateful to the anonymous reviewer 

ho pointed out that, as an alternative to the “Big M” method, 

he nonlinear conditions (15d) and (15e) may be restated using the 

pecial ordered sets (SOS) of Beale & Tomlin (1970) . Exploring this 

ossibility is left outside the scope of our paper for future research. 

. Application to secondary schools in England 

In this section, we illustrate the methodology developed in our 

aper by its application to the assessment of efficiency of a large 

ample of secondary schools in England. In this country, pupils 

nter secondary education at the age of 11. They are expected to 

ake national exams for General Certificate of Secondary Education 

GCSE) at the age of 16. After completing GCSEs, many pupils pro- 

eed to the sixth form to obtain A-level qualifications, typically at 

he age of 18, used as admissions criteria by the universities. 

.1. Data 

For homogeneity reasons, we consider only the secondary 

chools classed as academies and free schools, collectively referred 

o as academies . Approximately 80% of secondary schools in Eng- 

and are academies, covering 79% of secondary school pupils ( DfE, 

022 ). We further limit the sample only to academies with the 

ixth forms and non-selective admissions policies. We also exclude 

ondon schools because of the known “London effect”, i.e., tak- 

ng into account that London schools typically outperform schools 

n the rest of England, especially among disadvantaged areas and 

upils ( Ross, Lessof, Brind, Khandker, & Aitken, 2020 ). 

The final sample for this study includes 891 academies. All data 

ere collected in the academic year 2018–2019 and provided to us 

y the Department for Education. Table 1 shows descriptive statis- 

ics for the four inputs and three outputs used in this application. 

Following the literature on school efficiency (see, e.g., Brennan, 

aelermans, & Ruggiero, 2014 , and Silva, Camanho, & Barbosa, 

020 ), we use volume inputs 1 and 2 to account for the number 

f teachers and school expenditure (excluding teacher salaries), re- 

pectively. We also include two ratio inputs . Namely, input 3 rep- 

esents the percentage of pupils with middle or high prior attain- 

ent at the beginning of secondary education. Input 4 shows the 

ercentage of pupils not receiving free school meals. Both ratio in- 

uts are commonly considered as having a positive impact on the 

ttainment of school leavers and are often used in reported appli- 

ations ( Bradley, Johnes, & Millington, 2001; Brennan et al., 2014; 

hanassoulis & Dunstan, 1994 ). 

We consider the total number of pupils in all years as the sin- 

le volume output 1 (see Remark 5 ). The ratio output 2 represents 
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Table 1 

Descriptive statistics for 891 academies in application. 

Inputs and outputs Mean Standard deviation Minimum Maximum 

Input 1: Teachers 73.77 22.43 20.5 155.1 

Input 2: Expenditure (thousand pounds) 3,053 1,047.03 326 9,244 

Input 3: Good attainment on entry (%) 89.57 6.34 0 100 

Input 4: No free school meals (%) 88.18 7.99 47.9 99.2 

Output 1: Pupils 1,205.65 359.25 204 2,500 

Output 2: Good GCSEs (%) 43.2 14.14 0 89 

Output 3: Top universities (%) 20 13.34 0 75 
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he percentage of pupils achieving strong passes in both GCSE En- 

lish and Mathematics. The ratio output 3 shows the percentage of 

upils admitted to the top third of universities. These ratio outputs 

re included as quality characteristics of the two different stages 

f the education process and are calculated according to the estab- 

ished methodology of the Department for Education. 

emark 5. The treatment of the number of pupils as an output 

nd not as an input is consistent with the assumed Axiom 2 of free

isposability. Namely, for the given input levels, any school should, 

f required, be able to teach fewer students but not more. The latter 

ould be assumed by the model if pupils were treated as an input, 

hich is clearly problematic. 

Another consideration is the association of larger pupil numbers 

ith higher efficiency of the schools. To illustrate this, assume that 

e have two schools A and B that have identical number of teach- 

rs and expenditures, and whose ratio inputs and outputs are also 

he same. Suppose that the only difference is that school A teaches 

00 pupils and school B teaches 10 0 0 pupils. We regard school B

s more efficient than school A , which is consistent with the treat- 

ent of the number of pupils as an output. 

.2. Identification of production trade-offs 

We use seven production trade-offs that reflect the assumed re- 

ationship between different inputs and outputs. Below, we state 

hese trade-offs formally and explain their meaning. 

udgement 1. If required, any school should be able to increase 

ts number of pupils by 10, provided the school employs 1 extra 

eacher and its budget is increased by £20,0 0 0, while the remain- 

ng inputs and outputs are kept unchanged. 

In line with notation (5) , and taking into account that data 

n expenditure is represented in thousands of pounds, the above 

udgement is stated as the following production trade-off: 

 

V 
1 = (1 , 20) 
 , Q 

V 
1 = (10) . 

The stated trade-off is deemed to be a sufficiently conserva- 

ive judgement which all schools (especially the efficient ones that 

orm the frontier against which all other schools are benchmarked) 

hould find unproblematic. For example, in our data set, the pupil- 

o-teacher ratio for individual schools ranges between 7 and 33, 

nd the assumed trade-off, which requires an increase of the num- 

er of teachers and the funding, appears to be a sufficient compen- 

ation to the school for the increase of its pupil cohort by 10. 

It is also worth highlighting that the simultaneous change 

tated by this trade-off assumes that the ratio inputs and out- 

uts remain unchanged. In other words, the assumed change of 

he volume measures is possible without any change to the socio- 

conomic and quality characteristics of the school cohorts and the 

eaching process. 

udgement 2. If required, the simultaneous reduction of the num- 

er of teachers by 1 and the number of pupils by 15 is technolog- 

cally possible for any school, provided the remaining inputs and 

utputs are kept unchanged. 
9

We can restate the above judgement as follows: 

 

V 
2 = (−1 , 0) 
 , Q 

V 
2 = (−15) . 

