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Abstract— The popular Siamese convolutional neural net-
works (CNNs) for remote sensing (RS) image change detec-
tion (CD) often suffer from two problems. First, they either
ignore the original information of bitemporal images or insuf-
ficiently utilize the difference information between bitemporal
images, which leads to the low tightness of the changed objects.
Second, Siamese CNNs always employ dual-branch encoders
for CD, which increases computational cost. To address the
above issues, this article proposes a network based on difference
enhancement and spatial–spectral nonlocal (DESSN) for CD in
very-high-resolution (VHR) images. This article makes threefold
contributions. First, we design a difference enhancement (DE)
module that can effectively learn the difference representation
between foreground and background to reduce the impact of
irrelevant changes on the detection results. Second, we present
a spatial–spectral nonlocal (SSN) module that is different from
vanilla nonlocal because multiscale spatial global features are
incorporated to model the large-scale variation of objects during
CD. The module can be used to strengthen the edge integrity
and internal tightness of changed objects. Third, the asymmetric
double convolution with Ghost (ADCG) module is exploited
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instead of standard convolution. The ADCG can not only refine
the edge information of the changed objects, since horizontal
and vertical convolutional kernels have good contour preservation
advantages, but also greatly reduce the computational complexity
of the proposed model. The experiments on two public VHR
CD datasets demonstrate that the proposed network can provide
higher detection accuracy and requires smaller memory usage
than state-of-the-art networks.

Index Terms— Change detection (CD), difference enhance-
ment (DE) module, Siamese convolutional neural networks
(CNNs), spatial–spectral nonlocal (SSN) module.

I. INTRODUCTION

CHANGE detection (CD) in remote sensing (RS) images
aims to identify the differences between two images from

different periods but the same area. It is an important branch of
RS image analysis [1] and has been widely applied in urban
expansion [2], land exploration [3], disaster assessment [4],
environmental monitoring [5], and so on. As the limitation of
imaging technique, the early RS images have low resolution,
and each pixel of images usually includes several different
objects, such as trees, roads, and grass. With the continuous
development of optical sensor equipment, the resolution of
RS images has been greatly improved [6]. In recent years,
high-resolution (HR), especially very-high-resolution (VHR),
RS images have become more pervasive, which makes RS
image CD more challenging. Under this circumstance, more
and more researchers are devoted to solving the problem of
CD for VHR RS images.

Before using deep learning (DL) for CD, transformation-
based and image algebra approaches, such as the principal
component analysis (PCA) [7], the independent component
analysis (ICA) [8], Gabor [9], multivariate alteration detection
(MAD) [10], and change vector analysis (CVA) [11], are often
employed to achieve CD. The main idea of these methods
is first to obtain difference images (DIs), then performs
threshold- or clustering-based pixel classification on DIs to
extract change features or obtain the change image by max-
imizing the difference. Since these methods only extract the
spectral information of images while ignoring the context rela-
tionship, they are only suitable for low- and medium-resolution
images [12]. For HR and VHR images, as the texture of ground
objects is more abundant and the heterogeneity within a class
is enhanced [13], many methods are designed to group pixels
into objects, and then, these objects are considered as units
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to determine whether they are changed or not according to
their color, shape, and neighborhood information [14], [15].
Although these methods improve the CD effect of VHR RS
images to some extent, they are sensitive to noise and provide
low detection accuracy with high computational cost since
they only employ handcrafted features and require a complex
classifier.

In recent years, with the rapid development of DL tech-
nology [16], [17], some deep neural networks, such as deep
belief network (DBN) [18], autoencoder (AE) [19], and
deep convolutional neural networks (CNNs) [20], are used
for RS image CD since they can automatically learn the
abstract and multilevel features of complex ground objects
and demonstrate much robustness to noise. Although these
models show better detection performance than traditional
methods mentioned above, they remain to suffer from some
problems, such as propagation errors and high computa-
tional complexity. In order to overcome these shortcomings
and learn guided information from the labeled images, the
fully CNNs (FCNs) [21] are designed to improve image
segmentation [22]–[24]. Although the FCNs do not require
full connection, most of them easily cause the information
loss of bitemporal images since they mainly adopt a single-
branch network. For this, researchers applied the dual-branch
network introduced by Siamese [25] to RS image CD [26],
which greatly improves the detection accuracy due to the
utilization of richer image features from bitemporal images.
Subsequently, the idea has been widely adopted and has
become the baseline network in CD tasks [27]–[34].

Based on the previous analysis, although many DL models
have been presented and used for RS image CD, they remain
to suffer from some problems. First, the existing methods can-
not effectively construct the relationship between bitemporal
images, resulting in the adverse impact of irrelevant changes
on the detection results. Second, the integrity of the boundary
and internal tightness of changed objects are not fully consid-
ered, leading to edge information loss in the predicted change
maps. Third, the existing dual-branch networks expand the
size of models, increasing the computational cost and easily
causing the problem of overfitting.

To address the above problems, this article proposes a novel
network based on difference enhancement and spatial–spectral
nonlocal (DESSN) for VHR RS image CD. The proposed
method is based on Siamese [25] and U-Net [35], which is
lightweight and composed of three main modules: the dif-
ference enhancement (DE) module, the spatial–spectral non-
local (SSN) module, and the asymmetric double convolution
with Ghost (ADCG) module.

