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A B S T R A C T   

This study aims to present a compendious yet technical scrutiny of the current trends in process modelling as well 
as the implementation of machine learning within combined hydrogen production and carbon capture (i.e. blue 
hydrogen). The paper is intended to accurately portray the role that machine learning is anticipated to play 
within research and development in blue hydrogen production in the forthcoming years. This covers the 
implementation of machine learning at both material and process development levels. The paper provides a 
concise overview of the current trends in blue hydrogen production, as well as an intro to machine learning and 
process modelling within the same context. We have reinforced our paper by first summarising a brief description 
of the key “tools” used in machine learning and process modelling, before painstakingly examining the imple-
mentation of these techniques in blue hydrogen production and the less-discovered merits and de-merits. 

Ultimately, the paper depicts a clear picture of the advancements in machine learning and the major role it is 
expected to play in accelerating research and development in blue hydrogen production on both material and 
process development fronts. The paper strives to shed some light on the key advantages that machine learning 
has to offer in blue hydrogen for future research work.   

1. Introduction to hydrogen production & machine learning 

1.1. Hydrogen production: types, current and future trends 

Climate change is our most pressing issue of the 21st century as 
outlined in the latest Intergovernmental Panel on Climate Change 
(IPCC) report (IPCC et al., 2023). CO2 concentrations have now excee-
ded 420 ppm globally, there is a need to decarbonise globally at a rapid 
rate (IPCC et al., 2023). Since 2015 and the signing of the Paris agree-
ment (UNFCCC, 2015), countries have, at least “on paper”, committed to 
ensuring that global warming does not exceed 2 ◦C (with an ambition to 
limit this to just 1.5 ◦C). Within the UK since 2019 and the declaration of 
a climate emergency. A policy framework has been developed known as 
“build back greener” (DESNZ & BEIS, 2021). This framework outlines a 
way to ensure the meeting of Net Zero by 2050 in comparison to 1990 
levels of CO2 emissions. Part of this strategy to ensure we reach Net Zero 
is the development of carbon capture and storage (CCS) technologies, 
transitioning from oil and gas to renewable resources and an increase in 
hydrogen production (BEIS, 2021). Deployment of CCS technologies is 

critical to ensure the continued supply of low-carbon energy within 
developing countries (Masoudi Soltani et al., 2021). In the UK, a key part 
of the Net Zero strategy is to develop CCS technologies, especially within 
industries such as cement and steel (DESNZ & BEIS, 2021). Hydrogen 
has been identified as a low-carbon energy storage molecule (van 
Renssen, 2020), and has been identified as a potentially viable alter-
native to fossil fuels as a clean fuel for transport in the aviation and 
shipping industry (Ishaq et al., 2022). 

As of 2021, 94 million tonnes of hydrogen are produced globally, and 
by 2030, this is expected to rise to a minimum of 105 million tonnes by 
2030 (well below the 200 million tonnes required to ensure Net Zero) 
(IEA, 2021). Hydrogen is already used across a vast range of industries 
such as steel and fertiliser production (IEA, 2022). It is an energy carrier 
that when used in a fuel cell, produces no CO2 emissions. Although when 
used as a fuel, it produces no CO2 emissions, conventional hydrogen 
production methods lead to high CO2 emissions. As of 2021, 900 million 
tonnes of CO2 emissions were from hydrogen production (IEA, 2022). 
There are a number of processes via which hydrogen is produced, these 
methods are often referred to as the colours of hydrogen shown in Fig. 1. 

Among these methods, three routes are of interest: Grey, Blue, and 
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Green hydrogen. Grey hydrogen is the hydrogen produced from fossil 
fuels; blue hydrogen is hydrogen produced from fossil fuels where the 
carbon is captured, utilised, and stored. Green hydrogen is hydrogen via 
electrolysis that is powered by renewable resources. Fig. 2 shows that 
currently the main and most viable methods of hydrogen production are 
grey and black. Both methods are associated with high CO2 emissions. 
Unlike these methods, green hydrogen has no CO2 emissions from the 
production of hydrogen; however, there are a number of key technolo-
gies and economic issues with the scale-up of this technology (Masoudi 
Soltani et al., 2021). Blue hydrogen presents another viable alternative. 
In this approach, grey hydrogen production plants undergo retrofitting 
with carbon capture units to ensure the capture of CO2 produced. This 
retrofitting allows for the utilisation of the existing infrastructure, 
enabling a rapid scale-up and deployment of low-carbon hydrogen 
production. However, the success of this approach, hinges on the 
effective management of the captured CO2, such as considering the 
proximity to and accessibility of carbon storage facilities (Masoudi 
Soltani et al., 2021). 

The key challenge within low-carbon hydrogen production is the cost 
of low-carbon routes in comparison to conventional hydrogen production 
processes. Currently, the cheapest route for hydrogen production is grey 
hydrogen production. This is due to a variety of factors such as tech-
nology readiness level (TRL) of renewable technologies, and the 
inherent increased operational costs for the separation of CO2 (Masoudi 
Soltani et al., 2021). Fig. 3 shows a comparison of the levelised cost of 
hydrogen (LCOH). It is projected that by 2030, low-carbon hydrogen 
production routes will be significantly cheaper due to advancements in 

technology (IEA, 2022). In addition to these advancements in techno-
logical development, incentives by government bodies provide support 
to companies in developing these technologies, these government in-
terventions are vital to ensure that low-carbon hydrogen production is an 
economically viable alternative (Mazloomi and Gomes, 2012; Quarton 
and Samsatli, 2021; IEA, 2022). 

Grey hydrogen is commonly produced via steam methane reforming 
(SMR) and auto-thermal reforming (ATR). These processes lead to high 
CO2 emissions (over 900 million tonnes of CO2 per annum as of 2022) 
(IEA, 2022). Blue hydrogen production provides a pathway to utilise 
existing infrastructure by upgrading grey hydrogen production plants 
with carbon capture technologies, such as amine scrubbing. With these 
technologies being available now, we have an immediate solution to 
reducing our CO2 emissions. Moreover, there has been further devel-
opment with this process to increase the process efficiency and inten-
sification via Sorption-enhanced Steam Methane Reforming (SE-SMR) 
(HyPER, 2019; Barelli et al., 2008). 

Recent studies have suggested that optimised blue hydrogen pro-
cesses can be a viable long-term option to ensure that the hydrogen is of 
high purity and the CO2 is captured and stored (Bauer et al., 2022; 
George et al., 2022). With the ongoing conflict in Ukraine, the middle 
east and the COVID crisis, the supply chain issue has caused further 
disruption to energy supplies. Hydrogen has been identified to be a 
viable energy storage molecule with zero-carbon energy storage 
(Mazloomi and Gomes, 2012; IEA, 2022). In the UK, producing 
low-carbon hydrogen is vital to energy security in the forthcoming years 
(BEIS, 2022). 

Nomenclatures 

AI Artificial Intelligence 
ANN Artificial Neural Network 
ATR Auto Thermal Reforming 
BP Backpropagation 
CAPEX Capital Expenditure 
CLC Chemical Looping Combustion 
CLR Chemical Looping Reforming 
CSCM Combined Sorbent Catalyst Material 
DFT Density Functional Theory 
DL Deep Learning 
DNN Deep Neural Network 
DoE Design of Experiment 
FNN Feedforward Neural Network 
GA Genetic Algorithm 
IoT Internet of Things 
IPCC Intergovernmental Panel on Climate Change 
KPIs Key Performance Indicators 
LCOH Levelised Cost of Hydrogen 
LHS Latin Hypercube Sampling 
LTZ Lithium Orthosilicate 

LTSM Long-Term Short-Term Memory 
MAE Mean Absolute Error 
ML Machine Learning 
MOO Multi-Objective Optimisation 
NARX Nonlinear Autoregressive Model 
NOE Nonlinear Output Error 
OPEX Operational Expenditure 
PCA Principal Component Analysis 
PDEs Partial Differential Equation 
PSA Pressure Swing Adsorption 
PSO Particle Swarm Optimisation 
RF Random Forest 
SAA Single Atom Alloys 
SE-SMG Sorption Enhanced Steam Methane Gasification 
SE-SMR Sorption Enhanced Steam Methane Reforming 
SMR Steam Methane Reforming 
STEM Science Technology Engineering Medicine 
SVM Support Vector Machine 
TRL Technology Readiness Level 
TSA Temperature Swing Adsorption 
TVSA Temperature Vacuum Swing Adsorption 
WGS Water Gas Shift  

Fig. 1. A brief description of the colour spectrum of hydrogen.  
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1.2. Machine learning: incorporation into hydrogen production 

Machine learning (ML) has shown to be a valuable tool for engineers 
within the past decade. It has been utilised within chemical engineering 
across the previous decades; however, there has not been a widespread 
deployment of the technology due to a variety of reasons (e.g. lack of 
data, computational power, and data accessibility) (Schweidtmann 
et al., 2021). Recent trends in machine learning have coincided with 
cost-effective yet increased computational power with accessible and 
easy-to-use programming environments (Dobbelaere et al., 2021). 

Within hydrogen production, the advancement of ML has provided 
an opportunity for ML to be incorporated into many aspects of hydrogen 
research (process modelling, optimisation and soft-sensor develop-
ment). Furthermore, the advancement of novel process configurations 
such as SE-SMR, provides a need to screen for materials such as com-
bined sorbent catalyst material (CSCM) to further optimise the process. 
There has been a recent trend to incorporate ML into the process 
modelling and optimisation of adsorption processes such as pressure 
swing adsorption (PSA), used in hydrogen production processes to 
produce high-purity H2. Conventional modelling of this highly-dynamic 
process is computationally slow, and ML-based models can provide 
efficient and robust models in comparison to conventional process 
modelling (Dat Vo et al., 2019; Subraveti et al., 2019; Pai et al., 2020; Vo 
et al., 2020; Tong et al., 2021; Yu et al., 2021). 

With the new industrial wave (industry 4.0) upon us, increasing 

digitisation of chemical production plants such as hydrogen production 
has meant research areas such as ML, internet of things (IoT) and 
automation have become important within the realm of chemical en-
gineering (Ghobakhloo, 2020; Örs et al., 2020; Lian et al., 2021; Sleiti 
et al., 2022). Blue hydrogen is becoming an ever-important necessity to 
enable decarbonisation at a rate to ensure Net Zero by 2050. With green 
hydrogen currently not at the point to be scaled up, blue hydrogen must 
be implemented as quickly as possible. Taking advantage of ML can 
accelerate the deployment of these processes, by providing both 
cost-effective and time-efficient routes for the development of 
low-carbon processes. This includes the development of cost-effective 
yet efficient catalysts and sorbents as well as the optimisation of oper-
ational parameters to ensure high hydrogen (and CO2) purity, whilst 
minimising the costs. 

2. Motivation for this paper and the paper’s outlook 

Recent reviews have been published on blue hydrogen production 
(Oni et al., 2022), as well as on machine learning within chemical en-
gineering (Mowbray et al., 2022) with some work focused on machine 
learning within biohydrogen production (Kumar Sharma et al., 2022). 
To the best of our knowledge, there has been no in-depth technical re-
view of machine learning within blue hydrogen production as of today. 
Review papers within the last couple of years have mainly focused on 
machine learning within carbon capture (Rahimi et al., 2021; Yan et al., 
2021). With blue hydrogen being identified as a key tool to reach a 
low-carbon economy (Bauer et al., 2022), it is important to further 
develop and optimise novel low-carbon hydrogen technologies and see 
how machine learning can be utilised in the development and deploy-
ment of these technologies. This review paper provides a comprehensive 
technical review of the literature on ML within hydrogen production, 
outlining how ML could potentially overcome common issues within 
conventional techniques of process modelling as well as the incorpora-
tion of machine learning within digital twin technology. 

To prepare this review, we have scrutinised 153 literature sources 
within the domain. Our search has been mainly focused on reviewing 
papers published from 2015 to 2023 which have been mostly indexed by 
Scopus with some coming from google scholar. Fig. 4 shows the trend in 
publications on ML, as well as showing the trend of ML in hydrogen 
production, hence underscoring its importance and potentials in this 
realm of research. 

In regards to the methodology, a thorough search was done via 
Scopus and Google Scholar, where 114 research papers were selected 
relevant to either conventional process modelling of H2 production or 

Fig. 2. Percentage of hydrogen produced via different routes in 2021 (data taken from IEA (2022)).  

Fig. 3. Mean LCOH for grey, blue and green hydrogen (data taken from 
IEA (2022)). 
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ML within H2 production. The papers selected were then scrutinised and 
summarised. This painstaking scrutinising led to 54 research papers 
being included in this review paper. A comparison was made between 
conventional process modelling and process modelling integrated with 
ML concerning the accuracy and speed of the optimisation. Issues 
including a lack of data on simulation time for conventional process 
modelling were addressed by selecting fewer papers that focused on the 
speed of simulation and comparing them with the ML-based models. 

