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Abstract

Understanding human actions that involve interacting with objects is very important
due to the wide range of real-world applications, such as security surveillance and
healthcare. In this thesis, three different approaches are presented for addressing
the problem of human-object interactions (HOIs) recognition in videos.

Firstly, we propose a hierarchical framework for analyzing human-object inter-
actions in a video sequence. The framework comprises Long Short-Term Memory
(LSTM) networks that capture human motion and temporal object information in-
dependently. These pieces of information are then combined through a bilinear layer
and fed into a global deep LSTM to learn high-level information about HOIs. To
concentrate on the key components of human and object temporal information, the
proposed approach incorporates an attention mechanism into LSTMs.

Secondly, we aim to achieve a holistic understanding of human-object interac-
tions (HOIs) by exploiting both their local and global contexts through knowledge
distillation. The local context graphs are used to learn the relationship between
humans and objects at the frame level by capturing their co-occurrence at a specific
time step. On the other hand, the global relation graph is constructed based on the
video-level of human and object interactions, identifying their long-term relations
throughout a video sequence. We investigate how knowledge from these context
graphs can be distilled to their counterparts to improve HOI recognition.

Lastly, we propose the Spatio-Temporal Interaction Transformer-based (STIT)
network to reason about spatio-temporal changes of humans and objects. Specif-
ically, the spatial transformers learn the local context of humans and objects at
specific frame times. The temporal transformer then learns the relations at a higher
level between spatial context representations at different time steps, capturing long-
term dependencies across frames. We further investigate multiple hierarchy designs
for learning human interactions.

The effectiveness of each of the proposed methods mentioned above is evaluated
using various video action datasets that include human-object interactions, such as
Charades [1], CAD-120 [2], and Something-Something V1 [3].
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CHAPTER 1

Introduction

Videos provide valuable information and cues about human behavior that can aid

in recognizing specific human activities and actions [19]. These actions involve

various temporally structured movements, such as running and jumping [20]. Most

activities are carried out by humans who interact with objects or other people. This

research focuses on analyzing the interactions between humans and objects, which

are referred to as human-object interactions (HOIs). HOI recognition and action

classification are terminologies used to describe similar tasks in videos, but there is

a slight distinction between them. In action recognition and classification tasks, a

clip’s action is assigned based on a predefined list of actions, taking into account

all the video’s features [19]. In contrast, the HOI recognition task uses information

about humans and objects, in addition to the video’s features, to categorize an

action.

HOI recognition generally involves two phases: detection and recognition. In

the detection phase, humans and objects involved in the action are localized. In the

recognition phase, information about humans and objects including their relation-

ship are used [21]. Thus, to improve the rate of HOI recognition, researchers have

used various features such as the appearance of the human or the object [22–24],
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the human pose [23–26], the human gaze [25] and the relative location of the object

with respect to the human [22], geometric and semantic information [27]. In this

research, we use pre-trained off-the-shelf detectors to detect humans and objects

and focus on using visual features for recognizing HOIs in videos. It is important

to note that the HOI recognition task differs from the action detection task in that

the latter’s models are trained not only to identify the action but also to predict the

temporal and spatial position of the action instance, such as a human [28].

To solve the problem of HOI recognition, various efforts have been made, which

can be classified into two main categories: hand-crafted approaches and deep learn-

ing models. Deep learning techniques have shown more promising results than

traditional methods in various computer vision tasks. Thus, in this research, we

will employ state-of-the-art deep learning methods to tackle the problem of HOI

recognition.

1.1 Motivation

The understanding of human behavior in videos is crucial for a broad range of real-

world applications, including human-robot collaboration, human-computer interac-

tion (HCI), video surveillance, autonomous driving (e.g., self-driving cars), sports,

and retail stores.

Human-robot collaboration is utilized in a range of fields, including those that

involve both human and robotic labor, such as the industrial, medical, and rehabili-

tation sectors [29]. The ability of robots to understand and interpret human actions

and interactions with objects leads to more effective cooperation between humans

and robots in a shared environment. Thus, to properly perform tasks, a thorough

understanding of human behavior is necessary. Fig. 1.1 shows assembly and ma-

chine tending tasks in one of the motorbike manufacturing facilities in India, Bajaj

Auto, where utilizing robots with the help of humans facilitates a faster production

line [4].

Another application of using human-object interactions is in the field of human-

computer interaction (HCI), which benefits from accurate modeling of human actions

2



Figure 1.1: Tasks including assembly and machine tending are performed with the
help of robots at Bajaj Auto manufacturer, from [4].

Figure 1.2: A robot’s response to a human action, from [5].

Figure 1.3: AmazonGo store, from [6].
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in various applications such as augmented reality, interactive games, and social

robots that respond based on understanding human actions. An example of a social

robot interaction is shown in Fig. 1.2.

Furthermore, in crowded public areas like airports, hospitals, and shopping malls,

maintaining security and safety is crucial, and this is achieved by closely monitoring

all activities using a video surveillance system equipped with cameras. It is especially

vital to identify interactions with objects and recognize various activities to ensure a

prompt response if necessary [30]. Also, in healthcare settings, it is crucial to be able

to recognize patient actions, especially those of the elderly, and analyze anomalous

activity like falls in order to intervene promptly.

In addition, the recognition of HOIs plays a crucial role in the functioning of

self-driving vehicle systems and other applications related to autonomous driving.

In other words, HOI involves understanding the driving scene, including human

behaviors (such as pedestrians) and interactions with other objects (automobiles,

bicycles, other vehicles), and incorporating this information in making appropriate

decisions, such as ’slow down’ or ’stop,’ in response to such interactions [31].

Action recognition applications are also becoming increasingly common in the

world of sports, with uses that include analyzing and recognizing a player’s actions.

These actions often involve interactions with objects such as a ball and other players

[32].

Furthermore, HOI recognition is important in the retail industry. For instance,

at AmazonGo grocery stores, as depicted in Fig. 1.3, the need for a physical check-

out process has been eliminated. Customers can conveniently enter the store by

scanning the AmazonGo application at the entrance without any additional steps.

As customers obtain items, their virtual cart is automatically updated, and they can

simply leave the store when they are finished shopping [33]. Currently, there are 23

Amazon Go stores in the United States [34]. In such a system, HOI recognition is

imperative.

Therefore, developing an accurate action recognition model is crucial for achiev-

ing the desired impacts and outcomes of all the aforementioned applications. The

model should incorporate knowledge of the context of human activities and sur-
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rounding objects, as well as temporal information presented in videos. For this

reason, this thesis aims to explore how human-object interaction modeling in videos

can improve action recognition models, by taking into account the spatial and tem-

poral contexts of humans and objects.

1.2 Problem Statement

This thesis takes into account human-object interactions in an effort to solve the

problem of human action recognition. This study focuses on single-person inter-

actions with various objects to perform specific actions, such as brushing teeth,

opening a refrigerator, and making cereal.

While the majority of prior research focuses on recognizing HOIs in still im-

ages [21,24,25,35], these approaches neglect temporal information. As a result, they

are unable to identify time-related interactions, limiting their practical applicabil-

ity [36]. Moreover, although a significant portion of deep learning models has been

effectively employed to recognize actions in videos, including 2/3D Convolutional

Neural Networks (CNN) and Long Short-Term Memory(LSTM) networks, the ma-

jority of these networks tend to treat video frames equally, without prioritizing key

elements of the actions, such as human-object interactions. Moreover, how to model

human-object relations in a way that boosts the performance of action recognition

models while taking into account the natural way humans behave when interacting

with objects has not been fully explored. As a result, this study’s objective is to ex-

plore and introduce networks that incorporate long-range spatiotemporal relations

between humans and objects, while also considering the hierarchical representation

and contextual views of the interactions.

1.3 Research Challenges

The primary objective of studies in human action recognition in videos is to develop

a model that can effectively understand human intentions and actions involving

Human-Object Interactions (HOIs). The complexity of human behaviors can re-
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sult in the erroneous categorization of actions and interactions. Misclassification of

HOIs can arise from various challenges. Individuals can perform the same inter-

action differently, meaning they may demonstrate different poses while performing

the same action. For example, one person may drink tea while standing, while an-

other may drink tea while sitting. Another challenge to recognizing actions is the

similarities between HOIs. For instance, different objects, such as drinking bottles

and spray bottles, can have very similar appearances [37] but are used in differ-

ent actions. Moreover, different interactions may involve similar motion patterns,

which can confuse the recognition model and lead to incorrect results. This refers to

the challenge of inter-class similarity [38]. Moreover, Various background settings,

including cluttered environments, present difficulties in the recognition of Human-

Object Interactions (HOIs) in videos [38].

Furthermore, other challenges include certain objects affording different inter-

actions, like when a human cleans an oven or takes food from it, where the oven

affords to different interactions such as opening, cleaning and closing. In addition, a

variety types of objects afforded to same action (e.g., refrigerators and doors can be

involved in the same interactions including open and close). Moreover, the presence

of various objects in the scene at the same time could affect model learning.

To sum up, recognizing human-object interactions (HOIs) with the presence

of the above-mentioned issues is difficult, and it is essential to identify and learn

discriminative features including important contextual information such as spatial

relationships and temporal dynamics,that facilitate understanding of such actions.

1.4 Thesis Scope

Although there has been a lot of research on image-based human-object interac-

tions (HOIs) [21, 24, 39], videos have received less attention due to the presence of

more challenges such as spatio-temporal changes. This thesis addresses this gap by

focusing on human-object interactions in videos, utilizing deep learning models to

understand high-level human-object interactions. While there is a connection be-

tween this research and the field of action recognition, this thesis concentrates on
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( e.g. Sports)
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Human-Object 
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Recurrent Neural 
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Graph Neural Network 
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Attention & Transformers 
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Figure 1.4: Video-based action recognition employs various inputs, actions, and deep
learning models. The only inputs and models utilised by the proposed approaches
in this thesis are denoted by the green rounded rectangles.

human-object interactions rather than just the overall features of the video, which

are considered critical components for recognizing actions. Thus, in order to evaluate

the effectiveness of the proposed methods in this thesis, we utilize action datasets

that contain both human(s) and objects in the video for HOI recognition, along

with annotations related to HOI. In fact, research on the action recognition prob-

lem from videos is broad and covers different aspects depending on the input data,

types of actions, and network architecture [40], as shown in Fig. 1.4. The datasets

utilized in this thesis generally consist of videos of a single person interacting with

objects, with no human-human or group interactions present. Although other stud-

ies use various forms of information for identifying human-object interactions, such

as skeleton data, this research focuses solely on the appearance features (e.g. visual

information) of bounding boxes of humans and objects in addition to video frame

features. Additionally, this thesis mainly considers supervised learning, where all

the labels of the videos in the datasets are available and used to train the proposed

models in this research.
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1.5 Thesis Contributions

This thesis presents different approaches to learn human-object interaction relations

in order to recognize human actions. The following is a summary of the thesis’

significant contributions:

• Proposing an LSTM-based framework with attention mechanism for recognis-

ing human-object interactions (HOIs) in videos. HOIs is modeled by using

hierarchical LSTMs to capture the dynamics of Human and objects in a video

sequence. (Chapter 3)

• Introducing a novel teacher-student network based on graph neural networks

to learn spatial and temporal interrelations between humans and objects in a

video from two different contextual views. This approach enables the capture

of long-term and non-local dependencies between humans and objects across

video frames. (Chapter 4)

• Exploring how knowledge from the teacher contextual view of interactions can

be obtained, and distilling it to the student view of interactions to improve

action recognition performance. (Chapter 4)

• Presenting a novel transformer-based framework to learn spatio-temporal in-

terrelations between humans and objects in videos by considering the hierar-

chical representation of HOIs. (Chapter 5)

• Investigating the effects of various hierarchical structures on HOI learning.

(Chapter 5)

1.6 Publications

The following are the peer-reviewed publications in which the work from this thesis

has been published:

• Conference paper (Contributing to Chapter 3):
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Almushyti, M. and Li, F.W., Recognising human-object interactions using

attention-based LSTMs. In Computer Graphics and Visual Computing (CGVC),

September 2019, (pp. 135-139). https://diglib.eg.org/handle/10.2312/

cgvc20191269.

• Journal paper (Contributing to Chapter 4):

Almushyti, M. and Li, F.W., Distillation of human–object interaction contexts

for action recognition, The Journal of computer animation and visual world,

August 2022, 33( 5): e2107. https://doi.org/10.1002/cav.2107.

• Conference paper (Contributing to Chapter 5):

Almushyti, M. and Li, F.W., STIT: Spatio-Temporal Interaction Transformers

for Human-Object Interaction Recognition in Videos, In the 26th International

Conference on Pattern Recognition(ICPR), 2022. https://ieeexplore.ieee.

org/document/9956030.

1.7 Thesis Structure

This thesis is organized into six chapters. Chapter 2 covers three sections of the

literature review. The first section provides background information on the funda-

mentals of the methods used in this thesis, as well as a description of the datasets

utilized in this research. Recent models, using deep learning networks, for action

recognition and modelling human-object interactions are also discussed in Sections

2.2 and ??, respectively.

Chapter 3 covers the use of LSTM networks with the help of an attention mech-

anism to learn high-level human-object interactions.

Chapter 4 presents a teacher-student-based network where the teacher aids the

student’s learning through knowledge distillation. Graph attention networks (GAT)

are used to construct the views of both the teacher and student networks. Each

network captures a different contextual view of human-object interactions, consid-

ering spatial or temporal relations. Comprehensive experiments are conducted to

determine which view can serve as the teacher network.
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Taking inspiration from the recent growth of transformer networks in the com-

puter vision area, Chapter 5 explores the possibility of employing two-level trans-

formers to model spatio-temporal relations between humans and objects to identify

their interactions. Various network designs have been investigated in this chapter.

Chapter 6 summarizes the limitations of the methods proposed in this thesis and

outlines potential future research directions.
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CHAPTER 2

Literature Review

This chapter provides background information on the techniques and methodologies

presented in the contribution chapters (Chapters 3 - 5). It also summarizes the

datasets used in this thesis and reviews state-of-the-art models for action recognition.

Additionally, the chapter includes a review of higher-level modeling networks, such

as those using human-object interactions, that are utilized for action recognition.

2.1 Background

This section covers the basic background details for the methods that are presented

in the next chapters of this thesis (Chapters 3 - 5).

2.1.1 Video Representation and Feature Extraction

There are several modalities available in videos that can serve as inputs for action

recognition models, such as RGB frames [41], optical flow [12], and skeleton data [42].

Since visual information is the main focus of this research, we are primarily dis-

cussing models that utilize RGB data. Two main categories of deep learning-based

models, including CNNs and transformers, are used to extract visual information
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Figure 2.1: Simple Convolution Neural Network, from [7].

from video frames.

Convolution Neural Networks (CNN/ConvNet)

CNN is a form of artificial neural network architecture that consists of three main

blocks: convolution layers, pooling layers, and fully connected (FC) layers. Typi-

cally, this network is initially built with N convolution layers followed by a pooling

layer, and finally, one or more FC layers are stacked at the end of the network [7].

Feature extraction is performed in the convolution layers using kernels. These kernels

typically take the form of small-dimensional matrices of weights and pass through

the input image (2D kernels) to perform element-wise multiplication with the input

at each position. The results are then summed up to obtain a single value at the

current spatial position. The output of the various kernels generates the feature

maps [43].

Commonly, the features of the convolution layer are extracted and sent to non-

linear activation functions such as the Rectified Linear Unit (ReLU). The output

is then passed to a pooling layer, which performs a down-sampling operation to

reduce both the dimensionality of feature maps and the number of parameters to be

learned. Examples of pooling operations include max and average pooling [43]. The

feature maps of the last pooling or convolution layer are flattened as one-dimensional
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Figure 2.2: Transformer architecture, from [8].

maps and are connected to one or two FC layers, where the final FC layer performs

an activation function that depends on the learning task. For instance, to classify

multi-class images, Softmax activation can be used [7]. Figure 2.1 shows a simple

CNN architecture for MNIST [44] classification. There are different architectures for

convolution networks, such as AlexNet [45], VGG [46], Inception [47], and ResNet

[48]. The CNN kernels can be expanded to support 3D dimensions, which are

frequently used in videos [49]. Similarly, the I3D model [50] has been introduced by

inflating pretrained 2D convolution kernels to 3D for extracting space-time features

from video clips. In this research, we use the I3D model as a backbone to extract

features from videos.

Transformers

Transformers are deep learning models that were first introduced in [8] for sequence-

to-sequence modeling, such as for machine translation tasks. In this case, trans-
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Figure 2.3: Vision transformer, from [9].

formers consist of two parts: an encoder and a decoder. Figure 2.2 presents the

transformer architecture. Having both an encoder and a decoder in a network is not

necessary and depends on the application. For instance, if the purpose is to obtain

sequence representation for a classification task, utilizing merely the encoder can

be sufficient. The transformer encoder mainly comprises multiple layers with multi-

head self-attentions (MHA) in each layer and feed-forward layers (MLPs). Both

layer normalization with residual connections are applied prior to and following the

MLPs. The inputs (e.g., words in a sentence or image patches) are embedded with

their positional information and are fed to the transformer encoder. In self-attention,

the input is transformed into three components - queries (Q), keys (K), and values

(V) - through linear transformations. The attention function, which is known as

Scaled Dot-Product Attention [8], is written as:

Attention(Q,K, V ) = Softmax(
Q.KT

√
dk

) V (2.1)

where dk is the key dimension and the multi head attention (MHA) can be computed

as follows:

MultiHead(Q,K, V ) = Concat(head1, ...., headm)W h (2.2)
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where headi = Attention(QWQ
i , KW

k
i , V W

V
i ). W h and m represent the learnable

matrix and the number of heads, respectively.