To construct the relationship between bitemporal images,
the DE module is designed to make the network focus more
attention on changed areas, thereby suppressing irrelevant
changes caused by noise and better distinguishing the objects
from the background. Although the attention mechanism has
been widely used in the design of CNNs, it is rare in Siamese
CNNs for the task of CD. As a DI only contains changed
and unchanged areas, it is easy to distinguish them. However,
in practice, it is difficult since a DI usually contains some
uncertain areas due to some disturbance from noise and light.

The attention mechanism is very useful for finding significant
features that can distinguish objects and background. Thus,
we design the DE module with an attention mechanism to
explore intrinsic features that can identify really changed areas.

To strengthen the integrity of the boundary and internal
tightness of changed objects, the SSN module is designed and
used during the stage of feature fusion. On the one hand, the
proposed SSN is different from the regular spatial–spectral
feature fusion since the former can provide long-range corre-
lation. On the other hand, it is also different from the regular
nonlocal module since it integrates multiscale spatial informa-
tion into the SSN that achieves better feature representation
for classifying and locating changed objects.

To reduce the number of network parameters, the ADCG
module is designed to replace the vanilla convolution.
Although the asymmetric convolution can reduce the number
of parameters to some extent, it may lead to the slight degener-
ation of network performance. Adding asymmetric convolution
to vanilla convolution can enhance feature learning ability,
but the ability to reduce parameters is limited. The presented
ADCG module combines the advantages of both asymmetric
convolution and Ghost. It is not only able to reduce the number
of parameters due to the utilization of fewer convolutional
kernels but also improve feature representation due to the
effect of asymmetric convolution that can provide additional
information for changed objects.

To sum up, the main contributions of this article include the
following.

1) A DE module is designed to reduce the impact of
irrelevant changes on the detection results by effec-
tively learning the difference representation between
foreground and background.

2) An SSN module is introduced to strengthen the edge
integrity and internal tightness of changed objects by
learning long-range correlation.

3) An ADCG module is proposed to refine boundary infor-
mation of changed objects and reduce the number of the
network parameters more effectively.

The rest of this article is organized as follows. The related
works are reviewed in Section II. A detailed description of the
proposed method is provided in Section III. The experimental
results and discussion of key issues are reported in Section IV.
The summary and conclusion are drawn in Section V.

II. RELATED WORK

In this section, we present the related work that mainly
includes the RS image CD methods and attention neural
networks.

A. RS Image Change Detection Methods

In the early stage of CD research, since RS images are
difficult to be collected and their resolution is low, most
studies adopted unsupervised methods to deal with CD. Tra-
ditional unsupervised methods generally follow three main
steps: preprocessing, generating DIs, detecting, and analyzing
the obtained DIs to get the CD results. The last step is the
core part of the CD. Detection and analysis are usually based
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on threshold or clustering algorithms to identify changes.
The threshold-based algorithms are more sensitive to selected
thresholds that are subjective, with empirical errors and poor
robustness [36], [37]. As a result, clustering-based algorithms
tended to be more popular for the task [38], [12].

Traditional clustering-based algorithms, such as c-means
clustering and fuzzy c-means clustering (FCM) algorithm,
tend to ignore the image spatial information and are sensitive
to noise defects [12]. In consequence, Gong et al. [39]
proposed a fuzzy clustering algorithm based on the Markov
random field (MRF) energy function. The algorithm improves
the detection accuracy to a certain extent but increases the
computational complexity. In order to improve CD accuracy
and efficiency, Ghosh et al. [12] proposed a fast FCM unsu-
pervised CD algorithm for VHR RS images. Furthermore,
Gong et al. [39] proposed a multiscale and multiresolution
Gaussian-mixture model guided by saliency-enhancement. The
above methods all rely on the generation of DIs that inevitably
ignore the meaningful information from original bitemporal
images and are sensitive to noise, making it difficult to
distinguish effectively the foreground from the background.
In addition, all clustering-based algorithms need to set a
different number of clustering for different datasets leading
to poor robustness.

With the improvement of the RS imaging technique, it is
difficult for unsupervised methods to suppress the impact
of irrelevant changes on detection results [42]. Fortunately,
benefiting from recent advances in computer vision [43]–[47]
and the emergence of abundant labeled data, many super-
vised DL-based methods are reported and used for RS image
CD [21]–[23], [48], [49]. Nevertheless, these methods directly
learn image features from DIs, which ignores some meaningful
information contained in original bitemporal images. It is
clear that these methods do not consider the specific task
requirement of CD and only employ general deep network
models to solve the task leading to the limited accuracy of
CD. In fact, RS image CD is different from other classifi-
cation tasks since its input consists of a pair of bitemporal
images: the pretemporal image and the posttemporal image.
Inspired by this, Bromley et al. [50] first extracted features
of each temporal image and then combined and compared the
extracted features in the subsequent network layer to generate
a change map, which was more conducive to realize high-
precision CD. Based on the insight, the Siamese network [25]
is proposed and used for CD tasks.

