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We construct diffusions with values in the nonnegative orthant, normal reflection along each of the axes, and
two pairs of local drift/variance characteristics assigned according to rank; one of the variances is allowed to
vanish, but not both. The construction involves solving a system of coupled Skorokhod reflection equations,
then “unfolding” the Skorokhod reflection of a suitable semimartingale in the manner of Prokaj (Statist.
Probab. Lett. 79 (2009) 534–536). Questions of pathwise uniqueness and strength are also addressed, for
systems of stochastic differential equations with reflection that realize these diffusions. When the variance
of the laggard is at least as large as that of the leader, it is shown that the corner of the quadrant is never
visited.
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1. Introduction

We construct a planar diffusion X (·) = (X1(·),X2(·))′ according to the following recipe: each
of the components or “particles”, X1(·) and X2(·), starts at a nonnegative position, respectively,
x1 ≥ 0 and x2 ≥ 0, and behaves locally like Brownian motion. The characteristics of these mo-
tions are assigned not by name, but by rank: the leader is assigned drift −h ≤ 0 and dispersion
ρ ≥ 0, whereas the laggard is assigned drift g ≥ 0 and dispersion σ > 0. We force the planar
process X (·) = (X1(·),X2(·))′ never to leave the nonnegative quadrant in the Euclidean plane,
by imposing a reflecting barrier at the origin for the laggard; this corresponds to orthogonal re-
flection along each of the faces of the quadrant. In the interest of concreteness and simplicity, we
shall set

λ := g + h, ξ := x1 + x2 > 0, ρ2 + σ 2 = 1. (1.1)

A bit more precisely, we shall try to construct a filtered probability space (�,F,P),F =
{F(t)}0≤t<∞ and on it two pairs (B1(·),B2(·)) and (X1(·),X2(·)) of continuous, F-adapted
processes, such that (B1(·),B2(·)) is planar Brownian motion and (X1(·),X2(·)) a continuous
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semimartingale that takes values in the quadrant [0,∞)2 and satisfies the dynamics

dX1(t) = (g1{X1(t)≤X2(t)} − h1{X1(t)>X2(t)})dt
(1.2)

+ ρ1{X1(t)>X2(t)} dB1(t) + 1{X1(t)≤X2(t)}
(
σ dB1(t) + dLX1∧X2(t)

)
,

dX2(t) = (g1{X1(t)>X2(t)} − h1{X1(t)≤X2(t)})dt
(1.3)

+ ρ1{X1(t)≤X2(t)} dB2(t) + 1{X1(t)>X2(t)}
(
σ dB2(t) + dLX1∧X2(t)

)
.

Here and in the sequel, we denote by LX(·) the local time accumulated at the origin by a generic
continuous semimartingale X(·), and by (X1 ∧ X2)(·) = min(X1(·),X2(·)), (X1 ∨ X2)(·) =
max(X1(·),X2(·)) the laggard and the leader, respectively, of two such semimartingales X1(·),
X2(·). The local time or “boundary” process LX1∧X2(·) in (1.2), (1.3) imposes the reflecting
boundary condition on the laggard that we referred to earlier, and keeps the planar process
X (·) = (X1(·),X2(·))′ from exiting the nonnegative quadrant. Because we are allowing one of
the two variances to be equal to zero, the system of equations (1.2), (1.3) incorporates features
of discontinuity, degeneracy, and reflection on a nonsmooth boundary, all at once; this makes its
analysis challenging.

On a suitable filtered probability space, we shall construct fairly explicitly a process X (·) =
(X1(·), X2(·))′ with continuous paths and values in the quadrant [0,∞)2, along with a planar
Brownian motion (B1(·),B2(·)), so that the equations (1.2), (1.3) and the following properties
are satisfied P-a.e., the last one for (i, j) ∈ {(1,2), (2,1)}:∫ ∞

0
1{X1(t)=X2(t)} dt = 0,

∫ ∞

0
1{X1(t)∧X2(t)=0} dt = 0, (1.4)∫ ∞

0
1{X1(t)=X2(t)} dLX1∧X2(t) = 0,

∫ ∞

0
1{X1(t)∧X2(t)=0} dLXi−Xj (t) = 0. (1.5)

In a terminology first introduced apparently by Manabe and Shiga [26], the second condition
in (1.4) mandates that the faces of the quadrant are “nonsticky" for the planar diffusion X (·) =
(X1(·),X2(·))′; whereas the first condition in (1.4) can be interpreted as saying that the diagonal
of the quadrant is also “nonsticky” for this diffusion.

