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A COMBINATORIAL PROPERTY OF CARDINALS

PÉTER KOMJÁTH AND MIKLÓS LACZKOVICH

(Communicated by Carl G. Jockusch, Jr.)

Abstract. (GCH) For every cardinal κ ≥ ω2 there exists F : [κ]≤2 → {0, 1}
such that for every f : κ → [κ]<ω, i < 2, there are x, y such that F (x, t) =
i (t ∈ f(y)), F (u, y) = i (u ∈ f(x)).

Let X be a nonempty set, and let F be a coloring of [X ]≤2 = {H ⊂ X : |H | ≤ 2}
with two colors; that is, let F : [X ]≤2 → {0, 1}. If f is a map from X into
[X ]<ω = {Y ⊆ X : Y is finite}, then we say that the pair (x, y) is a 0-pair, if
x, y ∈ X, F (x, t) = 0 for every t ∈ f(y), and F (u, y) = 0 for every u ∈ f(x). The
definition of 1-pairs is analogous.

For an infinite cardinal κ let P (κ) denote the following statement. There exists
a function F : [κ]≤2 → {0, 1} such that for every map f : κ→ [κ]<ω there exists a
0-pair and there exists a 1-pair.

We prove that P (κ) fails for κ ≤ ω1 (Theorem 1). We conjecture that P (κ)
is true whenever κ ≥ ω2, but we can only prove this under GCH (Theorem 2).
Nevertheless, our proof works in ZFC for all cardinals κ with κℵ2 = κ (Theorem
3).

We can show that for every cardinal λ with cf(λ) > ω1 there is a cardinal
preserving extension that adds a witness to P (ω2) and makes 2ℵ1 = λ (assuming
GCH, Theorem 4).

Definitions and Notation. We use the standard axiomatic set theory notation
and notions; see [1]. GCH stands for the Generalized Continuum Hypothesis. If S
is a set and κ a cardinal, then we let

[S]κ = {x ⊆ S : |x| = κ}, [S]<κ = {x ⊆ S : |x| < κ}, [S]≤2 = [S]1 ∪ [S]2.

For simplicity we use the notation F (A,B) = 0, etc. to denote that F (x, y) = 0
holds for every x ∈ A, y ∈ B.

Theorem 1. P (κ) fails for κ ≤ ω1.

Proof. Assume that we are given F : [κ]≤2 → {0, 1}. We will find a function
f : κ→ [κ]<ω either with no 0-pairs or else with no 1-pairs.

Case 1. κ = ω.

If there is an element a such that F (x, a) = 1 holds for every x , we can choose
f(x) = {a} (for x < ω), this f has no 0-pairs. We can assume, therefore, that
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for every x < ω the element g(x) satisfies F
(
x, g(x)

)
= 0. Now the choice f(x) ={

g(0), . . . , g(x−1)
}

witnesses the failure of P (ω), that is, this function has no 1-pair
as for x < y we have g(x) ∈ f(y) and F

(
x, g(x)

)
= 0.

Case 2. κ = ω1.

If, for every α < ω1, there is some h(α) < ω1 with F
(
α, {h(α)}

)
= 1 (that is,

F
(
β, h(α)

)
= 1 holds for every β < α), then the function f(α) = {h(α)} has no

0-pair. We can assume, therefore, that there exist a countable set X = {γ0, γ1, . . . }
such that for every α ∈ ω1 − X there is some γn with F (α, γn) = 0. Decompose
ω1 −X as ω1 −X = X0 ∪X1 ∪ · · · where

Xn = {α ∈ ω1 −X : F (α, γn) = 0}.
Further, let Yn = Xn−(X0∪· · ·∪Xn−1). Again, we can assume, by the argument at
the beginning of the proof, that for every x there is some g(x) with F

(
x, g(x)

)
= 0.

Define for α ∈ Yn ∪ {γn}
f(α) =

{
γ0, . . . , γn, g(γ0), . . . , g(γn)

}
.

This f has no 1-pair.

Theorem 2 (GCH). P (κ) holds for every κ ≥ ω2.

