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Abstract.  

In this paper we describe a Proof-of-Concept implementation of an automated system to drive one aspect of a 

personalised, object-based TV experience, particularly sports content, example football and rugby. Our Proof-

of-Conceptuses a sequence of analytics processes, which can be performed offline or in real time, to allow a 

new media object to be automatically positioned on a multi-angle broadcast video sequence without occluding 

any key action, thus enabling additional graphic or video content to be used to personalise the broadcast for 

individual viewers. First, an object detection algorithm using a deep neural network model detects the players 

and ball, and its filtered output defines the region of interest within each frame of the video sequence. To avoid 

occlusion of key action by the media object, the remaining space within the sequence of frames is analysed to 

propose suitable locations. Our algorithm applies layout rules to ensure the object is placed in the best position 

based on broadcaster-defined templates (e.g. top-left, top-right, bottom-right and bottom-left). The output shows 

that our Proof-of-Concepts capable of processing video sequences with multiple camera angles and proposing 

the start time and duration of the media object without occluding any key action. 

Keywords. Object Based Broadcasting, Deep Learning, Artificial Intelligence, Object Detection, User 

Experience. 

1. Introduction 
Traditionally, television and other audio-visual content has been delivered to viewers as a finished composition, 

including audio and video streams and, for example, the channel logo, subtitles and graphics – all delivered as a 

single stream. Object-Based Broadcasting – sometimes known as Object-Based Media – allows the content of 

TV programmes to be customisable for each individual. Figure 1, prepared by the BBC [1], illustrates the 

difference between the object-based and traditional approaches to TV production. 

The objects relate to different elements that make up the media content, and thus, the overall television 

experience. Objects can be video and/or audio streams, and in the case of sports, for example, might also include 

individual camera feeds of crowds, players, managers, or referees, and may also include items such as graphic 

overlays (sports statistics, leaderboards, etc.). Decomposing the media content into multiple individually 

separate objects and providing these independently enables the viewers to effectively act as their own broadcast 

directors and to determine their own viewing experience whilst maintaining the producers’ creative intent.  

In 2021, UK media regulator Ofcom published a comprehensive review of trends in object-based media [2]  

which classified objects into three different kinds: Layers, which are consumed in parallel at particular moments 

on a timeline; Chunks, which are sequential segments of media consumed consecutively; and Transmedia 

objects, which can be consumed separately to add to an overall media experience. Transmedia objects, which 

include trailers, reviews, out-takes and social media posts, are widely available but rarely organised in a single 

database. Layers and Chunks, however, are the building blocks of the personalised viewing experience and their 

presentation is governed by timeline and layout rules. Historically, it can be considered that synchronised 

subtitles overlaid on broadcast TV programmes were the first Layer objects, and accessibility features remain a 

key use case for object-based media today, involving audio, video and graphic layers. Chunk objects are the 

enablers of highly personalised programme content such as interactive narratives and individually-tailored news 

and documentary shows. However, for live broadcast content such as live sports, personalisation is achieved 

Manuscript Click here to
access/download;Manuscript;AI_for_OBB_Springer_Journal_P

Click here to view linked References

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

https://www.editorialmanager.com/mmsj/download.aspx?id=144092&guid=496db1b1-dee4-47fc-8b8b-a7de25cd7671&scheme=1
https://www.editorialmanager.com/mmsj/download.aspx?id=144092&guid=496db1b1-dee4-47fc-8b8b-a7de25cd7671&scheme=1
https://www.editorialmanager.com/mmsj/viewRCResults.aspx?pdf=1&docID=6188&rev=1&fileID=144092&msid=ed9bf8dd-f506-4a48-83c7-ac3f9a6ef8dd


2 
 

“Data-driven Personalisation of Television Content” - Springer Multimedia Systems Journal 

 

predominantly through the use of Layer objects while viewers simultaneously share the same match narrative as 

it is played out for them. An important design consideration in any object-based media system is how the control 

of personalisation is shared between the programme’s director and the individual viewer. Unless frequent 

interaction is expected which results in an immediate effect (for example in a chunk-based Netflix interactive 

documentary [3]), personalisation features would usually be expected to require only very occasional 

interaction, such as to configure indirect preferences, in order to avoid distraction from the crafted narrative or 

live event. For the director and content rights holder, this increases confidence that their professional standards 

and house style will be preserved. However, it is important to note that this new field is developing rapidly as 

more content is produced for AR and VR platforms in which participants inherently have considerably greater 

control over their viewing experiences. 

Data analysis and Machine Learning techniques could enable new object-based personalisation features by 

augmenting the production process using knowledge models and real-time analytics. For example, by applying 

object detection to the live broadcast TV stream, the resulting metadata could be used to automate the 

presentation of additional supplementary graphics with content based on viewers’ personal preferences. Our 

goal is to assess and validate whether dynamic graphic placement is feasible on live content while maintaining 

acceptable user experience. The aim is to take advantage of the inherent delay in adaptive video streaming to 

‘look ahead’ in the live stream by 30-60 seconds and make graphic placement decisions accordingly 

 

Figure 1. Traditional vs Object-based Media [1]. 

Applying Artificial Intelligence to object-based personalisation could allow us to create a more effective user 

experience using emerging fast-developing technologies such as deep learning to enable many different 

personalised versions to be created, which could never be directed manually by the broadcaster. Combined with 

the power of cloud services, these could deliver the best possible TV experience while remaining cost-efficient 

to broadcasters and content service providers. 