The conditions of (1.5) can be interpreted, in the spirit of Reiman and Williams [31], as say-
ing that the “boundary processes” do not charge the set of times when the diffusion is at the
intersection of two faces. We show in Proposition 2.1 that the properties of (1.5) are satisfied
automatically, as long as the process X (·) stays away from the corner of the quadrant.

We shall prove the following results, Theorems 1.1–1.3 below. In Theorem 1.3, we shall im-
pose

1/2 ≤ σ 2 ≤ 1, (1.6)

a condition mandating that the variance of the laggard be at least as big as that of the leader.
Under this condition, it will turn out that the two particles never collide with each other at the
origin, so the process X (·) takes values in the punctured nonnegative quadrant

S := [0,∞)2 \ {
(0,0)

}
. (1.7)
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Theorem 1.1. The system of stochastic differential equations (1.2) and (1.3) admits a weak
solution, with a state-process X (·) = (X1(·),X2(·))′ that takes values in the quadrant [0,∞)2

and satisfies the properties of (1.4), (1.5); and when restricted to the stochastic interval [0, τ ),
with

τ := inf
{
t > 0: X1(t) = X2(t) = 0

}
(1.8)

the first hitting time of the corner of the quadrant, this solution is pathwise unique, thus also
strong.

Theorem 1.2. In the nondegenerate case σ < 1, and among weak solutions that satisfy the con-
ditions of (1.5), the solution of Theorem 1.1 is unique in distribution with a continuous, strongly
Markovian state-process X (·).

Theorem 1.3. Under the condition (1.6), the hitting time of (1.8) is a.s. infinite: P(τ = ∞) = 1.

The system of (1.2) and (1.3) admits then a pathwise unique, strong solution.

1.1. Preview

A weak solution of the system (1.2)–(1.3) is constructed rather explicitly in Section 4 (Propo-
sition 4.5) following an a priori analysis of its structure in Section 3, and is shown to satisfy
the properties (1.4) and (1.5). This construction involves finding (in Section 5, proof of Propo-
sition 4.1) the unique solution of a system of coupled SKOROKHOD reflection equations; and
the “unfolding”, in Section 4.2, of an appropriate nonnegative semimartingale in the manner of
Prokaj [29]. The constructed solution admits the skew representations of (3.25)–(3.26).

It is shown that the constructed state process X (·) never visits the corner of the quadrant under
the condition (1.6) (Section 6, Proposition 4.2). When this condition fails, the process X (·) can
hit the corner of the quadrant; but then “it knows how to extricate itself” in such a manner that
uniqueness in distribution holds, as shown in Section 7.2 (proof of Theorem 1.2).

Pathwise uniqueness is established in Section 7, Proposition 7.1. Questions of pathwise
uniqueness and strength, for additional systems of stochastic differential equations with reflec-
tion that realize this diffusion, are addressed in Section 8. Issues of recurrence, transience and
invariant densities are touched upon briefly in Section 9. The degenerate case σ = 0 (zero vari-
ance for the laggard) is discussed briefly in the Appendix. Basic facts about semimartingale local
time are recalled in Section 2.

1.2. Connections

Diffusions with rank-based characteristics were introduced in Fernholz [10] and studied in Ban-
ner, Fernholz and Karatzas [1], Ichiba et al. [22] in connection with the study of long-term sta-
bility properties of large equity markets. Their detailed probabilistic study includes Fernholz et
al. [13] in two dimensions, and Ichiba et al. [21] in three or more dimensions. This paper extends
the results of Fernholz et al. [13] to a situation where – through reflection at the faces of the
nonnegative quadrant – the vector of ranked processes (X1(·) ∨ X2(·),X1(·) ∧ X2(·)) has itself
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a stable distribution, under the conditions h > g > 0; cf. Section 9.1 for some explicit computa-
tions. This has important ramifications for parameter estimation via time-reversal, as explained
in Fernholz, Ichiba and Karatzas [12]. It is an interesting question, whether the analysis in this
paper can be extended, to study multidimensional diffusions with rank-based characteristics and
reflection on the faces of an orthant.

There are also rather obvious connections of the model studied here with queueing models of
the so-called “generalized Jackson type” under heavy-traffic conditions; we refer the reader to
Foschini [14], Harrison and Williams [17], and Reiman [30].

