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HARMONIC AND MINIMAL UNIT VECTOR FIELDS ON
RIEMANNIAN SYMMETRIC SPACES

JÜRGEN BERNDT, LIEVEN VANHECKE, AND LÁSZLÓ VERHÓCZKI

Abstract. We present new examples of harmonic and minimal unit
vector fields on Riemannian symmetric spaces. These examples are con-

structed from cohomogeneity one actions with a reflective singular orbit.
The radial unit vector field associated to such a reflective submanifold
is harmonic and minimal.

1. Introduction

Let M be a compact connected orientable Riemannian manifold admitting
smooth unit vector fields. Any such vector field ξ can be considered as an
embedding of M into its unit tangent sphere bundle T1M equipped with the
Sasaki metric. We then define the energy E(ξ) of ξ as the energy of the map
ξ : M → T1M and the volume Vol(ξ) of ξ as the volume of the submanifold
ξ(M) of T1M . This gives two functionals on the space of all smooth unit
vector fields on M . The first variation of these functionals has been studied
in [7] and [16], where the critical point condition has been derived in terms of
differential forms. The critical point condition does not require compactness
or orientability and hence can be investigated on arbitrary Riemannian man-
ifolds. A unit vector field on a connected Riemannian manifold is said to be
harmonic if it satisfies the critical point condition of the energy functional,
and it is said to be minimal if it satisfies the critical point condition of the
volume functional. A lot of examples of harmonic or minimal unit vector fields
have been constructed. We refer to [6] for an overview and a list of relevant
references, as well as for a brief historical account.

A connected closed submanifold F of a complete Riemannian manifold M
is said to be reflective if the geodesic reflection of M in F is a well-defined
global isometry. Since the reflective submanifold F is a connected compo-
nent of the fixed point set of an isometry, F is necessarily a totally geodesic
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submanifold of M . Now assume that M is a Riemannian symmetric space
and o ∈ F . Then the orthogonal complement of ToF in ToM represents the
tangent space of another reflective submanifold F⊥ of M . Every complete
totally geodesic submanifold of M is also a symmetric space and hence the
rank of F⊥ is well-defined. The reflective submanifolds of simply connected
irreducible Riemannian symmetric spaces of compact type have been classified
by Leung in [12] and [13].

The purpose of this paper is to give new examples of harmonic and minimal
unit vector fields on semisimple symmetric spaces. These vector fields will
be constructed from isometric cohomogeneity one actions with a reflective
singular orbit. Namely, if F is a reflective submanifold such that the rank
of F⊥ equals one, then F determines a cohomogeneity one action on the
symmetric space M such that F is one of the orbits. Then the principal
orbits can be viewed as tubes about F provided that the codimension of F is
greater than one. The geodesics emanating perpendicularly from F intersect
each principal orbit of this action orthogonally. The unit tangent vectors of
these geodesics yield the radial unit vector field ξ associated to F , which is
defined on the open and dense subset formed by the union of principal orbits.
Our main result is:

Theorem. Let M be a Riemannian symmetric space of compact or non-
compact type, and let F be a reflective submanifold of M such that its codi-
mension is greater than one and the rank of F⊥ is equal to one. Then the
radial unit vector field ξ associated to F is harmonic and minimal.

This result provides a set of new examples of minimal and harmonic unit
vector fields, since there are several cohomogeneity one actions with a re-
flective singular orbit. An explicit list for irreducible Riemannian symmetric
spaces of noncompact type can be found in [2] for rank one and in [3] for higher
rank. A classification of cohomogeneity one actions, or, more general, of hy-
perpolar actions, on irreducible symmetric spaces of compact type has been
obtained by Kollross [11]. Such actions have also been discussed in [15]. The
classification of cohomogeneity one actions on irreducible symmetric spaces
of noncompact type is still unknown, but those without a singular orbit have
been classified in [4].

In Section 2 of this paper, we summarize some basic facts about harmonic
and minimal unit vector fields. In Section 3, we review the necessary facts
about symmetric spaces. Moreover, we prove that each reflective submani-
fold F of a Riemannian symmetric space M of compact type determines a
hyperpolar action on M such that F is an orbit of this action and the coho-
mogeneity of the action coincides with the rank of F⊥. Finally, in Section 4,
we present the proof of the main result.
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2. Harmonic and minimal unit vector fields

Let M be an m-dimensional connected Riemannian manifold with Rie-
mannian metric g. We denote by ∇ the Levi Civita connection and by R
the Riemannian curvature tensor with the convention R(X,Y ) = [∇X ,∇Y ]−
∇[X,Y ]. The Sasaki metric on the unit tangent sphere bundle T1M of M will
be denoted by gS .