This paper describes the initial results of a project being carried out by BT Applied Research in collaboration 

with Ulster University (as part of the BT Ireland Innovation Centre). The project seeks to identify data analysis 

and Machine Learning techniques, including object detection, which could support the delivery and quality 

assurance of advanced personalisation features within future object-based TV experiences. If successful, new 

AI-supported software would be incorporated within the broadcast production chain, client devices or TV 

platforms in line with the deployment of new Object Based Broadcasting (OBB) features. 

In this paper we describe the design of this Proof-of-Concept and the results that we obtained. Firstly, we 

describe related work and explain the benefit of object detection models and their different architectures. We 

then describe the use case and the objectives of dynamic graphic placement for live football, and explain in 

detail the method we have developed. We then present the results of the Proof-of-Concept applied to a recorded 

replay video sequence, and describe a Proof-of-Concept implementation which performs dynamic placement on 
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a live video feed when requested by a viewer. Finally, we provide our conclusions and identify the next steps for 

this research. 

2. Related Work 

2.1 Object-Based Broadcasting 
Having been the subject of research by BT, the BBC, and others for several years, Object-Based Broadcasting is 

starting to be adopted as a means of differentiating mainstream TV production, made possible by the widespread 

availability of devices such as Smart TVs, media streamers, game consoles, and Set-Top Boxes which are 

capable of processing and rendering media objects to create a broadcast-quality experience.  

OBB provides viewers with a more personalised relationship (including the opportunity for direct interaction) 

with the content which facilitates tackling issues of accessibility and device heterogeneity, curation of 

programmes and creation of potentially new forms of content and experiences as well as delivering efficiencies 

in the production process. However, OBB also requires changes to the production workflow as well as client 

devices and the platforms which manage them. [4] describes a platform for the production, delivery and 

orchestration of object-based experiences developed by the EU-funded H2020 ICT project 2-IMMERSE, as 

well as a case study of a prototype multi-screen experience for MotoGP which included a wide range of 

personalisation features, including the placement of supplementary content over the race video feed. In contrast, 

[5] describes a prototype object-based learning experience developed by the BBC based entirely on recorded 

media, which illustrates the importance of new data models and production tools which support the temporal 

arrangement of media objects to form a personalised narrative. In [6], the authors explain the challenges of 

delivering the end-to-end production of a personalised object-based broadcast of a live football match from 

Wembley Stadium. The work reported in this paper builds on the object-based graphics features developed for 

this live football production. In [7], Ericsson Research describe an alternative technique for triggering and 

controlling the rendering of personalised graphics overlays on a client device by using timed events embedded 

in the MPEG-DASH stream which is being used to deliver live or recorded video.  

2.2 Artificial Intelligence and Machine Learning in Broadcasting: Object Detection 
AI and ML techniques are playing increasingly crucial roles in broadcast production workflows in order to 

reduce cost and increase personalisation. A recent ITU report [8] highlighted the wide range of applications: 

• Workflow and bandwidth optimisation, 

• Automated content creation, 

• Content selection for targeting audience demographics, 

• Optimization of asset selection – metadata creation, 

• Dynamic product placement and content personalisation, 

• Advertising for broadcast. 

The automated detection and recognition of objects within audio and video content features among many of the 

use cases cited within these categories. 

Object detection models are primarily based on supervised learning using deep neural network algorithms that 

take in an RGB image as an input and output the predicted labels and bounding boxes for a set of detected 

objects. Initially, we considered other approaches to people detection [9] [10], like the support-vector machine 

[11] with a linear kernel applied to a grid of local histograms of oriented gradients [12] or detection using 

aggregate channel features [13], but on our tasks their accuracy was greatly outperformed by deep neural 

networks. 

Object detection models are primarily based on supervised learning using deep neural network algorithms that 

take in an RGB image as an input and output the predicted labels and bounding boxes for a set of detected 

objects. Object detection models generally require higher resolution input images compared to image 

classification models, to perform the recognition and localisation of the detected object. Research [14] 

conducted on single-stage and two-stage detectors indicates that the input image resolution does have an impact 

on the model’s performance. It must also be noted that the input image will be resized to match the input layer 

dimension, irrespective of the image size supplied for inference. The findings indicate that the single-stage 

detector such as You Only Look Once (YOLO) version 3 performs better on low resolution detection of small 
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objects, whereas the Faster Region-Based Convolution Neural Network (Faster R-CNN) two-stage detector 

performs better on both high resolution and low-resolution images in detection of medium and large-sized 

objects. It was also found that the object detection models containing the ResNet backbone were severely 

affected with higher resolution images, where the computation time drastically increased. In a summary, the 

higher resolution images achieved higher accuracy in detection with a comparable increase in computational 

time, if not drastic, and vice versa. 

There are two main types of object detection model architecture [15], as shown in Figure 2. 

a) Single-stage detectors. In single-stage models, the image classification and bounding box generation 

for identifying objects are performed in a single step which allows them to demonstrate higher 

inference speed but lower accuracy as compared to two-stage detectors. The examples include SSD 

[16] and YOLO [17] object detection models. 

b) Two-stage detectors. Performing the object detection process in two stages offers high localisation and 

recognition accuracy. In the first step, the image goes through a Convolutional Neural Network (CNN) 

where the regions of interest - also known as regional proposals - are generated. The regional proposals 

use a selective search algorithm to identify objects in the image, yet they remain unclassified (i.e. 

unlabelled).  In the second stage, the regional proposals are entered into a pipeline for object 

classification and bounding-box regression. The Faster R-CNN object detection model is an example of 

a two-stage detector. 