The paper follows with a section on blue hydrogen production 
methods, discussing in detail, the materials used for blue hydrogen 
production as well as novel process configurations. Then the latest 
research within conventional process modelling, simulation, and opti-
misation of blue hydrogen, processes discusses the challenges associated 
with conventional process modelling, and how machine learning can 
help to overcome some of these problems. Then, the discussion delves 
into the topic of machine and deep learning, exploring the important 
considerations involved in integrating machine learning techniques into 
process modelling and H2 production. It then critically evaluates the 
latest research on the implementation of ML in blue hydrogen produc-
tion, across both the material scale and process scale. The paper con-
cludes by evaluating the key impacts ML has made on low-carbon 
hydrogen production and shedding light on future research towards 
combined ML and hydrogen production. 

3. Blue hydrogen production 

This section provides an in-depth review of different methods of blue 
hydrogen production including the methods of capturing CO2, as well as 
a brief review of the sorbents and catalysts that have been used for blue 
hydrogen production. In-depth reviews of blue hydrogen production can 
be found elsewhere (Masoudi Soltani et al., 2021; Nnabuife et al., 2022). 

3.1. Overview of blue hydrogen processes 

Hydrogen has conventionally been produced by SMR for decades. 
This method is categorised as grey hydrogen production, as it produces 
approximately 9 tonnes of CO2 per tonne of H2. The addition of carbon 
capture technologies can ensure the CO2 produced is captured and 
stored, which converts the grey hydrogen production into blue hydrogen 
production. In a conventional SMR process, the (de-sulphurated) natural 
gas and steam are fed into the process and are compressed (1–25 bara) 
and heated (650 ◦C) before entering the reformer where reactions R1-R3 
take place. Heat/energy must be supplied to the reformer due to the 
reaction being endothermic. The resulting product (i.e. syngas) is then 
fed to the water-gas shift (WGS) reactor where R2 reactions take place. 

Fig. 5 shows the conventional SMR process without any carbon capture. 
R3 highlights the overall reaction during this SMR process. 

CH4(g) +H2O(g) ↔ CO(g) + 3H2(g)ΔH298K = 206.2 kJ.mol− 1 R1  

CO(g) +H2O(g) ↔ CO2(g) + H2(g)ΔH298K = − 41.2 kJ.mol− 1 R2  

CH4(g) + 2H2O(g) ↔ CO2(g) + 4H2(g)ΔH298K = 165.2 kJ.mol− 1 R3  

3.1.1. Steam methane reforming with carbon capture technologies 
SMR with carbon capture technologies is a similar process as 

described previously but with the addition of separation steps following 
the WGS reactor once a significant amount of H2 and CO2 is produced 
(Antzara et al., 2015). Conventionally, to separate the CO2 from the 
hydrogen, amine scrubbing has been employed first to separate carbon 
dioxide from hydrogen, and then the CO2-lean H2 stream is fed to a PSA 
column for hydrogen purification (Fig. 6). The CO2 capture unit can be 
placed before or after the PSA column. This method allows for existing 
SMR plants to be retrofitted with carbon capture technology. In addition 
to amine scrubbing, adsorption processes such as PSA or temperature 
swing adsorption (TSA) have been identified for not only H2 purification 
but also CO2 capture (Boot-Handford et al., 2014). These processes can 
also be retrofitted whilst simultaneously overcoming some of the issues 
associated with amine scrubbing (lower energy demands for regenera-
tion of sorbent for adsorption processes compared to their absorption 
counterpart) (Wang and Song, 2020). 

By introducing extra separation steps within the process there will be 
an inherent increased CAPEX/OPEX. There has been much work on 
lower the costs through technological advancements such as developing 
cheaper catalyst material (Nkulikiyinka et al., 2022) and thermody-
namic analysis of the process to ensure optimised heat integration 
(Antzara et al., 2015). An alternative method to reducing costs is 
through policy intervention by providing financial incentives to reduce 
CO2 emissions. Such approaches have been adopted globally to reduce 
costs of low-carbon and renewable technologies (IEA, 2022). 

3.1.2. Sorption-enhanced steam methane reforming 
SE-SMR intensifies the SMR process equipped with carbon capture. 

In this process, the sorbent (commonly CaO) is placed in the reformer 
rather than being used in an individual unit, hence further process 
intensification. No WGS reactors is theoretically necessary. SE-SMR 
presents an alternative process configuration (Fig. 7), that aims to 
intensify the process. Integrating the sorbent in the reformer allows for 
two key process improvements: 

Fig. 4. Trends in the publication of research topics in this review. The graph on the left highlights the trend in the publication within machine learning. The graph on 
the right highlights’ trends in the number of publications on machine learning with hydrogen production. 
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A. Simultaneous removal of CO2 within the reformer as it is being 
produced. This shifts the equilibrium to the right (Le Chatelier’s 
principle) and allows for more H2 to be produced (i.e. improved 
conversion) (Broda et al., 2013);  

B. Reduction in coke deposition onto the catalyst via reducing the steam 
needed, and lowering the reaction temperature, due to the 

exothermic nature of the formation of the calcium carbonate via 
carbonisation of CaO (Faheem et al., 2021). 

Within the reformer, R3 and R4 take place in-situ and together. With 
the reverse of R4 taking place in the Calciner. 

CaO(s) +CO2(g) ↔ CaCO3(s) ΔH298K = − 178.8 kJ.mol− 1 R4 

Fig. 5. Simplified flowsheet of steam methane reforming process.  

Fig. 6. Process flowsheet of SMR process with carbon capture.  

Fig. 7. Process flowsheet of SE-SMR process.  

W. George Davies et al.                                                                                                                                                                                                                        
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The addition of calcium oxide as the sorbent leads to an exothermic 
reaction and provides heat for further H2 generation via WGS reactions, 
hence the lack of a need for an additional WGS reactor (Cherbanski and 
Molga, 2018). There has been some research looking into changing the 
sorbent due to the issues associated with the cyclability of CaO because 
of its deactivation after a number of cycles (Shokrollahi Yancheshmeh 
et al., 2016). 

3.1.3. Auto-thermal reforming 
Auto-Thermal Reforming (ATR) is like the SMR process; however, it 

introduces O2 within the reformer along with the steam and methane. 
Here, oxygen reacts with methane according to reaction R5. It is a highly 
exothermic reaction and the heat generated from R5 helps to carry out 
the endothermic reforming reaction (R3) (Faheem et al., 2021). 

CH4(g) + 2O2(g) ↔ 2H2O(g) + CO2(g) ΔH298K = − 802.7kJ.mol− 1 R5  

3.2. Recent process development of blue hydrogen production 

There has been further development of blue hydrogen production 
processes to further optimise for lower cost and higher efficiencies. 
Table 1 highlights the latest development in low-carbon hydrogen pro-
duction and summarises the latest advancements in process develop-
ment to further reduce the CAPEX/OPEX of conventional approaches, 
increase thermodynamic efficiency, as well as optimising the process to 
ensure high CO2 capture rates. Some of these works have been detailed 
in recent literature (Ishaq et al., 2022; Nnabuife et al., 2022; Oni et al., 
2022). 

As shown in Table 1, the main area of process development has been 
the process intensification by introducing sorbents into the reformer 
(SE-SMR, SE-SMG, SE-CLR) for combined CO2 capture and H2 produc-
tion. Furthermore, integrating low-carbon heat sources such as CLC and 
solar power, provides methods of reducing the CO2 output. Work has 
also focused on integrating different feedstock (SE-SMR) due to the ef-
fect of methane as a greenhouse gas (Howarth and Jacobson, 2021). 
Conventional process modelling has had an important role to play in 
development of low-carbon H2 production to assess process feasibility of 
these novel developments at low-cost. Technologies such as CLC are 
being integrated into the process to provide a source of low-carbon heat, 
whilst simultaneously allowing for a reduction in CO2 being released as 
well as reducing the energy demand for conventional CO2 capture pro-
cesses such as amine scrubbing (Fan et al., 2012; Bahzad et al., 2019). 
Conventional process modelling involves the modelling of a process 
using first-principle equations such as heat and mass transfer, to deter-
mine the outputs of a process. Section 4 will provide an in-depth analysis 
on conventional process modelling and the recent advancements made 
in regards to H2 production. 

The recent development of process modelling has looked to incor-
porate ML within process modelling of hydrogen production. The 
development of surrogate models of H2 production via ML allows for full 
process optimisation via the identification of key operating parameters 
and key performance indicators (KPIs) (Vo et al., 2022). This can also be 
applied to individual unit operators as well, such as a PSA unit (Sub-
raveti et al., 2019; Yu et al., 2021). Reducing the dimensions of the 
model through the selection of key operating parameters, allows for 
increased speed of simulation. This increased speed of simulation, 
explicitly shown within the dynamic modelling of these processes, al-
lows for improved process control and can provide in-sight in real time 
of H2 production processes. Section 6 will delve deeper into the appli-
cation of ML within the modelling of hydrogen production processes. 

3.3. Development of materials for blue hydrogen 

Within blue hydrogen production, research has been focused on 
developing catalysts, used in the reformer and water gas shift reactors. 
Commonly nickel-based catalysts are used in the reformer, but there are 
issues with sintering at high temperatures within a conventional SMR 
reformer (Maqbool et al., 2021). High-temperature WGS reactors 
conventionally use copper as the catalyst, which is expensive (Saeidi 
et al., 2017). More recently, there has been a focus on developing CSCM 
for the SE-SMR processes (Nkulikiyinka et al., 2022). Table 2 provides 
an overview of common materials used in blue hydrogen production. 

In regards to this the development of materials within hydrogen 
production, modelling these molecules via molecular modelling tech-
niques such as density functional theory (DFT) can provide insight into 
the interaction between the new material and CO2 molecules or its 
interaction with CH4. In the realm of material development, ML has 
found applications in the creation of innovative materials, particularly 
in the screening of catalysts and sorbents using quantitative structure- 
activity relationship (QSAR) methods. This has been utilised with the 
development for CO2 capture materials such as metal organic frame-
works (MOFs) (Avci et al., 2018; Dureckova et al., 2019; Burns et al., 
2020). In comparison to conventional material screening which involves 
a trial and error synthesis of compounds, the development of QSAR 
provides a framework in which vast amounts of compounds can be 
screened and ranked according to the KPIs (the activity of the material). 
Further elaboration on this topic will be provided in Section 6. 

4. Conventional process modelling within blue hydrogen 

Numerous low-carbon hydrogen production methods such as SE-SMR 
and SE-ATR are currently at a low TRL. However, some of these pro-
cesses are being developed at pilot scale to better understand how to 

Table 1 
Novel methods for low-carbon hydrogen production.  

Process Process Overview References 

Sorption-enhanced steam methane reforming 
with chemical looping combustion (SE- 
SMR + CLC) 

The addition of the chemical looping combustion unit, instead of conventional 
combustor, produces high purity CO2 that can be stored without any additional 
carbon capture units retrofitted to the combustor. Different oxygen carries have 
been identified within the literature. 

di Giuliano and Gallucci (2018), Fernández and 
Abanades (2017) and Collins-Martinez et al. 
(2020) 

Sorption-enhanced chemical-looping 
reforming (SE-CLR) 

In this process, methane reforming and reduction are carried out in one reactor. 
CLR is a technological development in fuel combustion where oxygen required 
is supplied by solid oxygen carrier instead of air, such that direct contact 
between air and fuel is avoided hence, producing high purity CO2, without the 
need for any capture technology. 

Bahzad et al. (2019) 

Sorption-enhanced steam methane 
gasification (SE-SMG) 

A gasification reactor is introduced in which biomass is gasified at high 
temperature to produce syngas and methane. This is then introduced as 
feedstock to the reformer to produce H2. The use of biomass as a precursor 
allows for zero emissions but there is a high energy penalty associated with the 
gasification process. 

Li et al. (2020) 

Solar-aided steam methane reforming (SA- 
SMR) 

The pre-reformer is added to the SMR process that uses solar power to heat the 
molten salt. Using solar-assisted heat generation provides low CO2 emissions. 

Wang et al. (2022)  

W. George Davies et al.                                                                                                                                                                                                                        
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scale them up for optimal heat integration, reformer sizing, and ther-
modynamic efficiency. This is crucial to ensure high H2 and CO2 purity 
and a high CO2 capture rate. To achieve an optimised process for low- 
carbon hydrogen production, it is essential to conduct process modelling 
and subsequent simulation. There has been a significant amount of 
research focused on process modelling, simulation and optimisation of 
low-carbon hydrogen production processes (Sinaei Nobandegani et al., 
2016; Phuakpunk et al., 2018; Costamagna et al., 2020; Yan and 
Thanganadar, 2020; Dat Vo et al., 2021; Faheem et al., 2021; Maqbool 
et al., 2021; Shahid et al., 2021; Gunawan and Singh, 2022; Nobande-
gani et al., 2022; Quirino et al., 2022; Babamohammadi et al., 2023; 
Capa et al., 2023). Here we reviewed the latest research on the process 
modelling, simulation, and optimisation of blue hydrogen production 
processes. Specifically, the focus has highlighted the need for an alter-
native optimisation approach to the conventional optimisation of 
processes. 