Let X1(M) be the set of all smooth unit vector fields on M and assume
that X1(M) is nonempty. Every ξ ∈ X1(M) can be regarded as an embedding
ξ : M → T1M , and the pullback ξ∗gS of the Sasaki metric gS onto M via ξ is
given by

ξ∗gS(X,Y ) = g(X,Y ) + g(∇Xξ,∇Y ξ).
This shows that ξ is an isometric embedding if and only if ξ is a parallel vector
field.

We now define the tensor fields Aξ and Lξ on M by

AξX = −∇Xξ and LξX = X +AtξAξX ,

where Atξ denotes the transpose of Aξ. Assume that M is compact and ori-
entable. Then the energy E(ξ) and the volume Vol(ξ) of ξ are defined by

E(ξ) =
1
2

∫
M

tr(Lξ)dv =
m

2
Vol(M) +

1
2

∫
M

|∇ξ|2dv

Vol(ξ) =
∫
M

√
det(Lξ)dv,

where dv is the volume form of M with respect to g. Therefore we get two
functionals E and Vol on the set X1(M) of unit vector fields on M . Then
ξ ∈ X1(M) is called harmonic, respectively minimal, if it is a critical point of
E, respectively Vol. It was proved in [7] that ξ is minimal if and only if ξ(M)
is a minimal submanifold of T1M .

The first variation of the functionals E and Vol, that is, the critical point
condition for these functionals, has been investigated in [7] and [16] in terms
of differential forms. It turns out that ξ ∈ X1(M) is a harmonic unit vector
field if and only if the one-form

νξ(X) = tr(Y 7→ (∇YAtξ)X)

vanishes on ξ⊥. Here we denote by ξ⊥ the (m − 1)-dimensional distribution
on M that is perpendicular to the one-dimensional distribution spanned by
the vector field ξ. And ξ ∈ X1(M) is a minimal unit vector field if and only
if the one-form

ωξ(X) = tr(Y 7→ (∇YKξ)X)

vanishes on ξ⊥, where

Kξ = −
√

det(Lξ)L−1
ξ Atξ.
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Clearly, compactness and orientability are not required for formulating the
two critical point conditions. We thus say in general that ξ ∈ X1(M) is
harmonic, respectively minimal, if the one-form νξ, respectively ωξ, vanishes
on ξ⊥.

From now on, we assume that the integral curves of ξ are geodesics and
that the distribution ξ⊥ is integrable. In this situation, the critical point
conditions can be reformulated as follows (see [5] for details). We denote by
Fξ the foliation determined by ξ⊥. Then ξ is a harmonic unit vector field if
and only if

(2.1) dhFξ(X) = ricM (ξ,X)

for all vector fields X tangent to Fξ, where hFξ denotes the mean curvature
function of the leaves of Fξ and ricM is the Ricci curvature of M . If M is
an Einstein manifold, this shows that ξ is a harmonic unit vector field if and
only if the leaves of Fξ have constant mean curvature. At each point p ∈M ,
the endomorphism Aξ(p) restricted to ξ⊥(p) is the shape operator at p of
the leaf Fξ(p) of Fξ through p, and hence its eigenvalues are the principal
curvatures of Fξ(p) at p. We denote by Mc the open and dense subset of M
on which the multiplicities of the principal curvatures are locally constant. On
Mc we can find smooth functions λ1, . . . , λm−1 and orthonormal vector fields
E1, . . . , Em−1 tangent to Fξ such that AξEi = λiEi for all i = 1, . . . ,m − 1.
Then ξ is a minimal unit vector field if and only if

(2.2)
m−1∑
i=1

1
1 + λ2

i

(dλi(Ej)− (1− λiλj)g(R(ξ, Ei)Ei, Ej)) = 0

holds for all j = 1, . . . ,m− 1.

3. Isometric actions on symmetric spaces induced by reflective
submanifolds

In this section we summarize some basic facts about symmetric spaces
of compact type and prove two auxiliary results. For the general theory of
symmetric spaces and the structure theory of semisimple Lie algebras, we refer
to [9].