For computer vision tasks, the ViT transformer [9] has recently been used by

dividing an image into patches, as shown in Fig. 2.3. In this research, we adapt the

ViT transformer encoder as a relational model between humans and objects. More

details are provided in Chapter 5.

2.1.2 Recurrent Neural Networks (RNN)

RNN is a powerful network architecture for sequential data of any length, such as

sentences and sequences of images (e.g., frames) in videos. In RNNs, all inputs are

related to one another in a way that the same task is performed on all elements of

a sequence. As a result, parameters (e.g., weights) are shared throughout all time

steps. Each state has the ability to store the knowledge of previous input states.

Consequently, a hidden state could be thought of as the network’s memory. The

hidden state h at time t is defined as follows:

ht = fH(WIHxt +WHHht−1 + bh) (2.3)

where fH is a non-linear activation function, such as a tanh or sigmoid, and xt is the

current input. WIH is the weight matrix between the input and the hidden layer.

WHH is the weight matrix between the current state and the previous state. bh is

the bias of the hidden layer, and ht−1 is the previous hidden state at time step t− 1.

Finally, yt in the output layer can be calculated as follows:

yt = fO(WHOht + bo) (2.4)

where fO is the activation function, such as softmax, and WHO is the weight ma-

trix between the hidden layer and the output layer. The weights W are shared

throughout time steps [51].

Several RNN types can be used for various computer vision tasks, such as one-

to-many RNNs for image captioning [52], many-to-one RNNs for action recognition

[53,54], and many-to-many RNNs for tasks like video descriptions [55].
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Practically, issues such as vanishing and exploding gradients arise during the

training of RNNs. In particular, the vanishing gradient problem occurs during

backpropagation, where the network gradients become small, making it difficult

to update the network weights and prolonging the time required to obtain the final

results. Consequently, standard RNNs are unable to process very long sequences [56].

Several solutions have been proposed to address the vanishing gradient problem and

the long-term dependency of RNNs, including Gated Recurrent Units (GRUs) [57]

and Long Short-Term Memory (LSTM) [58]. As LSTM is used in Chapter 3, it will

be described below.

Long short-term memory (LSTM)

The main components of LSTMs include gate networks and the cell state. Thus,

two vectors are involved at each time step: the hidden vector and the cell state

vector, which acts as a ”memory” and carries all relevant information throughout

the sequence. Moreover, each LSTM cell has three different gates, namely the input

(it), forget (ft), and output (ot) gates, which are mathematically represented as

follows:

f t = σ(Wf [ht−1, xt] + bf ) (2.5)

it = σ(Wi[ht−1, xt] + bi) (2.6)

ot = σ(Wo[ht−1, xt] + bo) (2.7)

The cell state (ct) and hidden state (ht) at time t can be expressed as:

ct = ft ∗ ct−1 + it ∗ tanh(Wc[ht−1, xt] + bc) (2.8)

ht = ot ∗ tanh(ct) (2.9)

Where σ and tanh are sigmoid and tangent hyperbolic activation functions,

respectively, and Wf , Wi, Wo, and Wc are learnable weights. The forget gate ft
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Figure 2.4: Long short-term memory (LSTM) architecture. ft,it and ot indicate
forget, input and output gates, respectively.

determines what information should be ignored or kept. The input gate it selects

what information should be added to the cell state based on the previous hidden

state ht−1 and the current data xt. The last gate is the output gate ot, which controls

what information from the memory cell (e.g., cell state) should be sent as the current

hidden state’s output ht. Figure 2.4 shows an LSTM cell architecture. Additionally,

there is an extension of LSTMs known as a bidirectional LSTM (BLSTM) network,

where the input is modeled by the LSTM networks in both forward and reverse

directions [59]. In this thesis, LSTMs are utilized to capture temporal changes of

humans and objects in videos. More details are presented in Chapter 3.

2.1.3 Graph Neural Networks (GNNs)

Graphs are a type of data structure that are represented by nodes and edges that

connect them [60]. Neural networks applied to graph data are called Graph Neural

Networks (GNNs). There are many applications for GNNs, including scene graph

generation [61], action recognition [62], text classification [63], recommender systems

[64], and health record modeling [65]. Moreover, different forms of GNNs have been

developed, such as the Graph Convolution Network (GCN) [63] and the Graph

Attention Network (GAT) [66]. Since Chapter 4 proposes a network based on GAT,

GAT is explained here in more detail.
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GAT

Graph attention network (GAT) implies using attention mechanism in order to up-

date node states in a graph. The learnable attention score between two nodes x and

y, which reveals the importance of node y to node x, is computed as:

αxy =
exp (LeakyReLU(aT [Whx||Why]))∑

k∈Nx
exp (LeakyReLU(aT [Whx||Whk]))

(2.10)

where Nx represents node x’s neighbors, W is a trainable weight matrix related to

the linear transformation of graph nodes, and aT is a trainable weight of a multilayer

perceptron (MLP) with one layer. Finally, in order to obtain the final hidden state

of node x, it can be written as:

hx = σ(
∑
y∈Nx

αxyWhy) (2.11)

where σis a non-linear activation function, such as LeakyReLU [66]. The authors

of GAT [66] used multi-head attention to stabilize the learning process, where M

independent heads are applied to calculate the hidden state of graph nodes, and

afterward concatenate or average these features to obtain the final hidden state of

each node. In this thesis, the GAT network is utilized to learn the relations between

humans and objects nodes from various contextual views, as proposed in Chapter 4.

2.1.4 Transfer Learning

The process of transfer learning involves applying knowledge from previously learned

tasks to a new or related task to increase model performance, especially when the

source model is trained on large datasets. Pre-trained models’ knowledge can be

transferred in various ways, including reusing their weights as initial weights to train

a model on different datasets and for related tasks (known as fine-tuning). Another

way is fixing the pre-trained model weights and using the model as a feature extractor

without its final layer for different tasks, such as classification. Since the earliest

layers of the model learn coarse features, whereas the later deep layers capture more

fine-grained information, only the later layers need to be fine-tuned, and the first
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layers can be fixed [67].

Examples of models commonly used for transfer learning are 2D ResNet-50 [48]

and VGG-16 [46], which are pre-trained on the ImageNet dataset [68] for image

classification tasks. In the experiments of the methods proposed in this thesis,

we initialize the I3D backbone with pre-trained parameters from the Kinetics-400

dataset [69].

2.1.5 Knowledge Distillation (KD)

Distilling knowledge has been proposed as a way to transfer knowledge from an

ensemble of classifiers or a large network into a small network [70]. This approach

involves compressing complex networks without losing their performance [71], which

is accomplished by minimizing the loss between the small network’s predictions (stu-

dent) and the large network’s softened labels (teacher). Recently, KD has been ex-

tended and combined with privileged information [72], which is only available during

training, to form a generalized distillation approach [73]. In the action recognition

task, knowledge is distilled between multiple modalities (e.g., skeleton, RGB, opti-

cal flow), which can be considered privileged information because not all of them

are available during inference [74–77]. KD is also used in other directions, such as

defending against adversarial attacks [78] and classifying unlabeled data by unifying

diverse classifiers [79]. To improve segmentation accuracy, KD is used in semantic

segmentation, for example, by distilling intra-class feature variation or inter-class

distance from the teacher network to the student [80, 81]. Additionally, KD is used

to enhance object detectors by selecting valuable areas (e.g., foreground) to dis-

till [82–84].

In this research, Knowledge Distillation (KD) is used to transfer knowledge be-

tween two contextual views, including global and local views. More details are

presented in Chapter 4.
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Figure 2.5: Twenty actions from UCF101 dataset [10].

2.1.6 Datasets and Loss Functions

There are numerous datasets that can be utilized for action recognition tasks, in-

cluding UCF101 [10], HMDB-51 [85], NTU RGB+D [86], Kinetics [69], Something-

Something v1 (SSv1) [3], Sports-1M [87], Charades [1], and CAD-120 [2]. However,

each dataset is utilized for a specific field of study. For instance, the NTU RGB+D

dataset [86] is used for action recognition models that concentrate on exploiting

human skeleton sequences. Additionally, Sports-1M [87] is more closely associated

with sporting activities, which are not the main focus of this study. Therefore,

we select datasets that have been used for high-level modeling of actions involving

humans and objects, in order to make fair comparisons with earlier works. In this

thesis, four different datasets are selected that contain videos with different actions,

most of which involve interacting with objects. The datasets and loss functions used

to train the proposed models in this research are explained below.

• The UCF101 dataset [10] includes a variety of human actions, such as playing

tennis and applying eye makeup. Since the scope of this research is recognizing
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HOIs, 20 classes related to HOIs from the UCF101 dataset (split 1) are used.

Figure 2.5 shows these 20 actions. The cost function used during training the

proposed network in Chapter 3 is Cross-Entropy, which for a training example

can be formulated as:

H(yi, y
′
i) = −

c∑
i=1

yilogy
′
i (2.12)

where yi and y′i are the actual and predicted probability distributions for action

classes, respectively. c indicates the number of action classes used in training

(e.g., 20). The loss over the entire dataset is formulated as:

loss =
1

m

m∑
i=1

H(yi, y
′
i) (2.13)

where m is the number of training examples. The goal during training is to

minimize this loss by gradient descent algorithm [88]. For evaluation, we use

the accuracy metric to measure the performance of the proposed model, which

can be calculated by dividing the number of correctly recognized action videos

by the total number of videos in the dataset. This dataset is used in Chapter

3.

• The Charades dataset [1] consists of 9,848 multi-label videos showcasing in-

door daily activities that involve humans interacting with various types of

objects. The number of videos in the training phase is about 8K, and 1.8K for

validation. In total, there are 157 action classes. Since the Charades dataset is

a multi-label video dataset, the proposed model is trained using binary Cross-

Entropy loss, and the final results are reported using mean average precision

(mAP). This dataset is used in Chapters 4 and 5.

• The CAD-120 dataset [2] contains 120 videos featuring 10 different daily life

interactions performed by 4 different subjects, as shown in Fig. 2.6. Depth

images, bounding boxes, and skeleton information are also available, but only

RGB images are used. Each video in CAD-120 [2] has only one high-level

activity label. Similar to the UFC101 dataset [10] and as in [89], the pro-

posed models are trained and evaluated using accuracy and cross-entropy loss,
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(a) Picking objects (b) Arranging objects (c) Stacking objects (d) Making cereal

(e) Taking medicine (f) Taking food (g) Cleaning objects (h) Unstacking objects

(i) Microwaving food (j) Having meal

Figure 2.6: Examples of human-object interactions in CAD-120 dataset [2].

respectively. This dataset is used in Chapters 3, 4 and 5.

• Something-Something v1 (SSv1) [3] contains 174 classes and 108,499 videos,

each with a single label. Unlike Charades [1], most videos in SSv1 have a clear

background, and actions involve hands interacting with objects rather than

the whole human body. Since it is a multi-class dataset, we use the standard

procedure for training (e.g. Cross-Entropy loss) and evaluating the proposed

model in Chapter 5. Two examples of videos can be seen in Fig. 2.7.

Moreover, in order to train the proposed model in Chapter 4 using knowledge distil-

lation, we have also incorporated a distillation loss between the student and teacher

networks. Further details can be found in Chapter 4.
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(a) Putting a white remote into a cardboard box

(b) Moving puncher closer to scissor

Figure 2.7: Interaction examples from Something-Something v1 (SSv1) dataset [3].

2.2 Human-object interactions (HOIs) in Videos

Recognizing human-object interactions requires an understanding of human actions

and how humans interact with objects in a video. Before the rise of deep learn-

ing, a range of crafted methods were utilized to identify actions and interactions.

These included strategies such as space-time volume techniques [90], space-time in-

terest points approaches [91], and methods centered around trajectories [92,93]. For

additional information, readers are directed to explore this survey [94].

In this research, our focus lies in the utilization of deep learning models. We

employ action recognition models as global descriptors and to extract human and

object features, thereby facilitating the modeling of their relations to recognize such

interactions. Accordingly, we have divided this section into three subsections that

focus on the primary relevant literature concerning the human-object interaction

approaches proposed in this thesis: temporal modelling, contextual understanding,

and attention, along with the long-range dependencies of HOIs. It’s important to

note that certain works may fall into multiple categories simultaneously. However,

we have assigned them to the most fitting category and have refrained from redun-

dant repetitions.
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Figure 2.8: Long-term Recurrent Convolutional Networks (LRCNs), from [11].

2.2.1 Temporal Modelling

For capturing temporal changes in sequences of frames, prior works have used either

2D or 3D CNN networks for recognizing actions in videos. Simple models for action

recognition can be created by first extracting spatial information from frames using

2D CNNs and then using various pooling procedures, such as max pooling [95]. In

fact, it is necessary to model the temporal relations between the CNN features of

various frames because a single 2D CNN cannot handle the temporal information in

videos. Therefore, in order to focus on temporal modeling, the Temporal Segment

Networks (TSN) [41] are presented. As input, each video is divided into K segments,

each containing an equal number of frames. Then, a frame or ’snippet’ is chosen at

random from each segment, and a 2D CNN is used as the basis for feature extraction,

producing the segment’s class scores. Finally, various aggregation algorithms such

as average pooling are used to combine the class scores from all video segments to

produce the video-level predictions. TSN is often trained with different modes such

as RGB and optical flow and fused via late-fusion. Although TSN can capture long-

term information, it cannot capture the temporal ordering of frames or more complex
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temporal correlations. Thus, improved variants of TSN are proposed, including

TRN [96] and TSM [97] networks, where relation and shift modules are utilized,

respectively, in order to extract and learn more information along the temporal

dimension.

Moreover, 3D convolutional neural networks have been proposed, where an ex-

tra time dimension is added to kernels to extract spatio-temporal features from

videos [49, 98–100]. Likewise, the I3D model has been introduced by inflating pre-

trained 2D convolution kernels to 3D to extract space-time features from video

clips [50]. In addition, the X3D network [101] expands the 2D architecture across

other axes, including depth, spatial, width, and frame rate, which enables training

the network with fewer parameters than other 3D networks such as Slowfast [100],

yielding comparable results.

To improve training efficiency, the R(2+1)D [102] model extends 3D CNNs by

splitting the spatial and temporal kernels into two separate operations, utilizing a

2D CNN for the spatial dimension and a 1D convolution for the temporal dimen-

sion. The R(2+1)D achieves better performance than 3D CNN convolutions on the

Sports-1M video dataset [87]. The studies previously mentioned aid in capturing

coarse features, including background information, when information from the entire

video is extracted and modeled equally. However, fine features like human-object in-

teractions that offer crucial clues regarding actions are not taken into account. Thus,

in this research, we use the I3D model as backbone and propose different modules

for learning human-object relations, which helps to boost the action recognition

models.

Alternatively, Recurrent Neural Networks (RNNs) are utilized for capturing se-

quential frame changes and predicting final actions in videos [11, 95]. Long-Short

Term Memory (LSTM), a type of RNN, is also used to represent temporal changes

between frames in long sequences. LRCN [11], presented in Fig. 2.8, is one of the

proposed RNNs for action recognition. The design of LRCN involves the use of

Convolutional Neural Networks (CNNs) to extract features of each frame at a spe-

cific time t and subsequently feed them to an LSTM cell. The output of each cell

at time t is used to predict the action at time t, implying that it has information
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from the previous time step t − 1. The final video classification score is calculated

by averaging the predictions made at each time step. LRCN is also used for other

tasks, such as image and video descriptions.

Furthermore, the ConvLSTM network is proposed as an extension of LSTM,

where spatiotemporal correlations can be captured by incorporating a convolutional

structure [103]. Other architectures that integrate convolutional and other recurrent

networks, such as the Gated recurrent unit (GRU), are also presented for recognizing

actions in videos. ConvGRU [104] outperforms 3D CNN in some action recognition

datasets, such as the 20BN Something-Something dataset [3], where temporal rea-

soning is crucial for identifying fine-grained actions present in the dataset.

Moreover, the authors of [105] argue that LSTMs have a higher capability to

capture the temporal features of a video sequence at a higher level, while 3D CNNs

are more effective at capturing the temporal relations between nearby frames within

a sequence. As a result, the I3D-LSTM model is proposed [105] as having superior

performance to I3D alone, where top-1 accuracy is improved from 94.3% to 95.1%

on the UCF-101 dataset [10].

Inspired by the success of recurrent neural networks (RNNs) in modeling se-

quence data, such as LSTM or GRU, they have also been used for spatio-temporal

reasoning with objects in videos [106]. In [106], an object-relational network (ORN)

is presented where each object in video frames is represented by its appearance,

shape (e.g. using a mask), and class. Pairwise relations hot between objects at time

t and a prior time step (e.g. t − 2) are learned via MLPs. Then, at time t, object

representations of a frame are learned by aggregating the relations at time t via

summation of hot . To learn the long-term dependencies between frames, a GRU is

applied, and the output is fed to a classifier. Along with ORN, a global representa-

tion of the video is also included, allowing for the capturing of the global context.