Conventional process modelling software such as Aspen Plus and 
gPROMS, model chemical processes via the modelling of physical and 
chemical properties of the system and the inclusion of unit operators. 
Significant effort within the past decade has focused on the modelling 
(both steady-state and dynamic) and optimisation of these blue 
hydrogen production methods (Costamagna et al., 2020; Yan and 
Thanganadar, 2020; Dat Vo et al., 2021; Gunawan and Singh, 2022; 
Nobandegani et al., 2022; Babamohammadi et al., 2023; Capa et al., 
2023; Mostafa et al., 2023). 

The development of blue hydrogen processes has included an array 
of modelling work. Dat Vo et al. (2021) looked at the dynamic modelling 
of the reformer, as a circulating fluidised bed reactor (CFB). An SE-SMR 
process was developed on a semi-central scale, capable of producing 48 
tons of hydrogen a day. The simulation showed a reduced production 
cost of H2 (12%) and a higher energy efficiency (82%) in comparison to 
conventional SMR (Dat Vo et al., 2021). A sensitivity analysis of main 
operating variables (temperature, pressure, velocity and S/C ratio) upon 
process performance, suggests inlet temp of the bubbling fluidised bed is 
the most important variable as it has considerable effects on production 
rate, CO2 capture, cost and energy efficiency (Dat Vo et al., 2021). 

Furthermore, it is important to compare alternative process config-
urations of SE-SMR to determine the optimum process configuration, 
that ensures for high CO2 capture rate and high H2 purity. Yan and 
Thanganadar (2020) investigated six process arrangements that were 
developed for blue hydrogen production: (1) SE-SMR, (2) SE-SMR +
PSA, (3) SE-SMR + CLC, (4) SE-SMR + PSA + CLC, (5) SE-SMR + PSA +
Oxyfuel Combustion and (6) SE-SMR + PSA + H2 Recycle. These pro-
cesses were compared in terms of five key performance indicators via a 
thermodynamic analysis: Cold Gas efficiency, Net efficiency, CH4 con-
version, H2 purity, and CO2 capture. A sensitivity analysis concluded 
case 4 (SE-SMR + PSA + CLC) was the optimal process configuration for 
high H2 purity (100%) and a high CO2 capture rate (100%), in which the 

reformer temperature was 600 ◦C, the pressure was 25 bara and S/C 
ratio was 5. These demonstrate the potential of low TRL technology such 
as CLC and SE-SMR to produce low-carbon H2 (Yan and Thanganadar, 
2020). 

In the context of process optimisation, sensitivity analysis and other 
optimisation approaches can be highly informative. By utilising first 
principle modelling, it becomes possible to gain a thorough under-
standing of the process and identify the key operating parameters that 
need to be optimised to achieve high performance in selected key per-
formance indicators (KPIs). However, it is important to note that con-
ventional optimisation approaches, such as sensitivity analysis, typically 
utilise a one-factor-at-a-time (OFAT) approach. Although this approach 
can be useful in isolating individual operating parameters, it does not 
reveal how these parameters interact with each other, which may 
require further analysis. Previous research has focused on utilising the 
design of experiment (DoE) technique which aims to optimise via the 
parallel evaluation of the chosen input parameters (Gorbounov et al., 
2022). While this technique is commonly used in experimental practices 
(Gorbounov et al., 2023), some research has explored its application in 
process modelling and optimisation as well (Sinaei Nobandegani et al., 
2016; Phuakpunk et al., 2018; Quirino et al., 2022). 

Within the literature, work has been focused on using design of 
experiment (DoE) (Gorbounov et al., 2022), a technique that aims to 
conduct optimisation via the parallel evaluation of the chosen input 
parameters. Commonly, the literature has demonstrated the effective-
ness of this method in optimising the design of reformers for steam 
methane reforming, and in optimising unit operators of low-carbon 
hydrogen production such as SE-SMR. Using DoE for process model 
optimisation is a useful tool as it allows for the parallel evaluation of 
multiple input parameters. This has been shown in recent literature with 
(Babamohammadi et al., 2023) in which they developed a detailed 
rate-based model was implemented to simulate the reformer in SE-SMR, 
as well as the SE-ATR processes to investigate the effects of operational 
variables of the process and their impacts on KPIs including H2 purity 
and CO2 capture rate. The application of DoE in process modelling is 
effective in understanding the best operating conditions for maximum 
efficiency and how different key parameters interact with the KPIs. 
Recent work has explored computational approaches, such as Latin 
hypercube sampling (LHS), which splits the dataset into square grids and 
selects seemingly random data while ensuring variability within the 
dataset by selecting a square grid containing data from each row and 
column (Galeazzi et al., 2023). 

Another notable trend within this multivariable approach has been 
the development of optimisation algorithms such as genetic algorithm 
(GA), which paired with process modelling can provide a detailed 
approach for multi-variable optimisation (Cherif et al., 2022). GA is an 
algorithm for optimisation that mimics biological evolution. The algo-
rithm begins by generating a random population of solutions. At each 

Table 2 
Material for blue hydrogen production.  

Molecule Catalyst/ 
Sorbent 

Reaction Overview References 

Ni-based Catalyst Catalyst SMR Commonly used for the SMR. Cheaper than using noble metals. Catalyst support via metal oxides (Ni/ 
MgAl2O4) has been introduced to reduce poisoning and increase conversion efficiency. 

Maqbool et al. 
(2021) 

Single Atom Alloy 
(SAA) 

Catalyst WGS SAA minimises the use of metal and provides a cost-effective method of using noble-metal catalysts. Saeidi et al. 
(2017) 

CaO Sorbent Adsorption CO2 sorbent is used in the SE-SMR process due to the low cost of CaO, and adequate CO2 capture rate. A 
key issue is a drop in CO2 sorption capacity over multiple cycles due to sintering of CaO. 

Antzara et al. 
(2015) 

Ni/CaO–Ca5Al6O14 Catalyst/ 
Sorbent 

SE-SMR The Ni/Ca5Al6O14-stabilised bifunctional catalyst shows high stability and CaO utilisation. Xu et al. (2016) 

Hydrotalcite (HTC) Sorbent SE-SMR Another alternative to CaO owing to its unique layered structure and high surface area. However, the 
sorption capacity is much lower in comparison to other sorbents. 

Shahid et al. 
(2021) 

Lithium orthosilicate 
(LTZ) 

Sorbent SE-SMR An alternative to CaO; It has a high CO2 selectivity and can capture CO2 efficiently within a large range 
of temperatures (450–650 ◦C). It also has a lower regeneration reaction temperature (700 ◦C). However, 
it has a low hydrogen production rate due to a combined effect of low sorption capacity and slow 
desorption rate. 

Shahid et al. 
(2021)  
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step individual solutions from the current population are selected to act 
as parents to generate the next generation. Over successive populations, 
the algorithm tends towards an optimal solution (Bagherian et al., 2021; 
Cherif et al., 2022) has focused on using GA for the optimisation of a 
novel design for an ATR reformer. The novel configuration improved the 
performance of the ATR, with a reduction in the operating temperature 
(24.8%), and enhanced CH4 conversion (27.2%). Further optimisation 
utilising a GA was employed to optimise catalyst arrangements, for 
maximum H2 yield associated with the lowest local wall temperature. H2 
yield slightly increased with a decrease in maximum local wall tem-
perature (39.3%), suggesting an improvement in heat exploitation in the 
novel design (Cherif et al., 2022). 

Due to the application of hydrogen within fuel cells, there is a need 
for extremely high-purity H2 which requires the adaptation of further 
purification processes. In the realm of blue hydrogen, purification pro-
cesses such as PSA and TSA are highly dynamic processes carried out in 
columns. When utilising conventional process simulators, such as Aspen 
Plus, and optimising by changing relevant operating conditions, sim-
plifications and assumptions are often made due to the computational 
intensity of simulating non-uniform inlet streams throughout the pro-
cess. Otherwise, with conventional approaches, the modelling and 
optimisation will be computationally time-consuming. 

In the development of digital twins for these processes, ML is a 
crucial component due to its ability to significantly increase processing 
speed. The use of ML can significantly increase processing speed and 
help the model to optimise these processes more accurately while 
considering the complex dynamics involved in the process. By training 
models with large datasets of process data, machine learning algorithms 
can identify patterns and optimise process variables in real-time to 
achieve optimal performance, which ultimately leads to improved effi-
ciency, reduced costs, and increased H2 purity. Consequently, machine 
learning is an essential tool in the development of digital twins for blue 
hydrogen production, and modelling and optimisation of the process. 

When optimising adsorption-based processes associated with blue 
hydrogen production (i.e. TSA and/or PSA), often the cyclic nature of 
these processes requires a set of non-linear PDEs to be solved until it 
reaches a cyclic steady state. Conventional modelling and subsequent 
OFAT approach to optimisation (sensitivity analysis) are computation-
ally slow. Utilising DoE and other optimisation techniques such as GA 
that allow for multi-objective optimisation (MOO), provides an accurate 
and computationally quick solution to optimisation problems. Within 
the literature there has been an increasing trend to utilise ML with GA to 
optimise processes such as H2 purification, this will be further discussed 
in section 6. 

5. Machine learning: a technical summary and application 
within H2 production 

This section first begins with a brief explanation on the methods and 
principles of machine learning (ML) and deep learning (DL) for the 
reader to build a practical insight into the tools that are used in process 
modelling, optimisation and material development within blue 
hydrogen production. The chapter then discusses the recent de-
velopments within ML and how they have been incorporated within H2 
production. 

5.1. Machine learning: an overview 

ML is a branch of artificial intelligence (AI) that involves the use of 
algorithms and statistical methods by computers to progressively 
enhance their performance and outcomes. As Arthur Samuel an AI 
pioneer put it “machine learning is a field of study that gives computers 
the ability to learn without explicitly being programmed.” (MIT Sloan, 
2021). ML effectively describes the process in which machines learn 
from problem-specific training data. ML is a methodology that enables 
the enhancement of non-linear systems through optimisation (Rahimi 

et al., 2021). It can be applied across a vast range of research areas from 
natural language processing (Hirschberg and Manning, 2015), image 
classification (Wu and Chen, 2016) and robotics (Correa-Baena et al., 
2018). 

According to different learning modes, ML can be categorised as 
supervised, unsupervised and reinforcement learning. Supervised 
learning is used when the dataset is labelled to understand the rela-
tionship between output variables and input variables (Gianey and 
Choudhary, 2018). There are two types of supervised learning algo-
rithms: classification and regression. Classification algorithms predict 
discrete output variables from input variables, regression algorithms 
predict continuous output based on the input variables (Ketabchi et al., 
2023). Examples of supervised learning algorithms include: linear 
regression, logistic regression, decision trees and naïve bayes (Gianey 
and Choudhary, 2018). 

Unsupervised learning is another learning approach in ML which can 
be used when the dataset is unlabelled, to find patterns through the data 
without human intervention (Dey, 2016). Unsupervised learning can be 
classified into three groups: association, dimensionality reduction and 
association (Dey, 2016). Clustering is a technique that categorises or 
separates unlabelled data by identifying similarities or differences (Dey, 
2016). On the other hand, association employs a rule-based approach to 
discover relationships between variables within each dataset 
(Schweidtmann et al., 2021). Dimensionality reduction reduces the di-
mensions of the dataset in such a way that the subsequent representation 
retains meaningful properties of the original data (Yan et al., 2021). 
Dimensionality reduction techniques such as principal component 
analysis (PCA), has important application within machine learning 
models of hydrogen production processes to enhance the modelling with 
respect to speed. Semi-supervised learning is a hybrid technique that 
combines both supervised and unsupervised learning methods. It le-
verages a limited set of labelled data to guide the classification and 
extraction of information from a larger unlabelled dataset (Schweidt-
mann et al., 2021). Common unsupervised algorithm includes: PCA, 
K-means clustering, K-mode clustering, Apriori and single value 
decomposition (Dey, 2016). 

Reinforcement learning represents a novel approach to learning that 
distinguishes itself from conventional methods. Unlike traditional ap-
proaches that rely on input-output pairs. Reinforcement learning em-
powers an agent to learn through trial and error within an environment, 
leveraging feedback from its own experiences. By providing a set of 
permissible actions and associated constraints, reinforcement learning 
obviates the need for a pre-existing training dataset. Instead, it re-
inforces successful outputs, enabling the development of optimal rec-
ommendations for problem-solving (Horvitz and Mulligan, 2015). The 
agent is the object that seeks to achieve a goal within the environment. 
The environment provides states in which the agent operates in. The 
agent uses policy and reward to learn within the environment (Sutton 
and Barto, 1998). Policy is the method in which to map the actions of a 
given state. Fig. 8 shows the relationship between these meanings within 
reinforcement learning. The feedback given to the agent is commonly 
referred to as a reward. Developing an optimal policy is key to success in 
reinforcement learning, the agent often faces a problem known as 
exploration vs exploitation in which the agent must explore new states 
whilst maximising its reward at the same time (https://towardsda-
tascience.com/reinforcement-learning-101-e24b50e1d292). 