As a variant, we could modify the above judgement by includ- 

ng a simultaneous reduction of the budget of the school. How- 

ver, such trade-off would be more demanding because, after its 

pplication, the resulting school would be assumed technologically 

ossible with both the reduced number of teachers and, addition- 

lly, the reduced budget. To keep our judgements more conserva- 

ive, we do not require any reduction of the budget. (Note that, in 

udgement 1, we include an increase of the budget for exactly the 

ame reason of making the trade-off reasonably conservative.) 

udgement 3. A loss of 1 teacher at any school can be compen- 

ated by the additional budget of £50,0 0 0 (which, for example, 

ould be used to pay for an external substitution teacher), assum- 

ng the remaining inputs and outputs are kept unchanged. 

Judgement 3 is formally stated as: 

 

V 
3 = (−1 , 50) 
 , Q 

V 
3 = (0) . 

We now proceed to stating trade-offs between ratio measures. 

he underlying judgements take into account the fact that prior 

chievement and socio-economic background of pupils can almost 

ompletely explain academic differences between schools—see, e.g., 

orard (2014) . 

udgement 4. If the percentage of pupils with good attainment 

evels on entry to school increases by 1%, then the percentage of 

upils achieving good GCSE results should go up by at least 0.5% 

nd the percentage of pupils proceeding to the top third of uni- 

ersities should increase by at least 0.25%, provided the remaining 

nputs and outputs are kept unchanged. 

We present the above judgement as the following trade-off: 

 

R 
1 = (1 , 0) 
 , Q 

R 
1 = (0 . 5 , 0 . 25) 
 . 

udgement 5. If the percentage of pupils with good attainment lev- 

ls on entry to school is reduced by 1%, then the percentage of 

upils achieving good GCSE results and those going to top univer- 

ities should not decline by more than the same percentage, i.e., 

y 1% each, provided the remaining inputs and outputs are kept 

nchanged. 

We state this judgement as: 

 

R 
2 = (−1 , 0) 
 , Q 

R 
2 = (−1 , −1) 
 . 

The final two judgements represent the assumption that the 

ercentage of pupils not receiving free school meals has a simi- 

ar impact on the quality of the teaching process as the percentage 

f pupils with good attainment on entry to school. 

udgement 6. If the percentage of pupils not receiving free school 

eals increases by 1%, then the percentage of pupils achieving 

ood GCSE results should go up by at least 0.5% and the percentage 

f pupils proceeding to the top third of universities should increase 

y at least 0.25%, provided the remaining inputs and outputs are 

ept unchanged. 
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Table 2 

Efficiency with respect to the volume output in the R-VRS models. 

Statistics No trade-offs J1 J1–J2 J1–J3 J1–J4 J1–J5 J1–J6 J1–J7 

Average efficiency (%) 94.23 93.76 93.19 91.53 90.81 89.04 88.50 82.36 

Minimum efficiency (%) 58.44 58.44 41.25 25.02 24.89 24.89 24.89 24.89 

Number of efficient schools 443 412 393 343 309 231 209 96 

% of inefficient schools 50.28 53.76 55.89 61.50 65.32 74.07 76.54 89.23 

Table 3 

Efficiency with respect to the volume output in the F-CRS models. 

Statistics No trade-offs J1 J1–J2 J1–J3 J1–J4 J1–J5 J1–J6 J1–J7 

Average efficiency (%) 90.45 90.35 89.34 87.47 86.54 84.47 83.65 74.72 

Minimum efficiency (%) 40.97 40.97 18.79 17.5 17.5 17.5 17.5 17.5 

Number of efficient schools 299 290 285 245 225 146 131 35 

% of inefficient schools 66.44 67.45 68.01 72.50 74.86 83.61 85.30 96.07 

Table 4 

Efficiency with respect to the vector of ratio outputs in the R-VRS models. 

Statistics No trade-offs J1 J1–J2 J1–J3 J1–J4 J1–J5 J1–J6 J1–J7 

Average efficiency (%) 89.4 88.25 87.3 85.6 83.93 80.54 78.08 70.35 

Minimum efficiency (%) 15.91 15.91 15.91 15.91 15.56 15.56 12.12 12.12 

Number of efficient schools 472 446 420 368 318 243 209 97 

% of inefficient school 47.03 49.94 52.86 58.70 64.31 72.73 76.54 89.11 
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We convert the above judgement to the following trade-off: 

 

R 
3 = (0 , 1) 
 , Q 

R 
3 = (0 . 5 , 0 . 25) 
 . 

udgement 7. If the percentage of pupils not receiving free school 

eals is reduced by 1%, then the percentage of pupils achieving 

ood GCSE results and those going to top universities should not 

ecline by more than the same percentage, i.e., by 1% each, pro- 

ided the remaining inputs and outputs are kept unchanged. 

This judgement is stated as follows: 

 

R 
4 = (0 , −1) 
 , Q 

R 
4 = (−1 , −1) 
 . 

.3. Efficiency with respect to the volume output 

We first consider the following question: what is the maximum 

umber of pupils that a school can teach, for the given level of 

ts resources (teachers and expenditure) and assuming that the 

ocio-economic and quality characteristics of the teaching process 

represented by the two ratio inputs and two ratio outputs) do 

ot change? This question should be of interest to local education 

uthorities who may consider allocating additional pupils to the 

chools. 