The inclusion of ORN in baseline models, such as Inflated ResNet-18, increased

accuracy from 38.3% to 40.9% on the EPIC Kitchens dataset [107]. Moreover, to

capture high-order object interactions, an attention mechanism (e.g., α-attention ) is

applied over K groups of objects at each frame, followed by an LSTM process [108].

Another relation network called the actor-centric relational network (ACRN)
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[109] is proposed to focus on the relation between actors and video-level features

for identifying actions and avoiding explicit object detection. In ACRN, pairwise

relationships between each spatial location in the 3D feature maps, which have

global video information, and each actor feature (including appearance and bounding

boxes) are computed via convolution operations. These relations, along with actor

features, are fed to a classifier to identify actions. On the basis of average precision

on the AVA dataset, ACRN outperforms the I3D model by 2.3% [110].

Furthermore, in [111], the Structural-RNN (SRNN) design was proposed, in

which HOIs are modeled using a spatial-temporal graph with an RNN. This method

can capture high-level information and perceive the sequence of human and object

interactions. Truong et al. [112] extended the SRNN by modeling object-object rela-

tions, where spatial and temporal information between objects was observed to rec-

ognize HOIs. The results illustrate that accuracy improved from 83.2%, as reported

in [111], to 90.4% on the CAD-120 dataset [2] for sub-activity recognition [112].

Skeleton and geometric features are used in [111, 112]. In contrast, in the proposed

network in Chapter 3, we exclusively employ visual features of humans and ob-

jects. Additionally, we propose utilizing a hierarchical design to learn human-object

interactions, where the temporal changes of humans and objects are individually

captured using LSTMs, and their H-O relationship is subsequently learned using

a bilinear layer. Later, through a deep global LSTM, high-level interactions are

learned. Chapter 3 provides more information. Therefore, in this study, we propose

utilizing LSTMs for the temporal modeling of humans and objects in videos, which

helps recognize actions. More details can be found in Chapter 3.

2.2.2 Contextual Understanding

Learning the context of human actions and interactions is crucial for understanding

actions within various forms of sources and features. For instance, context can be

captured using multi-stream networks, where each network is dedicated to extract-

ing a specific type of information, such as spatial, semantic, or temporal details from

a video. The most common multi-stream networks were proposed in an earlier study

by Simonyan and Zisserman [12], where two streams extract visual and temporal
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Figure 2.9: Two-stream Networks for action recognition, from [12].

(e.g., motion) features separately. As shown in Fig. 2.9, the RGB frame of a video

is fed to the first stream to capture spatial information. The second stream takes a

stack of optical flow as input to encode the temporal information of a video. Both of

these streams implement a deep ConvNet, and the Softmax scores of these networks

are combined via late fusion to obtain the final action label. When the second stream

is added, the spatial and temporal networks are improved by about 15% and 4%,

respectively, on the UCF-101 dataset [10]. This study has two principal limitations.

Firstly, the frames were sampled from videos and thus some of the temporal infor-

mation may have been missed. Secondly, the optical flow vectors must be computed

before being fed to the temporal stream. Numerous studies within the same line of

work have focused on exploring the most effective approaches for integrating spatial

and temporal stream networks for action recognition [113–115]. One such approach

is the ST-ResNet network [114], which utilizes residual connections from the tempo-

ral stream to the spatial stream, and experimental results have demonstrated that

these connections significantly enhance the network’s performance. Specifically, us-

ing residual connections improves accuracy by 3.3% and 5.0% on the UCF-101 [10]

and HMDB-51 [85] datasets, respectively.

Other two-stream networks utilized for action recognition, such as the Slowfast

network [100], use the same input mode, such as RGB, for both streams without
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incorporating optical flow as an additional input. Slowfast captures the spatio-

temporal features necessary for action recognition by employing distinct temporal

rates in each path. In the same video clip, the slow path employs fewer frames (T),

while the fast path uses a greater number of frames (αT) with a smaller channel size.

Additionally, connections from the fast pathway to the slow pathway are considered

after various residual blocks to merge the slow path’s features with the learned

representation from the fast path, which captures more motion information about

an action. Experiments demonstrate that Slowfast outperforms other models that

employ optical flows by solely utilizing RGB mode frames on the Kinetics-400 [69]

dataset with a 5.9% accuracy increase.

Moreover, a multi-stream network design is employed to detect human-object

interactions in images. This approach incorporates three distinct streams: human,

object, and interaction streams. The human and object streams specialize in learn-

ing specific features related to humans and objects, respectively. Simultaneously, the

interaction stream captures pairwise relations between them by integrating different

pieces of information concerning human-object relationships, such as spatial config-

urations [21,116]. Furthermore, contextual cues, including whole image features, are

integrated into both the human and object streams to enhance the network’s perfor-

mance [116]. Recently, human poses are utilized to enhance the human stream, while

semantic priors are applied to refine the object stream. These refinements have led

to promising results on two widely recognized human-object interaction datasets for

images, namely HICO-DET [21] and V-COCO [117]. However, image-based human-

object interactions are not suitable for application in videos. This is because they

do not consider the temporal relations and long-range dependencies of humans and

objects, which are necessary to maintain the context of human-object interactions

over time. For further insights into human-object interactions in images, readers are

encouraged to refer to this survey [118].

Furthermore, context of Human-object interactions (HOIs) in videos can be

learned using Graph neural networks, such as, graph convolution network (GCN)

[119] and graph attention networks (GAT) [66], where spatio-temporal relations be-

tween visual nodes, including humans and objects can be captured [111, 120–123].
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Space-time graphs have been proposed in [120], where object context relations during

time are captured via GCN and objects in adjacent frames are connected based on

their intersection over unions (IOU). The experiments in [120] on Charades [1] and

Something-Something v1 (SSv1) [3] datasets show better results than I3D and Non-

local models, which do not consider human-object relations. Additionally, in [124],

graph attention is used to model the relations between humans and objects, consid-

ering their spatial distance in each clip.

Besides that, Herzig et al. [125] propose to learn the hierarchical context of ac-

tions by combining the union box of both objects with object features to represent

the object and to have more spatial appearance information. Also, a non-local oper-

ation is employed to learn the relationship between objects at the frame level. The

temporal context of these relations is learned at a deeper level, and after aggregating

the relations at time t, the actions can be recognized. The proposed model in [125]

outperforms the model in [120] on the Charades dataset [1] by 1% mAP. In addi-

tion, object features are represented in [126] by using its annotations (e.g. bounding

boxes and categories) and used as graph nodes for spatial and temporal modeling,

along with global video appearance features, for recognizing actions. This model

outperforms I3D on Something-Something V2 [3] by about 5% top-1 accuracy.

Although earlier studies have focused on modeling various object features and

relations to improve the performance of action recognition models, the contexts of

humans and objects have not been sufficiently studied. Inspired by the Slowfast de-

sign, we propose to use two different contextual views of human-object interactions

where different patterns of interactions can be learned. Also, in contrast to con-

ventional procedures for fusing multi-stream networks such as early and late fusion,

we investigate incorporating knowledge distillation in the design of the proposed

network, which is covered in more detail in Chapter 4.

2.2.3 Attention and Long-Range Dependencies of HOIs

Attention mechanisms help the network focus on specific important information in

videos from either a spatial or temporal dimension [127–130]. Attentions with re-

current networks are utilized in numerous studies on action recognition to enhance
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Figure 2.10: Non-Local (NL) block, from [13]. T indicates the temporal dimension.
H×W is the spatial size while 1024 denotes the number of channels. ϕ,θ and g are
different embeddings (e.g. 1 × 1 × 1 convolutions) for the same input X. ⊗ and ⊕
are matrix multiplication and element-wise summation, respectively.

network performance [128, 131–134]. The first proposed network is in [128], where

a soft attention mechanism is incorporated with an LSTM network, and the atten-

tion score is learned between the current frame features and the hidden state of

the previous time step ht−1. The output of the LSTM at time t is also used to

predict the action class. Thus, predictions of 30 frames, which are sampled from

each video, are averaged to get the final action class. The findings from experiments

on three datasets, including UCF-11 [135], HMDB-51 [85], and Hollywood2 [136],

demonstrate that incorporating the attention mechanism improves model perfor-

mance compared to baseline models such as LSTMs or CNNs, which do not use

attention at all. Since the attention in [128] focuses on spatial attention at time t,

Du et al. [131] propose to consider spatio-temporal attention for LSTMs to capture

more contextual cues about actions. Furthermore, to focus on different aspects of

video information, two-stream LSTM networks are proposed [134], where temporal

attention is applied to optical flow images in the first stream, and the second stream

generates spatio-temporal attended features where RGB frames are used as input.
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Moreover, since 3D CNN networks deal with whole video information equally,

attention over temporal (e.g. frame level) and channel dimensions for 3D models

is proposed in [129] to capture the most discriminative information from videos.

This experimentally improves the performance of 3D models, with an accuracy

gain of roughly 4% on the HMDB-51 dataset [85]. Other forms of attention have

been proposed for action recognition, such as second-order pooling [130] and self-

attention [8, 13, 137]. The self-attention mechanism implies intra-relations where it

uses the same input to compute attention scores. In [13], the Non-local block (NL)

is proposed to be added after selective blocks of CNNs. Figure 2.10 shows a type

of non-local block operation (e.g. self-attention) for space-time input video tensor.

The results on Kinetics-400 [69] and Charades [1] show that adding the Non-local

block to either 2D CNN or 3D CNN (e.g. I3D) backbones improves the performance

of the network, indicating that it aids in learning long-range dependencies in videos.

Guo et al. in [137] argue that the NL block learns spatio-temporal correlations

of pixels concurrently, which may lead to capturing unnecessary information, espe-

cially for complex actions, and eventually result in incorrect classification of actions.

Thus, a separable self-attention (SSA) is proposed [137] to model spatial and tempo-

ral correlations in a sequential manner, where first spatial attention, including both

position and channel attention, at a frame level, is learned, then the temporal cor-

relations are processed. SSA outperforms the NL 3D CNN in terms of performance,

improving top-1 accuracy by 1.7% and 2% on the Something-Something-V2 [3] and

Kinetics-400 [69] datasets, respectively.

Considering the effectiveness of attention mechanisms in various networks, we

have incorporated attention mechanisms, including self-attention, into all of the

networks presented in this thesis, such as LSTMs, graph neural networks.

More recently, the success of transformer-based networks in natural language

processing (NLP) [8] has demonstrated their efficacy in learning long-range depen-

dencies. This success has extended to computer vision tasks, such as image classifi-

cation [9,138], tracking multiple objects [139], and action recognition [140,140–147].

The Vision Transformer (ViT) [9] achieved state-of-the-art performance in image

classification without applying convolution layers and has been extended to video
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action recognition, where spatio-temporal tokens are extracted from videos and fed

to transformer encoders [14,147]. In [142], the VTN network is proposed, where spa-

tial features of each frame can be extracted from any backbone (e.g., 2D ResNet-50

or ViT) and then fed to a transformer with Longformer attention for temporal mod-

eling.

Furthermore, Arnab et al. [14] proposed ViViT with various network designs to

model the space and time correlations between video tokens using different attention

mechanisms, including self-attention and dot-product attention. The video tokens

in [14] are mainly 3D tokens that are embedded from ”Tubelets” and can be seen as

spatio-temporal patches by considering the temporal dimension. Figure 2.11 shows

the tubelet embeddings. In [14], two main designs were proposed for modeling video

tokens, each with distinct approaches. In one of the proposed network architectures,

the transformer encoder receives spatio-temporal tokens as input. Pairwise inter-

actions between tokens from various temporal indices are learned in this design,

resulting in learning long-range dependencies between tokens. Alternatively, the

second model (FE: Factorized Encoder) learns the interactions between tokens from

the same temporal indices but different spatial indices via a spatial transformer.

Then, the spatial class token representations (e.g., class token) are passed to the

temporal transformer, and the output is used to classify actions. Among other al-

ternative models and prior methods that used deep 3D convolutional networks, the

FE model achieves the best results on three action datasets, including Epic Kitchens

(EK) [148], Something-Something-v2 [3], and Moments in Time [149].

Moreover, MVit [140] incorporates multiscale feature learning into transformer-

based networks by applying an attention pooling layer to reduce spatiotemporal

resolution while maintaining a lower computation cost compared to ViViT [14] or

VTN [142]. Recently, multi-view transformers were proposed in [146] to encode the

input video into N different views, with each view fed to a separate transformer

encoder. These views are then fed via a global transformer to output the classifica-

tion score. This design learns tokens (e.g., tubelets) reasoning at different temporal

indices in each view, which helps to understand actions. On various datasets, in-

cluding Kinetics-400 [69] and Something-Something v2 [3], MVT performs better
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than other transformer networks like ViViT [14], MVit [140], and other counter-

parts works such as Slowfast [100], which use various temporal frame rates within

each view (e.g., stream).

As the design of vision transformer (ViT) [9] includes dividing an image into

patches of tokens and learning the relation between these tokens, it is also used as

a relation module between different types of features. For instance, transformers

are used to learn visual relations between the features of humans located in the

center clip, which is considered as a query, and the features from the entire clip to

learn the context of the action by utilizing the properties of self-attention in the

transformer [150]. Similarly, long-term contextual information in videos is captured

using the Long-Term Feature Bank (LFB) Operator [151], such as non-local, which

learns relationships between object features derived from short-term clips and other

objects within a wide temporal window (e.g., long-term features). On the Charades

dataset [1], the LFB NL model increases accuracy by 2.8% compared to the model

proposed in [120].

Furthermore, transformers can capture the spatio-temporal context of objects

by considering spatial information such as location, as well as the category of the

object [152,153]. Additionally, human and object coordinates of each frame are used

as input tokens that are embedded and sent to spatial transformers for a few-shot

HOI recognition task, rather than using patches of a frame [154].

Motivated by the success of the Factorized Encoder (FE) design in [14] and

other transformers in modeling long-range dependencies, we propose using the ViT

transformer as a relation module for modeling human-object interactions. This is

done after extracting tokens from a CNN network. Our proposed network design

achieves better results compared to earlier works and other proposed networks in this

research. For more information about our network design, please refer to Chapter

5. In contrast to [154], which required precise object annotations, we use human

and object visual features as input tokens in the hierarchical transformers network

proposed in Chapter 5.
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Figure 2.11: Tubelet embeddings, from [14].

2.3 Conclusion

Convolutional neural networks (CNNs), recurrent neural networks (RNNs), and long

short-term memory (LSTM) networks are commonly used for action recognition

tasks, typically by utilizing the features of entire frames. These networks have also

been employed in previous studies to model the temporal aspects of humans and

objects. In Chapter 3, we introduce a novel approach that utilizes LSTMs with a

hierarchical design for modeling HOIs, with the goal of enhancing HOI recognition.

Our proposed method involves training two-level LSTM networks with an atten-

tion mechanism and a bilinear layer, enabling effective learning of the relationships

between humans and objects.

Moreover, recent methods for video action recognition, as reviewed in Section

2.2.2, have utilized two streams to capture better spatial and temporal information

about actions. These methods consider additional input modes, such as optical

view, or using the same mode but with different frame rates in each, as in SlowFast.

However, key discriminative indicators of an action, such as inter-object or inter-

human relations, have not been considered. Therefore, in Chapter 4, we propose a

network that leverages two different contextual views of human and object relations,

providing different cues for interaction that help recognize actions. The contextual

views help to capture human-object interactions both locally (spatially) and globally
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(temporally) throughout a video. We also propose context knowledge distillation

to transfer knowledge from the teacher’s contextual view of HOIs to the student

network, which incorporates information from different contexts of such interactions.

Unlike the methods reviewed in Section 2.2.3, which proposed various transformer-

based architectures for action recognition, we investigate the use of hierarchical

structures to model human and object interactions via transformers. In Chapter

5, we propose hierarchical transformer encoders and examine their effectiveness in

learning the relationships between human and object tokens in space and time, based

solely on visual appearance features.
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CHAPTER 3

Recognising Human-Object Interactions Using Attention-based

LSTMs

3.1 Introduction

Distinguishing human actions is a major challenge in computer vision. The ability

of deep learning algorithms to recognize human-object interactions (HOIs) aids in

addressing this challenge [23]. HOI identification generally involves localizing the

human and corresponding object for interaction. In the case of videos, both the

human and the object need to be tracked over time, and their relationships must

also be modeled. This phase is essential for recognizing HOIs [21]. To improve the

accuracy of HOI recognition, researchers have utilized various forms of information,

such as the physical appearance of the human or object [23,24,155], the posture of the

human body [26,156], where the human is looking [156], and the positioning of the

object relative to the human [155]. Although HOIs have been extensively studied in

terms of images, there have been limited studies examining HOIs from video streams.

This chapter investigates HOIs in videos by proposing a deep learning framework

that uses hierarchical LSTMs to capture spatio-temporal information of interactions.