 

 

Figure 2. One-stage and two-stage Object Detection model architecture [18] 

The above Figure 2 illustrates a single-stage object detector (a) and two-stage object detectors (b). The Input 

layer is the first layer in any deep learning model and it will be followed by a backbone layer that computes 

features from the input image. VGC and ResNet are widely adopted backbone architectures also known as 

feature extractors. 

According to the research conducted [19] by a medical imaging team in China for pill detection using Single-

stage (YOLO) and two-stage detectors (Faster R-CNN), the accuracy of two-stage detectors is found to be 

higher than single-shot detectors, however, the single-stage detectors are faster and therefore, there is a trade-

off between inference speed and performance. Research conducted in 2021 by the University of Sevilla on 

real-time single-stage and two-stage detectors [14] illustrates similar findings, i.e., the single-stage detectors 

such as FCOS and YOLOv3 outperform two-stage detectors such as Faster R-CNN in inference timing (per 

second). Although, the accuracy of two-stage detectors is higher in general, more specifically the Faster R-

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



5 
 

“Data-driven Personalisation of Television Content” - Springer Multimedia Systems Journal 

 

CNN combined with Res2Net-101 backbone, offers enhanced accuracy and real-time inference, thus 

providing a good trade-off.     

To evaluate the different types of object detection models, it is important to understand the key object 

detection model metrics. Mean Average Precision (mAP) is a widely-adopted metric which compares the 

actual ground truth bounding box with the generated bounding box for the detected object. The mAP is 

generated by calculating the Average Precision (AP) for each class and then evaluating the mean of all APs, 

which gives the mAP of the object detection model. The AP is calculated from the precision-recall curve as 

the weighted mean of precisions achieved at each threshold, with the increase in recall from the previous 

threshold used as the weight. The precision and recall metrics need to be calculated to generate the precision-

recall curve, which produces the AP values at different thresholds. Precision measures how accurate the 

predictions are, i.e., out of the total predictions made, it gives a percentage of correct predictions. Similarly, 

recall measures how good the model is in detecting all positives, i.e., it gives a percentage of positive 

predictions out of the total top K predictions made. For example, if a given frame contains 10 football players 

and the model only detects and labels one football player then its precision is high, however, very low recall 

as only one out of ten football players was detected.  

The University of Sevilla’s research [14] benchmarks different object detection models using mAP and 

indicates that there is a trade-off between single-stage and two-stage detectors’ model performance and 

inference speed and this is primarily affected by the model architecture, backbone and input image resolution. 

The distinction between model performance (mAP) of the single-stage and two-stage detectors on small, 

medium, and large objects is interesting. The Faster R-CNN model combined with state-of-the-art backbones 

has greater mAP on small, medium, and large objects detected and similarly, while YOLOv3 tends to have 

the highest mAP on smaller and medium objects on single-stage type detectors. 

We are comparing the overall performance of our dynamic graphic placement Proof of Concept by 

experimenting with one single-stage detector object detection model (YOLOv3) and a two-stage detector 

object detection model (Faster R-CNN). We are considering the YOLOv3 object detection model because, 

according to [20], it should perform significantly better in the detection of True Positives (TP) compared to 

SSD, even though SSD produces a much-reduced number of False Positive (FP). It was also found that SSD 

had higher precision and lower recall and YOLOv3 produced comparably balanced precision and higher 

recall metrics. 

As part of our experimentation we will undertake fine-tuning, which includes not only the refinement of 

model parameters for enhancement of the model performance but also experimenting with different 

combinations of backbones that can benefit our Proof of Concept.   

The Faster R-CNN models offer inferencing speeds up to 7fps, whereas the YOLOv3-based single-shot 

detection models can reach up to 45fps on the same data set [21]. The other key factors governing the 

inference speed include access to GPU-based inferencing, model architecture, and input image resolution.  

The NVIDIA’s GPU-accelerated libraries offer enhanced performance and during the deployment phase, 

considering the scalability of the solution, GPU-powered infrastructure would be preferred to harness 

accelerated performance. Currently, our Proof of Concept is developed and tested using NVIDIA’s GPU 

development kit, the Jetson XAVIER NX, which offers powerful GPU computation with CUDA-accelerated 

libraries. 

The computational power offered by CUDA cores and NVIDIA’s libraries such as TensorRT accelerates the 

inference speed of state-of-the-art object detection models including Faster R-CNN and YOLOv3. The table 

below illustrates the inference speed achieved by employing NVIDIA’s GPU and deep learning toolkits: 
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Table 1 – Object detection model performance on NVIDIA GPU’s using DeepStream SDK [22] 

Object detection tends to be easier for detecting single objects in an image frame, however it becomes 

challenging for detecting multiple objects in a frame where the detected objects can overlap with successive 

detections and cause similar challenges for deep learning model to detect and identify multiple objects. To 

facilitate multiple successive detections, state-of-the-art single-stage object detection models generally employ 

the Anchor box method for generating bounding boxes for predicting the object label and location. Anchor boxes 

are custom-sized boxes of different ratios of height and width designed to match the relative ratios of the object 

classes being detected. The anchor boxes are of varying sizes and fine-tuned to match the size of objects of 

different classes being trained [23]. 