Proof. We first consider the case κ = ω2.
For S ⊆ [ω]ℵ0 , j < 2 let Tj(S) ⊆ ω2 be a stationary set such that Tj(S) and

Tj′(S′) are disjoint if either S 6= S′ or j 6= j′. (Exist as by GCH ℵℵ0
2 = ℵ2 and by

Solovay’s theorem.)
Enumerate the systems consisting of ℵ1 disjoint finite subsets of ω2 as{

{Aαi : i < ω1} : α < ω2

}
.

We require that sup
(⋃
{Aαi : i < ω1}

)
< α by formally allowing that the systems

are not defined for some values of α.
We define F (x, α) by transfinite recursion on α (for the values x < α).
Assume that F (x, β) is defined for x < β < α. If α ∈ Tj(S) for some j and

S, then, of course, we make F (S, {α}) = j. Beyond this, we make sure that the
following property holds:

(∗) for β ≤ β1 < · · · < βn < α, j < 2, there are ℵ1 indices i < ω1 that
F
(
Aβi , {β1, . . . , βn, α}

)
= j.

We show that this function F works.
Assume that f(α) is a finite subset of ω2. We find a 0-pair, the case of getting

a 1-pair is similar.

Lemma 1. There is a countable S such that for every countable S′ ⊇ S there are
stationary many α such that F

(
S′, {α}

)
= 0 and f(α) ∩ (S′ − S) = ∅.

Proof. Otherwise, for every countable S there are a countable S′ ⊇ S and a closed,
unbounded set C with the following property; if α ∈ C and F

(
S′, {α}

)
= 0, then

f(α) ∩ (S′ − S) 6= ∅. We define by induction the countable sets S0, S1, . . . and
closed, unbounded sets, C0, C1, . . . such that S0 = ∅ and for Sn the sets Sn+1, Cn
are as described above. Put S =

⋃
{Sn : n < ω} and C =

⋂
{Cn : n < ω}. S is

countable, while C is closed, unbounded. Pick α ∈ Tj(S) ∩ C (such an α exists as
Tj(S) is stationary). Then f(α) ∩ (Sn+1 − Sn) 6= ∅ holds for every n < ω which is
impossible, as f(α) is finite.
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From now on fix an S as in Lemma 1.

Lemma 2. There is a countable S′ ⊇ S such that if t is finite, t ∩ S′ = ∅, then
there are stationary many α such that f(α) ∩ α ⊆ S′ and F

(
S ∪ t, {α}

)
= 0.

Proof. For α ∈ T0(S), F (S, {α}) = 0. On this set, the function f(α)∩α is regressive,
so by Fodor’s lemma, there is a stationary H ⊆ T0(S) and a countable S′ ⊇ S
that f(α) ∩ α ⊆ S′ holds for α ∈ H . If the statement of Lemma 2 fails, we can
inductively choose the disjoint finite sets tξ and closed, unbounded sets Cξ such
that for α ∈ H ∩ Cξ we have F (tξ, {α}) 6= 0. If C =

⋂
{Cξ : ξ < ω1}, then for

the ℵ2 α ∈ H ∩ C we have that F (tξ, {α}) 6= 0 for every ξ < ω1 which contradicts
property (*) of the construction.

Fix an S′ ⊇ S as in Lemma 2.

Lemma 3. There is a finite t and there are stationary many α such that F (S′, {α})
= 0, f(α) ∩ α ⊆ S ∪ t, f(α) ∩ (S′ − S) = ∅.

Proof. By applying Lemma 1 to our particular pair S, S′ we get stationary many
α with the first and the last property. By Fodor’s lemma, there is a finite t such
that for a stationary subset, the second property holds, as well.

In order to conclude the proof of P (ω2) we observe that by Lemma 2 there are
ℵ2 many elements β such that f(β) ∩ β ⊆ S′ and F (S ∪ t, {β}) = 0. We choose a
set B consisting of ω1 of them such that the sets {f(β) − β : β ∈ B} are disjoint.
By Lemma 3 there are ℵ2 elements α for which F (S′, {α}) = 0, f(α) ∩ α ⊆ S ∪ t,
f(α) ∩ (S′ − S) = ∅. If α is one of them which is large enough, then

F
(
f(β)− β, f(α) − α

)
= 0

and then {α, β} is a 0-pair.
We now consider the case when κ > ω2. Let τ be an infinite, regular cardinal.