ML has recently been utilised in the process modelling of chemical 
systems for the production of blue hydrogen (Dat Vo et al., 2019; Sub-
raveti et al., 2019; Pai et al., 2020; Vo et al., 2020; Tong et al., 2021; Yu 
et al., 2021), and in the molecular screening for novel materials (such as 
catalysts and sorbents) (Khurana and Farooq, 2016; Avci et al., 2018; 
Burns et al., 2020; Mashhadimoslem et al., 2021; Nkulikiyinka et al., 
2022; Cheng et al., 2023). Process modelling has historically been done 
within chemical engineering by a physical system represented by 
mathematical equations that are governed by physical laws, whereas 
ML-based models utilise data that could come from literature, 

W. George Davies et al.                                                                                                                                                                                                                        



Gas Science and Engineering 118 (2023) 205104

9

experimental or first-principle modelling data, and use that data to train 
ML-based models to simulate or predict the output of the system (CO2 
capture rate and H2 purity) (Pistikopoulos et al., 2021). A recent 
development of ML has been the application within the realm of process 
modelling. For example, the operation of adsorption columns can be 
modelled via ML. This also applies to the modelling of reactors specif-
ically applied to hydrogen production (e.g. the modelling of the 
reformer). In the domain of sorbent synthesis and process optimisation, 
a significant volume of data is accessible in literature encompassing 
various sorbents and processes. This data can be employed to train and 
construct ML-based models. 

ML provides researchers with tools to model highly non-linear sys-
tems. Key factors must be considered such as, ethical considerations like 
the interpretability of the model when employing them in STEM-related 
fields (Ketabchi et al., 2023). Nevertheless, multiple ML techniques have 
been applied within the modelling of these processes such as random 
forest (RF) which balances interpretability and predictive ability well 
(Eduardo et al., 2022). Artificial neural networks (ANNs) have been 
extensively employed in the literature in low-carbon hydrogen produc-
tion, due to their flexibility within the architecture. Due to this pre-
dominant use of neural networks and deep learning techniques within 
the literature, the next section will solely focus on neural networks and 
deep learning methods, outlining how they’ve been advanced within the 
last decade. 

5.2. Artificial neural networks 

ANNs are non-linear based mapping structures, which maps the 
input from the output, in between these inputs and outputs are layers of 
nodes (known as the hidden layer). The output node values are deter-
mined by the activation function of the nodes in the hidden layer and the 
interconnections between the nodes (Yan et al., 2021). Fig. 9 provides a 
representation of the process. The ANN structure is inspired by the 
principle of information processing in biological systems (Janiesch et al., 
2021). 

As mentioned previously, a recent trend has been the development of 
neural networks for modelling engineering processes. Neural networks 
have been widely employed since the 1940s (Schmidhuber, 2015). 
There was an initial disregard for neural networks due to a trend towards 
logical inference (Schmidhuber, 2015). Nevertheless, the combination 
of the development of convolutional neural networks (CNN) for image 
identification allowed for a return for the use of neural network. The 
employment of ANN exploded in the 2010s with the advent of deep 
learning and big data (Panerati et al., 2019a). 

A neural network consists of an input layer, hidden layers, and an 
output layer. The data is passed through the layers to produce an output. 
The input layer is the data that is initially fed into the network. The 
hidden layers within the network do the computing and extract the key 
features to produce an output, which is the layer that provides a result 
from the input and its interaction with the neural network. Each layer 
can comprise multiple neurons, the basic structure of the neuron is 
described in Fig. 10. 

5.2.1. How does a neural network learn? 
Each neuron receives a multiplied version of inputs and random 

weights (which is attuned in the learning process). Within the neuron, 
the weights and inputs from the previous layer are linearly combined, 
which is then added with a static bias value (unique to each neuron 
layer). This is then passed to an appropriate activation function which 
decides the final value to be generated by the neuron (Bengio et al., 
2015). This is described in equation (1). 

z=
∑

XnWn + b (1)  

where z is the neuron, Xn is the data input, Wn is the weight applied to 
each data input to the neuron, and b is the static bias value. 

Different activation functions are utilised based on the characteris-
tics of input values. The activation function plays a crucial role in 
determining whether a neuron should be activated or remain inactive. It 
adds non-linearity to the system (dependant on the activation function) 
(Bengio et al., 2015). Once the output is generated, the loss function is 
next calculated (Janiesch et al., 2021). Non-linear activation functions, 
such as leaky ReLU, enable deep learning (Bengio et al., 2015). 

The loss function measures the model’s accuracy during the training 
process. It evaluates how well the model, models the dataset. Within ML 
the goal is to minimise the loss function to ensure the output generated, 
matches the output from the original dataset. This minimisation of the 
loss function is commonly done by gradient descent (Lillicrap et al., 
2020). Gradient descent works by starting at a random point and 
determining the gradient from that point. The descent to minimise this 
loss function is determined by the direction and the learning rate. These 
data points are needed to calculate the partial derivatives, to allow it to 
reach the global minimum (Bengio et al., 2015). The size of the gradient 
will determine the size of the parameters such as the weight and bias of 

Fig. 8. Representation of the relationship between the agent and the environ-
ment within reinforcement learning adapted from Sutton and Barto (1998). 

Fig. 9. Conventional neural network.  

Fig. 10. Basic structure of a neuron.  
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each neuron. This minimisation of the loss/cost function is done during 
backpropagation (BP), where the weights and biases of each vector are 
adjusted to match the output of the actual output (https://medium. 
com/yottabytes/everything-you-need-to-know-about--
gradient-descent-applied-to-neural-networks-d70f85e0cc14). BP plays a 
crucial role during the learning process as it provides a way for the ANN 
to converge on a global minimum after multiple iterations of the dataset. 
BP uses error signals that are feedback into the neurons to adjust the 
weights and bias, in order to minimise the error within the ANN to 
ensure the output is correct (Lillicrap et al., 2020). 

The learning rate determines the rate at which the gradient descent 
occurs to reach the global minimum, this is a key hyperparameter within 
the process. If the learning rate is small, then the training of the model is 
computationally slow and too large, and the global minimum may be 
missed. The learning rate, and activation function, as well as the number 
of layers and neurons are known as neural network hyperparameters. 
These cannot be determined by the learning algorithm and must be set 
manually (Bengio et al., 2015). An epoch is a key hyperparameter within 
the learning process. It is when the training dataset has been passed 
through the neural network once. In general practice, neural networks 
are typically trained over multiple epochs until the loss function 
reaches a sufficiently low value. However, the selection of the number 
of epochs requires careful consideration. If too many epochs are used, 
the model may become overfit, resulting in a lack of generalisation 
and robustness in its predictions. Conversely, if too few epochs 
are employed, the neural network may become underfit, leading 
to inaccurate output values from the model (https://medium. 
com/@upendravijay2/what-is-epoch-and-how-to-choose-the-correct- 
number-of-epoch-d170656adaaf). 

Commonly, the data used to train the neural network, is split into 
training, testing and validation data. The training data accounts for most 
of the data split and is the data that is used to learn the patterns within 
the dataset; the validation set is used after each epoch and is used to tune 
the hyperparameters and confirm that the loss function is being mini-
mised. It also ensures that the neural network is not overfitted to the 
training data. The test set provides unseen data for the ANN in which to 
determine how well the neural network model performs. Determining 
the split of training, validation and test data is dependent on a variety of 
factors. Effectively, there is no “golden rule” to split the data set (V7labs, 
2021). 

5.3. Advancements within machine learning 

ML has been an expanding research field within the last 20 years as 
mentioned, with application in a vast range of fields. In this section, the 
advancements are discussed within the context of process engineering 
and STEM-based research. 

5.3.1. Advancements within neural networks 
Advancements have been made within the last few decades on 

developing different types of neural networks for different applications. 
Table 3 provides an overview of recent advancements made within 
neural network and a brief description of each type. 

The flexibility of the neural networks, in regards to the type of al-
gorithms used for backpropagation and learning, the networks archi-
tecture as well as a choice of loss function and activation function. This 
flexibility allows for ANNs to be fine-tuned for a specific purpose. Spe-
cifically, in that regard, this has led to the development of neural net-
works that allow for deep learning which will be discussed in the next 
section. 

5.3.2. Advancements within deep learning 
Deep learning (DL) is a significant branch of ML, especially within 

the last decade. Complex neural networks, consisting of more than three 
layers, are employed to analyse extensive datasets (Panerati et al., 
2019b). Deep learning provides a way to automate both feature 

extraction and model building, meaning it can be extremely useful in 
noisy and unstructured datasets (Janiesch et al., 2021). They contain 
advanced neurons that use advanced operations. This allows for the 
deep-learning neural networks to be fed with raw input data to discover 
a representation needed for the corresponding learning task (automated 
feature extraction) (Janiesch et al., 2021). DL has become of increasing 
interest with the development of large language models such as ChatGPT 
(Birhane et al., 2023). 

DL and ANNs are commonly referred to as “black-box”. Within data 
science, a black-box approach is a model that produces a useful output 
but is not interpretable (Rudin and Radin, 2019), whereas conventional 
process modelling software such as Aspen Plus utilises a “white-box” 
approach to modelling in which models are constructed from first 
principles of physical equations in which mass, momentum and physical 
equations govern how the process operates (described mostly by partial 
differential equations) (Bikmukhametov and Jäschke, 2020). However, 
the time in which to develop these models are high, especially within 
large processes that have complex non-linear behaviour, such as the 
production of low-carbon hydrogen. Combining the two-modelling ap-
proaches allows for a hybrid model. This type of modelling approach has 
arisen within engineering and the natural sciences to enforce physical 
laws within an ML-based framework (Karniadakis et al., 2021; von 
Stosch et al., 2014; Bikmukhametov and Jäschke, 2020). Combining the 
interpretability of the first principle-based modelling and the speed of 
ML models allows for improved modelling and simulation of chemical 
processes. 

A recent phenomenon within the natural sciences has been physics- 
informed neural networks (PINNs) in which biases are introduced within 
the learning process that allow for the learning process to identify 
physically acceptable solutions (Karniadakis et al., 2021). Three main 
types of biases can be introduced, observational biases, inductive biases 
and learning biases. Over conventional modelling, they allow for high 
dimensional problems to be solved, together with the quantification of 
uncertainty. Within blue hydrogen production incorporating these 
PINNs into digital twins could be highly beneficial regarding its hybrid 
approach of combing data with physical models, allowing for enhanced 
use within chemical engineering. 

Table 3 
Common neural network architecture.  

Neural Network Definition 

Feedforward neural 
network 

The simplest architecture for a neural network 
information travel from the input to the output in one 
direction, not a deep learning technique due to a lack of 
automated featured extraction and no backpropagation 
occurring (Janiesch et al., 2021). 

Recurrent neural 
network (RNN) 

Designed output from any layer is then feedback as an 
input into previous layers (Pascanu et al., 2013; Panerati 
et al., 2019a). Designed for time-sequential data, the 
architecture of the neurons allows for storage of the data 
to enable sequential learning, simple RNNs have issues 
such as vanishing gradient (Emmert-Streib et al., 2020). 

Long-short term memory 
(LSTM) 

LSTM is similar to RNNs in that it allows for storage of 
the data; however, it overcomes the issues such as 
vanishing gradient (common occurrence in RNN) by 
introducing a “forget gate”. LSTM has been heavily 
applied to the analysis of video data (Emmert-Streib 
et al., 2020). 

Convolutional neural 
network 

Neurons are organised in 3D layers and produce a 
convolution operation on their input vectors (Alzubaidi 
et al., 2021). 

Modular neural network Different networks that function independently form one 
another, the networks do not interact with one another 
and work independently in achieving an output ( 
Vaswani et al., 2017). 

Autoencoders A type of neural network, commonly used in image 
recognition. It aims to learn data encodings in an 
unsupervised manner (Bengio et al., 2015).  
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5.3.3. Ensemble learning 
A recent development within ML research has been ensemble 

learning, which involves combining multiple ML algorithms and 
combining the predictions produced by each model. Research has shown 
it to be more accurate in comparison with a single ML algorithm (Zhang 
et al., 2022b; Mohammed and Kora, 2023). Methods such as RF is a 
prominent example of an ensemble learning method which combines 
multiple decision trees to generate a prediction. There are many ways to 
ensemble multiple ML algorithm such as bagging, boosting and stacking 
(Alam et al., 2020). A recent development within ensemble learning is 
its incorporation within deep learning to overcome issues such as high 
variance within deep neural networks (Alam et al., 2020). 