Let M be a Riemannian symmetric space of compact type and G the iden-
tity component of the full isometry group of M . Then G is a compact Lie
group such that its Lie algebra g is semisimple. We fix a point o ∈ M and
denote by K the isotropy subgroup of G at o. As is well-known, M can be
identified with the homogeneous space G/K. Consider the involutive auto-
morphism σ : G → G defined by σ(g) = sogso for g ∈ G, where so denotes
the geodesic symmetry of M at o. The tangent linear map Teσ of σ at the
identity element e is an involutive automorphism of the Lie algebra g. The
±1-eigenspaces of Teσ induce the Cartan decomposition g = k + p, where k is
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the Lie algebra of K. We identify the tangent space ToM of M at o with the
subspace p in the usual way. Then the Riemannian curvature tensor R of M
at o satisfies

(3.1) R(v1, v2)v3 = −
[

[v1, v2], v3

]
for all v1, v2, v3 ∈ p, where [·, ·] denotes the bracket operation in g.

It is well-known that the Killing form B of g is negative definite. Let 〈·, ·〉o
be the inner product on ToM = p which is induced from the Riemannian
metric of M . In what follows we always assume that 〈·, ·〉o coincides with the
restriction of −B to p× p.

For each X ∈ g the adjoint transformation ad(X) : g→ g is the endomor-
phism on g defined by ad(X)Y = [X,Y ] for all Y ∈ g. Let a be a maximal
Abelian subspace of p = ToM . Then the dimension of a is equal to the rank
of M . For each linear form α in the dual space a∗ of a we define

gα = {Y ∈ g | ad(X)2Y = −α(X)2Y for all X ∈ a}.

Clearly, gα = g−α is valid. A dual vector α ∈ a∗ is said to be a restricted
root if α 6= 0 and gα 6= 0. Let 4 be the set of all restricted roots. We equip
a∗ with a lexicographic ordering and denote by 4+ the corresponding set of
positive restricted roots. Then we get the orthogonal decomposition

g = g0 +
∑
α∈4+

gα

with respect to the Killing form B. For each α ∈ 4∪{0} we define kα = k∩gα
and pα = p ∩ gα. Obviously, p0 = a holds. Moreover, gα is the direct sum
of the subspaces kα and pα, and kα and pα have the same dimension for all
α 6= 0. Then we obtain the orthogonal decompositions

(3.2) k = k0 +
∑
α∈4+

kα and p = a +
∑
α∈4+

pα

with respect to the Killing form B. For each α ∈ 4 we define Xα ∈ a by
B(Xα, X) = α(X) for all X ∈ a. This induces the associated root system
D = {Xα | α ∈ 4} in the maximal Abelian subspace a of p. For each α ∈ 4
we fix a unit vector Yα ∈ pα. Then there exists a unique vector Zα ∈ kα such
that B(Zα, Zα) = −1 and

(3.3) [X,Yα] = α(X)Zα and [X,Zα] = −α(X)Yα

for all X ∈ a. Note that for these vectors the equality

(3.4) [Zα, Yα] = Xα

holds.
For each u ∈ ToM the selfadjoint endomorphism Ru on ToM defined by

Ruw = R(w, u)u for all w ∈ ToM is called the Jacobi operator with respect
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to u. From (3.1) it follows that Ru = −ad(u)2. The following statement can
easily be deduced from the above relations.

Lemma 1. Let M be a compact symmetric space of rank one and let u,w ∈
ToM be orthonormal. If Ruw = aw holds for some real number a > 0, then
Rwu = au.

Proof. Obviously, we have to consider only the case when M has noncon-
stant sectional curvature. Then we get the decompositions

k = k0 + kα + k2α and p = a + pα + p2α,

where a is one-dimensional. Without loss of generality, we can assume that
a = Ru holds for the selected unit vector u ∈ p = ToM . Hence, we obtain
the relations Xα = 〈Xα, u〉ou = −B(Xα, u)u = −α(u)u and X2α = −2α(u)u.
It is clear that pα and p2α are eigenspaces of Ru with corresponding positive
eigenvalues α(u)2 and 4α(u)2, respectively. Using the relations (3.1), (3.3)
and (3.4), it can be easily verified that RYαu = α(u)2u and RY2αu = 4α(u)2u
holds for all unit vectors Yα ∈ pα and Y2α ∈ p2α. �

Let F be a reflective submanifold of M , which means that F coincides with
a connected component of the fixed point set of an involutive isometry r of
M . Then F is a totally geodesic submanifold of M and therefore a compact
symmetric space. The isometry r is called the reflection of M in F . Without
loss of generality we may assume that o ∈ F . Then the equality sor = rso
holds. Let F⊥ be the connected component of the fixed point set of the
involutive isometry sor which contains the point o. The submanifold F⊥ will
be called the complementary reflective submanifold of F (at o). Then we get
the direct sum p = ToM = ToF + ToF

⊥, where the tangent spaces ToF and
ToF

⊥ are Lie triple systems in p. Consider now the involutive automorphism
ρ on G defined by ρ(g) = rgr for all g ∈ G. Then the induced involutive
automorphism Teρ on g commutes with Teσ, and hence k and p are invariant
subspaces of Teρ.

Lemma 2. The restriction of Teρ to p = ToM coincides with the tangent
linear map Tor of the reflection r at o.

Proof. Denote by exp the Lie exponential map from g into G and by Expo
the exponential map from ToM into M . Let Y ∈ ToF ⊂ p, and define the
isometries ϕ = exp(tY ) and ψ = r exp(tY )r of M for some t > 0. Obviously,
ϕ(o) = Expo(tY ) = ψ(o) holds. Since the tangent linear map Toϕ coincides
with the parallel displacement of ToM along the geodesic segment γ defined
by γ(τ) = Expo(τY ) for τ ∈ [0, t], it is easy to see that Toϕ = Toψ. The
above facts imply that exp(tY ) = r exp(tY )r for all t ∈ R. Analogously, for
Ỹ ∈ ToF⊥, we obtain sor exp(tỸ )rso = exp(tỸ ). From the above relations



VECTOR FIELDS ON RIEMANNIAN SYMMETRIC SPACES 1279

it follows that Teρ(Y ) = Y holds for all Y ∈ ToF and Teρ(Ỹ ) = −Ỹ for all
Ỹ ∈ ToF⊥, which completes the proof. �

Let L be the identity component of the closed subgroup Gρ = {g ∈ G |
ρ(g) = g} of G. The ±1-eigenspaces of Teρ induce the Cartan decomposition
g = l + n, where l is the Lie algebra of L. We denote by λ : L×M →M the
natural isometric action of L on M , and call λ the isometric action associated
to the reflective submanifold F . Each orbit L(p), p ∈ M , of this action is a
connected closed submanifold of M .

Proposition 1. The orbit L(o) through o of the action of L on M is the
reflective submanifold F , and the cohomogeneity of this action is equal to the
rank of the complementary reflective submanifold F⊥.

Proof. Recall that Teρ leaves p invariant. From Lemma 2 we see that
ToF = p ∩ l and ToF

⊥ = p ∩ n. Each X ∈ g has a unique decomposition
X = Xk + Xp with respect to the Cartan decomposition g = k + p. The
tangent space ToL(o) of the orbit L(o) at o is spanned by the tangent vectors
ω̇X(0) of the smooth curves ωX : R → M defined by ωX(t) = λ(exp(tX), o),
X ∈ l. Clearly, the tangent vector ω̇X(0) coincides with the component Xp.
Since σ and ρ commute, we have the decomposition l = (k∩ l) + (p∩ l), which
implies ToL(o) = p ∩ l = ToF . Moreover, λ(exp(tY ), o) = Expo(tY ) holds for
all Y in the Lie triple system p ∩ l. It follows from the above facts that the
orbit L(o) is totally geodesic in M and coincides with F .

Let H be the identity component of the closed subgroup Gρσ = {g ∈ G |
ρσ(g) = g} of G. An analogous argument as above shows that the orbit H(o)
of the isometic action of H on M coincides with the complementary reflective
submanifold F⊥. It can be easily seen that σ(L) = L, σ(H) = H, and L ∩K
and H ∩K have the same identity component. Hence (L,L∩K) and (H,H ∩
K) are two Riemannian symmetric pairs, and the corresponding symmetric
spaces can be identified with F and F⊥, respectively. The codimension of
the principal orbits of the action of L is equal to the cohomogeneity of the
isometric action of H ∩K on F⊥. Since H ∩K is the isotropy subgroup of H
at o of the symmetric space F⊥ = H/H ∩K, the cohomogeneity is equal to
the rank of F⊥. �

It is worthwhile to mention that the maximal dimensional flat totally ge-
odesic submanifolds of F⊥ which pass through o intersect all the orbits of L
orthogonally. This means that λ is a so-called hyperpolar action (see [8] and
[11] for more details about such actions).