We explore this question in the R-VRS and F-CRS technologies. 

n both cases, we first consider the technology without trade-offs 

nd then the technologies obtained from it by consecutive incorpo- 

ation of the trade-offs representing Judgements 1–7, as discussed 

n Section 7.2 . The general statement of all such R-VRS models is 

iven by program (15) in which we keep the improvement factor η
ttached to the volume output vector Y V o in constraints (15a) and 

emove η from constraints (15d) . In the case of F-CRS, we solve 

imilar programs based on its statement (13) . 

Tables 2 and 3 present a summary of computational results. 

We convert the efficiency scores in the range [0,1] obtained by 

olving the R-VRS and F-CRS models to percentages and round the 

esults to two decimal places.) Their second columns correspond 

o the models solved without trade-offs. The remaining columns 

orrespond to the models in which we progressively incorporate 

dditional trade-offs based on Judgements 1–7, denoted J1–J7. For 

xample, the columns “J1” correspond to the models in which we 

se the single trade-off based on Judgement 1. The columns “J1–

2” correspond to the use of the trade-offs based on Judgements 1 
10 
nd 2. The last column corresponds to the use of all seven produc- 

ion trade-offs. 

In line with the theoretical embeddings (9) and (11) , the two 

ables show that the incorporation of production trade-offs has a 

ignificant impact on the discriminating power of the model. Thus, 

he average efficiency across all schools, as assessed by the stan- 

ard R-VRS model of Olesen et al. (2017) used without trade-offs, 

s 94.33%, and just over one half (50.28%) of all schools are in- 

fficient. The incorporation of production trade-offs gradually im- 

roves discrimination. The final R-VRS model with all seven trade- 

ffs reduces the average efficiency to 82.36% and identifies ineffi- 

iency in 89.23% of all schools. A similar pattern is seen in the case 

f F-CRS model, in which the average efficiency is reduced from 

0.45% to 74.72%, and the number of inefficient schools increases 

rom 66.44% to 96.07%. 

We also note that, in line with the embedding (12) , the effi- 

iency of schools evaluated in the F-CRS technology used with any 

et of trade-offs is generally lower than in the R-VRS technology 

sed with the same trade-offs. 

.4. Efficiency with respect to the ratio outputs 

We now consider a different question: what is the maximum 

roportional increase to the two ratio outputs representing the 

uality of the teaching process (percentage of pupils achieving 

ood GCSE results and proceeding to top universities) that the 

chool should be able to achieve, given its resources (teachers and 

xpenditure), the number of pupils and the socio-economic char- 

cteristics of the school cohorts, represented by the two ratio in- 

uts. This assessment scenario is particularly relevant when, out of 

ll volume and ratio measures, only the two ratio outputs repre- 

enting quality of education are discretionary, while the other are 

xogenous and are not under the school’s control. 

To answer the stated question in the R-VRS technology with dif- 

erent sets of trade-offs, we solve program (15) in which we keep 

he improvement factor in constraints (15d) but remove it from 

onstraints (15a) . In the case of F-CRS technology, we use similar 

rograms based on its statement (13) . 

Tables 4 and 5 present a summary of computational results in 

his scenario. Similar to the previous case, it is clear that the incor- 

oration of production trade-offs in the R-VRS and F-CRS technolo- 
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Table 5 

Efficiency with respect to the vector of ratio outputs in the F-CRS models. 

Statistics No trade-offs J1 J1–J2 J1–J3 J1–J4 J1–J5 J1–J6 J1–J7 

Average efficiency (%) 83.57 83.25 82.93 81.62 80.09 76.44 73.88 65.81 

Minimum efficiency (%) 15.91 15.91 15.91 15.91 15.56 15.56 12.12 12.12 

Number of efficient schools 316 309 300 278 244 171 137 39 

% of inefficient schools 64.53 65.32 66.33 68.8 72.62 80.81 84.62 95.62 
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ies leads to significantly improved efficiency discrimination of the 

esulting models. 

. Conclusion 

The use of value judgements in the form of weight restric- 

ions and dual to them production trade-offs has been reported in 

any applications of the conventional VRS and CRS models. Such 

udgements allow the analyst to obtain a meaningful extension of 

he underlying technology, by specifying that certain simultane- 

us changes to the inputs and outputs should be possible for any 

MU. This creates additional potential comparators for the DMUs 

nd generally results in improved discrimination on efficiency. 

In this paper, we introduce a similar notion of production trade- 

ffs to the R-VRS and R-CRS models developed by Olesen et al. 

2015) that allow the inputs and outputs to be specified by either 

olume or ratio measures. In the case of R-CRS, we focus on the 

ost common situation in which the ratio inputs and outputs rep- 

esent contextual (e.g., socio-economic) and quality characteristics 

f the production process. Such ratio measures remain constant 

hile allowing the volume inputs and outputs to be scaled as in 

he standard CRS technology. We refer to such R-CRS technology 

ith fixed ratio measures as the F-CRS technology. 

In contrast with the conventional VRS and CRS models which 

an be stated as both primal and dual (envelopment and multi- 

lier) linear programs, the R-VRS and F-CRS models are nonlinear 

nd have only the envelopment form. Therefore, the value judge- 

ents traditionally stated in alternative but equivalent forms of 

eight restrictions and production trade-offs can now be stated 

nly using the latter (trade-off) interpretation. 

We define extensions of the R-VRS and F-CRS technologies by 

roduction trade-offs using the axiomatic approach. This means 

hat every hypothetical DMU in the new technology can be ex- 

lained by the explicitly stated assumptions about the technology. 

amely, every DMU is either included in the R-VRS or F-CRS tech- 

ology of Olesen et al. (2015) or is obtained from one of DMUs 

n the respective original technology by the application of the as- 

umed production trade-offs. This in turn means that the target 

MUs (e.g., radial targets) of inefficient DMUs are producible and, 

n line with the assumed axioms, should be regarded as valid 

enchmarks. 