The Siamese network is a neural network framework con-
sisting of two branches with sharing weights, which was first
proposed to solve the problem of image matching. Specifically,
it maps the respective input to a new space to form a new
representation, then obtains the difference between two images
by measuring distance (such as the Euclidean distance and the
Mahalanobis distance), and, finally, outputs the similarity of
the two input images by calculating loss. The two-channel net-
work [51] inspired by the Siamese network directly learns rela-
tionships by extracting features on the channel fusion maps of
two inputs. Daudt et al. [26] first applied the Siamese network
and the two-channel network to CD tasks. They designed three
networks training in an end-to-end manner and compared it

with some popular methods to demonstrate the effectiveness of
the Siamese network. Since then, Siamese networks have been
widely utilized as part of feature extraction for CD [27], [28].
In order to improve the detection accuracy further, some
methods introduce long-short term memory (LSTM) networks
or recurrent neural networks (RNNs) on this basis to explore
spatial–temporal relationships [29]–[31], [34], and some meth-
ods introduce attention mechanisms to exploit the importance
of difference feature maps and spatial positions for improving
the CD effect [32], [33], [52], [53].

The Siamese network-based methods mentioned above
either use the DIs for skip-connection or directly perform the
change analysis on DIs. Since the process of feature extraction
of each branch is independent, the difference information is
neglected, resulting in blurred changed areas and serious adhe-
sion. In addition, these methods often require much memory
usage due to a large number of parameters, which leads to the
difficulty of deploying networks on mobile devices.

B. Nonlocal Neural Networks

It is a fact that the receptive field of small convolution
kernels, such as 3 × 3 and 5 × 5, is too narrow. Although
the global information of images can be obtained by stacking
more convolution layers, this manner may lead to training
difficulty and more complex models. The attention mech-
anism can capture the overall relationship effectively and
focus limited energy on important positions from a global
perspective [54], [55], which can reduce resource consumption
and obtain more useful information [56]. Exploring the global
position and feature relationship of pixels in CD can better
and fast determine the changed and unchanged attributes.

Unlike previous spatial attention operations, the squeeze-
and-excitation network (SENet) [57] pays more attention to
the relationship between channels. The squeeze-and-excitation
(SE) module first performs the squeeze operation on feature
maps to obtain the channel-level global features. Then, the
excitation operation is performed on the global features to
learn the relationship among features and obtain the weights
of different channels. Finally, the original feature maps and the
channel weights are multiplied to obtain the final weighted fea-
tures. The convolutional block attention module (CBAM) [58]
further develops SENet by combining channel attention and
spatial attention in a sequential manner. It introduces the
branch of max-pooling based on the SE module and then
combines the two branches with elementwise summation
before performing sigmoid activation. Spatial attention uti-
lizes average-pooling and max-pooling along the channel
axis on feature maps and then concatenates the two pooling
results before convolution and sigmoid activation operations.
Zhang et al. [32] applied the idea of CBAM in RS image CD.
They fused the spatial attention and the channel attention in
series to reconstruct the DIs, thereby enhancing the internal
tightness of changed objects.

The main idea of attention mentioned above is biased toward
the distribution of weights, while the nonlocal module [59]
that is an application of self-attention [60] not only focuses
on the weight distribution but also strengthens the connec-
tion of context. It can solve the problem of long-distance
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Fig. 1. Framework of the proposed network. The ADCG module aims to refine the extracted features and reduce computations. The DE module is purposed
to make full use of differences to emphasize the changed features. The SSN module introduces a multiscale parallel sampling (MPS) module to strengthen
the edge integrity and internal tightness of changed objects. out1, out2, and out3 indicate the three outputs of the DE module. The details of the three modules
are described in Section III.

information transmission and improve long-distance depen-
dence. Specifically, the input is divided into three branches
from top to bottom by three different 1 × 1 convolutions.
Then, matrix multiplication is performed between the first
two branches, and a softmax layer is applied to calculate
the spatial attention map. Finally, the third branch and the
spatial attention map are multiplied to obtain a weighted map.
Chen and Shi [33] applied this idea for RS image CD. They
utilized the self-attention module to calculate the attention
weights between any two pixels at different times and positions
to generate more discriminative features and, thus, achieved
better detection results.

To better model semantic interdependencies in both spa-
tial and channel dimensions, the dual-attention network
(DANet) [61] combines the ideas of the nonlocal module
and CBAM. It utilizes a parallel method to perform spatial-
wise self-attention and channelwise self-attention on the deep
feature maps. Compared with CBAM, the nonlocal module
directly calculates the autocorrelation of features, which avoids
manual design of pooling layer, multilayer perceptron, and
other complicated operations in CBAM. The nonlocal module
can quickly obtain the global relationship, but the computa-
tional cost and memory consumption are high. In addition, its
efficiency is low when the input image has a high resolution.
Although the operations of channel dimensionality reduction
and pooling have been utilized to solve these problems, it is
still hard to find a balance between model compression and
high precision.

III. METHODS

A. Overview

In this section, we propose a network based on Siamese
and U-Net to enhance change representation and squeeze
model for CD. The framework of the proposed method is
shown in Fig. 1, which consists of a dual-branch encoder and

decoder. The network involves three main modules: the ADCG
module, the DE module, and the SSN module. A pair of
bitemporal images are fed into the weight-sharing dual-branch
network composed of ADCG to perform feature extraction,
respectively. After each layer of convolution operation, the DE
module is used to enhance the features of changed objects. The
SSN module aims to reduce the redundancy of the dual-branch
fusion features and establish long-term correlation. The result
of the SSN module is utilized for upsampling. Finally, the
dimensionality reduction and normalization operations are
performed to output the final change map, in which each
element is binarized to 0 or 1 according to a predefined
threshold. The binarization process is defined as

Yi, j =
{

0, 0 ≤ Pi, j ≤ T

1, T < Pi, j ≤ 1
(1)

where Yi, j and Pi, j stand for the value of the i th row and
the j th column before and after binarization, respectively.
T denotes the predefined threshold, which is set to 0.5 in our
experiments.