Remark 1. Using the duality between symmetric spaces of compact type
and of noncompact type, one can transfer all the results of Section 3 to Rie-
mannian symmetric spaces of noncompact type.
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4. The new examples of harmonic and minimal unit vector fields

Let M be a connected Riemannian symmetric space of compact type and
let F be a reflective submanifold of M . In what follows m and n denotes
the dimension of M and F , respectively. Furthermore, we shall use the no-
tation introduced in Sections 2 and 3. In order to prove the theorem in the
introduction, we shall first prove the following result.

Proposition 2. Let F be a reflective submanifold of M such that the
rank of the complementary reflective submanifold F⊥ is equal to one. Let H ∈
ToF

⊥ be a unit vector. Then there exist orthonormal vectors E1, . . . , Em−1, Em
= H in ToM such that E1, . . . , En is a basis of ToF , En+1, . . . , Em−1, Em is
a basis of ToF⊥, and

(4.1) RHEi = aiEi , REiH = aiH

holds for some real numbers ai ≥ 0, i ∈ {1, . . . ,m− 1}.

Proof. Let a be a maximal Abelian subspace of p with H ∈ a. First we
show that a is an invariant subspace of the tangent linear map Tor of the
reflection r of M in F . We define b = {X ∈ a | 〈H,X〉o = 0} and W = {w ∈
ToF

⊥ | 〈H,w〉o = 0}. From (3.1) we see that RHX = 0 holds for all X ∈ a.
Since F⊥ is a symmetric space of rank one, the subspace W is generated by
all Y ∈ W such that RHY = κY Y with some positive real number κY . This
implies that b and W are orthogonal to each other and b ⊂ ToF . Therefore
we obtain the decomposition a = (a ∩ ToF ) + (a ∩ ToF⊥) = aT + a⊥ with
aT = b and a⊥ = RH.

The Jacobi operator satisfies TorRv = RTor(v)Tor for v ∈ ToM = p. This
implies

(4.2) TorRH = RHTor and TorRX = RXTor

for all X ∈ aT . It follows from (3.1), (3.3) and (4.2) that any nonzero element
of pα resp. Tor(pα), α ∈ 4, is an eigenvector of the Jacobi operator RH resp.
RX , X ∈ aT , with eigenvalue α(H)2 resp. α(X)2.

We now consider the set D = {Xα | α ∈ 4} of the root vectors Xα,
α ∈ 4. Let Λ denote the lattice in a that is generated by the vectors
(2π/B(Xα, Xα))Xα, α ∈ 4. Without loss of generality we may assume that
M is simply connected. Then the closed geodesics in the flat totally geodesic
submanifold Expo(a) passing through o are determined by the lattice Λ (see
Theorem 8.5 of Chapter VII in [9]). Consequently, r(Expo(a)) = Expo(a)
implies Tor(Λ) = Λ and Tor(D) = D. Now assume that Tor(Xα) = Xβ for
α, β ∈ 4. Then we get α(H)2 = β(H)2 and α(X)2 = β(X)2 for all X ∈ aT .
It can be seen easily that (4.2) and TorRXα = RXβTor implies Tor(pα) = pβ .

Clearly, if Xα ∈ aT or Xα ∈ a⊥, then pα is invariant under Tor. Motivated
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by the previous discussion we now introduce the following notations:

4T = {α ∈ 4 | Xα ∈ aT },

4N = {α ∈ 4 | Xα ∈ a⊥},

4G = {α ∈ 4 | Xα /∈ aT and Xα /∈ a⊥}.

Case 1: α ∈ 4T . Then α(H) = B(Xα,H) = 0 and hence

(4.3) RHYα = 0 and RYαH = 0

for all unit vectors Yα ∈ pα. Moreover, pα ⊂ ToF .

Case 2: α ∈ 4N . Then Xα = −α(H)H, and (3.1), (3.3) and (3.4) imply

(4.4) RHYα = α(H)2Yα and RYαH = α(H)2H

for all unit vectors Yα ∈ pα. Moreover, since pα is an invariant subspace under
Tor, we obtain the direct sum pα = (pα ∩ ToF ) + (pα ∩ ToF⊥) = pTα + p⊥α .