HOIs are recognized based only on RGB frames from videos without using skeleton
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or depth information. Training a detector from scratch to find the human and

object in each video frame requires extensive human and object annotations, such

as their bounding boxes, which is time-consuming. To avoid this, we use a pre-

trained detection model to localize humans and objects in videos. We also use

LSTMs and an attention mechanism to highlight important parts of human and

object temporal information. Each human and object in videos is represented by

LSTMs, and the second-level global LSTM captures high-level information of object

and human interaction. This chapter’s contributions can be summarised as follows:

• Proposing an LSTM-based framework with attention mechanism for recogniz-

ing human-object interactions (HOIs) in videos. The HOIs are modeled by

using hierarchical LSTMs to capture the dynamics of the human and objects

in a video sequence.

• Investigating the use of a bilinear layer which can handle the features of human

and object, generating a discriminative feature representation from human and

object information.

• performing experiments on two datasets, including a subset of the UCF101

dataset (UCF101-20) related to HOIs [10] and the CAD-120 dataset [2]. Using

a bilinear layer on the UCF101-20 dataset can generate a more discriminative

feature representation for recognizing HOIs, resulting in a 5% improvement

over the conventional method of feature fusion, such as concatenation. Fur-

thermore, the proposed network design yields promising results.

3.2 Methodology

3.2.1 Preliminary

Recurrent neural networks (RNNs) are a powerful network architecture for recogniz-

ing sequential data of different lengths, such as sentences and sequences of images

in a video. In traditional neural networks, layers behave independently. However,

in RNNs, all inputs are related to one another in a way that the same task is per-

formed for all elements of a sequence. The type of RNN used in this chapter is
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Long Short-Term Memory (LSTM) [58]. In LSTM, two vectors are involved at each

time step: the hidden vector and the cell state vector. LSTM can add or remove

information to the cell state by using different gates, namely input, forget, and out-

put gates. This design helps maintain the long dependency of a sequence in LSTM.

More details about the LSTM network are provided earlier in Subsection 2.1.2. In

the proposed model, two different modes of LSTMs are used, including local and

global LSTMs. At a lower level, two local LSTMs are employed to independently

model the temporal information of humans and objects, one for each category (e.g.,

LSTM H for human and LSTM O for objects). At a higher level, the aggregated

human-object features are then fed to the global LSTM

3.2.2 Human-object interaction model

As mentioned earlier, limited research has addressed the problem of HOIs in videos.

Learning the global description of a video’s temporal information is important for

accurately classifying actions. Inspired by the success of employing a hierarchical

architecture in modeling the temporal dynamics of group activities [157], we propose

a hierarchical design for handling HOIs. Firstly, the inputs to our framework are

human and object tracklets, which are sequences of bounding boxes of humans and

objects in a video. These tracklet features are fed to LSTM layers. Specifically,

each tracklet, including human and object tracklets, will be fed into a LSTM layer

to capture intensive temporal information in a sequence. The proposed framework

can be divided into three parts: input pipeline, modeling H-O interactions, and

classification procedure.

• Input pipeline: To model human-object interactions, it is essential to have

information about the parts involved in an interaction. Therefore, spatial

information (e.g., appearance) of humans and objects in videos is crucial.

This information includes the shape and texture of humans and objects in

video frames. The input of the model consists of object and human tracklets

in a video sequence. The spatial features of these tracklets are extracted via

convolutional neural networks (CNNs). Here, pre-trained models including

ResNet [48] and VGG-19 [46] for feature extraction are used, which include a
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Figure 3.1: The proposed hierarchical LSTM framework.

series of convolutional layers with kernels that extract different features, such

as edges, color, gradient orientation, etc., from the bounding boxes around the

person and object in each video frame.

• Modeling H-O interactions: As shown in Figure 3.1, both the human and

object tracklet features are fed into LSTMs. Specifically, the human tracklet

is fed into an LSTM to capture the temporal information in human movement

(e.g., motion), while the object’s tracklet is fed into another LSTM to learn the

object’s motion during the video. A soft attention mechanism [158] is applied

to the output of both LSTMs related to each of the human and object. In the

soft attention mechanism, a soft alignment score is computed between the last

hidden state and each hidden state in the LSTM layer through multiplication.

This score is then fed into a softmax layer where the output represents the
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attention distribution. This output is considered as attention weights with the

size being equal to the number of time steps in the LSTM layer. Finally, the

context vector is computed by multiplying the attention weights (e.g., scores)

and LSTM hidden states. The vectors generated after applying the attention

mechanism over LSTMs are fused using a bilinear layer. The purpose of this

layer is to aggregate features from humans and objects, which can imply the

pairwise interactions between these H-O features [159]. The bilinear layer

operation can be formulated by:

Y = WAh ⊗ Ao (3.1)

where Ah and Ao are the human and object features after the attention layer

is applied, respectively. W is the learnable weights and ⊗ indicates the outer

product. This can produce a representation of human and object interactions.

Y is then fed to a deep LSTM to learn high-level information about HOIs.

This is followed by a classifier with the softmax activation function. Figure ??

illustrates the proposed framework.

• Classification procedure: To predict the action label of each video, a one-

layer dense classifier with a softmax activation function is utilized, which is

commonly used in multi-class classification problems to compute the probabil-

ity for each class. The propsed model is trained using the cross-entropy cost

function, and the loss over the entire dataset is formulated as:

loss =
1

m

m∑
i=1

H(yi, ŷi) (3.2)

Where m is the number of training examples and H is the cross-entropy loss.

yi and ŷi are the actual and predicted probability distributions for action

classes, respectively. The goal during training is to minimize this loss using

the gradient descent algorithm.
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3.3 Experiments

3.3.1 Datasets and evaluation metrics

• Datasets: As initial experiments, we validated our proposed model on the

UCF101 dataset [10]. UCF101 contains a variety of human actions that are

performed either indoors or outdoors, such as applying eye makeup and skate-

boarding. Since the scope of this study is recognizing HOIs, we used 20 classes

from the UCF101 dataset (split 1) that are related to HOIs. The set of 20

action videos present several challenges such as differences in lighting condi-

tions, the presence of cluttered backgrounds, diverse camera viewpoints, and

variations in object appearances, as well as varying video quality. We further

evaluated our model on the CAD-120 dataset [2], which contains 120 videos

of ten human actions involving interactions with objects, performed by four

subjects. The presented dataset poses several challenges that are indicative of

real-life situations encountered during object interactions. An example of an

intra-variation problem arises when four individuals execute identical actions,

yet adopt varying postures or hands. Furthermore, the existence of occlusion

among objects poses an additional difficulty in the dataset. Human and ob-

jects annotations are provided with the dataset, and we used only the RGB

features of humans and objects.

• Evaluation metrics: For both datasets, we measure the performance of our

model using accuracy, which is calculated by dividing the number of correctly

recognized action videos by the total number of videos in the test set.

3.3.2 Implementation details

UFC101:

PyTorch is used to implement the framework. In order to detect and track humans

and objects in video frames, the You only look once (YOLO) [160] object detection

model pre-trained on COCO dataset [161] and Simple online and real-time tracking

(SORT) tracker [162] are employed. The detected object and human bounding boxes
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are then fed to ResNet152 [48] to extract spatial features.

In the UCF101-20 experiments, the training set consisted of 1,093 videos, with

25% of those videos reserved for validation, and the testing set comprised 486 videos.

From each video, 28 frames are sampled uniformly, and the detected humans and

objects are cropped and resized to 224x224 to meet the required size for the fea-

ture extraction models, including ResNet-152 [48] and VGG-19 [46]. For training,

Adam optimizer [163], which has been empirically shown to be better than others in

terms of convergence speed, is chosen with the learning rate set to 10−4. To reduce

overfitting, batch normalization and regularization techniques such as dropout are

employed. Since pre-trained models are used for detection and feature extraction,

the network does not follow an end-to-end training approach. All hyper-parameters

are only trained after the pre-trained model has extracted features. The training is

carried out using a batch size of 32 videos and for 40 epochs. The training and vali-

dation accuracy against 40 epochs are shown in Figure 3.3. The model is trained at

different epochs, such as 20, 30, and 40 epochs, and the highest validation accuracy

is achieved when training the model with 40 epochs. All experiments in this study

are conducted on a single Nvidia GeForce RTX 2080 Ti GPU.

CAD-120:

In order to extract human and object features from each frame, the method described

in [164] is followed, where ROI crop is employed and human and objects are resized

to prepare them for use as input to Resnet-50. Thus, each human and object has

a feature dimension of 2048. The model is trained for 100 epochs using Adam

optimizer with a learning rate of 2e-6. The learning rate is decayed by 0.8 after

50 epochs. Additionally, Leave-One-Out cross-validation is used, where one subject

out of four subjects is used for testing the model in each fold.

3.3.3 Results and discussion

UFC101: As can be seen in Table 3.1, the results indicate that the encoding of

human-object interaction can be improved by including a bilinear layer, rather than

simply concatenating human and object features. Additionally, the importance of
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Table 3.1: Results of the proposed framework.

Architecture Acc.(%)

ResNet-152 + Our model with attention and con-
catenation

59.77

ResNet-152 + Our model with attention
and bilinear layer

64.50

VGG-19 + Our model with attention and bilinear
layer

55.66

ResNet-152 + Our model with attention and bi-
linear layer(w/o a global LSTM)

63.05

ResNet-152 + Our model with bilinear layer(w/o
attention )

46.14

different parts of our model was evaluated. The model was trained without the

final global LSTM layer, resulting in a drop of accuracy to 63%, highlighting the

important role of the global LSTM layer in modeling HOIs. The model was also

run without applying the attention mechanism, resulting in a very low accuracy of

46.14%. This indicates that giving more attention to the significant part of the video

sequence improves the learning process. Our model was also evaluated using VGG-

19 model [46] as feature extraction instead of ResNet-152, and the results confirmed

that using residual mapping in ResNet-152 leads to extracting more complex features

than stacking convolutions in VGG-19. This implies that using better models for

feature extraction and detection leads to better results in terms of accuracy. Fig.

3.2 shows the confusion matrix for the performance of our proposed model using the

ResNet-152 backbone with respect to 20 human actions that appear in the UCF101-

20 dataset, achieving an accuracy of 64.50%.

In fact, Comparing our results with existing methods is challenging because the

reported results on UCF101 are based on using all 101 categories in the dataset,

whereas our study focuses on only 20 classes, which are related to the scope of this

research. Thus, as we use a subset of the UCF101 dataset mostly related to human-

object interactions, it would not be fair to compare our results with other methods

that have not reported results on the same subset.

Moreover, the proposed method assumes that the main and most important
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Figure 3.2: Visualization of confusion matrix for UCF101-20 dataset [10] after ap-
plying our proposed model.

object for an interaction has already been detected. However, in cases where a

human is interacting with objects, it is not easy to detect the target object for

the interaction using pre-trained detectors. Figure 3.4 illustrates some false detec-

tions. Furthermore, in real-world cases for interactions, more than one object can

be considered important for interactions. Thus, in the next experiments, we use the

ground truth of objects that are available in the CAD-120 dataset. For the object’s

LSTM, we concatenate the features of objects in a frame at time t to form the object

representations for LSTM input at time t.

CAD-120: The ablation studies on CAD-120 [2] are presented in Table 3.2.

It is observed that the proposed model helps to capture more discriminative cues
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Figure 3.3: Training our model with 40 epochs

Figure 3.4: Some of false detections cases: (Left) Drinking bottle is detected as the
main object for interaction instead of lip brush. (Right) A Cup is detected as the
main interacting object instead of the keyboard.

about human interactions, with the accuracy reaching 94.35%. Without considering

temporal learning, where only human and object features are used and pooled over

time, the accuracy drops to 86.69%. Comparing the bilinear layer with just com-

bining features from human and object LSTMs, we can observe the importance of

the bilinear layer for learning the relation between humans and objects, where the

accuracy increased by around 3%. Finally, by adding attention and global LSTM,

the model achieves the best results. Fig. 3.5 shows the confusion matrix for the

performance of our model towards human interactions present in the dataset. Also,

since recent transformer networks boost the performance of models in different com-

puter vision tasks, we replaced the LSTMs and attention layers with transformers.

The results show improvement in the model’s performance, which is expected since

transformers have the power to model long-range dependencies of humans and ob-
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Table 3.2: Results of the proposed framework on CAD-120 [2].

Architecture Acc.(%)

baseline 86.69
Our model with summation (w/o a biliner/global
LSTM/attention)

89.98

Our model with bilinear layer only(w/o a global
LSTM/attention)

93.37

Our model with attention, global LSTM and
bilinear layer

94.35

Our model with transformer and bilinear
layer

95.90

jects in videos. More details about transformer design are provided in Subsection

2.1.1.

Comparison to prior works: Table 3.3 reports the accuracy achieved by

prior works using the CAD-120 dataset [2]. As we can see, our model outperforms

the previous ones even when only using visual features, compared to [2, 16], where

additional depth information is included. Moreover, our model demonstrates the

importance of temporal modeling of human and objects for recognizing actions and

achieving better results compared to [89], which uses information from the entire

video frames.

Table 3.3: Results with CAD-120 [2]. Note that in [2, 15–17] additional skeleton or
depth information has been employed.

Model Acc.(%)

Wang et al. [15] 81.2
*Liu et al. [16] 93.3
*koppula et al. [2] 80.6
*Tayyub et al. [17] 95.2
Sanou et al. [89] 93.6
our model 94.35
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Figure 3.5: Visualization of confusion matrix for CAD-120 [2] after applying our
proposed model.

3.4 Conclusion

This chapter introduced a new framework designed to solve the problem of human-

object interaction recognition using LSTMs with attention and a bilinear layer to

model human and object temporal information. The results show the importance of

a hierarchical design that directs the network to learn high-level information about

an interaction.

One of the drawbacks of the proposed method is that it does not consider the

spatial relations between objects within the same frame, which provide important

cues about the local context of an interaction. Moreover, in real-world interactions,

not all objects appear at all times as they may disappear at one time step and reap-

pear in another time step. Hence, using an LSTM for objects may not be practical

in such cases because, in some time steps, the object may disappear. Therefore,
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in the next chapters, Chapter 4 and Chapter 5, we propose to use RPN networks

to produce object proposals at each frame, which can eventually capture all the

objects that appear at different time steps This can be a solution for not having the

ground truth bounding boxes. Additionally, in the upcoming chapter, we consider

all humans and objects as nodes in graphs and study the global and local context

of human-object interactions for recognizing actions. Also, as more than one ob-

ject can be involved in an interaction, we consider all the objects that appear in

a scene to learn the most important objects for recognizing an interaction. Thus,

not only human-object relations but also object-object relations are included in the

next chapter
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CHAPTER 4

Distillation of Human-Object Interaction Contexts for Action

Recognition

4.1 Introduction

Chapter 3 presents a novel model for recognizing human-object interactions, which

emphasizes on temporal learning of each human and object individually before uti-

lizing a bilinear layer to learn their higher-level relationship. However, this approach

fails to consider the context of human-object interactions, such as the local relation-

ships between objects at a particular time t. Therefore, in this chapter, we investi-

gate methods to capture the interaction context by incorporating diverse relational

views of humans and objects. Also, this chapter focuses on indoor and daily human

interactions because they represent some of the most common situations humans

encounter on a daily basis. This makes them particularly pertinent for practical

applications, including surveillance and human-computer interaction (HCI).

Human action recognition tasks that typically involve interaction with objects

are challenging even for deep learning methods especially under complex scenarios.

A human can interact with the same object but performing different actions. For

example, a human can hold a laptop and can put it somewhere. These two actions,
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“hold” and “put”, are different but they involve the same object. In addition,

a variety types of objects afforded to same action (e.g., refrigerators and doors

can be involved in the same interactions including open and close) needs to be

considered [165]. Moreover, the existence of different objects around a human could

confuse model predictions. For example, if a human is drinking a coffee and there

is a book nearby, a model may inaccurately predict that the human is both reading

and drinking. Furthermore, during a video sequence, the states of humans and

objects change over time, such as a human can hold an object and release it at

any time step, followed by interacting with another object which makes identifying

correct interactions very challenging. Hence, identifying humans and objects at each

time step and learning their relations can help understand a scene. This implies

learning objects that are closely located for identifying interactions. The transition

of human and object states over time also offers crucial cues for understanding

what a human is performing. Consequently, it is important to capture contextual

information about interactions at a specific time and throughout a video, making

action recognition success. Although modelling HOIs has been broadly studied

in images [21, 24, 25, 35], it has received less consideration in videos. Even deep

learning methods have been developed for recognizing human actions in videos,

most of them, including Covnet [12], recurrent neural networks (RNNs) [11, 166]

and 3D convolution models [50,102], only take individual frame-wise information as

inputs without explicitly modeling human-object relations across a video sequence.

Hence, such methods failed to capture useful global context cues, i.e., long-term

human object dependencies, for assisting action recognition. Recent works [106,120,

125,126,167] have proposed to model human-object relations by performing spatio-

temporal reasoning through multi-head attention mechanism for recognizing actions

in videos. As they capture more context cues to reason HOIs, they have achieved

promising results over baselines that do not consider human-object relations.