 

Figure 3. Example illustrating Anchor box method. 

When the input image is passed through the object detection model, a grid of a fixed size is applied to the image, 

and the anchor boxes of different sizes are applied on the grid to detect and identify the objects. The number of 

anchor boxes varies from 2 to 5 and usually depends primarily on the type of data. 

3. Use Case: Dynamic Graphic Placement for Live Football 
The introduction of features which enable the appearance of broadcast presentations on individual screens to 

differ significantly from each other presents a challenge for a broadcaster seeking to guarantee a high production 

quality. Personalised media objects which are requested by customers must be consistent with the broadcaster’s 

house style and, crucially, their timing and screen location must not obscure key action in the video beneath.  

The use case addressed in this paper is to automate the choice of timing and screen location for the insertion of a 

personalised media object – a graphic overlay – within a football match broadcast. The graphic overlay might, 

for example, show personalised player or match statistics at appropriate times during the broadcast, such as after 

key events such as goals or near misses, or in response to events taking place in other simultaneous matches. 
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Detailed data for a wide range of sports is available to broadcasters and content providers on a near-live basis 

from suppliers such as Stats Perform (Opta) [24], and personalised media objects can subscribe to subsets of this 

data as required and defined by the broadcaster. Furthermore, should sufficient data not be available from an 

external supplier, a broadcaster may choose to author it themselves as part of their production workflow. 

Earlier, we explained how personalisation features such as this would usually be expected to require minimal 

interaction to avoid distracting the viewer from the live broadcast. For this use case, a viewer could be expected 

to set up a simple profile in advance, specifying, for example, their favourite players and teams. This would 

preferably be done using apps on personal devices (such as tablets and smartphones), while a simpler option 

might be provided on their TV device to enable or disable additional personalised graphics. 

The decision-making of the graphics placement is a complex process which could further be improved by taking 

into consideration of the analytics of the game, for example, the area of interest of the play and the direction of 

the play in the game. The proposed approach in this paper is a fundamental building step to firstly ensure that no 

key action involving players and the ball is occluded by the choice of the placement of graphics overlay. The 

current framework of the decision-making process is flexible to be extended to apply varying weightings to 

objects (players/ball) depending on their involvement in the area(s) of interest. This can further provide the 

current algorithm the possibilities to find additional suitable locations for graphics placement if the relaxed 

criteria to avoid occlusion on key actions. In contrast to the player and match data used within a personalised 

graphic overlay, it cannot be assumed that technical data from parts of the broadcast production process can be 

easily made available to support this decision-making process. A wide variety of different systems are used 

across the industry to process and switch video, and sometimes to track the positions of players and the ball. Our 

approach in this use case is to develop a general technique which is widely applicable across televised field-

based team sports. 

Adaptive bitrate streaming is widely used by broadcasters to deliver live and on-demand content as it makes use 

of established web standards and caters for the widest range of devices and usage contexts through its ability to 

dynamically switch between different versions of a stream, varying by resolution and bitrate, for example [25]. 

To achieve reliable and smooth playback, most broadcasters and content providers configure their players to use 

buffers of significant size, resulting in latency of 30 seconds or more. Benchmarks are not usually shared 

publicly, but the existence of streaming delay is widely reported in consumer surveys [26]. 

To address our use case, we can take advantage of the delays introduced by the widespread use of adaptive 

streaming, hence enabling an appropriately-located analysis system to ‘look ahead’ in the live stream by 30-60 

seconds and make graphic placement decisions accordingly. If these delays are reduced as greater network 

reliability removes the need for some buffering, the use case can still be applied to non-live elements of a match 

broadcast, for example placing the graphic overlay during a replay sequence in which recordings of multiple 

camera angles of a key event, such as a goal being scored, are shown consecutively.  

The player detection and ball detection are both of interest to this research, however, it should be noted that the 

automated proposition of location for placement of graphics is based on the detection of players. The ball 

detection and tracking are considered in future scope for the overall optimisation of the system. Further, there 

are interesting challenges to the detection of the ball, compared to the detection of players and this is primarily 

caused by the size of the object of interest (football) that needs to be detected on the live stream. According to 

our initial research on the accuracy-based performance of object detection algorithms, it was found that these 

models have different AP (Average Precision) for detection of the same object of different sizes such as; small, 

medium and large [27]. Therefore, these initial findings indicate that an optimal object detection model with 

higher AP on different sized objects must be selected and further fine-tuned with multi-scale training to produce 

a robust model that relatively has less impact due to varying object sizes. 

3.1 Objectives 
Our goal is to provide a personalised graphic overlay to be positioned in a multi-angle video sequence without 

occluding any key action. This implies several objectives: 

1. To apply video analysis to ensure that the graphic is placed in an area where there is least occlusion of 

the key action. 

2. To automate the detection of boundaries between parts of the sequence shot from different camera 

angles, to enable the shot type to be taken into account when making the placement decision. 
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3. To demonstrate insertion of the graphic for a fixed period of time and on particular shot types only 

(such as wide-angle shots).  

4. To demonstrate a system that places the graphic in the best location based on templates defined by the 

broadcaster e.g. top-left, top-right, bottom-right and bottom-left (Figure 4). This is essential to ensure 

compliance with their production style and to avoid clashes with non-object-based graphics which may 

be present. 