B. Difference Enhancement Module

In general, the DIs are directly computed by performing
subtractions between posttemporal images and pretemporal
images and then used for feature learning. However, there
exists severe noise in the directly obtained DIs, which is not
good for detecting changed objects. In order to reduce the
noise and learn high-quality DIs, this article proposes the DE
module drawing lessons from SA-Gate [62]. Different from
the SA-Gate, the proposed DE module aims at learning the
difference information rather than the complementary informa-
tion for CD by fully taking advantage of bitemporal images.
The architecture of the DE module is shown in Fig. 2. It is
introduced to filter out the irrelevant changes and concentrate
on the really changed objects. In the beginning, the original
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Fig. 2. Structure of the DE module, where “−” implies the difference
operation, “+” implies the elementwise summation, and “×” implies the
multiplication operation.

bitemporal images are fed into the encoder for learning the
semantic features as the inputs of the DE module, where the
encoder adopts five feature extraction layers. Let Li1(out) and
Li2(out) represent the output bitemporal feature maps of the
i th layer from the encoder, where i = 1, 2, 3, 4, and
5 indexes the feature extraction layers. First, the difference
feature map (D) is learned by performing subtractions between
the bitemporal feature maps

Di = |Li1(out) − Li2(out)| (2)

where | · | denotes the absolute value operation to ensure that
the obtained difference feature is meaningful.

Second, to exploit effectively the interchannel relationship
of the obtained difference features, a channel attention oper-
ation is conducted [58]. Specifically, the spatial dimension
of the difference feature is squeezed by the average-pooling
and max-pooling simultaneously to generate different spatial
context descriptors. Then, the spatial context descriptors are
forwarded to a shared multilayer perceptron network and suc-
cessively merged using an elementwise summation operation.
Formulaically, the channel attention operation is represented
as

MAi =σ(MLP(AvgPool(Di ))+MLP(MaxPool(Di ))) (3)

where MAi denotes the obtained attention map after channel
attention operation, MLP represents the multilayer perceptron
network, AvgPool and MaxPool denote the average-pooling
and max-pooling operation, respectively, and σ stands for the
Sigmoid function.

Finally, to obtain the enhanced map outn , the previous
features of different phases are multiplied with the attention
map, respectively. The equation of generating the enhanced
feature is defined as

outn = MAi × L in(out) + L in(out) (4)

where n = 1, 2 indexes the dual-branch path and L in(out)
represents the output of the i th feature extraction layer on the
nth branch of the encoder.

After obtaining the enhanced features out1 and out2, the
enhanced difference features out3 generated by subtract-
ing out1 and out2 are considered as the third output for
skip-connection to provide richer detail information so as to
resolve the erroneous attention. It is worth noting that we
also introduce the idea of residuals here, adding the enhanced
feature map to the original feature map, so that the final
representation reflecting the remote context can be obtained

and the gradient can be prevented from vanishing. To the
best of our knowledge, this article is the first work leveraging
the attention mechanism on the DIs to capture more detailed
position information of the changed objects and mapping the
attention weights of DIs back to the bitemporal feature maps.
It has a guiding effect on the feature extraction of the next
layer. To validate the effectiveness of the proposed DE module,
the comparative experiments are performed in Section IV.

C. Spatial–Spectral Nonlocal Module

Due to the limitation of the imaging technique, the details
of objects are unclear in VHR RS images. However, detailed
information often plays important role in the CD of RS
images [33]. To this end, the nonlocal mechanism [59] is intro-
duced into CD to improve the detection accuracy by capturing
the long-range correlation of pixels [33]. Nevertheless, it still
suffers from many difficulties due to the large-scale variation
of the changed objects. Specifically, the edge information is
lost in the difference maps since the integrity of the boundary
and internal tightness of the changed objects are insufficiently
considered. To address this issue, the concatenation of feature
maps for upsampling provides an insight to retain all useful
features. In this way, the features are mostly similar except for
the changed areas after concatenation, which results in a lot
of feature redundancy [63]. As a result, this article proposes
the SSN module with MPS module to suppress redundant
information and, meanwhile, strengthen the edge integrity and
internal tightness of changed objects, which can further reflect
the spectral information well and improve the CD of large-
scale variation.