In this chapter of our research, we propose to capture human-object relations

from their local and global contextual views as well as transferring knowledge be-

tween these views. The local contextual view captures human-object relations at

a specific time, e.g., spatial relations. The global contextual view encodes human-
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object relations over time, e.g., temporal relations, to capture long-term human-

object relations. The design of the network for global and local contextual views is

flexible. Motivated by the success of graph attention networks (GAT) [66] in dif-

ferent tasks including person re-identification [168], action recognition [62,120,169]

and video question answering [170], our method exploits GAT to construct our two

contextual views modules. Since the global context of an interaction offers com-

plementary information to the local contexts of such interaction and vice versa,

previous works combined different types of context features via concatenation [126]

or summation [120], or even considered the global features as an extra node in the

graph [171]. Inspired by [172] and instead of learning these contexts via features

level which are prone to noise, we propose to apply knowledge distillation, transfer-

ring knowledge about interactions from global to local contextual views, and vice

versa. We, therefore, exploit teacher-student network design, investigating which of

the proposed contextual views can form a better teacher, offering richer HOI infor-

mation to guide the student network for improving action recognition performance.

To the best of our knowledge, we are the first to investigate knowledge distilla-

tions between two HOI contextual views for action recognition in videos. The main

contributions of this chapter are:

• Proposing a novel teacher-student network based on graphs neural networks

to learn spatial and temporal interrelations between humans and objects in a

video from two different contextual views. Hence, the long-term and non-local

dependency between humans and objects across video frames can be captured.

• Investigating how knowledge from the teacher’s contextual view of interac-

tions can be obtained, and distilling it to the student’s contextual view of

interactions to improve action recognition performance.

• Evaluating our model on Charades and CAD-120 [2] datasets [1] and conduct-

ing comprehensive experiments in transferring knowledge between local (e.g.,

Spatial) and global (e.g., Temporal) contextual views of human-object inter-

actions. Our teacher-student design is effective to distill knowledge between

global context and local context graphs. We also observe that the student
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Figure 4.1: Overview of our proposed GLIDN network.

network outperforms its teacher by exploiting both global and local contexts

of an interaction.

4.2 Methodology

4.2.1 Network overview

Figure 5.1 shows the architecture of our GLIDN. It takes video frames and the

bounding boxes of human and objects at each frame as inputs. Frame features (e.g.,

appearance features) are then extracted by a convolutional neural network, such as

ResNet [48]. RoIAlign [173] is then applied to extract features of each human and

object boxes from the backbone feature map. The bounding boxes are generated

via Region Proposal Network [174] if they are not available in the dataset. These

extracted region features are used as the initial features of graph nodes in both the

global and local contextual views. The human-objects relations from the teacher

contextual view are distilled into the student context representation by aligning

logits from the two contextual views.
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4.2.2 Global and Local Context Graphs

As mentioned earlier, we utilize graph attention network (GAT) [66] as our graph

networks to learn the relations between human and objects from different contextual

views.

The global context graph is constructed to learn the relation between each entity

(e.g., human or object) and all other entities in a video. The graph is constructed

based on the learned adjacency matrix between humans and objects over time in a

video as in [120].Hence, the interaction score between two nodes in GAT is:

αi,j = σ(a[Wo(xi)|Wo(xj)]) (4.1)

where Wo is a learnable transformation which is shared between object nodes in

a video. a is a weight matrix projecting the concatenated features to a scalar

that reflects attention coefficient between two nodes (e.g., humans or objects). ”|”

indicates concatenation. In this global context graph, coefficients represent the

learned interaction scores between humans and objects. In other words, αi,j is

a scalar that represents the relation between two nodes i and j (e.g. edge) in the

adjacency matrix A, which is of the size N×N where N is the number of humans and

objects that appeared in the video. σ is a nonlinearity function such as LeakyReLU.

Later, αi,j is normalized across all other nodes within the video with respect to node

i via softmax. Thus, the updated node features via GAT can be formulated as:

xi =
∑
j∈N

αi,jWoxj (4.2)

Through this graph, long-term dependency of HOIs in a video can be captured since

each object is attended to all other objects over the video at different time frames.

On the other hand, in the local context, there are T number of graphs, where

T indicates the number of frames in the video. Through these local graphs, besides

relations induced by closely located humans and objects, non-local dependency rela-

tions between human and objects in a video frame can also be captured. Non-local

means when objects and humans are distant from each other within a frame. Hence,
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each node captures local contextual information via learning relation with other

nodes (e.g., human or objects) within the same frame regardless they are spatially

close to or distant from each other. Local context is therefore learned from various

interactions in which humans / objects attend to others in the same frame.

In short, the way of updating graph nodes is the same in both global and local

graphs using Eq. 2, yet the nodes relation scope is different. In global graph, each

graph node attends (learns relation) to all other nodes in the video. In contrast, in

local graph, only relations between nodes at the same frame is learned. Hence, the

local and global contexts use the same operation (e.g., GAT) but consider different

structures. Through these graphs, the relations between humans and objects can

be learned even though they are not nearby in space and time. Hence, various

human-object, object-object and human-human relations within individual frames

and throughout a video can be extensively learned.

4.2.3 Global and Local Context Distillation

In order to have an informative representation of HOIs, features from both global

and local contextual views should be fully utilized. This may not be simply done by

combining features from the two contexts, despite it is a standard way for gathering

information from different sources or views. In contrast, we adapt a teacher-student

framework to utilize global and local context of HOIs through knowledge distillation.

To implement such a knowledge transfer, we incorporate soft labels from the teacher

context graph network to guide the student context graph network during training.

These soft targets are probability distributions from the logits in the teacher network.

In our experiments, different distillation losses are utilized, depending on the

nature of a dataset. For CAD-120 dataset, we minimize the KL divergence between

soften labels of teacher and student as in [172,175]. For Charades, we use l2 loss as

distillation loss to meet the property of training multi-label videos. Hence, the l2
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distillation loss can be formulated as [176]:

LDistill =
1

n

n∑
i=1

(P (t)i − P (s)i)

P (s)i =
1

1 + e
lc
T

(4.3)

where P (t)i and P (s)i are softened sigmoid predictions from teacher and student

networks, respectively. lc is the logit from the last fully connected layer in the

network, and T is a hyper-parameter that represents the temperature for class c

[176].

4.2.4 Training

We first train teacher network, which captures one contextual view (e.g., global

context) of HOIs along with hard labels, using cross-entropy loss. We then fix the

teacher network and train the student network which is another contextual view of

HOIs (e.g., local context). Hence, the objective function for training the student

network can be:

Lstudent = λ1LCE + λ2LDistill (4.4)

where LCE is cross-entropy loss between student predictions and hard labels (e.g.,

ground truth). λ1 and λ2 are hyper-parameters for balancing the two losses and are

set empirically (see Section 4.3.4). For testing, the results is reported using only the

student network.

4.3 Experiments

4.3.1 Datasets and Settings

Datasets. We conduct extensive experiments on two public datasets, including

Charades [1] and CAD-120 [2]. We particularly choose these datasets not only

because they are used for evaluating action recognition models but also because

they have a variety of human object interactions where this research focuses on. We

demonstrate the flexibility and capability of modelling human interactions via our
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Taking a laptop from somewhere  Holding  a laptop     Putting a laptop somewhere                     

Opening a refrigerator    Putting groceries somewhere      Closing a refrigerator                          

Holding a box              Holding  a towel                              Washing a window                          

Figure 4.2: Examples of HOIs from Charades dataset [1].

proposed model by considering large-scale and small datasets as well as diverse 2D

and 3D backbones using only the RGB mode. In this chapter, we focus on indoor

and daily human interactions that are presented in Charades and CAD-120 datasets.

As such, we have not used UCF101-20 dataset [10] as we did in Chapter 3, since

that dataset includes some outdoor and sporty interactions, such as soccer juggling.

Evaluation Metric. Since Charades dataset is a multi-label video dataset,

we use mean average precision to report the final results. In contrast, each video in

CAD-120 [2] has only one activity label. Thus, accuracy is adopted as the evaluation

metric as in [89].
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4.3.2 Implementation Details

For implementation, we use Pytorch deep learning framework. Below are implemen-

tation details for the Charades and CAD-120 datasets.

Charades: For extracting the bounding boxes for video frames in Charades,

we use RPN which is pre-trained on MSCOCO dataset [161] with ResNet-50-FPN

backbone. We use the top 15 proposals at each frame. These proposals are class-

agnostic where the top proposals mean that the abjectness score is high (e.g., the

confidence score that a bounding box contains an object). Since person is a class

in MSCOCO dataset [161], the RPN can generate proposals that contain humans.

These proposal features (bounding boxes) represent human and object nodes in the

graphs.

For training our GLIDN, we follow training procedure in [120] and we use In-

flated 3D ConvNet (I3D) model [50] with Resnet-50 and Slowfast-R50 [100] as our

backbone networks. We sample 32 and 64 frames as in [100] and [120]) from each

video as input with 224×224 pixels for I3D and Slowfast-R50, respectively. The

inputs are randomly cropped such that the shorter side is sampled in [256, 320]

pixels.for both I3D and Slowfast backbones, humans and objects are projected from

16 frames (the temporal dimension) where in the I3D one frame is sampled from

two frames as in [120]. In Slowfast, the temporal stide is 4 where from 64 frames we

sample 16 frames.

For I3D backbone, we initialize it with pretrained parameters on Kinetics-400

dataset [69] from [177]. Table 4.1 depicts the backbone configuration which is

adapted from [120]. The output of the backbone, which is used for extracting the

features of human and objects, is of size of 16×14×14×2048 dimensions, where the

first dimension is the temporal dimension and 14×14 are the spatial dimension. The

last dimension indicates channels. As in [120], we add 1×1 convolution layer on the

top of the backbone to reduce channel dimension to 512.

For Slowfast-R50 backbone, we adopt it from [177] where it is already trained

on Charades dataset.For Slowfast backbone, we extract human and objects features

from the Slow path where the feature map size is 16×16×16×2048. Similar to I3D,

we add 1×1 convolution layer to have 512 channels.
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Layer Configuration Output size

input frames - 32×224×224

conv1 5×7×7, 64, stride 1, 2, 2 32×112×112

pool1 1 × 3 × 3, max, stride 1, 2, 2 32×56×56

res2

 3× 1× 1, 64
1× 3× 3, 64
1× 1× 1, 256

 ×3 32× 56× 56

pool2 3 × 1 × 1, max, stride 2, 1, 1 16×56×56

res3

3× 1× 1, 128
1× 3× 3, 128
1× 1× 1, 512

 ×4 16× 28× 28

res4

 3× 1× 1, 256
1× 3× 3, 256
1× 1× 1, 1024

 ×6 16× 14× 14

res5

 3× 1× 1, 512
1× 3× 3, 512
1× 1× 1, 2048

 ×3 16× 14× 14

Global Avg , FC 1×1×1

Table 4.1: ResNet-50 I3D Backbone that is used in our model.

60



Table 4.2: Configuration of our global and local contextual views for CAD-120
Dataset [2]. B indicates batch size. 30 is the number of frames that we use to extract
human objects features and 6 is the maximum number of human and objects at each
frame.

Model Output size

Global context (GC) B×30*6 × 2048
Average over nodes (GC) B× 2048
Local context (LC) B*30×6 × 2048
Reshape (LC) B×30×6 × 2048
Average over nodes (LC) B×30× 2048
Average over T (LC) B× 2048

As in [120], we apply RoIAlign [173] on the output feature maps of the backbones

(before the FC) and each node in the graph is with a fixed dimension of 7×7×512

(1×1×512 via max pooling).

Moreover, similar to [120], in I3D backbone, we concatenate the backbone fea-

tures after performing average pooling with a contextual view features (e.g., after

pooling over N nodes). The concatenated features are then fed to a fully connected

layer (FC). Similarly, in Slowfast we concatenate both Fast and Slow paths with the

pooled nodes features. Thus, the final feature to represent a contextual view is a

concatenation of 256 (Fast), 512 (Slow) and 512 (a contextual view’s nodes) features

after pooling. A single Graph attention (GAT) layer is used in student and teacher

networks. Table 4.3 shows the details of graphs in teacher and student contextual

views.

We train I3D backbone for 60 epochs with a batch size of 8 videos, where the

learning rate is set to 0.018 for the first 40 epochs and is reduced by a factor of 10

for the last 20 epochs. Following the previous works including [120, 125, 167], we

use stage-wise training strategy where the model is trained end-to-end in the second

stage for 30 epochs.

We adapt binary cross-entropy with sigmoid activation as a loss function for

multi-label video classification in addition to the distillation loss.

For inference, we perform multi-crop-view inference on each video. In other word,

we sample 10 clips from each videos and perform multi-crop testing as in [125]. Later,

the result is reported based on fusing scores from 30 views via max pooling.
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Table 4.3: Configuration of our global and local contextual views for charades
Dataset [1]. B indicates batch size. 16 is the number of frames that we use to
extract human objects features and 15 is the number of human object proposals at
each frame.

Model Output size

Global context (GC) B×16*15 × 512
Average over nodes (GC) B× 512
Local context (LC) B*16×15 × 512
Reshape (LC) B×16×15 × 512
Average over nodes (LC) B×16× 512
Average over T (LC) B× 512

CAD-120: We sample 30 frames uniformally from each video and we used the

bounding box annotations that are provided within the dataset. Also, as in [164], we

use the ResNet-50 [48] pre-trained model on ImagNet [178] to extract humans and

objects features without fine-tuning because CAD-120 dataset has a small number of

videos. For each bounding box in a frame, we apply RoI cropping and then reshape

it to meet the input size of 224×224×3 for 2D ResNet backbone. Therefore, human

and object node features are with the size of 2048 dimension that are produced by

ResNet-50.

Moreover, we only use the contextual view features (e.g., without concatenating

with the ResNet-50 features) for recognizing actions. For teacher and student net-

works, we used three graph attention layers in each of the networks. Details of the

last Graph layer is presented in Table 4.2. For the first and second layer, the output

size is of B×30*6 × 2048 and B*30×6 × 2048 for global (GC) and local contextual

(LC) views, respectively.

Table 4.4: A summary of training settings in our experiments on CAD-120 [2] and
Charades [1].

CAD-120 [2] Charades [1]

Optimizer Adam SGD
LR 2.e-5 0.018
Epochs 100 60,30
Decay each 50 steps each 40 steps
# of GAT Layers 3 1
Training procedure LOSO-CV Stage-Wise
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Besides distillation loss, we train our model with cross-entropy loss with an

initial learning rate of 2.e-5. We train our model for 100 epochs in total using

Adam optimizer [163]. Also, Leave-One-Subject Out Cross-Validation (LOSOCV)

is used for training the proposed network. Hyper-parameters for our training are

summarized in Table 4.4.

4.3.3 Comparison with State-of-the-Arts

As shown in Table 4.6 and Table 4.5, we compare our GLIDN with all prior meth-

ods that applied on CAD-120 and Charades datasets, respectively. Our approach

achieves the best performance.

Charades: It is noted that on Charades, our network outperforms the baselines

including I3D and Slowfast, which do not consider spatio-temporal contextual views

of objects. Our network also performs better than STRG [120], which has used

spatio-temporal object relations. Although our global context graph is the same

as in STRG [120] in term of the temporal range of objects and human, there are

three main differences. First, we use graph attention instead of graph convolution

network that used in STRG. Second, in our model, we consider this graph as a

teacher or a student network whereas in STRG it is just a graph that is combined

with another non-learnable “spatio-tempral graph”. Third, we explore knowledge

distillation for capturing more HOI contextual cues, while the work in STRG follows

the common method for training their model (e.g., binary cross-entropy loss only).

This implies that our approach of using different contextual views of object relations

via distillation can help the model generalize better in identifying different types of

interactions. Thus, our method has achieved better results even with much fewer

number of proposals, as shown in Table 4.8.

Notably, our approach of utilizing two different contextual views of HOIs and

their knowledge transfer can offer more informative cues about interaction even

without any human-object abstract information (e.g., the union of both objects) as

in [125]. This indicates the importance of context modeling of humans and objects

without the need of additional information (e.g., visual phrases).

Moreover, our choice of graph attention network for learning human-object rela-
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Table 4.5: Classification mAP (%) results on the Charades dataset [1].

Model Backbone mAP(%)

2-Stream [179] VGG-16 18.6
2-Stream +LSTM [179] VGG-16 17.8
Async-TF [179] VGG-16 22.4
a Multiscale TRN [96] Inception 25.2
I3D [50] Inception 32.9
I3D [120] R50-I3D 31.8
STRG [120] R50-I3D 36.2
STAG [125] R50-I3D 37.2
Pose and Joint-Aware [180] R50-I3D 32.81
GLIDN (ours) R50-I3D 37.51
LFB Max [151] R50-I3D-NL 38.6
Slowfast 16 x 8 [100] R50-3D 38.9
Slowfast 16 x 8+GLIDN (ours) R50-3D 41.00

tions in both global and local contextual views is important since we have achieved

35.35 comparing to 34.2 in [120] for the global context with fewer number of nodes.

Consequently, we have achieved the best results on Charades comparing to prior

works that use the same backbone networks.