We distinguish between the production trade-offs specified for 

he volume inputs and outputs and production trade-offs involving 

hanges to ratio measures. The mathematical approach to the in- 

orporation of the former is similar to their use in the standard 

RS and CRS models. However, the incorporation of production 

rade-offs between ratio measures requires a different mathemati- 

al approach. 

We use an application in the context of school education to dis- 

uss the practical meaning of production trade-offs. As expected 

rom theory, computational results confirm that the incorporation 

f production trade-offs in the R-VRS and F-CRS models results in 

mproved discrimination on efficiency between the schools. It is 

lear that the proposed models with production trade-offs should 

rovide similar advantages in applications in other contexts and 

ectors. 
11 
Our paper opens up further research avenues that have already 

een extensively explored in the case of conventional VRS and CRS 

odels, and, more recently, in the R-VRS and R-CRS technologies. 

his includes exploring the notion of returns to scale and scale ef- 

ciency in the R-VRS technology ( Olesen, Petersen, & Podinovski, 

022a ) and issues of inconsistent trade-offs resulting in the in- 

roduction of “free production” in the VRS and CRS technologies 

 Podinovski & Bouzdine-Chameeva, 2013 ). Investigation of these is- 

ues in the R-VRS and F-CRS technologies expanded by production 

rade-offs is left for future research. 
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ppendix A. Proofs 

roof of Theorem 1. Denote T ∗ the set of all DMUs (X, Y ) ∈
 

m + × R 

s + for which there exists a vector λ ∈ R 

n and scalars πt 

nd ρ jl , ∀ j, l, t , such that conditions (8) are true. We need to

rove that T R VRS −TO = T ∗. We first prove that T ∗ satisfies Axioms 1 –

 . Axioms 1 and 2 are straightforward. For example, Axiom 2 is 

rue because, if DMU (X, Y ) satisfies (8) with some scalars λ j , 

t , ρ jl , then ( ̃  X , ̃  Y ) also satisfies (8) with the same scalars. 

emmas 1 and 2 establish that T ∗ satisfies Axioms 3 and 4 . There-

ore, T R VRS −TO ⊆ T ∗. The opposite embedding T ∗ ⊆ T R VRS −TO is estab- 

ished by Lemma 4 . Therefore, T R VRS −TO = T ∗. �

emma 1. Technology T ∗ satisfies Axiom 3 . 

roof of Lemma 1. To prove that T ∗ satisfies Axiom 3 , consider 

ny two DMUs ( ̃  X , ̃  Y ) ∈ T ∗ and ( ̂  X , ̂  Y ) ∈ T ∗. These DMUs satisfy

onditions (8) with some vectors ˜ λ and 

ˆ λ and scalars ˜ πt , ˜ ρ jl and 

ˆ t and ˆ ρ jl , ∀ j, t, l, respectively. Consider any γ ∈ [0 , 1] . Define 

X̄ 

V , X̄ 

R , Ȳ V , Ȳ R 
)

= γ
(

˜ X 

V , ˜ X 

R , ̃  Y V , ̃  Y R 
)

+ (1 − γ ) 
(

ˆ X 

V , ˆ X 

R , ̂  Y V , ̂  Y R 
)
. 

(A.1) 

We need to prove that ( ̄X V , X̄ R , ̄Y V , ̄Y R ) ∈ T ∗, i.e., that it satisfies

8) with some vector λ̄ and scalars π̄t , ρ̄ jl , ∀ j, t, l. Define 

¯ = γ ˜ λ + (1 − γ ) ̂ λ, π̄ = γ ˜ π + (1 − γ ) ̂  π. (A.2) 

To define multipliers ρ̄ jl , first define the sets 

˜ 
 = 

{
j ∈ J | ˜ λ j > 0 

}
, ˆ J = 

{
j ∈ J | ˆ λ j > 0 

}
. (A.3)

For each l = 1 , . . . , L , let: 

¯ jl = 

⎧ ⎨ 

⎩ 

˜ ρ jl , j ∈ 

˜ J , 

ˆ ρ jl , j ∈ 

ˆ J \ ˜ J , 
0 , otherwise . 

(A.4) 

Let us prove that the DMU ( ̄X V , X̄ R , ̄Y V , ̄Y R ) defined by (A.1) sat-

sfies all conditions (8) with the vectors λ̄ and π̄ defined by 

A.2) and scalars ρ̄ jl defined by (A.4) . 

To prove (8a) and (8b) , we state these conditions twice, for the 

MU ( ̃  X , ̃  Y ) and vectors ˜ λ and ˜ π , and for the DMU ( ̂  X , ̂  Y ) and
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(

ectors ˆ λ and ˆ π . The proof is finalized by multiplying these in- 

qualities by γ and 1 − γ , respectively, adding and rearranging the 

erms. 

Let us prove (8c) . It suffices to assume that λ̄ j > 0 . By (A.2) ,

ither ˜ λ j > 0 or ˆ λ j > 0 , or both. Then either j ∈ 

˜ J or j ∈ 

ˆ J \ ˜ J . To

e specific, let j ∈ 

˜ J . Because DMU ( ̃  X , ̃  Y ) satisfies (8) with 

˜ λ and

calars ˜ ρ jl , and because ˜ λ j > 0 , (8c) implies 

 

Y R j + 

L ∑ 

l=1 

˜ ρ jl Q 

R 
l 

] 

− ˜ Y R ≥ 0 . (A.5) 

Taking into account (3) and (A.1) , we replace ˜ Y R by Ȳ R . Also, 

y (A.4) , because j ∈ 

˜ J , we replace ˜ ρ jl by ρ̄ jl , ∀ l. With these re-

lacements, and because λ̄ j > 0 , (A.5) implies (8c) for any j ∈ 

˜ J .