 

Figure 4. Standard frame areas to display graphic overlay: left stack (top left), right 

stack (top right), lower third (bottom left), upper third (bottom right). 

3.2 Method 
The object detection model deployed for our use case is a single-stage pre-trained model, implemented using the 

Nvidia DeepStream framework [28]. The model is constructed with the ResNet10 backbone (i.e. feature-

extracting network). It is a 4-class object detection model capable of detecting the following types of objects: 

Vehicle, RoadSign, TwoWheeler and Person. The model uses the Anchor Box method to generate two tensors, 

cov and bbox. The image is divided into 16x16 grid cells [29]. The cov tensor (shortened for “coverage” tensor) 

defines the number of grid cells that are covered by an object. The bbox tensor defines the normalized image 

coordinates of the object top-left and bottom-right coordinates with respect to the grid. Each class has its own 

cov and bbox tensors. 

It is assumed that in the football video sequence, the region of interest (ROI) within a video frame is defined by 

positions of the players and the ball provided by the object detection model. As shown in Figure 5, for every 

frame the model generates bounding boxes around detected objects, together with their class labels and 

probabilities. 
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Figure 5. Players detected in a frame of a football video. 

 

Our method for dynamic placement of the graphic comprises the following steps: 

1. Searching for valid locations: 

• Defining a map of available locations for the graphic within a frame. 

• Updating the map of locations with every new frame depending on the detected objects in that 

frame by excluding every location which may overlap with any of them and incrementing the 

durations of availability of the others. 

• Producing a list of locations which are continuously available for at least the minimal required 

display time together with the start times and durations of their availability. 

2. Optimisation:  

• Finding locations from the list which satisfy target criteria (e.g. have the longest availability, 

are vacant from the first frame of the buffer, belong to a certain pre-defined region etc.). 

3. Decision-making:  

• Selecting a location subject to production practice, artistic intent and viewers’ preferences. 

• Suggesting the start time and duration of the graphic based on the timeline of detected 

occlusions and other criteria (e.g. production considerations). 

The first stage of the dynamic placement process is to extract a description (e.g. a set of bounding boxes) of the 

ROI within each frame of the video sequence in order to estimate and to minimise the risk (or the size) of 

occlusions at every possible location of the graphic.  

The ROI is mapped onto a binary image where all pixels which belong to relevant detected areas are marked 

(i.e. a heatmap), and our task is to find the best position (which minimises occlusion of the game) within the 

unmarked (or, in other words, free) space to place the graphic. A sequence of such heatmaps produced for a 

video clip (Figure 6) demonstrates free space available within every frame together with duration of its 

availability. However, generating binary heatmaps and storing them as bitmaps is not efficient in terms of 

memory use and may become computationally prohibitive. Instead, bounding box data are stored for each frame 

in a fixed-length queue (of the same size as the video buffer) while the algorithm (Algorithm 1) uses them as 

raw input to search for eligible locations within each frame to display the graphic. 
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Figure 6. A set of heatmaps corresponding to each consecutive frame of shot 1 of the replay video. 

 

 

Algorithm 1: Searching for locations to display the graphic 

Input: frame_h ≥ gfx_h > 0, frame_w ≥ gfx_w > 0,                                                  (sizes of the TV frame and the graphic) 

            min_time > 0,                                                                                                          (minimal duration to display the graphic) 

             B ∊ (𝐁1,…, 𝐁n), n > 0,                                                                            (buffer of  detected objects for the n frames ahead) 

             𝐁t ∊ {(xi, yi, hi, wi): 0 < xi ≤ frame_h, 0 < yi ≤ frame_w, hi > 0, wi > 0, i ≥ 0} , 1 ≤ t ≤ n            

Ouput: L ∊ {(x, y, s, d): 1 ≤ x ≤ frame_h, 1 ≤ y ≤ frame_w, 1 ≤ s ≤ n, 1 ≤ d ≤ n}                          (list of valid locations) 

 

Set A ← 𝟘(frame_h – gfx_h +1) × (frame_w – gfx_w + 1)                                       ( intialisation of availability map of locations with zeros) 

Set L ← {}                                                                                                           ( initialisation of list of locations with an empty set) 

Foreach t ∊ (1, …, n) 

      Set V ← 𝟙(frame_h – gfx_h +1) × (frame_w – gfx_w + 1)          ( intialisation of map of vacant locations (the current frame) with ones) 

            Foreach (x, y, h, w) ∊ 𝐁t                                                               (removing all locations which overlap with any detected object) 

                    Foreach i ∊ (x – gfx_h + 1, …, x + h – 1) and j ∊ (y – gfx_w + 1, …, y + w – 1) 

                           Set Vij ← 0 

            Foreach i ∊ (1, …, frame_h – gfx_h + 1) and j ∊ (1, …, frame_w – gfx_w + 1) 

                    If Vij = 0                                                                                                               (processing locations causing occlusions) 

                          If Aij ≥ min_time 

                                 Set L ← L ∪ (i, j, t - Aij, Aij) 

                          Set Aij ← 0 

                    Else                                                                                                              (incrementing availability of vacant locations) 

                          Set Aij ← Aij + 1                                                                                       

Foreach i ∊ (1, …, frame_h – gfx_h + 1) and j ∊ (1, …, frame_w – gfx_w + 1)    

       If Aij ≥ min_time                                                                                                      (processing locations which are still vacant) 

            Set L ← L ∪ {(i, j, n - Aij + 1, Aij)} 

Return L 
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4. Results 

 

Figure 7: Analysis of 10-minute test clip to benchmark object detection 

Figure-7 illustrates the results of detected objects in a 10-minute duration test clip. The x-axis represents the frame 

ID/frame number and the y-axis represents the size (pixel area) of the detected objects. The increase in the number 

of pixels indicates the large object detected due to a close angle shot. Similarly, the smaller the number of pixels 

on detected objects, the wider the field of view of the input stream and the smaller the size of detected objects. It 

must be noted that this graph doesn’t directly co-relate to the number of objects detected, although multiple objects 

were detected throughout the input test clip video. 