CAD-120: We have also achieved better results on the CAD-120 [2] than other

works that use temporal sampling and 3D CNN [15,89] without fine tuning and with

the use of object features extracted from 2D backbone. This implies our KD from

different contextual views can remarkably contribute to HOIs reasoning, as it can

better capture long-term temporal structure of interactions. Although GLIDN cap-

tures contextual information about HOIs, it does not include learning the temporal

ordering of HOIs. This aspect is presented in the proposed approach in Chapter

3, which utilizes LSTMs in a hierarchical design, resulting in better results with an

accuracy of 94.35%.

The confusion matrix in Figure 5.3 studies how well our method can predict

actions correctly based on CAD-120. It can be observed that most false predicted

actions relate to stacking and unstacking objects or some actions alike. Such actions

usually involve the same object but being different in human movement directions.

This may be resolved by capturing more temporal information, such as increasing

the number of sampled frames.
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Table 4.6: Accuracy (%) results on the CAD-120 dataset [2]. ’*’ indicates that prior
works make use of additional skeleton or depth information and thus are not directly
comparable to our approach.

Model Acc.(%)

Wang et al. [15] 81.2
*Liu et al. [16] 93.3
*koppula et al. [2] 80.6
*Tayyub et al. [17] 95.2
Sanou et al. [89] 86.4
Ch3’s proposed method 94.35
GLIDN (ours) 92.85
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Figure 4.3: Confusion matrix for the CAD-120 dataset [2] when using our proposed
GLIDN.
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Table 4.7: Ablation results the CAD-120 [2] and Charades [1] datasets. Results
from two different backbones are reported on Charades [1].

Model Charades
[1]
(Slowfast)

Charades
[1]
(I3D)

CAD-
120 [2]
(2D R-50)

Baseline 38.9 34.23 74.17
Local-context (spatial) 40.73 36.45 84.97
Global-context (temporal) 39.95 35.39 84.75
Context views fusion (e.g. Concat) 40.43 36.81 85.22
Late Fusion 40.95 37.23 85.97
Local-teacher 39.89 37.51 87.76
Global-teacher 41.00 36.99 92.85

Table 4.8: Comparison of graph node settings with prior works on Charades [1].
’Edges’ means the union box of two object nodes.

Model # of nodes Nodes info. mAP(%)

STRG [120] 50 objects 36.20
STRG [120] 25 objects 35.9
STAG [125] 15 objects and edges* 37.20
GLIDN (ours) 15 objects 37.51

4.3.4 Ablation Studies

To evaluate our proposed GLIDN, we conduct ablation studies to demonstrate the

impact of each part of our GLIDN on learning HOIs. We first evaluate the baseline

without any of interaction contextual views. We then evaluate our network by using

each of the contextual views independently. Finally, we report the performance

of our complete network. The ablation study results are shown in Table 4.7 for

Charades [1] and CAD-120 datasets [2].

Are contextual views of humans and objects important? As shown in

Table 4.7, running our network without any human-object relations or with only

a single contextual view (either local or global view) degrades the network perfor-

mance. Clearly, when we consider only human and object information (e.g., via

concatenation) without learning their relation, the performance of the network de-

creases significantly by 14% in CAD-120 [2].

Also, when considering only human-object temporal relations on Charades [1],
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the performance drops more than 1% mAP, which reflects the importance of local

relations between human and objects at a specific time as they can provide useful

context information. This indicates that some of the interactions can be recognized

by focusing on the spatial relation, especially with the existence of multiple objects

around a human. Finally, capturing both the global and local human-object relations

via distillation can help transfer the complementary information from the teacher

contextual view to the student contextual view. Hence, the ablation experiments

illustrate that each component of the proposed GLIDN plays towards improving the

model performance, where 41.00% mAP is achieved on Charades.

Which of the contextual views play the roles of the teacher network? In

the original KD, the teacher network is larger than the student network. In contrast,

in our proposed GLIDN, both student and teacher networks give informative cues

about interactions from different contextual views. We hence conduct comprehensive

experiments to decide which of the contextual view can better serve the teacher role.

Logically, when we take into account the wide range of information provided by the

global context, we can consider it as a larger contextual view for HOIs since each

human/object learns a relation with all other humans/objects throughout all video

frames, while the local context only provides information about how humans/objects

attend the others within each individual frame. This idea is evaluated on Charades

[1] and CAD-120 datasets [2]. As shown in Table 4.7, best results are usually

achieved when we consider the global contextual view as the teacher. Hence, we

can conclude that the temporal View (e.g., global contextual view of human-object

interactions) is mostly a viable candidate for the teacher.

However, we notice that utilizing different backbones on the same dataset as in

Charades [1], leading to different selection of teacher network. This suggests that the

features retrieved from different backbones have an impact on determining which of

the contextual views play a better role as the teacher. For instance, when training

our method with I3D backbone on the Charades dataset [1], we find that using the

local contextual view as a teacher achieves better performance. The reason behind

this is that the final representation in Slowfast experiments involves concatenating

objects relations with fast path features, which are from 64 frames. This means that
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Table 4.9: Accuracy results on CAD-120 dataset [2] after applying different values
of T (temperature) and λ2 (weight of the distillation loss).

T λ2 Global-teacher(%) Local-teacher(%)

2 4 87.56 84.36
1 0.7 92.85 86.00
5 0.3 88.36 87.76
10 0.3 88.45 83.53
20 0.3 87.62 83.50
5 0.5 84.33 86.84
10 0.5 85.69 84.25
20 0.5 87.47 83.59
5 0.7 86.84 81.89
10 0.7 88.54 82.61
20 0.7 85.27 86.00

Slowfast backbone is richer in temporal information than the I3D backbone, which

only uses 32-frame features. Hence, when the temporal range is not large enough to

capture better contextual information, especially in clutter background videos as in

Charades [1], the spatial local context teacher may outperform the temporal global

one. Our findings indicate that distilling the knowledge of interactions between the

global and local contextual views outperforms other counterpart approaches in both

scenarios, whether a teacher is taking a local or global contextual view.

There are other factors controlling the distillation process, namely the hyper-

parameters of T (temperature), λ1 and λ2 (weights for balancing the losses in Eq.

4.5). We conduct comprehensive experiments in both CAD-120 [2] and Charades [1]

using different values of these hyper-parameters. Two forms of λ settings are used

for balancing the weight between the two terms of the objective function as in Eq.

4.5. In the first form of setting, we used the generalized distillation form as in [73]

where λ1 is equal to (1-λ2). The second form is by setting λ1 to 1 and λ2 to 4 or

0.7 as shown at the first two rows in Table 4.9 which shows the results of applying

different hyper-parameters on CAD-120 dataset [2] with different settings for teacher

and student.

We observe that the best values of T are different for both global contextual

view and local contextual view since each network contextual view produces differ-

ent probability distribution for the logits. We also find in the global teacher, the
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Table 4.10: mAP% results on Charades Dataset [1] using I3D backbone after ap-
plying different values of T (temperature) and λ2 for weighting the distillation loss.

T λ2 Global-teacher(%) Local-teacher(%)

2 4 36.81 35.68
5 0.3 36.60 37.30
1 4 36.99 37.51
10 0.7 35.92 36.83
20 0.7 36.03 36.94

Table 4.11: mAP% results on Charades dataset [1] using Slowfast backbone after
applying different values of T (temperature) and λ2 for weighting the distillation
loss.

T λ2 Global-teacher(%) Local-teacher(%)

2 4 41.00 39.89
5 0.3 40.82 39.63
10 0.7 40.70 38.86
20 0.7 40.75 38.72

temperature of 1 achieves the best accuracy as in [181] when the weight λ2 is equal

to 0.7. Moreover, when we consider local contextual view as the teacher network, we

observe that a large value of T (e.g., 5) with a distillation weight of 0.3 produces the

best result of 87.76%. Hence, the optimal values of T and λ can be set empirically

based on the predictions of the teacher network. Table 4.10 and Table 4.11 present

results after applying different hyper-parameters on Charades dataset using I3D and

Slowfast backbones, respectively.

Is teacher-student network design a good choice for distilling object

contexts? In order to evaluate our teacher-student network design, we compare it

with other collaborative learning approaches, such as Deep Mutual Learning (DML)

[182], where the two contexts views are jointly trained. As presented in Table 4.12,

Table 4.12: Comparison between DML and teacher-student networks for distilling
knowledge between object contexts on CAD-120 Dataset [2].

Model Acc.(%)

DML (local) 87.73
DML (global) 86.64
our GLIDN (Global-teacher) 92.85
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we can observed that our teacher-student network achieves a better result of 92.85%

with an large increase of 6.21% when we consider the teacher network as the global

context of HOIs, while 86.64% is achieved via DML. This is because the teacher-

student network approach allows the use of contextual information from the teacher

network guiding the student network to capture much structural knowledge about

HOIs.

Is context distillation better than conventional fusion? In order to com-

pare our proposed context distillation for recognizing HOIs with standard methods

for combining the features and capturing complementary cues from the two contex-

tual views, we conduct two experiments including early fusion and late fusing meth-

ods. In early fusion, we concatenate the features from the two contextual views,

then fed them to a classifier. In contrast, for late fusion, we average the predictions

of the contextual views. As in Table 4.7, we can observe that our model captures

better cues of interactions, whereas in the early fusion, some noise in features may

affect the network performance. Moreover, as stated in [172] that knowledge dis-

tillation can be considered as a late fusion method, we may confirm this statement

in Charades dataset [1] where the model performance via a late fusion is similar

to knowledge distillation with only the 0.05 % and 0.3% improvement. Although,

the late fusion and knowledge distillation results in Charades [1] are close, the re-

sults of both approaches outperform the baseline and single view context, proving

our claim of exploiting the context of human object interactions from two different

views. On the other hand, we find that distilling knowledge between HOI contexts

outperforms the late fusion on CAD-120 [2]. The late fusion model achieved an ac-

curacy of 85.97%, but when knowledge distillation is applied with the same training

setting, the performance is improved by 6.88%. This supports our claim that knowl-

edge distillation can be used to capture the context of HOIs from many contextual

views.

4.3.5 Evaluation Examples

Figure 4.4 and Figure 4.5 show two video examples from CAD-120 Dataset [2]. We

found from the examples that inconsistent recognition results may be come up if
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Figure 4.4: Example frames from video ID:0510180218 [2].

Figure 4.5: Example frames from video ID:1204144736 [2].

only one contextual view is applied. Since the context of HOIs varies, it is difficult

to determine which contextual view is more effective.

For example, in Figure 4.4, the video is with the correct label ”taking food”

and it is mis-classified as ”arranging objects” using only the local contextual view.

However, the video is recognized correctly by using the global contextual view where

temporal interactions between human and objects are learned at the video-level.

This indicates the importance of observing the change of object and human status

over time, which is captured via the global context.

Another example is shown in Figure 4.5, where the correct label of the video

71



is ”stacking objects” but it is mis-classified as ”unstacking objects” when using

the global contextual view only. However, the video can be correctly classified

using the spatial contextual view. This illustrates the importance of having specific

time human-object relations, which provides some structure information about an

interaction, via its local contextual view.

Notably, our GLIDN model classifies both videos correctly when we consider the

global context view (e.g., temporal) as a teacher. This implies that distilling local

and global contextual information increases the generalizability of the model. We

have achieved the best results of 92.85% on CAD-120 dataset [2].

4.4 Exploring the design of the teacher network

We now investigate alternative designs for distilling human and object (H-O) con-

texts between different views.

We explore the way of extracting H-O contexts from multi-teacher settings. In

this design, the spatial graph at each frame acts as a teacher. These frame-based

teachers are trained with shared parameters. Teachers in this situation learn human

and object spatial relationships in a frame and generate knowledge (e.g., logits)

at the frame-level. In contrast, our GLIDN only has one teacher, which generates

predictions based on a video’s frame relations. Hence, GLIN teacher performs a

video-level prediction. We train the student network, which is the global graph with

many teachers from various frames that consider the local relations between human

and objects. Hence, the knowledge is distilled from multiple spatial views teachers.

The corresponding loss used in training the student can be written as:

Lstudent = λ1LCE + λ2(
1

N

N∑
n=1

LDistill(S,Tn)
) (4.5)

where N is the number of teachers that participate in the student network’s training.

Table 4.13 shows the outcomes of utilizing several instructors by using different

samples of frames as teachers (e.g., 30 or 15 frames), while the student network

remains the same in both situations (e.g., 30 frames).
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Table 4.13: Accuracy results on CAD-120 dataset [2] after applying different designs
of teachers. S indicates student network. In the last two rows, student network is
trained with 15 and 30 frames, respectively.

Model Acc.(%)

Spatial-Multi-teacher (30 frames) 86.30
Spatial-Multi-teacher (15 frames) 83.49
Spatial-single teacher as in our GLIDN 87.76
Temporal-teacher our GLIDN (S 15 frames) 87.56
Temporal-teacher our GLIDN (S 30 frames) 92.57

As can be observed from the results that considering the spatial relations based

on single teacher (e.g., video-level) produces better knowledge, which can be distilled

to the student. Also, the temporal teacher outperforms the spatial teachers in both

single-teacher and multiple-teacher settings. Furthermore, even with fewer frames,

the temporal teacher can still lead the spatial student.

4.5 Conclusion

The context of HOIs gives crucial cues about how human interacts with different ob-

jects. Our GLIDN, a novel human objects interaction distillation network, explicitly

uses two different views of humans and objects context to capture their interactions

at specific time and throughout a video. We also propose context knowledge distilla-

tion to transfer knowledge from the teacher contextual view of HOIs to the student

network that has information from different context of such interactions. Extensive

experiments demonstrate that we outperforms prior works on two datasets including

Charades [1] and CAD-120 [2].

While the context of HOI is crucial for understanding interactions by distilling

the knowledge across different views, training teacher and student networks can be

time-consuming. Moreover, the representation of human-object relations in these

contextual views does not consider the hierarchical nature of interactions. Thus, in

the following chapter, we explore several architectures to represent human-object

interactions hierarchically using transformers, drawing inspiration from the success

of the most recent transformers in various computer vision tasks.
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CHAPTER 5

Spatio-Temporal Interaction Transformers for Human-Object

Interaction Recognition in Videos

5.1 Introduction

Action recognition models perform better when spatio-temporal contexts between

two views are distilled for learning human-object interactions, as explored in the

previous chapter. Despite this benefit, these contexts do not consider the repre-

sentation of an interaction that is naturally performed by humans in a hierarchical

way. In this hierarchy, the human-object relations at time t should be taken into

account before the temporal changes of these relations are learned at a higher level.

We extensively explore this concept in this chapter.

Some human-object interactions (HOIs) are difficult to recognize, such as when a

human is cleaning an oven or taking food from it. In these cases, the oven can afford

different interactions including open, clean, and close. Additionally, the presence of

various objects in the scene at the same time can also affect model learning.

Early action recognition models, such as ConvNet [12, 100], recurrent neural

networks (RNNs) [11,166], and 3D convolution models [50,102], learn a global rep-

resentation of actions without considering human-object interactions. However, con-
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textual information about an interaction, including human-object and object-object

relationships, is critical and discriminative at specific times and throughout a video.

Moreover, recent work has explored graph-based techniques for action recogni-

tion in videos [120, 124–126, 167], using spatio-temporal graphs to learn object and

human relations. Transformers [8, 9] have also been used to learn spatio-temporal

relations in videos, e.g., [152] focuses on object layout relationships with a global

video representation, and [153] considers spatial and semantic embeddings of ob-

jects. However, hierarchical spatio-temporal relations for HOI recognition remain

unexplored.

Given that discriminative cues about an interaction can be intensive at specific

moments across video frames [125], we propose to learn interactions in a hierarchical

manner. Inspired by Transformers in vision tasks, such as image classification [9],

we use them to form our spatial and temporal learning network. The relationship

between humans and objects is learned through the spatial transformer, revealing

local context even in cases where objects are not close to humans within a frame.

Subsequently, the long-term temporal dependencies between interactions across dif-

ferent frames are captured by the temporal transformer, which receives compact

representations of interactions at each frame across a video.

Unlike other works, such as [14], where different transformer-based architectures

were proposed for video classification, the use of hierarchical structures in modeling

human and object interactions through transformers is investigated in this study. To

our best knowledge, we are the first to study hierarchical modeling in human-object

interactions with transformers based solely on visual appearance features. In this

chapter, the main contributions are as follows:

• Developing a novel transformer-based framework to learn spatio-temporal in-

terrelations between humans and objects in videos, which captures both long-

term and non-local dependencies in HOIs across video frames.

• Investigating how different hierarchical organizations in network design impact

HOI learning.

• Evaluating our model on three datasets, namely Charades [1], Something-
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Figure 5.1: Our proposed spatio-temporal transformer (STIT) model. SEmb. and
TEmb. stand for spatial and temporal token embeddings, respectively.

Something v1 [3] and CAD-120 [2]. STIT is flexible in adapting any backbone

without end-to-end training. All counterpart approaches were outperformed,

and state-of-the-art results were achieved on the CAD-120 dataset [2], with an

accuracy of 95.93% using RGB data only.

5.2 Methodology

5.2.1 Network Overview of STIT

The overall architecture of STIT is presented in Fig. 5.1.The inputs to the network

consist of the extracted human and object region features from a backbone feature

map via RoIAlign [173]. These features can serve as tokens for spatial transformer

encoders, without the need for dividing each frame into N patches as in [9, 14]. A

transformer encoder [8, 9] is primarily made up of numerous layers, each of which

contains multi-head self-attentions (MHA), as well as feedforward layers (MLPs).