he proof for j ∈ 

ˆ J \ ˜ J is similar. The proof of conditions (8d) is also

imilar. The proof of conditions (8e) –(8g) is straightforward and is 

mitted. �

emma 2. Technology T ∗satisfies Axiom 4 . 

roof of Lemma 2. Consider any DMU (X, Y ) ∈ T ∗, and the DMU

 ̃

 X , ̃  Y ) obtained from it as specified by Axiom 4 . We need to prove

hat ( ̃  X , ̃  Y ) ∈ T ∗. DMU (X, Y ) satisfies conditions (8) with some vec-

or ˆ λ and scalars ˆ πl , ˆ ρ jt . Let us prove that the DMU ( ̃  X , ̃  Y ) stated

y (7) satisfies conditions (8) with the vector ˜ λ = ̂

 λ and the scalars 

˜ t = πt + ˆ πt and ˜ ρ jl = ρ jl + ˆ ρ jl , ∀ j, l, t . The proof that conditions

8e) –(8h) are satisfied follows from the definition of ˜ λ, ˜ πt and ˜ ρ jl 

nd the assumptions of Axiom 4 . Let us prove conditions (8a) –(8d) .

Consider condition (8a) stated for DMU (X, Y ) : 

n 
 

j=1 

ˆ λ j Y 
V 
j + 

K ∑ 

t=1 

ˆ πt Q 

V 
t ≥ Y V . (A.6) 

Adding the sum 

∑ K 
t=1 πt Q 

V 
t to both sides of (A.6) , rearranging 

nd noting the definition of ˜ Y V by (7) , we have 

n 
 

j=1 

˜ λ j Y 
V 
j + 

K ∑ 

t=1 

˜ πt Q 

V 
t ≥ ˜ Y V . 

Consider conditions (8c) stated for DMU (X, Y ) . For any j ∈ J,

e have 

ˆ 
j 

( [ 

Y R j + 

L ∑ 

l=1 

ˆ ρ jl Q 

R 
l 

] 

− Y R 

) 

≥ 0 . 

Adding and subtracting the sum 

∑ L 
l=1 ρ jl Q 

R 
l 

inside the paren- 

heses, rearranging the terms and using the definition of vector ˜ λ
nd scalars ˜ πt , we have 

˜ 
j 

( [ 

Y R j + 

K ∑ 

t=1 

˜ ρ jt Q 

R 
t 

] 

− ˜ Y R 

) 

≥ 0 . 

The proofs of conditions (8b) and (8d) is similar. Also, by the as- 

umption of Axiom 4 , ( ̃  X , ̃  Y ) ∈ R 

m + × R 

s + . Therefore, ( ̃  X , ̃  Y ) ∈ T ∗. �

emma 3. Let technology T satisfy Axioms 2 and 4 , and let 

X V , X R , Y V , Y R ) ∈ T . Define DMU ( ̃  X V , ˜ X R , ̃  Y V , ̃  Y R ) by the following

qualities, where scalars πt , ρl ≥ 0 , ∀ t, l, and S V 
Y 

, S V 
X 

, S R 
Y 

, S R 
X 

≥ 0 are

lack vectors of appropriate dimensions: 

˜ 
 

V = Y V + 

K ∑ 

t=1 

πt Q 

V 
t − S V Y , (A.7a) 

˜ 
 

V = X 

V + 

K ∑ 

t=1 

πt P 
V 
t + S V X , (A.7b) 
12 
˜ 
 

R = Y R + 

L ∑ 

l=1 

ρl Q 

R 
l − S R Y , (A.7c) 

˜ 
 

R = X 

R + 

L ∑ 

l=1 

ρl P 
R 
l + S R X . (A.7d) 

Further assume that ˜ X V , ˜ X R , ̃  Y V , ̃  Y R ≥ 0 and that the subvectors ˜ X R 

nd ˜ Y R are within the bounds (2) . Then 
(

˜ X V , ˜ X R , ̃  Y V , ̃  Y R 
)

∈ T . 

roof of Lemma 3. It suffices to prove that the DMU 

 ̃

 X V , ˜ X R , ̃  Y V , ̃  Y R ) can be obtained as a result of several consec- 

tive modifications, starting with the DMU (X V , X R , Y V , Y R ) , by

he trade-offs and slack variables such that all inputs and outputs 

f all intermediate DMU are nonnegative and within the bounds 

tated as (2) . Then the proof is completed by noting Axioms 2 and

 . 

Note that the DMU 

(
˜ X V , ˜ X R , ̃  Y V , ̃  Y R 

)
does not have to be com- 

uted in the stated order, i.e., applying the trade-offs in full pro- 

ortions πt and ρl first and subsequently adding or subtracting the 

ull slack vectors. Instead, we can consecutively add the trade-offs 

nd slack vectors in smaller proportions and in a different order, 

hile keeping all intermediate DMUs nonnegative and satisfying 

he bounds (2) . Different procedures implementing this idea can 

e suggested, but their precise description is tedious and is not 

iven. �

emma 4. The following embedding is true: T ∗ ⊆ T R VRS −TO . 

roof of Lemma 4. Consider any DMU ( ̃  X , ̃  Y ) ∈ T ∗. We need to

rove that ( ̃  X , ̃  Y ) ∈ T R 
VRS −TO 

. DMU ( ̃  X , ̃  Y ) satisfies (8) with some

ector ˜ λ and scalars ˜ πt and ˜ ρ jl , ∀ j, t, l. Without loss of generality, 

et ˜ λ j > 0 , ∀ j ∈ J. Then conditions (8) can be restated as equalities,

n which the slack vectors ˜ S V 
Y 

, ˜ S V 
X 

, ˜ S R 
Y j 

, ˜ S R 
X j 

≥ 0 are of appropriate 

imensions: 

n 
 

j=1 

˜ λ j Y 
V 
j + 

K ∑ 

t=1 

˜ πt Q 

V 
t − ˜ S V Y = 

˜ Y V , (A.8a) 

n 
 

j=1 

˜ λ j X 

V 
j + 

K ∑ 

t=1 

˜ πt P 
V 
t + 

˜ S V X = 

˜ X 

V , (A.8b) 