A test video clip of approximately 10 minutes was used to benchmark the object detection model in the absence 

of reliable ground-truth data. To the best of our knowledge, there are no publicly available labelled data sets to 

train object detection models using content of this type, and significant resources would be required to manually 

create them. Figure 7 indicates the individual object sizes of detected objects for 15,000 frames in a 25 frames 

per second (fps) video test clip. The peaks and troughs in the above graph clearly evidence the difference 

between wide-angle and close-up shots respectively. This indicates that the model’s performance is consistent, 

and it is able to detect and identify objects of different sizes. 
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Figure 8: Histogram of object sizes across selected frames 

Figure-8- represents the variation of sizes of objects detected in randomly selected 4 different frames of the 10-

minute video test clip. The x-axis denotes the size of the objects corresponding to the pixel area occupied by the 

objects and the y-axis represents the number of objects detected on a particular frame.  The results indicate that 

objects of different sizes and numbers across the test video stream were detected by the object detection model.It 

can also be seen that wide-angle shots (frames 1425 and 8275) exhibit distinctly different histograms to close-up 

shots, as expected. 

 

Figure 9: Example of object location distribution during a 1-minute wide-shot sequence 

A list of objects and their respective locations within the frame was extracted for a 1-minute wide-shot sequence 

within our 10-minute test clip. This was used to identify the approximate distribution of detected objects over 

1,500 frames (at 25fps). It can be noted that there are a total of 9,321 objects (football players) detected and the 

majority of them are on TL (Top-Left) quadrant of the frame, and the least-detected area for players is the BR 

(Bottom Right) quadrant of the frame, with one third of all objects being located in more than one quadrant of the 

frame.  

The one-minute subset of the test video was chosen to derive and understand the distribution of the detected 

objects of interest in an individual frame. The camera angle, the field of view, and the area of focus are consistently 

changing; therefore, it is important to analyse the generic distribution of detected objects to facilitate the design 
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improvements of the graphic placement algorithm.  The one-minute subset is a random selection, and multiple 

such subsets are selected to analyse the distribution of the detected objects. The above-mentioned graph is an 

example of one of the subsets that were selected to elucidate the analysis. The 10-minute test clip is sampled from 

the 2019 Community Shield match between Manchester City and Liverpool games, this could be found online 

[30].  

Without the ability to dynamically determine placement of the media object, a broadcaster would need to specify 

in advance a fixed default location (such as the top-left corner of the screen) for any personalised graphic overlays 

chosen by the viewer. This simple analysis illustrates the important point that a fixed location for a supplementary 

graphic over football match content has a high probability of occluding key action. 

The dynamic placement process was tested on a video sequence which contains a replay of the first goal scored 

during the 2019 Community Shield match between Manchester City and Liverpool. The video comprises four 

main shots from different angles, plus a fifth crowd reaction shot. The boundaries between the shots were 

automatically determined based on analysis of rapid changes of the average sizes of the detected objects within 

every frame (Figure 10). Analysis of the Kullback–Leibler divergence (i.e. the relative entropy) between 

normalised histograms of every two consecutive frames (Figure 11) not only confirms these shot boundaries (as 

its rapid rise usually indicates a change of shot type), but also suggests an approach for classification of shots 

(for targeting relevant auxiliary content) based on histogram analysis, which is one of the subjects of ongoing 

research. 

 

Figure 10. Average height, width, and area of detected objects in each frame (vertical dotted bars show 

boundaries between clips shot from different camera angles) plotted on a logarithmic scale. 
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Figure 11. Kullback–Leibler divergence between normalised histograms from three colour channels of 

consecutive frames (vertical dotted bars show boundaries between clips shot from different camera angles). 

The co-ordinates of the bounding boxes of objects of interest are shown as a sequence of heatmaps (one for each 

consecutive frame) for every shot (Figure 6). The lengths of those shots as well as the output of the graphic 

placement algorithm (the longest durations of continuous display of the graphic in fixed positions without 

causing any occlusions of key action in each shot) are listed in Table 1. Unlike wide-angle shots I and III, shots 

II and IV show several close, narrow-angle views and shot V records reactions of the fans. 

 

 

 

 

 

 

 

 

 

An example of dynamic graphic placement during shot I of the replay video sequence is visualised in Figure 12. 