More details regarding transformer architecture, including ViT, are provided earlier

in Subsection 2.1.1.
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5.2.2 Spatio-Temporal Transformers in STIT

As ViT [9] is flexible in learning token relations, we adapt it forming our spatial and

temporal transformer encoders. In spatial encoder, local and non-local dependency

relations between human and objects (e.g., tokens) in a frame can be captured. Non-

local implies that there are no limitations on the specific distances and positions

between objects and humans. It includes all humans and objects that are appeared

at time t regardless of where they are located. Spatial-level interactions imply

capturing local contextual information where human and object relations at the

same time step are learned. This can be done through multi-head attention in

the spatial transformer layer where all pairwise interactions between tokens (e.g.,

humans/objects) in a frame are captured. Hence, each token representation will be

refined with respect to all other object tokens appeared at the same moment via

self-attention, which effectively captures each object context. Since we adapt ViT,

we prepend a learnable class token to objects at each time step, which is proven

by ViT that generates a compact representation for an image. Our STIT considers

it as a representation for local context at each time step. The input of a spatial

transformer at time t is human and objects that are embedded via linear projection

to generate tokens of 1D dimension with the size of 2048 each. As in [9, 183], 1D

positional encodings are learned throughout the training procedure. These encodings

are vectors with the same size as the tokens (e.g., 2048), initialized randomly, and

then added to the tokens. Subsequently, the model learns to effectively use them to

retain positional information of the tokens. We can write the input to the spatial

transformer at time t as:

Xt = [classt, ψ(h1t ), ψ(o1t ), ψ(o2t ), ...., ψ(oNt )] + Pt (5.1)

zt = Spatial-Transformert(Xt) (5.2)

where ψ stands for linear embeddings, hit and oit respectively represent a human and

an object visual feature at time t, and N is the number of objects. Pt indicates

the learned positional embedding. classt is an extra token that is prepended to

tokens at each time step t. This class token is randomly initialized and via spatial
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transformer layers, the token is attended and gathered information from all other

tokens in a frame at time t. zt is the updated version of classt, and is the output of

the spatial transformer at time t. Thus, zt represents the local context of interactions

at time t.

To capture long-term HOI dependency, we add a second-level transformer for

modeling temporal HOI evolution. The input tokens of the temporal transformer

encoder are the updated class tokens outputted from the spatial transformers, that

retain an abstract representation of interactions at each frame. The input to tem-

poral transformer is then:

H = [classvideo, ϕ(z1), ϕ(z2), ϕ(z3), ..., ϕ(zT )] + PI (5.3)

Yinteraction = Temporal-Transformer(H) (5.4)

where ϕ is a linear transformation. Similar to spatial transformers, we prepended

new class token to the token sequence which is classvideo in this level. zi is the latent

token generated by spatial transformers at temporal index i and T is the number

of frames in a sequence. PI is the positional encoding that learns and preserves the

position of each token in a sequence. In the temporal transformer, the class token is

attended to other tokens in the sequence, which are the compact representations of

interactions at different time steps. Yinteraction is the updated version of classvideo

and output of the temporal transformer, where a high-level hierarchy of interactions

is learned, providing discriminative cues of an action.

5.3 Experiments

We validate STIT on CAD-120 [2], Charades [1] and Something-Something v1

(SSv1) [3] datasets. The following three sections provide details of the experiments

conducted on these datasets.
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Table 5.1: A summary of training settings for our STIT model on CAD-120 [2] and
Charades [1].

CAD-120 [2] Charades [1]

Optimizer Adam SGD
Learning rate (LR) 2.e-6 0.018
Epochs 100 60,30
Decay each 50 steps each 40 steps
Training procedure LOSO-CV Stage-Wise

5.3.1 Experiments on the CAD-120 Dataset

Training details

To train STIT, we take 30 evenly sampled frames from each video. To extract human

and objects features, we follow [164] where the region of interest (RoIs) that indicate

the bounding boxes of human and objects are cropped and reshaped to 224×224×3

for meeting the input size of 2D ResNet backbone [48]. Hence, 2048 features for

each human and objects are extracted from ResNet-50 [48]. These human and ob-

ject features are used as initial tokens for the proposed STIT model. As in Chapter

4 experiments on the same dataset, we only use the token features (e.g., with-

out concatenating with the frame-level ResNet-50 features) for recognizing actions.

Training hyper-parameters are presented in Table 5.1. We employ Leave-One-Out

Cross-Validation and cross-entropy loss for training our STIT model. Moreover,

we train the spatial transformer with six layers and two heads while the temporal

transformer is trained with one layer and two of heads. Table 5.2 presents input

and output details for spatial and temporal transformers on CAD-120 [2] dataset.

Table 5.2: Configuration of our spatial and temporal transformers for CAD-120
Dataset [2]. B and CLS indicate batch size and class token, respectively. 30 is the
number of frames that we use to extract human objects features and 6 is the number
of human and objects at each frame.

Model Input size Output size

Spatial Transformer B*30×6+ CLS × 2048 B*30× 2048
Temporal Transformer B×30 + CLS × 2048 B× 2048
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Model Variants and prior works

We analyse four variants of our model, namely LSTM-Spatial-T, LSTM-Pool, LSTM-GAT

and GAT-Temporal-T, to investigate the importance of our STIT model components,

with T standing for transformer. LSTM-Spatial-T investigates the impact of a tem-

poral transformer on learning temporal dependencies across frames. We replace the

temporal transformer with two layers of Long-short Term memory (LSTMs) [58]

which can be used in sequence learning of videos [11, 166]. The LSTM-Pool and

LSTM-GAT models investigate the role of the spatial transformer in understanding

the spatial context of HOIs. We hence use pooling and Graph Attention Networks

(GAT) [66] to replace the spatial transformer. Finally, GAT-Temporal-T investigates

how the spatial transformer affects the temporal transformer when it is replaced by

GAT [66]. An additional model (NO-Relation) is trained to ignore the spatial re-

lationship between humans and objects. Instead, their features are aggregated and

pooled across time. Table 5.3 shows our STIT model outperforms all other variants.

Table 5.3: Performance of model Variants on CAD-120 [2].

Model Acc.(%)

LSTM-Spatial-T 93.31
LSTM- Pool 90.26
LSTM-GAT, 92.47
GAT-Temporal-T 88.39
NO-Relation 86.69
STIT (ours) 95.93

We observe a 2.62% drop in accuracy when replacing the the temporal transformer

with LSTM, indicating temporal modeling via transformers is superior to LSTMs.

We further observe our spatial transformers outperform GAT when they work with

either LSTMs or temporal transformer. Finally, the performance of the model de-

grades by 9.24% when the spatial relations and temporal modeling of HOIs are

disregarded.

Figure 5.2 compares HOIs recognition by model variants. In the first example,

the spatial transformer gives more discriminative context than other models, suc-

cessfully identifying the human is having a meal. In the second example, the human
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GAT-Temporal-T
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Having meal

NO-Relation
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Model:
Predictions: 

GAT-Temporal-T
Stacking objects

Our STIT
Stacking objects
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Untacking objects
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Having meal

Model:
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GAT-Tempora-_T
Arranging objects

Our STIT
Arranging objects

NO-Relation
Arranging objects

LSTM-Spatial-T
Arranging objects

Model:
Predictions: 

Figure 5.2: Prediction results of some actions by applying four different models on
CAD-120 [2].

is stacking objects, which is analogous to the reversed action of ”unstacking objects”.

The spatial transformer cannot understand such an action on its own. Yet our STIT

correctly recognizes the action via the temporal transformer. Similarly, GAT with a

temporal transformer can also correctly predict the action. This confirms that the

temporal modelling via transformer outperforms LSTMs to recognize these type of

interactions. Some examples of failure are shown in the last example, where the

person is picking an object and all models incorrectly identify it as arranging ob-

jects. This may be because that in some videos the arranging and picking action of

the same object could be similar but the difference is based on the human pose. We

leave this for future work by considering human skeleton information.

Notably, as in Table 5.4, comparing to previous works, which mostly use depth

and skeleton data, our STIT model still achieves the best results even with RGB

data only. Even [89] has proposed a 3D model to leverages RGB data for action
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recognition, our STIT model achieves 2.33% of higher accuracy. This demonstrates

the importance of performing HOI reasoning both at each frame and over a course

of HOIs. Also, transformer properties, such as multi-head attention and learnable

token placements, along with a two-level hierarchy of human-object relation mod-

elling, help our STIT model achieve state-of-the-art accuracy on CAD-120 [2].

Table 5.4: Results with CAD-120 [2]. Note that [15], [16], [2] and [17] have employed
additional skeleton or depth information.

Model Acc.(%)

Wang et al. [15] 81.2
*Liu et al. [16] 93.3
*koppula et al. [2] 80.6
*Tayyub et al. [17] 95.2
Sanou et al. [89] 93.6
STIT (ours) 95.93

Ablation studies

To validate the effectiveness of each component of our STIT model, we conduct

two main experiments with STIT-Spatial and STIT-Temporal. In STIT-Spatial,

the temporal transformer is replaced by average pooling (e.g., over time dimen-

sion) whereas in STIT-Temporal the spatial transformers are replaced by pooling

(e.g., pooling over nodes at time t). As shown in Table 5.5, ignoring either spatial

or temporal hierarchy leads to decreased model performance. Moreover, a 2.60%

performance loss over our STIT model is observed when omitting the temporal

transformer, because long term dependencies between HOIs over time is not ex-

plicitly modeled. We also notice that model performance decreases significantly by

13.5% when when replacing the spatial transformer with pooling. Because human

and objects features are merely extracted from ResNet-50 [48] that is pre-trained on

ImageNet [184]. In contrast, embeddings in spatial transformers enhance the token

features besides learning the relations between human and objects at each frame,

which lead to model accuracy improvement to 95.93%.

As shown in Table 5.5, we conduct additional experiments to explore the affect of

using class token as a representation of the spatial context at time t and for the video
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Table 5.5: Ablation results on CAD-120 [2].

Model Acc.(%)

Baseline 86.69
STIT-Spatial 93.34
STIT-Temporal 82.43
STIT-spatial-mean 95.13
STIT-Temporal-mean 93.34
STIT-mean 95.04
STIT (ours) 95.93

which is used as the output of the temporal transformer. STIT-spatial-mean, STIT-

Temporal-mean and STIT-mean indicate replacing the output of spatial, temporal

and both spatial and temporal transformers in STIT with mean token instead of

latent class token, respectively. Notably, using latent token as the output of spatial

and temporal transformers leading to better results. The confusion matrix of the

prediction results on CAD-120 using STIT model is presented in Fig. 5.3. It can

be observed from the confusion matrix that the vast majority of human interactions

in the CAD-120 dataset [2] are accurately recognized by the proposed STIT model.

Some actions, such as stacking and picking objects, are mistakenly identified as

unstacking and arranging objects, respectively. This may be because these activities

are performed by a person in a very similar way, and even when arranging objects,

the human picks an object to arrange, which shares the same interactions as when

the human is mainly picking objects.

5.3.2 Experiments on the Charades Dataset

Implementation details

To train our STIT, we employ two models as our backbones including Inflated

3D ConvNet (I3D) [50] with Resnet-50 and Slowfast-R50 [100]. We initialize I3D

with pre-trained parameters on Kinetics-400 dataset [69] from [177]. For Slowfast-

R50, we access the model via the Slowfast Github repository [177] where it has

previously been trained on Charades. As input, we sample 32 (as in [120]) and 64 (as

in [100]) frames from each video clip with 224×224 pixels for I3D and Slowfast-R50,
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Figure 5.3: Confusion matrix for the CAD-120 [2] when using our STIT model.
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respectively. We use a 2-stage training, which is different from [120,125,167], where

we do not train the backbone and our model together for the third stage as end-to-

end. This indicates the flexibility of our model to be integrated to any backbone with

fewer number of training stages and with different settings of backbones including

the one that is already trained on the same dataset as in Charades or using pretraind

model as we used for training our model in CAD-120 [2].

Moreover, similar to [120], in I3D backbone, we concatenate the backbone fea-

tures with the interaction features (e.g., latent class token from the temporal trans-

former). The concatenated features are then fed to a fully connected layer (FC).

Similarly, in Slowfast we concatenate both Fast and Slow paths with the the in-

teraction features. Thus, the final feature to represent a video is a concatenation

of 256 (Fast), 2048 (Slow), 2048 (interaction representation) features. Six heads in

16 transformer layers were used for spatial and temporal transformers. Details of

the input and output for the spatial and temporal transformers on the Charades

dataset [1] are shown in Table 5.6.

We employ binary cross-entropy loss to train our STIT model with multi-label

videos in charades. From each video, we apply multi-view inference where 10 clips

are sampled from a video as in [100,120]. The evaluation metric is the mean average

precision (mAP) where scores from different views are fused to report the results.

The rest of the implementation details are the same as the experiments in Chapter

4.

Table 5.6: Configuration of our spatial and temporal transformers for Charades
Dataset [1]. B and CLS indicate batch size and class token, respectively. 16 is
the number of frames that we use to extract human objects features and 15 is the
number of human object proposals at each frame.

Model Input size Output size

Spatial Transformer B*16×15+ CLS × 2048 B*16× 2048
Temporal transformer B×16 + CLS × 2048 B× 2048
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Comparison with state-of-the-art approaches

Table 5.7 shows the results of all prior methods that applied on the same dataset.

The most close methods are those using the same backbone network as ours. Please

note that our proposed method can be applied to any CNN backbone network where

RoIAlign [173] is employed to extract human and object features. However, more ad-

vanced backbones, such as those based on transformers [185], generate features that

are not compatible with RoIAlign [173] for the extraction of human and object fea-

tures. We defer this investigation for future research. It is observed that considering

pose (P) information is not enough for correctly capturing HOIs. This indicates the

importance of learning human-object relations in both space and time. Although we

utilize fewer number of proposals (e.g., 15), our results are better than [120] where

50 proposals were used. Also, we achieve superior results comparing to STAG [125]

that considers relations between a compact interactions, which include visual phrase

(e.g., union box of both human and object). This indicates the power of learning the

local context of human and objects through spatial transformers even without the

visual phrases. Furthermore, learning the relation between visual tokens of human

and objects gives more cues rather than considering the layout of human and objects

as in STLT+I3D model [152]. Also, the proposed STIT model can be incorporated

with any backbone model rather than I3D without end-to-end training. As a re-

sult, our STIT model with Slowfast 16 x 8 surpasses its baseline. Thus, the results

show that our STIT outperforms all other counterpart approaches which reflects the

power of structure learning of HOIs through our two-level hierarchy of transformers.

Ablation studies

We also evaluated the effectiveness of STIT by conducting ablation studies on the

Charades dataset [1] using I3D backbone. The purpose was to showcase how each

component of STIT contributes to learning HOIs. In order to study the impact

of each hierarchy of the model on developing discriminative HOI representation,

we carried out similar ablation experiments to the ones in Section 5.3.1, includ-

ing STIT-Spatial, STIT-Temporal, STIT-spatial-mean, STIT-Temporal-mean and

STIT-mean. The results can be seen in Table 5.8. We find that removing the
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Table 5.7: Comparison with prior approaches on Charades dataset [1]. Note that
slowfast network achieved 45.2%mAP on charades using R101 network but for fair
comparison we report Slowfast results with R50 network.

Model Backbone Modality mAP(%)

2-Stream [179] VGG-16 RGB+Flow 18.6
2-Stream+LSTM [179] VGG-16 RGB+Flow 17.8
Async-TF [179] VGG-16 RGB+Flow 22.4
Multiscale TRN [96] Inception RGB 25.2
I3D [50] Inception RGB 32.9
I3D [120] R50-I3D RGB 31.8
STRG [120] R50-I3D RGB 36.2
STAG [125] R50-I3D RGB 37.2
Pose and Joint-Aware [180] R50-I3D Pose+RGB 32.81
LFB Max [151] R50-I3D-NL RGB 38.6
STLT+I3D [152] R50-I3D RGB 38.5
I3D+STIT (ours) R50-I3D RGB 39.62
Slowfast 16 x 8 [100] R50-3D RGB 38.9
Slowfast 16 x 8+STIT (ours) R50-3D RGB 42.49

temporal transformer leads to a 3% decline in model performance whereas the per-

formance loses only 0.84% when replacing the spatial transformers with pooling.

This indicates the importance of temporal dependencies between interactions that

can be captured via the temporal transformer.

Moreover, we apply different settings in using latent class token over the mean

of transformer tokens. We observe that latent token provides better compact rep-

resentation for spatial and temporal contexts, which are learned via spatial and

temporal transformers, respectively. Also, learning human-object relations via our

STIT outperforms the I3D baseline, achieving 5.39% mAP improvement. Fig. 5.4

shows examples of HOIs that our STIT performs better than I3D. Our STIT model

can distinguish between different interactions with the same objects, such as taking,

holding, and placing a laptop, whereas I3D cannot. Furthermore, our model can

discriminate between how the same HOI can be performed with various objects,

such as holding a towel versus holding a box. More importantly, interactions that

occur simultaneously can be recognized. For example, it can be seen in Fig. 3,

the human in the third example is washing a window and this interaction involved
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Table 5.8: Ablation results on Charades [1] using I3D-R50 backbone.