 

R 
j + 

L ∑ 

l=1 

˜ ρ jl Q 

R 
t − ˜ S R Y j = 

˜ Y R , ∀ j ∈ J, (A.8c) 

 

R 
j + 

L ∑ 

l=1 

˜ ρ jl P 
R 
l + 

˜ S R X j = 

˜ X 

R , ∀ j ∈ J, (A.8d) 

n 
 

j=1 

˜ λ j = 1 , (A.8e) 

˜ 
 

R ≤ X̄ 

R , (A.8f) 

˜ 
 

R ≤ Ȳ R . (A.8g) 

For each observed DMU (X j , Y j ) , j ∈ J, conditions (A.8c) and

A.8d) are a special case of conditions (A.7c) and (A.7d) . By 

emma 3 , for each j ∈ J, we have (X V 
j 
, ˜ X R , Y V 

j 
, ̃  Y R ) ∈ T R 

VRS −TO 
. By

xiom 3 , 

X 

V , X 

R , Y V , Y R ) = 

( 

n ∑ 

j=1 

˜ λ j X 

V 
j , 

˜ X 

R , 

n ∑ 

j=1 

˜ λ j Y 
V 
j , ̃

 Y R 

) 

∈ T R VRS −TO . 



V.V. Podinovski, J. Wu and N. Argyris European Journal of Operational Research xxx (xxxx) xxx 

ARTICLE IN PRESS 

JID: EOR [m5G; August 26, 2023;0:6 ] 

t  

T

P

{  

R

∀
∑

∑

Y

X

∑

X

Y

λ  

S  

L

d

P

l

Y

X

Y

X

w

C

s  

t  

d

a

(  

r

n

w

X

L

t

P  

T

s

a  

d

z  

T  

t

 

fi  

s  

l  

s

ρ

P

n

u

P

d  

R

t  

t

A

T

8

T

i

L

P  

t  

r

S(

D

s

f

t

fi  

e

λ

α

 

i  

t

t  

(

1

i

Conditions (A.8a) and (A.8b) are a special case of equali- 

ies (A.7a) and (A.7b) . By Lemma 3 , the DMU 

(
˜ X V , ˜ X R , ̃  Y V , ̃  Y R 

)
∈

 

R 
VRS −TO 

. �

roof of Theorem 2. Consider any non-empty subset J ′ ⊆ J = 

 1 , . . . , n } . Define technology T (J ′ ) as the set of all DMUs (X, Y ) ∈
 

m + × R 

s + for which there exists a vector λ ∈ R 

n , scalars πt and ρ jl , 

 j, l, t , and slack vectors S V Y , S 
V 
X , S 

R 
Y j 

, S R 
X j 

, ∀ j, such that 

 

j∈ J ′ 
λ j Y 

V 
j + 

K ∑ 

t=1 

πt Q 

V 
t − S V Y = Y V , (A.9a) 

 

j∈ J ′ 
λ j X 

V 
j + 

K ∑ 

t=1 

πt P 
V 
t + S V X = X 

V , (A.9b) 

 

R 
j + 

L ∑ 

l=1 

ρ jl Q 

R 
l − S R Y j = Y R , ∀ j ∈ J ′ , (A.9c) 

 

R 
j + 

L ∑ 

l=1 

ρ jl P 
R 
l + S R X j = X 

R , ∀ j ∈ J ′ , (A.9d) 

 

j∈ J ′ 
λ j = 1 , (A.9e) 

 

R ≤ X̄ 

R , (A.9f) 

 

R ≤ Ȳ R , (A.9g) 

j , πt , ρ jl ≥ 0 , ∀ j ∈ J ′ , t = 1 , . . . , K, l = 1 , . . . , L, (A.9h)

 

V 
Y , S 

V 
X , S 

R 
Y j , S 

R 
X j ≥ 0 , ∀ j ∈ J ′ . (A.9i)

The proof now follows from Lemmas 5 and 6 . �

emma 5. Technology T (J ′ ) defined by conditions (A.9) is a polyhe- 

ral set. 

roof of Lemma 5. Restate conditions (A.9c) and (A.9d) by the fol- 

owing conditions: 

˜ 
 

R = Y R , (A.10a) 

˜ 
 

R = X 

R , (A.10b) 

 

R 
j + 

L ∑ 

l=1 

ρ jl Q 

R 
l − S R Y j − ˜ Y R = 0 , ∀ j ∈ J ′ , (A.10c) 

 

R 
j + 

L ∑ 

l=1 

ρ jl P 
R 
l + S R X j − ˜ X 

R = 0 , ∀ j ∈ J ′ , (A.10d) 

here ˜ X R ∈ R 

m 

R 
and 

˜ Y R ∈ R 

s R are variable vectors. Consider the set 

of all vectors whose components include variable vectors and 

calars λ, π , ρ jl , j ∈ J ′ , l = 1 , . . . , L , and 

˜ X R , ˜ Y R , S V Y , S 
V 
X , S 

R 
Y j 

, S R 
X j 

, j ∈ J ′ ,
hat satisfy conditions (A .9e), (A .9h), (A .9i) and (A .10c), (A .10d) . By

efinition, C is a polyhedral set ( Rockafellar, 1970 ). 