The architecture of the SSN module is shown in Fig. 3.
In the SSN module, the input is divided into three branches Q,
K , and V , where {Q, K , V } ∈ R

C×H×W . The feature maps
are sampled through the MPS module. Since the purpose of
the SSN module is to obtain the global relationship among
features, we choose the average-pooling that can represent
the global relationship, rather than max-pooling that only
emphasizes local features of images. The sampling process
is described as

MS n(x) = AvgPooln(x) (5)

where x ∈ R
C×H×W represents the image to be sampled, n

indicates the scale of pooling, and MS n ∈ R
C× (H/n)×(W/n)

stands for the sampled map.
First, the MPS module employs four scales (n =

16, 8, 4, 2) for parallel sampling on branches Q and K
and obtains four feature maps of different scales denoting the
global spatial information, respectively. Then, each obtained
feature map is reshaped to R

C×Z , where Z = (H/n)× (W/n)
is the number of pixels. MPS(·) is the function of MPS
module. The result from MPS is the concatenation of these
four reshaped maps in the second dimension, which is defined
as

MPS(x) = R(MS 16(x)); R(MS 8(x));
R(MS 4(x)); R(MS2(x)) (6)
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Fig. 3. Architecture of the SSN module. (Left) MPS is the multiscale parallel sampling module described in detail.

where R(·) denotes the operation of reshape and “;” means
the concatenate operation. The size of the output from MPS
module is C × S, where S = ∑

n∈{16, 8, 4, 2} (H/n) × (W/n)
is the sum of pixels of all sampled maps.

Second, to acquire the interrelationship of the obtained
global features, the two results of MPS acting on Q and K
are multiplied

MC = MPS(Q) × MPS(K )T (7)

where the result from MPS(K ) is transposed and MC ∈ R
C×C

is the channel attention matrix.
Finally, to obtain the enhanced feature map Y , the third

branch V reshaped to R
C×N is multiplied with MC . The

equation of generating the enhanced feature map is defined
as

Y = R[σ(MC) × V ] + X (8)

where R(·) is used to reshape R
C×N to R

C×H×W , σ represents
the softmax function, X is the original input of SSN, and Y
is the final output.

The MPS module incorporates the global feature informa-
tion from spatial and spectral dimensions. Unlike the previ-
ous parallel or series ways of spatial and spectral fusions,
it embeds multiscale spatial information into channel attention,
which is not only more conducive to the establishment of
relationships to improve the performance of the network
but also greatly reduces the numbers of parameters. Com-
pared to directly using single-channel attention, it reduces
the computations. Suppose that the size of the feature map
is Channel × Height × Width (C × H × W ), and the time
complexity involved in the matrix multiplication of the original
channel attention is O(C2 N) (N = H × W, represents the
number of all pixels in each channel). The time complexity
involved in SSN is O(C2 S), which is only the S/N times of
original channel attention, where S is smaller than N .

To validate the effectiveness of the proposed SSN module,
the comparative experiment can be seen in our experiments.

D. Asymmetric Double Convolution With Ghost Module

Most methods in the field of computer vision achieve high
precision based on the deep and large models [32], [33].
However, it is inadvisable to simply pursue high precision

while ignoring the computational cost, especially for RS
image CD with multibranch networks. As a result, the model
compression is necessary to be introduced into RS image CD.
To this end, many methods have emerged, such as asymmetric
convolution [64], depthwise separable convolution [65], prun-
ing [66], and Ghost module [67]. Inspired by the good contour
preservation advantage of horizontal and vertical convolutions
and strong robustness to the data distorted by rotation or
flipping [68], asymmetric convolutions is introduced for CD
in this work.

Considering the computations and performance, this article
proposes the asymmetric double convolution (ADC) on the
basis of the double convolution (DC, two cascaded 3 × 3 con-
volutions) in U-Net [35]. We replace the second 3 × 3 con-
volution in DC with 1 × 3 and 3 × 1 convolutions in
parallel instead of the cascade. It should be noted that, if the
two 3 × 3 convolutions of each group are replaced with
1 × 3 and 3 × 1 convolutions, the importance of other parts
will be ignored, and the closeness between features will be
reduced [68]. As a result, we only replace the second one to
refine the boundary of the result from the first square convo-
lution. The reason for parallel replacement is that factorizing
a n × n convolution into a 1 × n convolution followed by
a n × 1 convolution does not work well on early layers in
practice [69]. It is clear that the proposed ADC can reduce
the number of parameters due to (1 × n + n × 1) ≤ n × n,
n ≥ 3. In our experiments, all the DCs in the original U-Net
will be replaced with ADCs.

A well-trained deep neural network usually can generate
rich feature maps to ensure a comprehensive understanding
of the input data. Han et al. [67] pointed out that there are
many redundancies in these rich feature maps. Accordingly,
they proposed the Ghost module that aims to generate more
feature maps through cheap operations. Specifically, a series
of linear transformations are applied to generate many Ghost
features maps that can dig out the required information from
original features at a small cost. In order to realize further the
compression of the model, we combine the idea of the Ghost
module and ADC to present a novel module named ADCG.
The structure of ADCG is shown in Fig. 4. Assuming that
each channel is linearly mapped M times, the final parameters
and calculation amount are only 1/M compared to the vanilla
convolution.
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Fig. 4. Architecture of the ADCG module. The same color in feature maps
indicates similar features.

We have illustrated in detail the proposed three modules:
DE, SSN, and ADCG. They are embedded into the proposed
framework, as shown in Fig. 1; they can help our network
to achieve better feature representation for CD in VHR RS
images and consumes lower memory usage and computational
cost. We will demonstrate the effectiveness of the efficiency
of the proposed network in our experiments.