Model mAP(%)

I3D 34.23
STIT-Spatial 36.60
STIT-Temporal 38.78
STIT-spatial-mean 38.94
STIT-Temporal-mean 38.64
STIT-mean 37.06
STIT (ours) 39.62

another interaction, which is holding towel at the same time.

5.3.3 Experiments on the Something-Something v1 Dataset

We also evaluate our model on different types of interaction videos where only hands

are interacting with objects without the appearance of the human body. In these

types of interactions, learning temporal dependencies is very important [96]. For

training the proposed STIT, as in [120], we sample 32 frames and use 10 object

proposals that are generated as in the Charades experiments from each frame. We

train our model on the top of a fixed I3D backbone where we extract the tokens

features from. We train our model for 50 epochs with batch size of 8 videos. We start

with a 0.02 learning rate and it is reduced by a factor of 10 at 35 and 45 epochs. We

train I3D backbone, and initialize it as in [120] with Kinetics pre-trained model and

use the same training schedule as our STIT model. We add 1 × 1 convolution layer

on top of I3D output to reduce the channel number from 2048 to 512. Subsequently,

each human and object token is with the size of 512. As in [120], we fuse our

STIT model features with I3D features for final representation of the action. In our

STIT model, we use eight and four heads for spatial and temporal transformers,

respectively. Table 5.9 provides information on the input and output of spatial and

temporal transformers on SSv1 [3] dataset.

For inference, we use multi-view from each video as in [18,100,120] with 2 clips.

We also applied multi-crop (left, center, right) as in [120,125]. The evaluation metric

for SSv1 is the accuracy where scores from different views are fused via max to report
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STIT   I3D

     Opening a bag   
                                    
    Opening a refrigerator 
                           
    Putting groceries 
                
    Closing a refrigerator                              

    Holding a box      
                             
   Holding  a towel   
    
    Washing a window  
 
   Washing with a towel
        

Taking a laptop

Holding  a laptop

Putting a laptop

Figure 5.4: Comparison between I3D and our STIT on Charades [1].

Table 5.9: Configuration of our spatial and temporal transformers for SSv1 Dataset
[3]. B and CLS indicate batch size and class token, respectively. 16 is the number
of frames that we use to extract human objects features and 10 is the number of
human object proposals at each frame.

Model Input size Output size

Spatial Transformer B*16×10+ CLS × 512 B*16× 512
Temporal transformer B×16 + CLS × 512 B× 512

the results.

As shown in Table 5.10, our STIT model outperforms other approaches, which

confirms the importance of our proposed hierarchical learning of human-object in-

teractions, even when learning different nature of interactions, such as hand-object

interaction in Something-Something v1. Our hierarchical representation of actions

outperforms other relation approaches without hierarchical representation, such as

similarity graph [120], and other models relying on global representation of actions.

However, it’s important to note that the STM model [18] achieves better perfor-

mance than our STIT model when modeling additional motion features.
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Table 5.10: Performance of STIT model on Something-Something v1 dataset [3]
compared with prior works. Top-1 accuracy is reported on the validation set.
CSTM [18] represents a variant of STM [18] that exclusively takes into account
spatiotemporal features.

Model Backbone Top-1 Acc.(%)

MultiScale TRN [96] Inception 34.4
I3D [120] R50-I3D 41.6
I3D+similarity graph [120] R50-I3D 42.7
STRG [120] R50-I3D 43.4
ECO [186] BNInception+3D ResNet-18 46.4
TSM [97] R50 44.8
TSN [41] R50 19.9
CSTM [18] R50 47.7
STM [18] R50 49.2
STIT (ours) R50-I3D 47.92

5.3.4 Structure Learning of HOIs via Hierarchical Designs

We now justify our network design in employing two-level hierarchies including spa-

tial and temporal. We also consider different time windows (e.g., number of frames)

for aggregating the local contexts with different number of temporal transformers,

which are referred as close to a small time window (Close) and wide to a large win-

dow (Wide). For simplicity, in Fig. 5.5, we show example of close window with

two frames. Note that for the Charades [1] experiments in Table 5.11, we extract

token features from a total of 16 frames, and a window of 4 and 8 frames are used

for Close and Wide windows, respectively. For CAD-120 Dataset [2], we choose

5 and 15 frames for Close and Wide windows, respectively. We run experiments

with different designs for modeling HOIs including our model as shown in Fig. 5.5.

Explanations of these designs are as follows:

• The first design implies that hierarchical learning is not taken into consider-

ation. Instead, the spatio-temporal transformer is used to learn the pairwise

relations between all tokens from different time steps, as shown in Fig. 5.5

(A).

• (B) The second design is our STIT, which utilizes a two-level hierarchy to
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obtain the latent representation of HOIs, as depicted in Fig. 5.5 (B).

• In the third design, we use a small window of 2 where three mid-level temporal

transformers are used to learn the relation between compact representations

of HOIs with a two-frame range. Then, a higher-level temporal transformer is

used to model the relations between the mid-level representations of HOIs to

produce the final representation of HOIs. Thus, three-level hierarchies of trans-

formers, including spatial, mid-level, and high-level transformers, are formed.

This design is illustrated in Fig. 5.5 (C).

• The last design amends the previous one by using a larger window of frames

(e.g., Wide).

As in Table 5.11, we find that using more than two levels of transformers leads

to model overfit where deeper levels of transformers can affect model generaliza-

tion. Also, without hierarchical learning and using only one level of spatio-temporal

transformer as in Fig. 5.5 (A), the model produces better results than three levels of

hierarchy with specific temporal range because it captures the whole relations from

different time steps. Hence, long-term temporal relations are captured well. Among

all these architectures, we verify that our STIT with two-level hierarchy is the best

for modelling HOIs and for capturing discriminative cues of action context.

Due to the different natures of actions and how they are being performed by

human, some actions can be recognized with no-hierarchy, while others may re-

quire deeper-hierarchies. For example, recognizing a picking object action requires

a deeper hierarchy in STIT while no-hierarchy fails to identify the action. In con-

trast, without a hierarchy in STIT, stacking objects actions in some videos are easier

to be recognized. Because in picking objects actions, the spatial reasoning for objects

at specific time is critical. However, we believe that in stacking objects, recognizing

such action requires information about how the status of each object changes across

time.
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Figure 5.5: Different network designs for modeling HOIs. STs and TTs stand for
spatial transformers and temporal transformers, respectively. For simplicity, we use
six frames as an example. 92



Table 5.11: Results of applying different hierarchical designs in modeling HOIs.
H stands for Hierarchical. The results are presented in terms of mean average
precision (mAP) and accuracy (Acc) for the Charades [1] and CAD-120 [2] datasets,
respectively.

Architecture Charades [1] Charades [1] CAD-120 [2]
(I3D) Slowfast

Three-Levels H (Close) 35.15 40.66 89.02
Three-Levels H (Wide) 35.23 40.86 84.44
Non-Hierarchical 38.91 41.24 94.21
Two-Levels H (our STIT) 39.62 42.49 95.93

5.4 Conclusion

The structural learning of HOIs captures crucial cues about how humans interact

with different objects. Our STIT model explicitly uses hierarchical learning of the

context of humans and objects to capture their interactions both at specific times

and across a video. We show that STIT outperforms existing approaches, especially

on the Charades and CAD-120 datasets. By studying different levels of hierarchy

for modeling HOIs, we observed that two levels of hierarchy are enough to capture

the local and global context of interactions via spatial and temporal transformers,

respectively. Thus, this chapter emphasizes the significance of hierarchical learning

in the recognition of human-object interactions.
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CHAPTER 6

Conclusions

This thesis presents several important contributions to the area of recognizing hu-

man actions in videos, particularly actions that involve interactions with objects.

Detailed descriptions of these contributions are provided in earlier chapters. This

chapter concludes the thesis by providing a summary of the research contributions in

Section 6.1, as well as a discussion of the study’s limitations and possible directions

for future research in Section 6.2.

6.1 Thesis Summary and Contributions

This thesis introduces and evaluates three novel deep learning-based models for rec-

ognizing human-object interactions in videos within a supervised learning context.

The contributions of the thesis are summarized in the following three paragraphs.

Recognizing human interactions in videos requires temporal modeling of these

interactions, which we focus on in Chapter 3. We present an LSTM-based network

where the temporal changes of humans and objects can be captured independently.

However, not all of the temporal changes of humans and objects provide a discrim-

inative cue for an interaction. Therefore, we apply attention to the output of the
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LSTM so that the significant parts of the temporal changes for each human and

object could be captured. Then, we learn the pairwise relations between humans

and objects via a bilinear layer, which is then fed to a deep LSTM network to cap-

ture high-level information on HOIs. Experimentally, we observe the importance of

each part of the network design, where attention and the bilinear layer play crucial

roles in improving the network’s performance. Moreover, we validate the model’s

design by replacing the attentive-LSTMs with transformers, which have recently

been employed in numerous computer vision tasks [9,14]. This substitution leads to

in superior results when compared to LSTMs.

In Chapter 4, we address the drawback of the aforementioned approach where

spatial relations between objects are not considered. We introduce a teacher-student-

based network that captures both spatial and temporal relations between humans

and objects from two different contextual views based on Graph Attention Network

(GAT). The local contextual view focuses on learning the relations between humans

and objects at each time step t (e.g., spatial), while the global contextual view learns

the relations between humans and objects at different time steps (e.g., temporal).

We observe that distilling knowledge from the global contextual view to the local

one mostly boosts the performance of action recognition models and helps identify

human-object interactions.

The final contribution of this work is to explore spatio-temporal modeling using

transformer-based networks to recognize human-object interactions in a hierarchical

manner. This approach involves learning the relations between humans and ob-

jects at each time step, leading to a local context representation at a specific time.

Subsequently, higher-level temporal modeling is applied to learn the relationships

between these time-specific representations. We study different hierarchical designs,

including one, two, and three levels of hierarchical architectures to represent inter-

actions. Our experimental results in Chapter 5 on two datasets, CAD-120 [2] and

Charades [1], show that the two-level hierarchy is the best design for recognizing

human-object interactions.

In summary, this thesis presents three novel approaches for recognizing human-

object interactions using only visual data. The proposed methods leverage spatial

95



and temporal information of human and objects to learn discriminative representa-

tions of interactions. Among the methods we introduced, the most robust one that

yielded superior results for human-object interactions is the third method outlined

in Chapter 5. This method employs a crucial design for recognizing human-object

interactions, implying the capture of local context of HOIs at specific times. This

concept can be seen as analogous to the local contextual view of HOIs proposed in

Chapter 4. However, in Chapter 4, temporal ordering is not learned, a facet that

the method in Chapter 5 effectively capture. Additionally, even though the method

presented in Chapter 3 involves sequence modeling and employs a hierarchical struc-

ture for learning HOIs, it doesn’t capture the local context of such interactions, a

feature that is preserved in the method described in Chapter 5. Thus, the approach

proposed in Chapter 5 suggests that by jointly learning temporal, contextual, and

hierarchical representations of human-object interactions, the most informative as-

pects of HOIs can be captured. This ultimately leads to achieving the most favorable

results.

6.2 Limitation and Future Work

Although the thesis effectively demonstrates the superiority of the proposed methods

over current approaches, it is important to acknowledge their limitations.

Firstly, not all datasets used for action recognition provide the necessary human

and object annotations, such as bounding boxes. Therefore, in this thesis, we employ

the Region Proposal Network (RPN) [174] to generate bounding boxes of potential

humans and objects. To capture the target and relevant objects, a large number of

proposals is necessary. We select the top ten RPN proposals as a minimum, even

though their precision is lower than ground truth annotations, if available. This

step is a prerequisite for training our proposed models. We use 10 or 15 proposals

for this study, depending on the videos in the datasets. For instance, we use 15

proposals for the Charades dataset [1], which has a cluttered background. However,

we select only 10 proposals for datasets containing videos with clear backgrounds,

such as the something-something dataset [3]. Furthermore, when bounding boxes are
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generated by RPN, RoIAlign [173] is employed to extract features of these bounding

boxes from CNN backbones. However, with the recent advancements in models

such as transformers that have achieved state-of-the-art results in various computer

vision tasks, the applicability of RoIAlign [173] becomes limited and requires further

investigation as a potential avenue for future research.

Furthermore, while the teacher-student network design with Knowledge Distilla-

tion (KD) presented in Chapter 4 improves the performance of the student network,

it relies on a pre-trained teacher network. As a result, training teacher-student net-

works is a challenging task that requires proper training and fixing of the teacher

network before it can effectively guide the student network. In addition, training

the student network in the proposed network in Chapter 4 requires access to ground

truth labels of videos. Therefore, it may not work if there are insufficient labels or if

they are unavailable. Moreover, the experiments conducted in Chapter 4 illustrate

the importance of carefully adjusting the temperature factor in knowledge distilla-

tion. This factor is used to soften the logits of both the teacher and student models.

Consequently, the use of inappropriate temperature values could potentially have a

negative impact on the quality of transferred knowledge and the overall performance

of the student model.

Finally, in accordance with previous research, this study demonstrates that for

certain backbones such as I3D, stage-wise training is the optimal strategy for feature

learning in the proposed models presented in Chapters 4 and 5 resulting in superior

results. Therefore, exploring the possibility of replacing multi-stage training with

single-stage training in videos while preserving optimal performance could be a

promising avenue for future research.

There are also other potential avenues for future research. Building upon the in-

sights gained from the transformer-based proposal presented in Chapter 5, additional

data types such as geometry, skeleton data, and word embeddings can be incorpo-

rated. The challenge will be to design a network that can effectively learn structural

representations and semantic knowledge of human-object interactions from different

data modes.

Additionally, the GLIDN network introduced in Chapter 4 provides a platform
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Table 6.1: The accuracy results of the proposed multi-view transformer network on
the CAD-120 dataset [2]

Model Acc.(%)

Baseline 86.69
View 1( Spatio-temporal) 94.21
View 2 (Structural STIT) 95.93
Combining two views (multi-view transformers) 97.55

for potential expansion with the objective of transfer a rich knowledge from the

teacher model. This goal could be achieves through the incorporation of multi-

level distillation for human-object interactions. In this approach, in addition to

utilizing logit outputs, features from multiple levels or layers of the teacher model

can be transferred to the student model, thereby capturing diverse aspects of an

interaction.

Moreover, exploring more complex action scenarios where occlusion or partial

occlusion occurs in videos, such as multiple actions performed by multiple individ-

uals with the presence of multiple objects, would be an intriguing area for future

research. This could also be extended to include the recognition of unusual actions,

where humans interact with objects in unconventional ways or with previously un-

seen objects. Besides, conducting cross-dataset validation, such as training on the

Charades dataset and evaluating on different datasets, can also be explored to val-

idate the generalizability of the proposed models for recognizing human-object in-

teractions. Given that our proposed methods rely exclusively on recognizing HOIs,

there would be benefits in extending them to also learn the exact frames at which

an interaction actually begins and ends within the video.

In addition, in light of our second contribution, it would be interesting to ex-

plore multi-view transformer-based networks that consider different spatio-temporal

relations. We conducted initial experiments on the CAD-120 dataset [2] by incor-

porating two views: the spatio-temporal view, which considers connections between

humans and objects in the same frame and across frames from different time steps

in videos, and the structural view, which is the STIT network proposed in Chapter

5. Our best results of 97.5% accuracy were achieved using this approach. Table 6.1

presents the ablation studies of this idea. This approach can be further extended
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by applying contrastive learning between these views. Other ideas can be explored,

such as using pure transformers without convolutions for feature extraction and

randomly selecting patches for each view to learn spatio-temporal relations between

them contrastively. Expanding the usage of these views could also involve incorpo-

rating multiple teacher networks (e.g., an ensemble of teachers) and applying various

distillation methods. This concept presents an avenue for future research.

Furthermore, expanding the interpretability of our models could be a potential

future path to better understanding the model’s decision-making process. By us-

ing explainable AI models, we could determine the most informative frame(s) and

human-object interactions, as well as the most important objects for recognizing

actions in situations with multiple objects around humans. This would provide in-

sights into the internal mechanisms of the models, and potentially reveal areas for

improvement.

Alternative methodologies, such as reinforcement learning or active learning tech-

niques, may be employed to obtain generalizations for human-object interaction

recognition. Also, there is a promising avenue for future research in which genera-

tive AI models can be utilized to explore human-object interactions. This includes

generating diverse types of interactions under varying motions and background con-

ditions (e.g. low-light). Besides, it involves investigating methods to generate a va-

riety of human-object interaction scenarios conditioned on different modalities, such

as text, in order to achieve a deeper comprehension of these interactions. Also, it is

worthwhile to study human-object interactions in 3D, utilizing 3D representations

for human body and object shapes, and to explore how to learn the spatial-temporal

relations between them under complex scenarios in order to recognize such inter-

actions in videos. While our research focuses on daily life interactions, it is worth

exploring the use of the proposed models in different interaction situations, such as

driving, to detect collision or near-collision events.
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