Define W as the set of all vectors w = 

(
Y V , X V , Y R , X R 

)
obtain- 

ble by the linear transformation described by equalities (A.9a), 

A .9b), (A .10a) and (A .10b) from the elements of C. By Theo-

em 19.3 in Rockafellar (1970) , the set W is polyhedral. Then tech- 

ology T (J ′ ) is a polyhedral set as the intersection of the set W 

ith the polyhedral set defined by the nonnegativity conditions 

 

V , X R , Y V , Y R ≥ 0 and conditions (A.9f) and (A.9g) . �
13 
emma 6. Technology T R 
VRS −TO 

is the union of the finite number of 

echnologies T (J ′ ) formed by all non-empty subsets J ′ ⊆ J. 

roof of Lemma 6. Consider any DMU (X, Y ) ∈ T R VRS −TO . By

heorem 1 , it satisfies conditions (8) with some vector λ′ ∈ R 

n and 

calars π ′ 
t , t = 1 , . . . , K, and ρ′ 

jl 
, j = 1 , . . . , n , l = 1 , . . . , L . Define J ′ 

s the set of all j ∈ J such that λ′ 
j 
> 0 . Then (X, Y ) satisfies con-

itions (A.9) with the vector λ obtained from λ′ by omitting its 

ero components, and with the same scalars π ′ 
t , and ρ′ 

jl 
, ∀ j, l, t .

herefore, (X, Y ) ∈ T (J ′ ) , and (X, Y ) belongs to the union of all such

echnologies T (J ′ ). 
Conversely, let (X, Y ) ∈ T (J ′ ) for some set J ′ . Then (X, Y ) satis-

es (A.9) with some vector ˜ λ ∈ R 

n , scalars ˜ πt and ˜ ρ jl , ∀ j, l, t , and

lack vectors ˜ S V 
Y 

, ˜ S V 
X 

, ˜ S R 
Y j 

, ˜ S R 
X j 

, ∀ j ∈ J ′ . Define vector λ′ ∈ R 

n as fol-

ows: λ′ 
j 
= ̃

 λ j , for all j ∈ J ′ , and λ′ 
j 
= 0 , for all j ∈ J \ J ′ . Then (X, Y )

atisfies conditions (8) with the so defined λ′ and the same ˜ πt and 

˜ jl , ∀ j, l, t . Therefore, (X, Y ) ∈ T R VRS −TO . �

roof of Corollary 1. By Theorem 2 , technology T R 
VRS −TO 

is a fi- 

ite union of polyhedral and, therefore, closed technologies. Their 

nion is a closed set. �

roof of Theorem 3. Denote T ′ the technology defined by con- 

itions (10) . More precisely, T ′ is the set of all DMUs (X, Y ) ∈
 

m + × R 

s + for which there exist vectors λ, α ∈ R 

n and scalars πt , 

 = 1 , . . . , K, and ρ jl , j = 1 , . . . , n , l = 1 , . . . , L , such that all condi-

ions (10) are satisfied. We need to prove that T F 
CRS −TO 

= T ′ . 
Let us first prove that T ′ satisfies Axioms 1 –5 . The proofs of 

xioms 1,2 and 4 are similar to the case of R-VRS. The proofs that 

 

′ satisfies Axioms 3 and 5 are given separately, in Lemmas 7 and 

 . Therefore, we have T F 
CRS −TO 

⊆ T ′ . The opposite embedding T ′ ⊆
 

F 
CRS −TO 

is established by Lemma 9 . The two proved embeddings 

mply that T F CRS −TO = T ′ . �

emma 7. Technology T ′ satisfies Axiom 3 . 

roof of Lemma 7. Let DMUs ( ̃  X , ̃  Y ) and ( ̂  X , ̂  Y ) satisfy (10) with

he combined vectors ( ̃ λ, ˜ α, ˜ π ; ˜ ρ jl | ∀ j, l) and ( ̂ λ, ˆ α, ˆ π ; ˆ ρ jl | ∀ j, l) ,

espectively. Let the equalities (3) assumed by Axiom 3 be true. 

elect any γ ∈ [0 , 1] and define the convex combination 

X̄ 

V , X̄ 

R , Ȳ V , Ȳ R 
)

= γ
(

˜ X 

V , ˜ X 

R , ̃  Y V , ̃  Y R 
)

+ (1 − γ ) 
(

ˆ X 

V , ˆ X 

R , ̂  Y V , ̂  Y R 
)
. 

Note that X̄ and Ȳ are nonnegative. It remains to be proved that 

MU ( ̄X , ̄Y ) satisfies conditions (10) with some vectors λ̄, ᾱ, π̄ and 

calars ρ̄ jl . 

First, as in the proof of Lemma 1 , define vectors λ̄ and π̄ by 

ormula (A.2) . Further define the sets ˜ J and 

ˆ J by formulae (A.3) and 

he multipliers ρ̄ jl by formula (A.4) . To define vector ᾱ, first de- 

ne the set J + = { j ∈ J | λ̄ j > 0 } = 

˜ J ∪ 

ˆ J . Note that the set J + is not

mpty. For each j ∈ J + , define ᾱ j from the following equality: 

¯
j ̄α j = γ ˜ λ j ̃  α j + (1 − γ ) ̂ λ j ̂  α j . (A.11) 

Using (A.2) and (A.11) , for each j ∈ J + , we have 

¯ j = 

γ ˜ λ j ̃  α j + (1 − γ ) ̂ λ j ̂  α j 

λ̄ j 

= 

γ ˜ λ j ̃  α j + (1 − γ ) ̂ λ j ̂  α j 

γ ˜ λ j + (1 − γ ) ̂ λ j 

. 