As one can notice from Table 1, the algorithm computes the best locations of the graphic within each of the 

shots and suggests the best rigid location for the whole video clip. First we run the graphic placement algorithm 

to check availability of the default location - the top-left corner of the left stack (as shown in the top-right image 

of Figure 12): in shot I it does not overlap with any detected objects of interest for its last 171 frames (column 

‘Fixed location’ and the top-left image). Searching throughout the whole frame without safe zones marked dark 

red in Figure 4 (column ‘Safe frame’), we discover locations available for the whole duration of shot I, 285 

  Duration and frame range for graphic placement 

Shot Length Fixed location Left stack Safe frame 

I 285 (1 - 285) 171 (115 – 285) 171 (115 – 285) 285 (1 - 285) 

II 216 (286 - 501) 115 (387 – 501) 153 (344 - 496) 153 (344 - 496) 

III 298 (502 - 799) 298 (502 - 799) 298 (502 - 799) 298 (502 - 799) 

IV 235 (800 - 1034) 171 (864 - 1034) 202 (833 - 1034) 202 (833 - 1034) 

V 41 (1035- 1075) 11 (1035 - 1045) 25 (1035 - 1059) 41 (1035 - 1075) 

I-V 1075 (1 - 1075) 470 (387 - 856) 470 (387 - 856) 470 (387 - 856) 

Table 1: The first and last frames as well as duration of every shot within the replay video 

sequence together with the proposed start time and duration to display the graphic without causing 

any occlusions of the game in a fixed (default) location, the left stack and the whole frame 

excluding the safe area (i.e. dark red area in Figure 4) 
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frames (the bottom images). Therefore, the graphic placement algorithm allows us to display an overlay graphic 

without any occlusion of any key action for longer period of time and in a desired area of the frame.  

 

5. Live Proof of Concept 
Having demonstrated that the dynamic graphic placement technique described above provided good results 

when applied to a recorded replay video sequence, a live Proof of Concept was developed in order to: 

• Facilitate experimentation and refinement of the dynamic placement algorithm on a wider range of content. 

Figure 12. The demo of graphic placement on shot I in three pre-defined templates: the default location (top 

right), the left stack (middle right) and the whole frame excluding safe zones (bottom right). The information 

graphic is placed by the decision-making algorithm in such a way that it fits in the display area (the green 

rectangle) aiming at its top left corner and avoids occluding any objects of interest (in the yellow boxes). The 

output of the algorithm is shown for the left stack (middle left) and the whole frame without safe zones (bottom 

left): locations of the graphic are defined by positions of its top left corners (the interior of the green rectangles 

without cyan areas), those continuously available for the longest time are shown in white, the selected location 

is marked in red, the respective position of the graphic is denoted by the blue rectangle. The relative overlap of 

the graphic in the default location with the detected objects of interest is plotted per frame on a logarithmic scale 

(top left).  
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• Determine whether dynamic graphic placement could be carried out on live content, taking advantage of the 

inherent delay in adaptive video streaming to ‘look ahead’ in the live stream by 30-60 seconds and make 

graphic placement decisions accordingly. 

Figure 13 shows the high-level end-to-end architecture of Object-Based Broadcasting for live sports production, 

demonstrating how existing broadcast functions are combined with new components to enable object-based 

personalisation. The left-hand column indicates that both recorded media assets (graphics, title sequences, 

transitions etc) and app software are prepared in advance of live production. It should be noted that existing TV 

player apps will need to be updated to provide object-based personalisation, potentially across multiple screens. 

The next column summarises some of the key processes involved in live production, including the capture, 

mixing and encoding of the live match programme, the graphics overlaid on it and the data associated with the 

progress of the match and its players (as well historical data and data related to concurrent matches). Unlike a 

conventional broadcast production process, these video, audio, graphics and data components remain as separate 

objects delivered independently to the viewer (customer) via the Content Delivery Network, and indeed the live 

match programme is provided as a ‘clean feed’, with no graphics overlaid on it. 

The OBB platform includes of a set of app management web services with which the viewer’s TV apps 

communicate while the personalised experience is delivered. The Orchestration component is a back-end web 

service which distributes instructions which control the timing and properties of media objects to be rendered. 

The Orchestration component can receive an instruction from a live graphics production tool controlled by a 

human operator, which will include a real-time (NTP-synchronised) timestamp representing the time the 

requested graphic overlay object should be displayed. Real-time timestamps are also inserted during encoding of 

the live match ‘clean feed’ for adaptive bitrate streaming, so when a TV app decodes a buffered segment of this 

stream, it can read the corresponding timestamp for each frame showing when it was encoded live. This means 

that the TV app can synchronise an Orchestration instruction to display the graphic overlay object with the 

delayed live video stream. 

Figure 13 also indicates how Orchestration instructions could be supplied by an ‘AI Engine’. This AI Engine, 

another back-end web service, can be triggered directly by Orchestration, or following an interaction by a 

viewer’s app. 
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Figure 13. Architecture of an Object-Based Broadcasting system incorporating an AI Engine. 

 

 

Figure 14. Internal architecture of the Proof-of-Concept AI Engine. 

Figure 14 shows the internal architecture of our Proof-of-Concept AI Engine, which comprises three 

components: 

The Video Analyser is a GPU-accelerated video processor which detects the bounding boxes of key objects in 

every frame of a live video stream, using the NVIDIA DeepStream framework as described above [28]. For the 

purpose of our experiments, it is provided with a recorded ‘clean feed’ video stream, played back as if the match 

were live, and sent over UDP for minimal delay from real-time. The same clean feed is also encoded, packaged 

and delivered to client devices using adaptive streaming, in the same way as described above for a real broadcast 

event. 