Ensemble learning has been used within the modelling of hydrogen 
production, with it being employed usually to compare against a neural 
network (Nkulikiyinka et al., 2020; Zhao et al., 2021). RF has been 
employed as a soft-sensor for predicting the concentrations of gases 
within the reformer in the SE-SMR process and has shown a slightly 
better performance in the predictive results in comparison to using an 
ANN (see section 6) (Nkulikiyinka et al., 2020). It has also been 
employed to predict the output of the gasification of biomass for 
hydrogen production, comparing with four different ML methods with 
RF outperforming them all (Zhao et al., 2021). The improved predictive 
performance of ensemble learning highlights the benefits of integrating 
ensemble learning further into H2 production. 

5.4. How and why has machine learning been integrated into hydrogen 
production? 

In regards to ML integration within process modelling of chemical 
processes and more specifically H2 production. ML integration within H2 
production has often involved the collection of data either through the 
literature, industry or first-principle simulation. A PCA is often run on 
the dataset rather than using a “raw dataset”, used to reduce the di-
mensions whilst maintaining accuracy by selecting the key features. 
These features are then used as the input for the ML algorithm 
(commonly ANNs), these models are then trained, tested and validated 
as per the previous section. Often the ML model is developed it is often 
optimised using a GA, to provide optimal performance of the model and 
identify operating parameters in which the optimal output occurs. This 
method has been commonly used within the development of “surrogate” 
models for unit operators such as the PSA unit (Subraveti et al., 2019; Yu 
et al., 2021). A vast array of literature has applied this method to either 
optimise specific unit operators (Dat Vo et al., 2019; Subraveti et al., 
2019; Pai et al., 2020; Vo et al., 2020; Tong et al., 2021; Yu et al., 2021) 
or entire hydrogen production processes (Alsaffar et al., 2020; Nkuli-
kiyinka et al., 2020; Oh et al., 2022; Vo et al., 2022; Wang et al., 2022; 
Gul et al., 2023). 

As mentioned previously ML has been utilised in H2 production 
within the molecular, material and process scale of modelling. The uti-
lisation of ML and specifically in modelling low-carbon hydrogen pro-
duction holds significant value. In regards to ANNs specifically the 
flexible structure allows for easy customisation to suit a wide range of 
applications, including supervised, unsupervised, and reinforcement- 
based learning. Moreover, neural networks offer computational effi-
ciency compared to previous models, making them a viable choice. They 
exhibit high adaptability and can correlate diverse inputs and outputs, 
which proves advantageous for tackling multi-objective optimisation 
problems, such as simultaneous hydrogen production and CO2 capture. 
This flexible structure combined with automated feature extraction 
provides a computationally quick model, that if trained correctly, can 
produce highly accurate outputs. However, careful consideration is 
required to ensure neural networks are trained correctly, such as 
ensuring an R2 value across the training, testing and validation dataset. 

Furthermore, an understanding of how neural networks learn is key 
to ensure accurate and robust models. ANNs/ML integration within 
process modelling occurs when white box (first principle) modelling is 

insufficient in regards to developing analytical solutions (the time taken 
to solve the PDEs). Often in complex processes such as H2 production but 
specifically for units such as the PSA column for H2 purification. A nu-
merical method increases the efficiency to provide solutions. An in- 
depth comparison will be discussed in section 6. A thorough under-
standing of ANNs in relation to the structure (architecture) and the 
choice of learning algorithm are important to ensure a correct model. 

6. Machine learning in blue hydrogen production: a critical 
Outlook 

In this section, ML models for both grey and blue hydrogen have 
been examined, acknowledging the similarities in their processes. 
Additionally, we have explored and discussed the implementation of ML 
in these hydrogen production processes, ranging from material 
screening and development to comprehensive plant optimisation. By 
doing so, we have shed light on the existing applications of ML and 
identified areas where its utilisation can be expanded in blue hydrogen 
production. Table 4 provides a descriptive overview of the research that 
will be discussed in detail in the sections below. Furthermore, a detailed 
comparative assessment has been done on the current literature with 
regards to process modelling. Conventional process modelling has been 
used as a benchmark to assess ML within blue hydrogen production to 
highlight the advantages of utilising ML and potential pitfalls. 

6.1. Machine learning in material development for hydrogen production 

Within the realm of material development, ML has been extensively 
implemented both in the molecular modelling of catalysts and materials 
for CO2 capture with DFT calculations and molecular dynamics, as well 
as QSAR (Fiedler et al., 2022) - a method of identifying materials for a 
select function based on its structure. Within low-carbon hydrogen pro-
duction, there has been a significant focus on the development of cata-
lysts for the hydrogen evolution reaction. This is due to the expense of 
the platinum catalyst used. Some work has focused on implementing ML 
within DFT calculations (Ugwu et al., 2022; Bokinala et al., 2023; Wu 
et al., 2023) to discover novel catalysts for the hydrogen evolution re-
action. Conventional molecular modelling such as DFT requires the 
solving of the Hamiltonian over time and still requires first-principles 
calculations to solve the model in order to determine the electronic 
structure which can then be used in materials screening (Lee, 2015). 

With regards to material development, ML has been extensively 
applied within the pharmaceutical industry and catalyst design (Wang 
et al., 2019; Mehta et al., 2021). It has recently been applied to 
amine-based carbon capture and blue hydrogen production (Yang et al., 
2023), and more recently to adsorbents that have the optimum prop-
erties for CO2 capture (Yan et al., 2021). Within blue hydrogen specif-
ically, there has been a focus on the development of novel materials such 
as CSCM with the development of an ML model for the selection of CSCM 
that have optimal properties for application within SE-SMR (Nkuli-
kiyinka et al., 2022). Work has also looked at catalyst development 
within the WGS reactor (Kim et al., 2022) which is often expensive in 
comparison to the nickel used within the reformer. Some discrepancies 
have been reported in the literature which affect the screening for cat-
alysts for the WGS reactor (Kim et al., 2022). Future work must correctly 
characterise catalyst formulation in order for the future enhancement of 
the WGS process with respect to catalysts. 

Materials have also been screened for processes such as CLC (Yan and 
Mattisson, 2020). This highlights the application of ML to material 
development in blue hydrogen production. It can increase the speed of 
the workflow for the discovery and synthesis of materials. However, 
consideration must be given in the use of neural networks as interpret-
ability is of vital importance to ensure an understanding of how and why 
the structure affects the performance of the material within a process. A 
recent development has been the integration of the scales of modelling 
from the material scale to the process scale. ML provides a framework in 
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Table 4 
Research overview of machine learning within hydrogen production.  

Reference Overview Results and Model 
Overview 

Yu et al. (2021) Two ANNs architectures 
were used and compared to 
model the performance 
surrogate model for a 4 bed- 
8 step PSA column 
containing syngas (from a 
conventional SMR reformer). 
Data used to train, test, and 
validate the model was 
obtained via detailed 
mathematical software using 
the LHS strategy. A GA 
algorithm was applied to 
both ANNs and was able to 
produce optimal solutions 
for the PSA column that 
enhanced the operational 
performance of the PSA 
column. 

ANN One: five inputs 
pressure of adsorption, part 
of adsorption time, feed 
flowrate, length of activated 
carbon layer and ratio of 
purge to feed)., two outputs 
(purity, recovery), R2 

(0.999970), MSE (1.165 ×
10− 6). 
ANN Two: five inputs (same 
as above), three outputs 
(purity, recovery, and 
productivity), R2 

(0.999950), MSE (1.1164 ×
10− 4). 
The results indicate utilising 
ANNs as surrogate models 
for optimisation framework 
are highly accurate whilst 
significantly reducing the 
time taken for the 
optimisation to occur. 

Subraveti et al. 
(2019) 

Developed an approach to 
the optimisation of an eight- 
step PSA cycle for pre- 
combustion CO2 capture. 
Data used to train, test and 
validate the model was 
developed from first- 
principle process modelling 
via MATLAB. Four methods 
were developed the first 
method was Tradopt, where 
a GA was applied to first- 
principle PSA model 
developed in MATLAB, 
second method (SOpt), a GA 
was applied to ANN used as a 
surrogate model for function 
evaluations. Method three 
(DRopt) design variables are 
identified to reduce the 
dimensions of the data via 
partial least squares 
regression. Method four (DR- 
SOpt) combines both. 

SOpt method: reduced 
computational time with 
respect to TradOpt (90% 
reduction in time). The 
model itself is highly 
accurate. 
DRopt significantly reduces 
the time (~50%) reduction 
in comparison. 
DR-SOpt significantly 
reduces the time to produce 
optimum operating 
parameters for high-purity 
H2. 

Vo et al. (2020) Developed a dynamic model 
for the integrated process of 
H2 recovery and CO2 capture 
from the tail gas. Dynamic 
models were combined to 
predict the performance of 
the process, to produce high- 
purity H2 and a CO2 capture 
rate of 90%. To determine 
the optimum operating 
conditions for this process an 
ANN was developed for each 
unit, achieving a marginal 
error of <2% and a low 
computational cost <12s. 

The process-driven model 
was optimised in the 
production cost of H2 whilst 
maintaining high H2 purity 
and a CO2 capture rate of 
90%. The cost was 2.045 
$/kg with a 99.99% H2 

purity and 91% CO2 capture 
rate. The operating 
parameters at which this 
was run at was a membrane 
area of 1760 m2, adsorption 
time of 387 s and a purge to 
feed ratio of 0.106. 

Pai et al. (2020) FNN was developed as a 
surrogate model for the 
screening and simulation of 
adsorbent and adsorption- 
based processes. 
Incorporation of the 
adsorption isotherm as the 
input provides rapid 
screening of larger adsorbent 
databases. 

Reduced computational 
time is required to model 
the adsorption process, 
especially for a larger 
screening of adsorption in 
comparison to conventional 
techniques. High prediction 
accuracy with R2 of 0.995.  

Table 4 (continued ) 

Reference Overview Results and Model 
Overview 

Tong et al. (2021) FNN was developed to 
optimise a six-step two-bed 
PSA System developed in 
ASPEN plus 

The ANN developed showed 
high predictive accuracy 
(R2 = 0.9995). 

Nkulikiyinka et al. 
(2020) 

Two soft sensors machine 
learning models (ANN and 
RF) were developed. Using 
simulation data collected 
form Aspen Plus Both models 
were able to provide 
excellent robust performance 
for the prediction of gas 
concentrations in the 
reformer and regenerator as 
well as the CH4 conversion, 
using five specified process 
features, selected via PCA. 

Whilst both models were 
highly accurate in their 
predictions of the 
concentrations and the 
methane conversion, the 
random forest had higher R2 

values and MAE 
0.002–0.014 for RF, and 
0.005–0.024 for ANN. 
Further work must be done 
on incorporating it into a 
plant whether laboratory 
scale or pilot plant. 

Mashhadimoslem 
et al. (2021) 

Utilised ANN to predict the 
BET surface area and CO2 

uptake capacity using the 
following inputs: precursors, 
activator, pyrolysis 
temperatures, pour volumes, 
adsorption pressure and 
adsorption temperatures. 

The R2 value of 0.99 
highlights the advantage of 
using ANN to predict the 
performance of an 
adsorbent quickly and 
effectively. 

Khurana and Farooq 
(2016) 

Developed a two-step 
screening process for 
adsorbents. Step one was an 
ANN that ensure high purity 
(>95%) and high recovery 
(>90%). Step two was a 
meta-model developed for 
the VSA process ensuring 
that the adsorbent 
implemented had minimum 
energy and maximum 
productivity for the process. 

Results indicated the ANN 
model was highly accurate 
and several adsorbents were 
identified that showed a 
superior performance in 
comparison to 13X zeolite. 

Vo et al. (2022) ANN-based optimisation of 
the SE-SMR process was 
accomplished to enhance 
CO2 capture and H2 purity. 
This ANN-based 
optimisation was integrated 
within an economic model, 
to determine optimum 
operating conditions at 
minimum costs. 

Was found at an H2 purity of 
99.99% and a CO2 capture 
rate of 90.3% can be done 
H2 production costs of 1.7 
$/kg of H2 produced. 

Alsaffar et al. 
(2020) 

Used multi-level perception 
neural network with back 
propagation to determine the 
effects of process parameters 
on hydrogen yield and CH4 

conversion. Compared to ten 
different neural network 
architectures, the input of 
these neural networks: gas 
hourly space velocity, 
reaction temp, and CH4/CO2 

ratio on hydrogen 
production. Ten ANN models 
have compared architecture 
ranging from 1 to 10 hidden 
neurons. 

Nine neurons in the hidden 
layer were best performing 
(SSE = 0.076 and R2 = 0.9). 
Optimisation of the ANN 
model gave similar 
predicted results compared 
to experimental runs. 

Le et al. (2021) Used an ANN to predict 
hydrogen production in a 
catalytic dry reformer, the 
paper uses literature data to 
train the ANN. The outputs 
were hydrocarbon 
conversion, H2 yield and 
stability test time. 

The optimised model 
produced ARE values of 
0.52%, 0.03% and 3.36% 
respectively indicates 
obtained models have good 
generalisation capability, 
for future predictions. 