For each j ∈ J \ J + (i.e., for each j such that λ̄ j = 0 ), we arbitrar-

ly define ᾱ j = 1 . Let us prove that DMU ( ̄X , ̄Y ) satisfies (10) with

he vectors λ̄ ᾱ, π̄ and scalars ρ̄ jl . 

To prove that inequalities (10a) and (10b) are true, we state 

hem twice, for DMU ( ̃  X , ̃  Y ) and vectors ˜ λ, ˜ α and ˜ π , and for DMU

 ̂

 X , ̂  Y ) and vectors ˆ λ, ˆ α and ˆ π . Multiply these inequalities by γ and 

 − γ , respectively. The proof is completed by adding the resulting 

nequalities and noting (A.2) and (A.11) . The proof of the remaining 
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onditions (10c) –(10h) is similar to their proof in Lemma 1 . There- 

ore, ( ̄X , ̄Y ) ∈ T ′ . �

emma 8. Technology T ′ satisfies Axiom 5 . 

roof of Lemma 8. Any DMU (X V , X R , Y V , Y R ) ∈ T ′ satisfies con-

itions (10) with some vectors λ, α and π , and scalars ρ jl , j = 

 , . . . , n , l = 1 , . . . , L . Consider any scaling factor γ ≥ 0 and define

he scaled DMU (γ X V , X R , γY V , Y R ) . This scaled DMU satisfies all

onditions (10) with the vectors ˜ λ = λ, ˜ α = γα and the scalars 

˜ l = γπl and ˜ ρ jt = ρ jt , ∀ j, l, t . It is, therefore, in T ′ , and T ′ satisfies

xiom 5 . �

emma 9. The following embedding is true: T ′ ⊆ T F 
CRS −TO 

. 

roof of Lemma 9. The proof follows closely the proof of 

emma 4 , in which we replace the observed DMUs 
(
X V 

j 
, X R 

j 
, Y V 

j 
, Y R 

j 

)
y their scaled analogues (αX V 

j 
, X R 

j 
, αY V 

j 
, Y R 

j 
) . �

roof of Theorem 4. The proof follows from Lemmas 10 and 

1 . �

emma 10. Let DMU (X, Y ) satisfy conditions (10) with vectors λ, α
nd scalars πt and ρ jl . Then (X, Y ) satisfies conditions (13) with some 

ectors κ, μ, ν ∈ R 

n and the same scalars πt and ρ jl . 

roof of Lemma 10. Consider any j ∈ J and let κ j = λ j . If λ j =
 , let μ j = ν j = 0 . If λ j > 0 , consider two cases. If α ≥ 1 , define

j = λ j α j − λ j = λ j (α j − 1) and ν j = 0 . If 0 ≤ α < 1 , define μ j = 0

nd ν j = λ j − λ j α j = λ j (1 − α j ) . In both cases, μ j , ν j ≥ 0 . Further- 

ore, we always have λ j α j = κ j − ν j + μ j and κ j − ν j ≥ 0 . Replac- 

ng λ j α j in inequalities (10a) and (10b) by the terms κ j − ν j + μ j , 

or all j ∈ J, we observe that the DMU (X, Y ) satisfies conditions

13) with the vectors κ , μ, ν and scalars πt and ρ jl . �

emma 11. Let DMU (X, Y ) satisfy conditions (13) with vectors κ , μ,

and scalars πt and ρ jl . Then (X, Y ) satisfies conditions (10) with 

ome vectors λ, α ∈ R 

n and the same scalars πt and ρ jl . 

roof of Lemma 11. Define � = 

∑ n 
j=1 (κ j + μ j ) . By (13e) , we have

≥ 1 . For each j ∈ J, define λ j = (κ j + μ j ) / �. Two further cases

rise. If λ j > 0 , let α j = (κ j + μ j − ν j ) /λ j . If λ j = 0 , then κ j = μ j =
 and, by (13f) , ν j = 0 . It does not matter how α j is defined

n this case. To be specific, let α j = 1 . In both cases, we have

j α j = κ j − ν j + μ j . It is straightforward to verify that conditions 

13) stated for the vectors κ , μ, ν and scalars πt and ρ jl , im- 

ly conditions (10) stated in terms of vectors λ, α and scalars πt 

nd ρ jl . �

roof of Theorem 5. The proof is similar to the proof of 

heorem 2 and requires a minor adjustment to Lemmas 5 and 6 . 

n particular, we replace the statement (A.9) by a similar statement 

ased on (13) and, in Lemma 6 , we redefine the set J ′ as the set of

ll j ∈ J such that κ j + μ j > 0 . The rest of the proof is similar and

s omitted. �

roof of Theorem 6. Let DMU (X, Y ) ∈ T F 
CRS −TO 

. By Theorem 3 , it

atisfies conditions (10) with some vectors λ, α, π and scalars ρ jl . 

hen (X, Y ) satisfies all conditions (14) with the vector ˆ λ whose 

omponents are defined as ˆ λ j = λ j α j , ∀ j ∈ J, and the same vec-

or π and scalars ρ jl . In particular, ˆ λ j > 0 implies λ j > 0 , and 
14 
onditions (14c) and (14d) follow from (10c) and (10d) . Therefore, 

X, Y ) ∈ 

ˆ T F CRS −TO . 

Conversely, let (X, Y ) ∈ 

ˆ T F CRS −TO satisfy conditions (14) with 

ome vectors λ 
 = 0 , π and scalars ρ jl . Then �∗ = 

∑ 

j∈ J λ j > 0 . For 

ll j ∈ J, define ˜ λ j = λ j / �
∗ and ˜ α j = α j �

∗. Then (X, Y ) satisfies

10) with 

˜ λ, ˜ α and the same π and ρ jl . �
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