Case 3: α ∈ 4G. Then Tor(Xα) = Xβ for some β ∈ 4 with β 6= ±α,
Tor(pα) = pβ and Tor(pβ) = pα. We shall sometimes denote β also by r(α).
It is easy to show that

(4.5) α(H) + β(H) = 0 and Xβ −Xα = 2α(H)H.

The subspace qα,β = pα + pβ is an invariant subspace under Tor. Therefore
we obtain the decomposition

qα,β = (qα,β ∩ ToF ) + (qα,β ∩ ToF⊥) = qTα,β + q⊥α,β .

We now consider the unit vectors Yα ∈ pα and Zα ∈ kα which satisfy the
equalities in (3.3). By Lemma 2, the restriction of the involution Teρ to p
coincides with Tor. Hence the relation [Xα, pα] = kα implies Teρ(kα) = kβ .
The vectors Yβ = Teρ(Yα) and Zβ = Teρ(Zα) satisfy [H,Yβ ] = −α(H)Zβ ,
[H,Zβ ] = α(H)Yβ and [Zβ , Yβ ] = Xβ . The vector Ỹα,β = Yα − Yβ = Yα −
Tor(Yα) ∈ q⊥α,β ⊂ ToF

⊥ satisfies ‖Ỹα,β‖ =
√

2, and the above relations imply
R(Ỹα,β ,H)H = α(H)2Ỹα,β . It follows from Lemma 1 that

(4.6) RHẼα,β = α(H)2Ẽα,β and RẼα,βH = α(H)2H

holds for the unit vector Ẽα,β = (1/
√

2)Ỹα,β .
On the other hand, using again the Lie bracket relations and (4.5), we get

R(H, Ẽα,β)Ẽα,β = α(H)2H +
1
2
α(H)([Zα, Yβ ]− [Zβ , Yα]),

which implies

(4.7) [Zα, Yβ ]− [Zβ , Yα] = 0.
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Next, Yα,β = Yα+Yβ = Yα+Tor(Yα) ∈ qTα,β ⊂ ToF satisfies R(Yα,β ,H)H =
α(H)2Yα,β , and by a straightforward calculation we get

R(H,Yα,β)Yα,β = α(H)(Xβ −Xα)− α(H) ([Zα, Yβ ]− [Zβ , Yα]).

Hence, by means of (4.5) and (4.7),

(4.8) RHEα,β = α(H)2Eα,β and REα,βH = α(H)2H

holds for the unit vector Eα,β = (1/
√

2)Yα,β .
Finally, the tangent spaces of F and F⊥ at o can be expressed as the direct

sums of orthogonal subspaces in the following way:

ToF = aT +
∑

α∈4T
pα +

∑
α∈4N

pTα +
∑

α∈4G
qTα,r(α),

ToF
⊥ = a⊥ +

∑
α∈4N

p⊥α +
∑

α∈4G
q⊥α,r(α).

From (4.3), (4.4), (4.6) and (4.8) we then easily get an orthonormal basis
E1, . . . , Em of ToM which satisfies the required conditions in Proposition 2.

�

Remark 2. The above proof shows that if M is a simply connected sym-
metric space of compact type and F is a reflective submanifold of M with
codimension one, then M = N × Sn and F = N × Sn−1, where N is also a
symmetric space of compact type (possibly a point).

It is easy to see that Proposition 2 remains valid for symmetric spaces
of noncompact type. Clearly, in this case the eigenvalues ai in (4.1) are
nonpositive.

We now recall some basic facts about isometric actions. Let M be a con-
nected complete Riemannian manifold and L a connected closed subgroup of
the isometry group of M . Assume that L acts on M with cohomogeneity one,
that is, the principal orbits have codimension one. It is well-known (see [14]
for the compact case and [1] for the general case) that the space of orbits of
this action is homeomorphic (with respect to the induced quotient topology)
to the real line R, to the circle S1, to the half-open interval [0,∞), or to
the closed interval [0, 1]. In the first two cases the orbits form a Riemannian
foliation on M , in the third case there exists exactly one singular orbit, and
in the last case there exist exactly two singular orbits. In the latter two cases
each principal orbit can be viewed as a tube about a singular orbit. The set
of principal orbits always forms an open and dense subset of M .