Azzam et al. (2018) Modelled the effect of 
sintering, pressure and 
temperature in a dry 
reformer using a feedforward 

The simulation across four 
years, shows that 
acceptable operation can be 
maintained by keeping the 

(continued on next page) 
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Table 4 (continued ) 

Reference Overview Results and Model 
Overview 

neural network. This FNN 
was optimised using a GA, 
results showed that by 
periodically optimising the 
temperatures and pressures 
to accommodate for the 
change in the catalyst 
diameter caused by 
sintering. 

temperature at (~1000◦) 
and increasing the pressure 
with time. (further studies 
must be done to incorporate 
the trade-off of increased 
pressure and CAPEX/OPEX, 
an optimisation process that 
is useful for the industry. 

Hong et al. (2022) Developed a hybrid DNN for 
an SMR plant, with data from 
both pilot plant data and 
simulation data to optimise 
the thermal efficiency whilst 
maintaining low CO2 

emissions. 

The trained hybrid model 
had an R2 of 0.94 and 
NRMSE of 3.89 indicating 
high prediction accuracy. 
Utilising a hybrid approach 
improved the reliability of 
prediction by cross- 
validation of output 
variables. A multi-objective 
optimisation was performed 
using particle swarm 
optimisation (PSO). 
Optimised results shows a 
thermal efficiency 
distribution between 77.5% 
and 87.0% and CO2 

emissions between 577.9 
and 597.6 t/y. 

Krzywanski et al. 
(2018) 

Used ANN and GA to model 
and optimise hydrogen 
production via estimating the 
hydrogen content in syngas. 
It compared the circulating 
fluidised bed (CFB) and 
bubbling fluidised bed (FB). 
The data was collected from 
experimental results. Allows 
for the global optimisation 
for this process, for these 
types of reactors, by 
adjusting the CaO/C, H2O/C 
and reaction temperature. 

The results show that CFB is 
more effective due to the 
poorer hear and mass 
transfer in FB. A hydrogen 
yield was achieved at 
67.4%, with a CFB at temp 
775 ◦C and a molar ratio of 
CaO/C and H2O/C at 2.40 
and 3.12. 

Lee et al. (2021) A DNN was developed for the 
on-site SMR pilot plant with 
the training and testing data 
taken from the pilot plant, a 
model was developed to 
predict six variables 
accurately (syngas flow rate, 
compositions if CO, H2, CO2 

and CH4, and steam 
temperature). 

The following nine 
variables were defined and 
added to the model which 
was then optimised to have 
a high thermal efficiency 
based on a lower heat value, 
which was 85.6%. 

Dat Vo et al. (2019) Developed a dynamic multi- 
scale first principal model of 
reformer for steam methane 
reforming, to gather training 
data for the neural network. 
A sensitivity analysis was 
conducted to confirm the 
four main operating 
variables that effect the 
performance (inlet flow rate, 
temperature, S/C ratio of the 
reactor side and the inlet 
flow rate of the furnace 
side.). 

The FNN with back 
propagation, the outputs 
showed high accuracy 
(98.91%) with a reduction 
in the computational time 
in the simulation when 
using the neural network 
(1200s–2s). 

Streb and Mazzotti 
(2022) 

ANN was employed as a 
substitute model to optimise 
a VPSA (Vacuum Pressure 
Swing Adsorption) system 
for the integrated capture of 
H2 and CO2. The model was 
trained using a dataset 
generated by simulating a 1- 
D column model, which 
allowed for the creation of a 

An R2 of 0.999 indicates 
high performance from the 
surrogate model. Finally, an 
optimisation of the 
surrogate model was done 
to assess the energy 
consumption and 
productivity of the 
integrated VPSA surrogate 
model and then compared it  

Table 4 (continued ) 

Reference Overview Results and Model 
Overview 

training dataset, 
encompassing various feed 
compositions with four 
distinct impurities. The 
developed ANN surrogate 
model incorporated six KPIs, 
including the purity and 
recovery rates of both and H2 

and CO2, CO2 productivity, 
and CO2 specific energy 
consumption. 

with the conventional 
model. For both the H2 

separation performance 
specifically low purity and 
process performance it had 
a good agreement. When 
aiming for high-purity H2, 
the optimised values for 
energy productivity exhibit 
a strong sensitivity to H2 

purity constraint. This 
means that even small 
deviations from the desired 
H2 purity can result in 
significant deviations in 
terms of energy 
productivity. Across the rest 
of the Pareto fronts 
(minimum energy 
consumption) showed the 
surrogate model was highly 
accurate showing that the 
ANN can be used instead of 
the full model. 

Salah et al. (2016) Utilised a NARX structured 
neural network for 
simulation purposes, utilise 
as a surrogate model for the 
dynamic modelling of SER 
biomass steam gasification. 
The data was collected from 
a 200 kWth pilot plant. The 
DNN modelled and 
simulated both the gasifier 
and regenerator. 

The neural networks were 
shown to capture the 
behaviour of the load 
change instantaneously but 
with a maximum estimation 
error of 15%. 

Zhao et al. (2021) Compared four machine 
learning surrogate models 
for the prediction of H2 

produced via supercritical 
water gasification of 
biomass. The four machine 
learning models are random 
forest, GPR, ANN and SVM. 
RF seemed to have 
performed the best for 
predicting H2 yield. Analysis 
of the model such as feature 
importance and partial 
dependence was utilised to 
determine the relative 
importance of biomass 
properties and parameters. 

The maximum hydrogen 
reaction efficiency (45.6%) 
and energy efficiency 
(43.3%) were achieved 
when the feedstock at high 
Oxygen content and a low 
H/C ratio. 

Wang et al. (2022) Developed a neural network 
as a surrogate model for the 
solar steam methane 
reforming using molten salt 
utilises a hybrid optimisation 
approach to optimise the 
developed model and 
generate an optimal design 
that is validated. 

The result shows a total 
annual cost reduction of 
14.9%–15.1% and a 
reduction in CO2 emissions 
by 4.4%–5.2%. Lower 
LCOH of 2.4 $/kg compared 
to 2.9 $/kg. 

Nkulikiyinka et al. 
(2022) 

Utilised a novel approach to 
QSPR to discover new CSCM 
for SE-SMR. Using data 
mining, two databases were 
developed for the prediction 
of last cycle capacity and 
methane conversion. The 
multi-task learning approach 
was used for the prediction 
of properties for these 
materials. 

Using MTL it was able to 
predict properties of unseen 
CSCM with 58% in an AARE 
of <50%. 

Yan and Mattisson 
(2020) 

Experimental data used to 
develop a database for 19 
manganese ores that have 

Optimal topology is the 
number of nodes and how 
many nodes are in each 

(continued on next page) 
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which sorbents can be screened and then placed in a PSA column to 
further assess its performance, this has been done for sorbents for CO2 
capture with recent work comparing with the industry standard Zeolite 
13X (Burns et al., 2020). Furthermore, the interest in metal organic 
framework (MOFs) for CO2 capture and H2 purification and molecular 
modelling as well as synthesis of these MOFs has allowed for a large 
database to be developed (Avci et al., 2018; Dureckova et al., 2019). 
This database and utilisation of ML has provided a framework for 
screening and subsequent process scale modelling of these sorbents at 
high-speed, increasing the speed at which these sorbents can be 
employed within industry (Saenz Cavazos et al., 2023). 

Further work can be done on developing databases of materials 
derived from waste or biological sources. There has been some work in 
which a neural network was used to select materials/molecules for 
carbon capture from a database of biological waste sources (Mashha-
dimoslem et al., 2021). Furthermore, work needs to be done to develop 
larger databases, as well as further work to determine sources of waste 
material that can be used as a precursor material for the synthesis of 
sorbents for CO2 capture to reduce costs and enhance performance in 
these processes. 

This QSAR screening for materials using ML, specifically the use of 
PCA and neural networks, can enhance and optimise the synthesis of this 
material by utilising PCA. There is the advantage of identifying the key 
structural parameters that affect the properties. This can then be fed into 
a neural network to determine the optimum materials that have high 
performance for the desired purpose, by reducing the dimensions of the 
model it allows for increased speed whilst maintaining accuracy. Future 
work must look at increased interpretability too within ML-assisted 
QSAR. The implementation of ML provides a robust framework (if 
trained correctly), that is able to screen for materials at high speed. 

6.2. Machine learning to enhance process modelling for hydrogen 
production 

ML has been effectively used with blue hydrogen production for the 
optimisation of whole processes, optimisation of individual process units 
and soft sensors of different process units within the process for the 
prediction of outputs such as H2 purity and CH4 conversion. Highlighted 
within this section shows a trend of integrating ML within process 
modelling for soft-sensor development as well as the use of ANN and GA 
to optimise both individual process units and whole processes. 
Furthermore, we look at the recent interest in hybrid modelling and why 
that allows for improved performance whilst maintaining accuracy and 
interpretability. The following section provides an in-depth discussion of 
the ML role has played in the past five years and how it will continue to 
play a role within H2 production process modelling. 

Table 4 (continued ) 

Reference Overview Results and Model 
Overview 

been selected as potential 
chemical looping oxygen 
carriers. This data was then 
used to train several ANNs 
used to predict the reactivity 
of oxygen carriers with 
different fuels and oxygen 
transfer capacity. Inputs 
being reactor bed 
temperature, elemental 
composition, and 
mechanical properties of 
manganese ores. 

layer. Stacked neural 
networks with a bootstrap 
resampling technique, 
showed highly accurate 
predictions with a high R2 

(0.94) and low mean 
absolute error (MAE – 
0.057). 

Saadetnejad et al. 
(2022) 

Gas-phase photocatalytic 
CO2 reduction was analysed 
via machine learning. 
Random forest was used to 
predict the band gap. 

RF had a RMSE of 0.15, the 
decision tree had an 
accuracy of 80%. 

Ayodele et al. 
(2021) 

Applied ANNs to the 
modelling and prediction of 
the gasification of plastic and 
rubber waste. 

Predicted values closely 
agreed with the actual 
values R2 = 0.99. 

Sezer and Özveren 
(2021) 

Applying ANN to investigate 
the exergy value of syngas 
for hydrogen production. 

Low error value with the 
predicted exergy value of 
the syngas. 

Eduardo et al. 
(2022) 

ML approach in order to 
predict the performance of 
the catalyst in the WGS 
rector. A PCA analysis was 
applied to the dataset to 
determine key operating 
parameters for CO 
conversion. ANN was then 
applied. 

As determined in the 
literature, CO conversion is 
a function of temperature 
and not catalyst chemical 
formulation. ANN 
predictive model highlights 
NiCe as a cost-effective 
catalyst for high CO 
conversion. 

Smith et al. (2020) Developed an ML model to 
predict catalytic activity for 
the WGS reactor. ANN was 
developed which related 
descriptor data with activity. 
Furthermore, PCA was used 
to explore the experimental 
space comprehensively. 

Neural network shows it’s 
capable of identifying new 
catalyst formulation with 
sufficient information 
provided. Predictability 
limitations on activity 
across catalyst formulation 
remain. This is due to the 
information space within 
the literature remaining 
unexplored, indicating the 
literature reported does not 
properly characterise 
catalyst formulations. 

Oh et al. (2022) ANN-based optimisation of 
the pre-combustion unit for 
blue hydrogen production. 
First, a sensitivity analysis 
was performed before ANN- 
based optimisation was 
done. 

Capturing CO2 gas at 21 bar 
was evaluated and was 
found at a 95% capture rate, 
reboiler duty was 1.364 GJ/ 
tonCO2 captured, a large 
reduction in the reboiler 
duty in comparison to 
conventional post- 
combustion. ANN 
optimisation showed a 
slight further improvement 
in these results at a much- 
reduced computational 
cost. 

Gul et al. (2023) A SE-ATR reactor was 
modelled in gPROMS, the 
model was then optimised 
via a neural network. 

A high R2 value (0.99) 
indicates high predictive 
capability. 

Kim et al. (2022) A WGS was modelled and 
then optimised via a neural 
network. A comparison was 
made on the performance of 
different catalysts. 

The surrogate model was 
able to identify optimal 
operating conditions, for 
economic and energy- 
efficient H2 production. 

Haq et al. (2022) Compared different ML 
approaches (support vector 
machines, ANNs, ensembled 
tree) to the modelling of 

Support vector machine 
shows best performance, 
GA integrated shows highly  

Table 4 (continued ) 

Reference Overview Results and Model 
Overview 

supercritical gasification of 
sewage sludge. 

optimised H2 production 
for all ML algorithms. 

Li et al. (2021) Utilised a neural network for 
the modelling of 
supercritical water 
gasification of wet organic 
waste for H2 production. A 
screening process was 
utilised to screen for 
catalysts. 

Use of Fe based catalysts 
provides improved 
performance, however a 
low R2 value of neural 
network (0.86), indicates 
further improvement is 
needed within the training 
process. 

Chen et al. (2022) A neural network is 
employed to model the 
performance of a methanol 
steam reformer. A GA was 
employed to optimise the 
performance. 