IV. EXPERIMENTS

The experiments are conducted on two public VHR CD
datasets, LEVIR-CD1 [33] and CDD2 [70]. Eight state-of-
the-art networks are considered as comparative methods to
show the superiority of the proposed network. In addition, the
efficiency comparison is completed to verify the advantage
of our method in compressing a model while obtaining high
performance. Furthermore, ablation studies are performed to
verify the effectiveness of each module. Finally, the discus-
sions about the effectiveness of the DE module and the SSN
module, and the optimal selection of MPS module scales in
the SSN module are presented.

A. Experimental Setup

1) Datasets: Two popular datasets are employed in our
experiments, including LEVIR-CD [33] and CDD [70]
datasets. The LEVIR-CD dataset contains 637 VHR Google
Earth image pairs with a resolution of 0.5 m and a size
of 1024 × 1024 pixels. The collection time span is five to
14 years, covering various types of buildings, such as villas,
high-rise apartments, small garages, and large warehouses.
The fully annotated LEVIR-CD contains a total of 31 333
individual changed building instances. In our experiments,
we use 70% of the data as the training set, 10% as the
validation set, and 20% as the testing set. They are cropped
into 256 × 256 image pairs by random cropping. In order
to enhance the diversity of the data and prevent overfit-
ting, we perform the necessary data enhancement operations,
including a rotation at a random angle and random flipping.
The CDD dataset includes RS images with seasonal changes in
the same region obtained by Google Earth, which are marked
with the changes of buildings and vehicles, and the spatial
resolution of the obtained images ranges from 0.03 to 1 m.
A total of 16 000 image pairs each with a size of 256 × 256 are
obtained through random cropping and data enhancement,
where 10 000 pairs are used for training, 3000 pairs are

1https://justchenhao.github.io/LEVIR/
2https://drive.google.com/file/d/1GX656JqqOyBi_Ef0w65kDGVto-nHrNs9

adopted for verifying, and the remaining 3000 pairs are applied
for testing in [70]. For a fair comparison, all the methods adopt
the same data partitioning setting.

2) Evaluation Metrics: Three commonly used evaluation
metrics are adopted for making an overall evaluation of the
experimental results, including precision (Pre), recall (Rec),
and F1-score (F1). The Pre shows how many pixels classified
as true are actually true, which can be defined as

Pre = TP

TP + FP
(9)

where false negative (FN) indicates the number of pixels that
are incorrectly classified as unchanged; false positive (FP)
indicates the number of pixels that are incorrectly classified as
changed; true negative (TN) indicates the number of pixels that
are correctly classified as unchanged; and true positive (TP) is
the number of pixels that are correctly classified as changed.
The Rec indicates how many true pixels are correctly classified
as true, which can be calculated as

Rec = TP

TP + FN
. (10)

F1 is known as the harmonic mean between the precision and
recall values, and it is defined as

F1 = 2 × Pre × Rec

Pre + Rec
. (11)

3) Loss Function: RS image CD can essentially be regarded
as pixel-level classification, which is divided into two types:
changed (represented by 1) and unchanged (represented by 0)
pixels. The final output of the network is a binary image.
To train the network, the BCELoss is adopted in this work

L = − 1

N

∑
i

wi
[
yi × log xi + (1 − yi) × (1 − xi)

]
(12)

where N denotes the number of all training samples, yi

indicates the label of the i th sample, xi stands for the predicted
value of the i th sample, and wi denotes the weight added to
the loss of the i th sample.

4) Implementation Details: We implemented the proposed
method with the Pytorch framework and trained it on a
GeForce RTX 3090Ti GPU with 24-GB VRAM. The number
of training epoch is set to 200. The Adam gradient descend
with momentum is used to optimize the model [71]. During
training, the learning rate is set to 0.0001, and the batch size
is set to 20. We set the hyperparameters of Ghost to be the
same as the original paper [67]; the multiple of compression
was set to 2, and the kernel of linear operation was set to 3.

B. Comparison Experiments

1) Comparison Methods: To demonstrate the supe-
riority of the proposed method for RS image CD,
eight state-of-the-art methods are adopted for compari-
son, including Siam-UNet, FC-EF [26], FC-Siam-conc [26],
FC-Siam-diff [26], W-Net [72], FCN-PP [24], DSIFN [32],
and FDCNN [73]. The Siam-UNet is modified based on
Siamese [25] and U-Net [35] and is employed as the backbone
of the proposed network. The FC-EF [26] adopts the pipeline
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Fig. 5. Visual comparison of results of three different situations: sparse changes (row 1), large changes (row 2), and dense changes (row 3). (a) Pretemporal
image. (b) Posttemporal image. (c) Label. (d) U-Net. (e) FC-EF. (f) FC-Siam-conc. (g) FC-Siam-diff. (h) W-Net. (i) DSIFN. (j) FCN-PP. (k) FDCNN. (l) Ours.