Let M be a Riemannian symmetric space of compact or of noncompact
type, and let F be a reflective submanifold of M such that the codimension
of F is greater than one and the rank of the complementary reflective sub-
manifold F⊥ is equal to one. Then, by Proposition 1, the isometric action
λ : L×M →M associated to F is of cohomogeneity one.
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Assume that M is a symmetric space of compact type. Then L has exactly
two singular orbits and F coincides with one of them. Let δ be the maximum
of the distances between F and the points of M , and denote by F δ the set of all
points in M whose distance from F is equal to δ. Then F δ is the other singular
orbit, and the principal orbits of L are tubes about F , or equivalently, about
F δ. Consider now the connected open domain U = M \(F ∪F δ) in M . Take a
point p of U whose distance from F is equal to t with 0 < t < δ. There exists
a unique geodesic ω : R→M parametrized by arc length such that ω(0) ∈ F
and ω(t) = p hold. Clearly, the unit tangent vector ω̇(0) is perpendicular to
F , and the closed geodesic ω intersects all the orbits of L orthogonally. (Note
that ω is closed, since all geodesics in a compact symmetric space of rank one
are closed, and F⊥ has rank one by assumption.) By defining ξ(p) = ω̇(t) at
each point p of U , we obtain a smooth vector field ξ on U , which we call the
radial unit vector field associated to F . Note that this ξ is invariant under
the action of L.

Suppose that M is a symmetric space of noncompact type, which means
that M is diffeomorphic to Rm. Then F is the only singular orbit of L, and
the other orbits coincide with the tubes about F . As above, we can define
the radial unit vector field ξ on the connected domain U = M \ F .

We are now in a position to formulate our main result.

Theorem. Let M be a Riemannian symmetric space of compact or of
noncompact type, and let F be a reflective submanifold of M such that its
codimension is greater than one and the rank of the complementary reflective
submanifold F⊥ is equal to one. Then the radial unit vector field ξ associated
to F is harmonic and minimal.

Proof. Assume that M is of compact type. Let E1, . . . , Em−1, Em = H be
an orthonormal basis of ToM which satisfies the conditions in Proposition 2.
The second equation of (4.1) shows that

(4.9) 〈R(H,Ei)Ei, Ej)〉o = 0

for all i, j = 1, . . . ,m− 1. Let γ : R→M be the closed geodesic in M defined
by γ(τ) = Expo(τH) for τ ∈ R, and let P1, . . . , Pm−1 be the parallel vector
fields along γ with Pi(0) = Ei, i = 1, . . . ,m− 1. Let us consider the principal
orbit L(γ(t)) for some 0 < t < δ, and denote by Aγ̇(t) the shape operator of
L(γ(t)) with respect to γ̇(t). Using the first equation of (4.1), Jacobi field
theory implies

Aγ̇(t)Pj(t) =
√
aj tan(

√
ajt)Pj(t),

Aγ̇(t)Pk(t) = −
√
ak cot(

√
akt)Pk(t),

(4.10)

for j ∈ {1, . . . , n} and k ∈ {n+ 1, . . . ,m− 1}. Since M is a symmetric space,
the parallel transport along geodesics preserves the curvature, and hence (4.9)
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implies

(4.11) g
(
R
(
ξ(γ(t)), Pi(t)

)
Pi(t), Pj(t)

)
= 0

for all i, j ∈ {1, . . . ,m− 1}.
The leaves of the foliation Fξ determined by ξ⊥ coincide with the principal

orbits of L. Therefore the functions hFξ and λi (i = 1, . . . ,m−1) are constant
on the leaves of Fξ. Then (4.10) and (4.11) imply that (2.1) and (2.2) hold.
This means that the radial unit vector field ξ is harmonic and minimal.

If M is a symmetric space of noncompact type, the assertion is obtained
by a slight modification of the above argument. �

Remark 3. In the table below, we present all simply connected irreducible
Riemannian symmetric spaces M of compact type which admit an isometric
cohomogeneity one action with a reflective singular orbit F . Here we list the
pairs F and F⊥ of the relevant reflective submanifolds of M . If a cohomo-
geneity one action has two reflective singular orbits, then the associated radial
unit vector fields differ just by sign. These pairs of reflective submanifolds are
written in the same lines of the table. The table has been obtained by using
the lists of reflective submanifolds provided by Leung in [12] and [13].