2. On semimartingale local time

Let us start with a continuous, real-valued semimartingale

X(·) = X(0) + �(·) + C(·), (2.1)

where �(·) is a continuous local martingale and C(·) a continuous process of finite first variation
such that �(0) = C(0) = 0; note that 〈X〉(·) = 〈�〉(·). The local time LX(t) accumulated at the
origin over the time-interval [0, t] by this process, is given as

LX(t) := lim
ε↓0

1

2ε

∫ t

0
1{0≤X(s)<ε} d〈X〉(s) = (

X(t)
)+ − (

X(0)
)+ −

∫ t

0
1{X(s)>0} dX(s). (2.2)

This defines a nondecreasing, continuous and adapted process LX(t), 0 ≤ t < ∞ which is flat
off the zero set of X(·), namely∫ ∞

0
1{X(t) �=0} dLX(t) = 0; we also have the property

(2.3)∫ ∞

0
1{X(t)=0} d〈X〉(t) = 0.

• On the other hand, for a nonnegative continuous semimartingale X(·) of the form (2.1), we
obtain from (2.2), (2.3) the representations

LX(·) =
∫ ·

0
1{X(t)=0} dX(t) =

∫ ·

0
1{X(t)=0} dC(t). (2.4)

Using this observation, it can be shown as in Ouknine [27] (see also Ouknine and Rutkowski [28])
that the local time at the origin of the laggard of two continuous, nonnegative semimartingales
X1(·), X2(·) is given as

LX1∧X2(t) =
∫ t

0
1{X1(s)≤X2(s)} dLX1(s) +

∫ t

0
1{X1(s)>X2(s)} dLX2(s)

(2.5)

−
∫ t

0
1{X1(s)=X2(s)=0} dLX1−X2(s);
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a companion representation, in which the rôles of X1 and X2 are interchanged, is also valid. With
the help of (2.5), Ouknine [27] derives a purely algebraic proof of the Yan [35,36] identity

LX1∨X2(·) + LX1∧X2(·) = LX1(·) + LX2(·). (2.6)

2.1. Tanaka formulae

For a continuous, real-valued semimartingale X(·) as in (2.1), and with the conventions

sgn(x) := 1(0,∞)(x) − 1(−∞,0)(x), sgn(x) := 1(0,∞)(x) − 1(−∞,0](x), x ∈ R (2.7)

for the symmetric and the left-continuous versions of the signum function, the TANAKA formula

∣∣X(·)∣∣ = ∣∣X(0)
∣∣ +

∫ ·

0
sgn

(
X(t)

)
dX(t) + 2LX(·) (2.8)

holds. Applying this formula to the continuous, nonnegative semimartingale |X(·)|, then com-
paring with the expression of (2.8) itself, we obtain the generalization

2LX(·) − L|X|(·) =
∫ ·

0
1{X(t)=0} dX(t) =

∫ ·

0
1{X(t)=0} dC(t) (2.9)

of the representation (2.4), and from it the companion TANAKA formula

∣∣X(·)∣∣ = ∣∣X(0)
∣∣ +

∫ ·

0
sgn

(
X(t)

)
dX(t) + L|X|(·). (2.10)

It follows from (2.9) that the identity L|X|(·) ≡ 2LX(·) holds when
∫ ·

0 1{X(t)=0} dC(t) ≡ 0. (This
last condition guarantees also the continuity of the “local time random field” a �−→ LX(·, a) in
its spatial argument at the origin a∗ = 0; cf. page 223 in Karatzas and Shreve [23].) In light of
(2.3), the identity L|X|(·) ≡ 2LX(·) holds when the finite variation process C(·) is absolutely
continuous with respect to the bracket 〈X〉(·) of the local martingale part of the semimartingale.

For the theory that undergirds these results we refer, for instance, to Karatzas and Shreve [23],
Section 3.7.