Fig. 6. Visual comparison of results of three different situations: sparse small changes (row 1), complex changes (row 2), and large changes (row 3).
(a) Pretemporal image. (b) Posttemporal image. (c) Label. (d) U-Net. (e) FC-EF. (f) FC-Siam-conc. (g) FC-Siam-diff. (h) W-Net. (i) DSIFN. (j) FCN-PP.
(k) FDCNN. (l) Ours.

that the bitemporal images are fused in the early stage and then
fed into a U-shaped architecture with skip-connection. The
FC-Siam-conc [26] is a U-shaped dual branch architecture,
which concatenates the feature maps of each layer in each
branch for skip-connection. The FC-Siam-diff [26] adopts
the network architecture similar to FC-Siam-conc, where the
difference is that FC-Siam-diff utilizes the difference of feature
maps instead of the concatenation in the skip-connection.
The W-Net [72] changes the pooling to convolution with a
stride of 2 to avoid too much information loss and merges
features from dual networks for skip-connection. To overcome
the limitations of traditional global pooling, the FCN-PP [24]
applies pyramid pooling in the network to expand the recep-
tive field. The DSIFN [32] introduces a depth supervision
difference recognition network for CD and uses attention on
multilevel fusion features to reconstruct the change maps. The
FDCNN [73] aims to generate multiscale and multidepth fea-
ture difference maps that are useful for improving CD results.

2) Comparison on the LEVIR-CD Dataset: The visual
analysis of experimental results on the LEVIR-CD dataset
is shown in Fig.5. The quantitative analysis is presented in
Table I, where the best values are in bold. There are error
detection areas in the situation of sparse CDs, such as the
first row in Fig. 5(d)–(f) and (h). Due to the influence of the
sunlight angle and the degree of tree coverage, the results of
these methods in some areas are all relatively ambiguous, but,

in general, our network is quite advantageous in boundary
accuracy. The detection of large buildings mainly depends
on whether the boundary is smooth and whether there are
missing and wrong detection areas. These problems to varying
degrees are exhibited in the second row of Fig. 5(d)–(k), and
our network shows the best performance. In Fig.5 (row 3),
when the changed buildings are concentrated, there will be
adhesions in (d)–(k) and missing detections in (d)–(f), (j), and
(k). Our network achieves the best performance in the integrity
and firmness of changed objects. To illustrate further the
superiority of our method, the quantitative evaluation results
are reported in Table I. We can see that our network obtains
the best result, which is 3.53% higher than the highest result
in comparative methods. This demonstrates that our network
can effectively improve the performance of VHR RS image
CD by refining the edges and strengthening the integrity and
internal compactness of changed objects.

3) Comparison on the CDD Dataset: The visual analysis of
experimental results on the CDD dataset is shown in Fig. 6,
and the quantitative analysis is shown in Table II. Since the
changed objects are small and sparse, detection results are
more susceptible to noise leading to some error detections.
Compared with other networks, our network [see Fig. 6 (row 1)
(l)] provides fewer areas of misdetection and omission. Images
in the second row of Fig. 6 show very complex changes,
which involves the changes of rugged paths. If the feature
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TABLE I

QUANTITATIVE ANALYSIS OF LEVIR-CD DATASET CD RESULTS.
THE BEST VALUES ARE IN BOLD

TABLE II

QUANTITATIVE ANALYSIS OF CDD DATASET CD RESULTS.
THE BEST VALUES ARE IN BOLD

representation and classification are not so good, there will be
obvious missing detections in Fig. 6(e)–(g) and detection area
discontinuity in Fig. 6(h), (j), and (k). Compared with other
networks, our network deals with the edge of such irregular
changes more closely to the effect of the label. Images in
the third row of Fig. 6 show the detection results of large
changed objects. These objects may have different reflectivity
to sunlight in different parts, leading to incomplete detection
results, as shown in Fig. 6(e)–(g). For the detection in the
lower right corner, our network also achieves a more complete
and accurate detection. To verify further the superiority of
our network, the quantitative evaluation results are reported in
Table II, and the best values are in bold. Our network gets the
highest F1, 3.24% higher than the best comparison method,
because it makes full use of the long-range dependencies of
context information.

4) Comparison of Efficiency: The purposes of this article
are to achieve high-precision detection and a small model size.
Therefore, we analyze our network and the comparison net-
works from multiple perspectives, including the floating-point
operations (FLOPs), the number of parameters (Params), the
storage usage of models (storage usage), and F1-score (F1).
The specific results are given in Table III. It can be seen
that the FLOPs, Params, and storage usage of our pro-
posed network are lower than half of the backbone, and F1
from our network is the highest, which can verify that our
model compression is effective. The FC-EF, FC-Siam-conc,
FC-Siam-diff, and FDCNN adopt fewer feature extraction
layers, and the number of channels in the last layer is small,
leading to small models. However, when confronted with more
complex detection problems, their feature extraction ability is

TABLE III

COMPARISON OF THE EFFICIENCY OF DIFFERENT NETWORKS ON THE
LEVIR-CD DATASET. THE BEST VALUES ARE IN BOLD

weak, resulting in low accuracy and poor robustness. Although
the other networks can obtain relatively good accuracy, the
calculation and model size are very large. Compared with these
networks, our network not only greatly reduces the number of
parameters and model size but also achieves the best detection
performance.

C. Ablation Study

To verify the effectiveness of different modules in our
proposed network, we conducted a series of experiments
on the LEVIR-CD dataset, including the usage of different
combinations of modules. The experimental results are shown
in Table IV.