The neural network model 
showed a good performance 
with the error between the 
ML performance and the 
Experimental data at 
0.206%.  
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6.2.1. Comparison of conventional process modelling with ML-based 
process modelling 

A significant portion of the literature has looked at the optimisation 
of blue hydrogen production processes using ML via either the optimi-
sation of whole processes, or the modelling of individual process unit. 
Specifically, process units like PSA which are highly dynamic processes 
and therefore, development of detailed and dynamic process models and 
subsequent simulation of these PSA columns are time-consuming (Li 
et al., 2018; Zhang et al., 2022a). There has been a trend towards using 
ML for the modelling and optimisation of carbon capture processes 
(Subraveti et al., 2019; Yu et al., 2021). As shown by Subraveti et al. 
(2019) optimising the PSA column using a neural network and optimi-
sation algorithm provides a quicker alternative than the conventional 
method of modelling. Some work has also included optimisation of the 
integrated CO2 and H2 production process such as the incorporation of 
sorbent into the reformer for both SMR and ATR (Krzywanski et al., 
2018; Nkulikiyinka et al., 2020; Vo et al., 2022; Gul et al., 2023). Table 5 
shows the simulation time and accuracy of ML-surrogate models for both 
process units of H2 production and entire processes. 

Table 5 highlights the increased speeds at which these ML models 
obtain optimised results when running as a simulation, the increased 
computational time for first-principle dynamic simulations would be 
insufficient within an industrial setting whereas developing a surrogate 
model for either the individual process units or the whole process pro-
vides increased speed whilst at high accuracy. As shown in the table 
when integrating ANNs into process modelling, in order to optimise this 
surrogate model a GA is used. Utilising GA for the optimisation of ANNs 
provides a robust framework in which GA can be used to provide opti-
mum KPIs. GA can explore search spaces efficiently to find a global 
optimum rather than local minima or maxima. 

Table 6 showcases the conventional process modelling simulation 
time of both process units and whole processes of hydrogen production, 
for each case the time taken for the simulation to run is significantly 

slower with respect to its ML counterparts. This white-box approach to 
modelling although provides interpretability is significantly slower, due 
to the process in which it runs the simulation, modelling the dynamic 
performance of a PSA unit conventionally requires the solving of mul-
tiple non-linear PDEs until it reaches a cyclic steady state. Utilising ML 
can increase the speed at which PSA and H2 production processes can be 
simulated. 

Although utilising ML is computationally quick, the accuracy of the 
model is of great importance. As identified by Rebello et al. (2022) the 
structure of the neural network is important in relation to the function of 
the model. A PSA unit for the Fischer-Tropsch was modelled using 
multiple types of ANNs (FNN, RNN, DNN), these ANNs were both used 
for simulation and prediction purposes. A comparison was made based 
on the performance of the ANN for each purpose. It was shown that the 
ANN architecture significantly affects the performance of the model 
depending on what function the ANN model is being used for (simula-
tion or prediction). 

These two predictor structures are known as nonlinear autore-
gressive networks with exogenous inputs (NARX) and nonlinear output 
error (NOE) for nonlinear systems (such as neural networks) (Rebello 
et al., 2022). NARX depends on past measurements of input and output, 
in which it assumes errors associated with measurements from input 
(Rebello et al., 2022). NOE does not depend on past measures of output 
to make forecasts and assumes errors associated with output. For 
long-term simulations, NARX is not as good due to the cumulative effect 
of the error. Within the literature, understanding what neural network 
can then be used for a specific function to identify which type of neural 
network, can be applied to the problem at hand. 

6.2.2. Soft-sensor development 
Soft-sensors’ ability to provide real-time information dependent on 

process conditions provides an asset to continuous processes, as it pro-
vides an insight into hard-to-determine information that conventional 

Table 5 
Accuracy and simulation time of ML process modelling of blue hydrogen production units and processes.  

Reference Unit/Process 
Modelled 

Data Source ML Algorithm Accuracy of ML 
Model 

Optimisation 
Method 

Time for Optimised 
Simulation 

Yu et al. (2021) PSA Simulation (first- 
principle) 

FNN with BP MSE: 1.16419E-04 
R2: 99.995% 

GA 32.07 s 

Yu et al. (2021) PSA Simulation (first- 
principle) 

FNN with BP MSE: 1.36581E-06 
R2: 99.997% 

GA 176.13 s 

Subraveti et al. 
(2019) 

PSA Simulation (first- 
principle) 

FNN with BP RMSE: ~0.2% 
R2: 98% 

GA ~400 Core Hours 

Subraveti et al. 
(2019) 

PSA Simulation (first- 
principle) 

Partial Least Squares 
Regression (PLS) 

RMSE: 1% GA ~2000 Core Hours 

Subraveti et al. 
(2019) 

PSA Simulation (first- 
principle) 

FNN with BP & PLS RMSE: ~0.15% GA ~600 Core Hours 

Vo et al. (2020) Cryogenic Process Simulation (first- 
principle) 

FNN with BP R2: 99.76% GA <12 s 

Vo et al. (2020) PSA Simulation (first- 
principle) 

FNN with BP R2: 99.11% GA <12 s 

Vo et al. (2020) Membrane Simulation (first- 
principle) 

FNN with BP R2: 98.56% GA <12 s 

Vo et al. (2020) SE-SMR process Simulation (first- 
principle) 

Hybrid Modelling SD < 2% GA <25 s 

Vo et al. (2020) Reformer Simulation (first- 
principle) 

FNN with BP R2: 98.91% GA 2 s 

Vo et al. (2022) SE-SMR Process Simulation (first- 
principle) 

FNN with BP R2: 99.54% GA 20 s  

Table 6 
Time of simulation for conventional modelling of blue hydrogen production processes and units.  

Reference Unit/Process Modelled Type of Process Model Type of Optimisation Time Taken for Simulation 

Subraveti et al. (2019) PSA Dynamic GA 4000 Core Hours 
Dat Vo et al. (2019) Reformer Dynamic GA 1200 s 
Vo et al. (2022) SE-SMR Process Dynamic GA 2 h  
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sensors are not able to do. Nkulikiyinka et al. (2020) has shown the 
benefits of incorporating soft-sensors into blue hydrogen production by 
comparing RF and ANNs for soft sensors for the reformer and calciner in 
the SE-SMR process. It allows for improved process control by providing 
insight into the process that would be hard to determine otherwise. 
Further work must ensure these sensors are well trained, tested and 
validated so that once implemented into real-world applications the 
error is minimised. One new method of doing this is utilising 
Monte-Carlo techniques within the training process. This approach was 
applied to a PSA unit in the Fischer-Tropsch process by Costa et al. 
(2022). Monte-Carlo training employs a stochastic approach to training 
the neural network in which a Monte-Carlo simulation is run and trains a 
new model with each sample. This process allows for the identification 
of the uncertainty in the predictive results of the soft sensor. The same 
principles can be applied for H2 purification in blue hydrogen produc-
tion in order to identify the confidence within the prediction the soft 
sensor makes. 

This soft-sensor development is of importance within biomass gasi-
fication for hydrogen production. There has been increasing research 
within the area (Ayodele et al., 2021; Sezer and Özveren, 2021; Kumar 
Sharma et al., 2022). Due to the variation within the biomass, uncer-
tainty can arise from the gas concentration produced leading to uncer-
tainty in the H2 produced from different biomass samples. ML allows for 
the quantification of hydrogen production from biomass and can lead to 
highly accurate predictive models for H2 yield and purity (Ayodele et al., 
2021; Sezer and Özveren, 2021; Kumar Sharma et al., 2022) 

A key issue within the increased use of neural networks and appli-
cation within chemical engineering especially with the development of 
soft sensors, is the interpretability of these models as these models are 
mostly trained on historic literature data or pilot plants (Schweidtmann 
et al., 2021), this allows for models to have a large dataset and a model 
that can accurately model a process based on real-world data. Having a 
fully developed understanding from a first-principle viewpoint is 
important to understanding the operational factors that drive the pro-
cess to ensure a stream of highly pure H2 is being produced, whilst 
simultaneously the CO2 capture rate remains high. Conventional 
modelling using software such as gPROMS or Aspen Plus utilises a 
white-box modelling approach in which the outputs of the process are 
based on first-principles equations (mass and heat transfer) as well as 
thermodynamic and kinetic data. A hybrid approach allows for an 
interpretable model that can either run a simulation or predict outputs 
of a process at high speed, allowing for informed decision-making to 
improve the output, which in regard to blue hydrogen production is H2 
purity, CO2 capture rate and CH4 conversion. 

6.2.3. Hybrid modelling 
Hybrid modelling allows for greater interpretability of the ML-based 

model. Literature has discussed this hybrid approach to modelling as a 
key path forward within process simulation (Zander et al., 1999; Pisti-
kopoulos et al., 2021). A recent development within ML within the 
natural sciences has been PINNs with a focus on the molecular scale of 
modelling, combining PDEs within the neural network for the modelling 
of hydrogen processes could provide significant benefits such as un-
certainty quantification, increased speed and robustness of models 
whilst simultaneously providing greater interpretability to strictly 
ML-based models. Another method which has been more frequently 
employed within the literature is a combined approach which uses both 
first-principle modelling as well as a surrogate model developed via ML 
to produce an output in regards to the KPIs (Hong et al., 2022; Vo et al., 
2022). By utilising this approach, it can enhance interpretability without 
a significant cost to the increased speed of black box models. 

Hybrid modelling within blue hydrogen has been increasingly used, 
especially in regard to integrating the surrogate model with the dynamic 
model for economic optimisation (Vo et al., 2022). The hybrid approach 
can be well applied within the industry for H2 production plants 
providing insight in-real time into the effects of the operating 

parameters on the KPIs. Specifically, if those KPIs relate to the economic 
output of the plant (such as the LCOH). Recent works have demonstrated 
the superior performance of a hybrid approach to optimise economic 
output (Vo et al., 2022). In regards to blue hydrogen production, this is 
highly important, since the LCOH of blue hydrogen production is of 
greater expense, so ensuring these production plants are optimised in 
regards to economic activity can provide a competitive edge to these 
processes. 

The combination of white-box modelling (first principle) with black- 
box modelling allows for interpretability with increased speed, allowing 
for interpretable results in-real time. Therefore, the hybrid approach 
provides engineers working within the H2 production plant, with quick, 
interpretable results. These results allow for informed decisions to be 
made to ensure that the productivity of the plant can be increased in 
real-time. 

6.3. Machine learning for whole plant optimisation and digital twins 

Whole plant optimisation is key to ensure profits are high due to the 
early TRL for many blue hydrogen technologies (SE-SMR), currently, it 
is not at the scale for industry use, whereas grey hydrogen is. ML has 
been used to optimise a whole SMR plant based in Spain, in which a 
modular neural network to optimise the plant to increase H2 purity and 
the profitability of the plant (Pardo et al., 2020). There has been little 
work using plant data due to the early TRL of these technologies, 
therefore a lack of a large dataset to develop a neural network model. 

As mentioned earlier, digital twins have become an increasing area 
of interest within chemical engineering due to increased digitisation and 
advancements in technology within automation, ML and the IoT. Within 
the last decades, there has been a rise in the use and development of 
digital twins within chemical and power plants. Implementing these 
digital twins within hydrogen production plants can allow for improved 
process safety (a concern for hydrogen), process optimisation, and 
enhanced process control for flexible operation in real-time (Shin et al., 
2019; Hwangbo and Sin, 2020). This allows for enhanced performance 
of the chemical plant by increasing product output whilst minimising 
costs. Furthermore, this increasing digitisation provides a framework in 
which the hydrogen supply chain can be optimised from production to 
storage and utilisation in real-time, allowing for optimised scheduling 
and logistics within the hydrogen supply chain. 

Furthermore, a key area in which RL can be utilised within process 
plant is to enhance the cyber security of chemical plants such as H2 
production (Santorsola et al., 2022). The transition to industry 4.0 
provides opportunity to enhance process control and improve OPEX via 
increasing automation and the IoT. However, increasing automation 
may lead to increasing susceptibility to cyber-attacks. Ensuring these 
cyber-attacks are minimal is key to our energy security (BEIS, 2022). 
Ensuring hydrogen production plants are safe is key to ensuring a safe 
transition, whilst reinforcing energy security. 

6.4. Machine learning in blue hydrogen production: what’s next? 

Machine learning has been utilised to great effect within H2 pro-
duction. Table 7 below provides advantages and disadvantages to uti-
lising ML within H2 across all scales of modelling. Furthermore, the table 
outlines recommendations of where future research should be directed 
to further integrate ML within hydrogen production. 