An Apache Kafka [31] Broker is used to temporarily store a queue of object bounding boxes which are 

generated by the Video Analyser for every frame of the incoming video stream. A real-time timestamp is also 

attached to each frame. Apache Kafka provides a reliable solution for managing this data feed with low latency, 

and its ability to store the queue makes it possible to use this architecture for iterative testing of the dynamic 

placement algorithm by running it many times over the same object queue. 
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The Layout Automation component is a web service which is called on demand whenever a personalised 

overlay graphic is required. This request could be made directly from a viewer’s client application or, more 

likely for our use case, will be triggered by the Orchestration component. Layout Automation incorporates a 

Kafka Consumer which, when triggered, requests a list of object bounding boxes for every frame in the queue 

corresponding to the estimated length of the delay between the client video playback and real time (for example, 

30s). It then performs the dynamic placement algorithm as described in the Method section above, taking its 

starting point in the queue from the timestamp provided in the web request, which must represent playback time 

at the client, hence looking forward in time from the client’s perspective. In order to achieve this, the 

Orchestration component maintains a regularly-update record of current playback time at each client TV app. 

If the viewer were to be given the opportunity to interactively request a personalised graphic overlay, an 

optimisation which could be performed at this stage would be to restrict placement to locations which are vacant 

from the starting point chosen in the queue, so that a graphic could be placed instantaneously in response to their 

request.  

Once the location and start time of the dynamic placement have been determined by Layout Automation, the 

component sends an instruction to the Orchestration component in the OBB platform to display the graphic 

object. Iterative development and testing have been carried out with this Proof-of-Concept to optimise the 

efficiency and accuracy of the placement algorithm and to ensure that the placement location can be calculated 

with a latency of less than 1s. 

For the purposes of our Proof of Concept, our OBB platform and AI Engine components were hosted within a 

lab environment, most running as containerised services on a private cloud platform. In an operational setting, 

we would expect all of these components, including GPU-accelerated video processing, to be hosted on a public 

cloud platform which would provide cost-effective on-demand access to a dynamic graphic placement 

capability. 

6. Conclusions and Further Work 
In this paper we have described the development of a Proof-of-Concept automated system to drive one aspect of 

a personalised, object-based TV experience. 

We have developed an AI-based approach to the automated insertion of personalised graphics. The detection of 

players and the ball in a football replay clip is performed by a deep neural network algorithm whose output is 

used to define the region of interest within each frame of the clip. Data analysis of the remaining space in a 

sequence of frames suggests suitable locations for the graphic to avoid occlusions of key action of the game, and 

furthermore, our system places the graphic at the best position based on templates pre-defined in accordance 

with the broadcaster’s style guide (e.g. top-left, top-right, bottom-right and bottom-left). Our solution also 

automatically detects boundaries between parts of the clip shot from different camera angles so that graphics are 

inserted on wide shots only. 

We have found that the ability to dynamically determine object placement is vital for a broadcaster to avoid the 

need to specify in advance a fixed location (such as the top left corner of the screen) for any personalised 

graphic overlays chosen by the viewer. Fixing a location in advance to allow a new media object to be inserted 

over football match content can lead to a high probability of occluding key action. 

We have found that during a replay video sequence the algorithm is able to calculate the best locations (which 

minimise occlusion of the game) to insert the graphic within each of the shots and propose the best location for 

the entire video clip.  

The architecture of an AI engine for placement of graphic objects within a live video broadcast has been 

described. This takes advantage of the inherent delay in adaptive video streaming to ‘look ahead’ in the live 

stream and make placement decisions accordingly. For our live Proof of Concept, we have optimised the 

algorithm to determine a placement location with a latency of less than 1s. 

Based on our experimentation with single-stage and two-stage object detection architectures, we believe that the 

Faster R-CNN model (with ResNet-18 or ResNet-50 backbone) and YOLOv3 (with DarkNet-53 or ResNet-18) 

could provide more accurate object detection of football players within a live video stream. We will be 

performing further experiments to validate the selection of this model. We also plan to explore how the addition 
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of object tracking could enable us to automatically determine additional relevant information about sports match 

content, such as states of play. This could provide further guidance for the temporal placement of personalised 

graphics. 

We hope that the results that we obtained in this Proof-of-Concept will help to influence future design of Object 

Based Media experiences, so that if personalised media objects are to be inserted over video content, this can be 

achieved while minimising the occlusion of key action in the scene. We believe that our approach could applied 

to a range of field-based sports, but further work is required to assess its performance and suitability. Having 

demonstrated that dynamic placement of media objects can be achieved in a live broadcast environment, we will 

now seek to test different use cases with real viewers.  

We are planning to carry out an evaluation in a form of subjective testing by expert viewers as one of the 

directions of our future work. Our test design has been informed by a previous evaluation of dynamic subtitles 

[32]. We have selected 10 clips of 30-60 seconds duration based around the key events within an English 

Premier League match and will use our Proof of Concept to identify a graphic placement immediately after each 

event has happened. At the beginning of the test, and to provide a basis for comparison, we will ask each expert 

to suggest where a broadcaster would typically place an information graphic. We will then play each clip 

showing our suggested graphic placement to each expert and, after each clip, ask them to complete a 

questionnaire measuring their user experience [33] [34] on a Likert scale [35]. We will include additional 

qualitative questions to explore their opinion of the placement in terms of location on screen and timing. We 

may potentially extend the evaluation to include measurement of cognitive load using other modalities, like eye-

tracking and electroencephalography [36]. 
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