As shown in Table IV, the backbone Siam-UNet introduces
the idea of Siamese on the basis of U-Net. The ADC uti-
lizes two different strip convolutions to refine the contour of
changed objects provided by the vanilla convolution, which
makes the F1 increased by 4.5%, while also reduces the
number of parameters and computational cost. Ghost further
solves the consumption of parameters and calculation of
similar feature maps without decreasing performance. The
DE module is added in the process of feature extraction on
the basis of ADC and Ghost to enhance difference features
that further increase F1 by 1.66%. The SSN module is added
after the last layer of feature extraction on the basis of ADC
and Ghost to strengthen the integrity and internal tightness of
changed objects, which further increases the F1 by 1.31%. The
result of the combination of the four modules is 4.25% higher
than the backbone, which fully demonstrates the effectiveness
of the proposed network.

D. Discussion

1) Discussion on the Effectiveness of DE Module and SSN
Module: The DE module is used to avoid the adverse impact
of fake changes caused by noise, sunlight, and so on, and
some visualized results are shown in Fig. 7 to verify further
its effectiveness. Specifically, the inputs and outputs of the
last DE module on the LEVIR-CD validation set are shown
in Fig. 7, where red indicates the area with higher attention,
and blue indicates lower attention. The reason that we choose
the last DE module for visualization is that the last layer
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TABLE IV

QUANTITATIVE ANALYSIS OF ABLATION EXPERIMENTS ON THE
LEVIR-CD DATASET. THE BEST VALUES ARE IN BOLD

Fig. 7. Visualization of attention maps of the last DE module. (a) Pretemporal
image. (b) Posttemporal image. (c) and (d) Two inputs of the DE module.
(e)–(g) Three outputs of the DE module. (h) Label.

contains rich semantic information and appears to present
a better performance. Posttemporal images of the input and
output of the DE module are represented in Fig. 7(d) and (e),
respectively. We can see that the enhanced image pays more
attention to buildings, and the attention areas of the difference
map (g) are more similar to real changes, which benefits the
decoder to provide a better position and improve the contour
accuracy of changed objects.

In fact, as the channel fusion of the two feature maps easily
leads to extremely redundant features, we, thus, adopt a nonlo-
cal channel attention mechanism to suppress the redundancy.
In addition, spatial attention can obtain the relationship among
pixels. When the relationships of some pixels are similar,
they can be regarded as one category and can be classified
more easily and clearly. Therefore, we adopt the method of
combining spatial and spectral information. In view of the
disadvantage of the high computational cost in the previ-
ous combination methods, we propose the SSN module by
introducing spatial information into channel attention, which
greatly reduces the computational cost and achieves higher
accuracy. To demonstrate the effectiveness of the module, the
qualitative result is shown in Fig. 8. We can find that the effect
of the SSN module is quite obvious. Although there is also a
flaw with this module that it also pays attention to the roads,
this problem can be solved by combining the DE module
simultaneously because the skip-connection performed on DIs
can provide more detailed information to resolve the erroneous
attention. In this way, the final combined model can get a
satisfactory result. Besides, we also compare the performance
of this module with only the original spatial attention mod-
ule (SAM) and channel attention module (CAM); the results

Fig. 8. Visualization of attention maps of the SSN module. (a) Pretemporal
image. (b) Posttemporal image. (c) Input of the SSN module. (d) Output of
the SSN module. (e) Label.

TABLE V

COMPARISONS BETWEEN DIFFERENT COMBINATIONS OF

POOLING SCALES IN MPS ON THE LEVIR-CD TEST SET.
THE BEST VALUES ARE IN BOLD

are shown in the last two rows of Table IV. When the SSN
module is adopted, the accuracy is 1.25% higher than SAM
and 1.01% higher than CAM, which further demonstrates the
effectiveness of the SSN module.

2) Discussion on Optimal Selection of MPS Module Scales
in SSN Module: The purpose of the nonlocal module is to
capture the relationship among features. Considering the huge
amount of calculation by conducting direct matrix multipli-
cation among feature maps for obtaining the autocorrelation
matrix, the downsampling using average pooling is conducted
to obtain fewer representative pixels. Then, the feature maps
after downsampling are leveraged to calculate the autocorrela-
tion matrix. However, it is a problem to determine an appropri-
ate sampling scale. In response to this problem, we conducted
experiments on different scales and their combinations. The
experimental results are shown in Table V. It can be found
that, when the value of a single scale is too large or small,
i.e., 16 and 2, the SSN+ cannot achieve the best performance.
However, when the value is 4, the SSN+ achieves the best
performance. Furthermore, we can see that the information
fusion of difference scales can improve the performance of
SSN+ since the combination of local and global information
leads to better feature representation. In general, the pooling
scale with (16, 8, 4, 2) produces the best performance in our
experiment.
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V. CONCLUSION

In this article, we have proposed a DESSN network for
CD in VHR RS images. The proposed DESSN network
addresses the main problems in popular Siamese CNNs for
the RS image CD by introducing three main modules: the
DE module, the SSN module, and the ADCG module. Specif-
ically, the DE module can reduce the impact of irrelevant
changes on the detection results. The SSN module can reduce
the redundancy of features after fusion and strengthen the
compactness between changed pixels. The ADCG module can
refine the edges of changed objects and greatly reduce the
number of parameters. The experiments on two popular CD
datasets, including LEVIR-CD and CDD, have demonstrated
the validity of these modules. Moreover, the experimental
results show that the proposed DESSN network is superior
to popularly state-of-the-art networks in terms of detection
accuracy and efficiency.
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