ML is able to provide increased speed of modelling whilst main-
taining accuracy. The scales of modelling in which has been applied to 
has ranged from the molecular scale to the process scale and whole plant 
scale. With regards to PSA/TSA modelling lots of work has focused on 
the optimisation of these processes using ML (specifically ANNs) as well 
as the development of soft-sensors for this process. As highlighted by 
Rebello et al. (2022) careful consideration is required in determining the 
structure of the neural network and the purpose for which the neural 
network is being used (simulation or prediction). Although this was 
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applied to the Fischer-Tropsch process, the same principles still apply to 
the H2 purification processes. Similarly, in regards to soft-sensor 
development, recent work focused on the Fischer-Tropsch PSA unit in 
regards to the performance of the soft-sensor. Costa et al. (2022) 
showcased the use of a stochastic training technique to enhance the 
performance, to be implemented into hydrogen production for not only 
the PSA unit but also for the reformer, WGS and the whole processes. 
The integration of RF for soft sensors shown by Nkulikiyinka et al. 
(2020) highlights the improved process performance of ensemble 
learning techniques. Future work should incorporate ensemble learning 
to develop soft sensors for H2 production. Specifically, the employment 
of a deep-ensemble learning approach to soft sensors of processing units 
in blue hydrogen production. 

RL is also a key area in which chemical engineering research has 
focused on Shin et al. (2019), Hwangbo and Sin (2020) and Khan and 
Lapkin (2022). Future research should focus on the use of RL in 
cyber-security. Ensuring H2 production is safe is critical for energy se-
curity. With the transition into industry 4.0, there will be increasing 
digitisation of chemical processes, this digitisation will have an 
increased risk of cyber-attacks, future research should focus on how RL 
can be incorporated in regard to process control and cyber security. 
Another area in which RL can be applied is process synthesis of novel 
processes. Some work has been done already with Khan and Lapkin 
(2022) regarding ethylene production in which reinforcement learning 
was used to develop six process configurations for ethylene production 
to optimise the process. This application allows for further development 
of processes that can be further optimised to reduce costs whilst main-
taining similar or higher H2 purity and CO2 capture rates. 

ML has a key role to play within process modelling and material 
development not only within H2 production but across chemical engi-
neering. Transitioning towards a low-carbon future is essential to 
reducing the effects of climate change. This transition involves the 
deployment of infrastructure and industrial processes to ensure this 
transition happens. ML provides a framework in which to develop these 
processes (such as blue hydrogen production) at increased speed and 
ensure that they can make an immediate impact when deployed to 
ensure the transition is both quick and effective. 

7. Conclusion and future prospective 

Blue hydrogen is a necessity to ensure Net Zero is reached by 2050. 
The recent development in blue hydrogen production has been applied 
within three main areas:  

1. Discovery and development of novel material and molecules to serve 
as catalysts for the reforming and WGS reactions and sorbents 
involved in the CO2 capture process;  

2. Optimisation of process performance and predictions of outputs via 
soft sensors;  

3. Dynamic modelling of PSA unit for H2 purification to improve speed 
of modelling, whilst maintaining accuracy. 

The utilisation of ML provides increased speeds of optimisation of 
processes as well as increased speeds of discovery of new materials. This 
is becoming more critical with climate change being an ever-present 
threat and our time to reduce the impacts of climate change diminish-
ing. Developing solutions that are effective at an efficient rate is critical. 
ML impact within blue hydrogen has already shown that it can reinforce 
and accelerate optimisation on both material and process levels. There is 
still further improvement in how ML can be implemented within blue 
hydrogen production. Future work should focus on a hybrid modelling 
approach to modelling these blue hydrogen production processes as well 
as the integration of the scales of modelling to further enhance speed 
whilst maintaining interpretability. With low-carbon hydrogen being an 
increasing necessity to ensure net-zero to prevent and minimise the ef-
fects of climate change. Incorporating ML to enhance the speed of 
developing blue hydrogen production materials and processes is a ne-
cessity to ensure a low-carbon future. 
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Table 7 
Advantages and disadvantages to incorporating machine learning within hydrogen production.  

Scale of 
Modelling 

Advantages Disadvantages Future Research Direction 

Material 
Scale  

• Increased speed of material 
development  

• Interpretability of the ANN-based QSAR framework is 
insufficient.  

• Integration of material screening with process 
performance of selected material  

• Impact of these materials on the WGS reactor 
Process 

Scale  
• Increased speed of modelling in 

comparison to conventional 
modelling approaches.  

• The development of soft sensors 
allows for real-time process 
optimisation.  

• GA combined with ANNs provides an 
excellent robust framework for the 
optimisation of PSA units.  

• Interpretability utilising just ML reduces the interpretability of 
the process.  

• Different neural network structures although provide 
increased flexibility, can lead to different model 
performances. Careful consideration of neural network 
architecture must be considered dependent on the function of 
your model.  

• Stochastic modelling/training for soft-sensors 
model development  

• Ensemble learning to enhance the predictive 
capabilities of models  

• Hybrid modelling, further developing a hybrid 
approach to ensure high speed whilst maintaining 
interpretability  

• Reinforcement learning, utilising RL for H2 

production plant safety and developing novel 
processes for low-carbon hydrogen production.  

W. George Davies et al.                                                                                                                                                                                                                        



Gas Science and Engineering 118 (2023) 205104

18

References 

Alam, K.M.R., Siddique, N., Adeli, H., 2020. A dynamic ensemble learning algorithm for 
neural networks. Neural Comput. Appl. 32. https://doi.org/10.1007/s00521-019- 
04359-7. 

Alsaffar, M.A., et al., 2020. Elucidating the non-linear effect of process parameters on 
hydrogen production by catalytic methane reforming: an artificial intelligence 
approach. In: IOP Conference Series: Materials Science and Engineering. IOP 
Publishing Ltd. https://doi.org/10.1088/1757-899X/991/1/012078. 

Alzubaidi, L., et al., 2021. Review of deep learning: concepts, CNN architectures, 
challenges, applications, future directions. J. Big Data 8 (1). https://doi.org/ 
10.1186/s40537-021-00444-8. 

Antzara, A., et al., 2015. Thermodynamic analysis of hydrogen production via chemical 
looping steam methane reforming coupled with in situ CO2 capture. Int. J. Greenh. 
Gas Control 32, 115–128. https://doi.org/10.1016/j.ijggc.2014.11.010. 

Avci, G., Velioglu, S., Keskin, S., 2018. High-Throughput Screening of MOF Adsorbents 
and Membranes for H2 Purification and CO2 Capture. https://doi.org/10.1021/ 
acsami.8b12746. 

Ayodele, B.V., et al., 2021. Modeling the prediction of hydrogen production by co- 
gasification of plastic and rubber wastes using machine learning algorithms. Int. J. 
Energy Res. 45 (6), 9580–9594. https://doi.org/10.1002/ER.6483. 

Azzam, M., et al., 2018. Dynamic optimization of dry reformer under catalyst sintering 
using neural networks. Energy Convers. Manag. 157, 146–156. https://doi.org/ 
10.1016/j.enconman.2017.11.089. 

Babamohammadi, S., Davies, W.G., Soltani, S.M., 2023. Probing into the Interactions 
among Operating Variables in Blue Hydrogen Production: A New Approach via 
Design of Experiments (DoE). https://doi.org/10.1016/j.jgsce.2023.205071. 

Bagherian, M.A., et al., 2021. Classification and analysis of optimization techniques for 
integrated energy systems utilizing renewable energy sources: A review for chp and 
cchp systems. Processes 1–36. https://doi.org/10.3390/pr9020339. MDPI AG.  

Bahzad, H., et al., 2019. Development and techno-economic analyses of a novel hydrogen 
production process via chemical looping. Int. J. Hydrogen Energy 44 (39), 
21251–21263. https://doi.org/10.1016/j.ijhydene.2019.05.202. 

Barelli, L., et al., 2008. Hydrogen production through sorption-enhanced steam methane 
reforming and membrane technology: a review. Energy 554–570. https://doi.org/ 
10.1016/j.energy.2007.10.018. Elsevier Ltd.  

Bauer, C., et al., 2022. On the climate impacts of blue hydrogen production. Sustain. 
Energy Fuels 6 (1), 66–75. https://doi.org/10.1039/d1se01508g. 

BEIS, 2021. UK Hydrogen Strategy. 
BEIS, 2022. British Energy Security Strategy Secure, Clean and Affordable British Energy 

for the Long Term. 
Bengio, Y., Goodfellow, I., Courville, A., 2015. Deep Learning. 
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Örs, E., et al., 2020. A Conceptual Framework for AI-Based Operational Digital Twin in 
Chemical Process Engineering; A Conceptual Framework for AI-Based Operational 
Digital Twin in Chemical Process Engineering. 

Pai, K.N., Prasad, V., Rajendran, A., 2020. Generalized, adsorbent-agnostic, artificial 
neural network framework for rapid simulation, optimization, and adsorbent 
screening of adsorption processes. Ind. Eng. Chem. Res. 59 (38), 16730–16740. 
https://doi.org/10.1021/acs.iecr.0c02339. 

Panerati, J., et al., 2019a. Experimental methods in chemical engineering: Artificial 
neural networks–ANNs. Can. J. Chem. Eng. 2372–2382. https://doi.org/10.1002/ 
cjce.23507. Wiley-Liss Inc.  

Panerati, J., et al., 2019b. Experimental methods in chemical engineering: Artificial 
neural networks–ANNs. Can. J. Chem. Eng. 2372–2382. https://doi.org/10.1002/ 
cjce.23507. Wiley-Liss Inc.  

Pardo, E.G., et al., 2020. Optimization of a steam reforming plant modeled with artificial 
neural networks. Electronics (Switzerland) 9 (11), 1–20. https://doi.org/10.3390/ 
electronics9111923. 

Pascanu, R., Mikolov, T., Bengio, Y., 2013. On the Difficulty of Training Recurrent Neural 
Networks. 

Phuakpunk, K., et al., 2018. Factorial design analysis of parameters for the sorption- 
enhanced steam reforming of ethanol in a circulating fluidized bed riser using CFD. 
RSC Adv. 8 (43), 24209–24230. https://doi.org/10.1039/c8ra03901a. 

Pistikopoulos, E.N., et al., 2021. Process systems engineering – The generation next? 
Comput. Chem. Eng. https://doi.org/10.1016/j.compchemeng.2021.107252. 
Elsevier Ltd.  

Quarton, C.J., Samsatli, S., 2021. How to incentivise hydrogen energy technologies for 
net zero: whole-system value chain optimisation of policy scenarios. Sustain. Prod. 
Consum. 27, 1215–1238. https://doi.org/10.1016/j.spc.2021.02.007. 

Quirino, P.P.S., et al., 2022. Mapping and optimization of an industrial steam methane 
reformer by the design of experiments (DOE). Chem. Eng. Res. Des. 184, 349–365. 
https://doi.org/10.1016/j.cherd.2022.05.035. 

Rahimi, M., et al., 2021. Toward smart carbon capture with machine learning. Cell Rep. 
Phys. Sci. https://doi.org/10.1016/j.xcrp.2021.100396. Cell Press.  

Rebello, C.M., et al., 2022. Machine learning-based dynamic modeling for process 
engineering applications: a guideline for simulation and prediction from perceptron 
to deep learning. Processes 10 (2). https://doi.org/10.3390/pr10020250. 

Rudin, C., Radin, J., 2019. Why are we using black box models in AI when we don’t need 
to? A lesson from an explainable AI competition. Harvard Data Sci. Rev. 1 (2), 2019. 
https://doi.org/10.1162/99608F92.5A8A3A3D. 

Saadetnejad, D., et al., 2022. Machine learning analysis of gas phase photocatalytic CO2 
reduction for hydrogen production. Int. J. Hydrogen Energy 47 (45), 19655–19668. 
https://doi.org/10.1016/J.IJHYDENE.2022.02.030. 

Saeidi, S., et al., 2017. Hydrogen production: perspectives, separation with special 
emphasis on kinetics of WGS reaction: a state-of-the-art review. J. Ind. Eng. Chem. 
1–25. https://doi.org/10.1016/j.jiec.2016.12.003. Korean Society of Industrial 
Engineering Chemistry.  

Saenz Cavazos, P.A., et al., 2023. Evaluating solid sorbents for CO2 capture: linking 
material properties and process efficiency via adsorption performance. Front. Energy 
Res. 11, 1167043 https://doi.org/10.3389/FENRG.2023.1167043. 

Salah, A., et al., 2016. Modelling SER biomass gasification using dynamic neural 
networks. Comput. Aided Chem. Eng. 19–24. https://doi.org/10.1016/B978-0-444- 
63428-3.50008-4. Elsevier B.V.  

Santorsola, A., et al., 2022. Reinforcement Learning Agents for Simulating Normal and 
Malicious Actions in Cyber Range Scenarios. http://ceur-ws.org. (Accessed 24 May 
2023). 

Schmidhuber, J., 2015. Deep learning in neural networks: an overview. Neural Network. 
61, 85–117. https://doi.org/10.1016/J.NEUNET.2014.09.003. 

Schweidtmann, A.M., et al., 2021. Machine learning in chemical engineering: a 
perspective. Chemie-Ingenieur-Technik 2029–2039. https://doi.org/10.1002/ 
cite.202100083. John Wiley and Sons Inc.  
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