Let (H,<) be an ordered set of cardinality τ++ in which A is a co-initial subset of
ordinal τ and B is a cofinal set of ordinal τ+ and every initial- and end-segment
has cardinal τ++. Call a subset up-big if it has τ++ elements in every end-segment,
and down-big if it has τ++ elements in every initial-segment. It is big if it is up-big
and down-big.

Let H ′ ⊆ H be a big subset and f : H ′ → [H ]<ω a function. For s ⊆ H , x ∈ H
let s > x denote that every element of s is greater than x, and likewise for s < x.

Lemma 4. There is an a ∈ H such that {x ∈ H ′ : f(x) > a} is up-big.

Proof. Otherwise, for every a ∈ A there is some b(a) ∈ B with∣∣{x ∈ H ′ : x > b(a), f(x) > a}
∣∣ ≤ τ+.

There is a b ∈ B with b > b(a) for a ∈ A, and then H ′ can have only at most τ+

elements above b, a contradiction.

Lemma 5. There is a b ∈ H such that {x ∈ H ′ : f(x) < b} is down-big.

Proof. Otherwise, for every b ∈ B there is some a(b) ∈ A with∣∣{x ∈ H ′ : x < a(b), f(x) < b}
∣∣ ≤ τ+.

There is an a ∈ A which assumes the value of a(b) for τ+ many b ∈ B and we get
that H ′ has only at most τ+ elements below a, a contradiction.
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Let X ⊇ H be some set of cardinal κ and assume that either cf(κ) > τ++ or else
κ is singular and cf(κ) < τ . Given κ this can be arranged by choosing either τ = ω
or τ = ω3. We are going to construct a function F : [X ]2 → [X ]<ω witnessing P (κ).

Lemma 6. There is a family of functions fα : Hα → [X ]<ω for α < κ such that
Hα is always big and every f : H → [X ]<ω restricts to some fα.

Proof. In the first case this is obvious as by the GCH and cf(κ) > τ++ the number
of all f : H → [X ]<ω functions is κ, so we can take Hα = H and let {fα : α < κ}
enumerate the H → [X ]<ω functions.

In the second case decompose X as an increasing union X =
⋃
{Xξ : ξ < cf(κ)}

with |Xξ| < κ. Assume that f : H → [X ]<ω. For every a ∈ A there is some
ξ < cf(κ) such that ∣∣{x < a : f(x) ⊆ Xξ}

∣∣ = τ++.

For every b ∈ B there is some ξ < cf(κ) such that∣∣{x > b : f(x) ⊆ Xξ}
∣∣ = τ++.

By cardinality considerations, there is a ξ that is good for τ many a ∈ A and τ+

many b ∈ B and so H ′ = {x ∈ H : f(x) ⊆ Xξ} is big. To finish the proof we only
have to remark that given H ′, ξ < cf(κ) the number of these functions is less than
κ, so we have altogether κ many such functions.

We now describe the definition of F . Let <w be a well ordering of H into order
type τ++.

For x, y ∈ H we set

F (x, y) =
{

0, x < y, x <w y,
1, x < y, y <w x.

For α < κ choose the elements yα, zα ∈ X −
⋃
{Ran(fβ) : β ≤ α} different from

each other. Choose also aα, bα ∈ H in such a way that {x ∈ Hα : fα(x)∩H > aα}
is up-big and {x ∈ Hα : fα(x) ∩H < bα} is down-big.

We now define F for some further pairs:

F (x, yα) =

 0, x ∈ fα(z), z ∈ Hα, fα(z) ∩H > aα,
0, x > aα, x ∈ H,
1, x < aα, x ∈ H ;

F (x, zα) =

 0, x > bα, x ∈ H,
1, x ∈ fα(z), z ∈ Hα, fα(z) ∩H < bα,
1, x < bα, x ∈ H.