In some cases the reflective submanifold F is in fact a subcovering of the
space listed here, but we omit these subtle details in the table. A corre-
sponding table for the noncompact case can be easily derived by using the
well-known concept of duality between symmetric spaces of compact type
and of noncompact type (see also [2] for rank one and [3] for higher rank).

Remark 4. There are cohomogeneity one actions on irreducible symmet-
ric spaces with a totally geodesic but nonreflective singular orbit. A complete
list for the noncompact case can be found in [3], which by duality yields also
a complete list for the compact case. It would be interesting to see whether
the corresponding radial unit vector field of such an action is harmonic or
minimal.

An example of such an action is the one of SU(3) on G2/SO(4). This
action has two totally geodesic singular orbits, namely CP 2 and SU(3)/SO(3),
but both are nonreflective. There are only few other examples where both
singular orbits are totally geodesic and nonreflective. We mention that there
are also cohomogeneity one actions on compact symmetric spaces for which
both singular orbits are not totally geodesic. An example for such an action
is the one of Sp(n)Sp(1) on the Grassmannian G+

2 (R4n), n ≥ 2. Moreover,
the two singular orbits of many cohomogeneity one actions on spheres (see
[10] for the classification) are not totally geodesic, but the sphere is rather
exceptional in this respect.
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M F F⊥ Remarks

Sn point Sn

Sk, Sn−k−1 Sn−k, Sk+1 1 ≤ k ≤ n− 2

CPn CPk, CPn−k−1
CPn−k, CPk+1 0 ≤ k ≤ n− 1

RPn RPn

HPn HPk, HPn−k−1
HPn−k, HPk+1 0 ≤ k ≤ n− 1

CPn CPn

OP 2 point, S8
OP 2, S8

HP 2
HP 2

G+
k (Rn) G+

k−1(Rn−1), G+
k (Rn−1) Sn−k, Sk 1 < k < n− k

(k, n) 6= (2, 2l),

l > 2

G+
2 (R2n) S2n−2, G+

2 (R2n−1) S2n−2, S2 n ≥ 3

CPn−1
CPn−1

G+
3 (R6) G+

2 (R5) = G+
3 (R5) S3

SU(3)/SO(3)× S1
RP 3

G+
k (R2k) G+

k−1(R2k−1) = G+
k (R2k−1) Sk k ≥ 4

Gk(Cn) Gk−1(Cn−1), Gk(Cn−1) CPn−k, CPk 1 < k < n− k
(k, n) 6= (2, 2l),

l > 2

G2(C2n) CP 2n−2, G2(C2n−1) CP 2n−2, CP 2 n ≥ 3

HPn−1
HPn−1

Gk(C2k) Gk−1(C2k−1) = Gk(C2k−1) CPk k ≥ 3

Gk(Hn) Gk−1(Hn−1), Gk(Hn−1) HPn−k, HPk 1 < k < n− k
Gk(H2k) Gk−1(H2k−1) = Gk(H2k−1) HPk k ≥ 2

SU(n)/SO(n) SU(n− 1)/SO(n− 1)× S1
RPn−1 n = 3 or n ≥ 5

SU(6)/Sp(3) S5 × S1
HP 2

SU(3) CP 3

SU(2n)/Sp(n) SU(2n− 2)/Sp(n− 1)× S1
HPn−1 n ≥ 4

SO(2n)/U(n) SO(2n− 2)/U(n− 1) CPn−1 n ≥ 5

Sp(n)/U(n) Sp(n− 1)/U(n− 1)× S2
CPn−1 n ≥ 3

SU(3) U(2) CP 2

SU(3)/SO(3) RP 3

SU(4) = Spin(6) U(3) CP 3

Spin(5) S5

SU(n) U(n− 1) CPn−1 n ≥ 5

Spin(n) Spin(n− 1) Sn−1 n = 5 or n ≥ 7

Sp(n) Sp(n− 1)Sp(1) HPn−1 n ≥ 3

F4 Spin(9) OP 2

E6/SU(6)SU(2) F4/Sp(3)SU(2) HP 3

E6/Spin(10)U(1) OP 2
OP 2

E6/F4 S9 × S1
OP 2

SU(6)/Sp(3) HP 3

F4/Sp(3)SU(2) G+
4 (R9) HP 2
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