If x is an element of X − H different from all the points yα, zα, we choose
arbitrarily a u ∈ H and set F (y, x) = 0 for y ∈ H , y > u, and F (y, x) = 1 for
y ∈ H , y ≤ u. So far, we have defined F (x, y) if x ∈ H and y ∈ X , and for some
other pairs, as well. For the remaining pairs we can extend F arbitrarily. We notice
that for every x ∈ X −H , F (x, y) = 0 if y ∈ H is large enough and F (x, y) = 1 if
y ∈ H is small enough. Moreover, for every x ∈ X for all but τ+ elements y ∈ H
it is true that if y is large enough, then F (x, y) = 0, and if it is small enough, then
F (x, y) = 1.

Assume now that f : X → [X ]<ω. There is some α < κ that f |Hα = fα. All
but τ+ many large enough x ∈ Hα have F (x, f(yα)) = 0. If such an x has even
fα(x) ∩H > aα, then we also have that F (f(x), yα) = 0 and we are done.
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Theorem 3 (ZFC). P (κ) holds if κℵ2 = κ.

Proof. In the above proof (for κ > ℵ2) we needed an instance of GCH in Lemma 6
to show that for |H | = ℵ2, |X | = κ we have no more than κ functions from H to
[X ]<ω. But the number of these functions is κℵ2 .

As mentioned in the introduction, we could not establish P (ω2) in ZFC alone.
We can, nevertheless, show that P (ω2) can consistently hold with any reasonable
value of 2ℵ1 .

Theorem 4 (GCH). Assume that cf(λ) > ω1. Then it is consistent that 2ℵ1 = λ
and P (ω2) holds.

Proof. With a preliminary forcing we can assume that CH and 2ℵ1 = λ already
hold in the ground model. We add a “generic” coloring F : [ω2]≤2 → {0, 1} and
show that it works.

Let p ∈ P if it is of the form p = (s, h) where s ∈ [ω2]≤2, h : [s]2 → {0, 1}.
Extension is defined as p′ = (s′, h′) ≤ p = (s, h) if s′ ⊇ s, h = h′|[s]≤2. If G is a
generic filter, then we let F =

⋃
{h : (s, h) ∈ G}. We claim that F witnesses P (ω2).

Assume that 1  f : ω2 → [ω2]<ω. We show that there is a 0-pair (the other
case is similar). The following argument is in V [G].

Claim. There exists T ∈ [ω2]ℵ0 such that for every T ′ ∈ [ω2]ℵ0 with T ′ ⊇ T there
is some α < ω2 such that F (T ′, α) = 0 and f(α) ∩ (T ′ − T ) = ∅.
Proof of Claim. Assume otherwise. Then, for every countable T there is some
countable T ′ ⊇ T such that whenever F (T ′, α) = 0 then necessarily f(α)∩(T ′−T ) 6=
∅. Define inductively T0 ⊆ T1 ⊆ · · · by T0 = ∅, Tn+1 = T ′n. Set Tω =

⋃
{Tn : n <

ω}. We eventually get that if F (Tω, α) = 0 then f(α) ∩ (Tn+1 − Tn) 6= ∅ holds for
n = 0, 1, . . . which contradicts the finiteness of f(α). And indeed such an α exists,
as we can easily force it.

Assume therefore that p  T is as in the statement of the Claim. For every
α < ω2 let pα ≤ p be a condition forcing that F (T, α) = 0. Applying the ∆-system
lemma we find ℵ2 conditions {pα : α ∈ Z} such that pα = (T ′ ∪ Tα, hα) where
T ′ ⊇ T , and hα|[T ′]≤2 = h. By the Claim there is some β such that F (T ′, β) = 0
and f(β) ∩ (T ′ − T ) = ∅, moreover, this is forced by some p = (s, h) ≤ (T ′, h). For
some α ∈ Z we have Tα ∩ T = ∅ and we can consider q = (T ∪ Tα, h′) where h′ is 0
on Tα × (T − T ′). Then q ≤ p, pα and (α, β) will be a 0-pair as f(α) ⊆ T ∪ Tα and
f(β) ⊆

(
(T ′ − T ) ∪ (T − T ′)

)
.

We notice that even this can slightly be extended to show that if κ ≤ λ, cf(κ) >
ω, cf(λ) > ω1, then it is consistent that 2ℵ0 = κ, 2ℵ1 = λ, and P (ω2) holds. One
only has to add κ many Cohen reals simultaneously.
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