2.2. Ramifications

For two continuous, nonnegative semimartingales X1(·),X2(·) that satisfy the last properties in
(1.5), the expression of (2.5) gives the P-a.e. representation

LX1∧X2(t) =
∫ t

0
1{X1(s)≤X2(s)} dLX1(s) +

∫ t

0
1{X1(s)>X2(s)} dLX2(s) (2.11)



2460 T. Ichiba, I. Karatzas and V. Prokaj

for the local time of the laggard. On the strength of the properties (2.3) and (1.5), we deduce then∫ t

0
1{X1(s)≤X2(s)} dLX1∧X2(s) =

∫ t

0
1{X1(s)≤X2(s)} dLX1(s) = LX1(t),

(2.12)∫ t

0
1{X1(s)=X2(s)} dLX1(s) =

∫ t

0
1{X1(s)=X2(s)} dLX1∧X2(s) = 0,

thus also
∫ t

0 1{X1(s)=X2(s)} dLX2(s) = 0 by symmetry and∫ t

0
1{X1(s)>X2(s)} dLX1∧X2(s) =

∫ t

0
1{X1(s)>X2(s)} dLX2(s)

(2.13)

=
∫ t

0
1{X1(s)≥X2(s)} dLX2(s) = LX2(t)

for 0 ≤ t < ∞. It follows from (2.12), (2.13) and (2.6) that we have then

LX1∧X2(·) = LX1(·) + LX2(·), whence LX1∨X2(·) = 0. (2.14)

To wit: for any two continuous, nonnegative semimartingales X1(·) and X2(·) that satisfy the
properties of (1.5), the leader X1(·) ∨ X2(·) does not accumulate any local time at the origin,
even in situations (such as in Proposition 4.3 below) where the planar process (X1(·),X2(·))
does attain the corner of the quadrant.
• It is fairly clear from this discussion, in particular from (2.12) and (2.13), that, in the presence
of (1.5), the dynamics of (1.2), (1.3) can be cast in the more “conventional” form

dX1(t) = (g1{X1(t)≤X2(t)} − h1{X1(t)>X2(t)})dt
(2.15)

+ ρ1{X1(t)>X2(t)} dB1(t) + σ1{X1(t)≤X2(t)} dB1(t) + dLX1(t),

dX2(t) = (g1{X1(t)>X2(t)} − h1{X1(t)≤X2(t)})dt
(2.16)

+ ρ1{X1(t)≤X2(t)} dB2(t) + σ1{X1(t)>X2(t)} dB2(t) + dLX2(t).

Here each of the components X1(·), X2(·) of the planar process X (·) is reflected at the origin
via its own local time, respectively LX1(·) and LX2(·). Conversely, in the presence of condition
(1.5), the dynamics of (2.15)–(2.16) lead to those of (1.2)–(1.3).

Proposition 2.1. For a continuous, planar semimartingale X (·) = (X1(·),X2(·))′ that takes val-
ues in the punctured quadrant S of (1.7), the conditions of (1.5) are satisfied automatically.

Proof. In this case, and in conjunction with (2.3), (2.4), the expression (2.5) takes the form

LX1∧X2(t) =
∫ t

0
1{X2(s)>X1(s)=0} dLX1(s) +

∫ t

0
1{X1(s)>X2(s)=0} dLX2(s), (2.17)

and the first property in (1.5) follows; the second is then a consequence of (2.3), (2.4). �
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3. Analysis

Let us suppose that such a probability space as stipulated in Section 1 has been constructed, and
on it a pair B1(·), B2(·) of independent standard Brownian motions, as well as two continuous,
nonnegative semimartingales X1(·),X2(·) such that the dynamics (1.2)–(1.3) and the conditions
of (1.5) are satisfied. We import the notation of Fernholz et al. [13]: in addition to (1.1), we set

ν = g − h, y = x1 − x2, r1 = x1 ∨ x2, r2 = x1 ∧ x2, (3.1)

and introduce the difference and the sum of the two component processes, namely

Y(·) := X1(·) − X2(·), �(·) := X1(·) + X2(·). (3.2)

We introduce also the two planar Brownian motions (W1(·),W2(·)) and (V1(·),V2(·)), given by

W1(t) :=
∫ t

0
1{Y(s)>0} dB1(s) −

∫ t

0
1{Y(s)≤0} dB2(s), (3.3)

W2(t) :=
∫ t

0
1{Y(s)≤0} dB1(s) −

∫ t

0
1{Y(s)>0} dB2(s) (3.4)

and

V1(t) :=
∫ t

0
1{Y(s)>0} dB1(s) +

∫ t

0
1{Y(s)≤0} dB2(s), (3.5)

V2(t) :=
∫ t

0
1{Y(s)≤0} dB1(s) +

∫ t

0
1{Y(s)>0} dB2(s), (3.6)

respectively. Finally, we construct the Brownian motions W(·), V (·), Q(·) and V �(·) as

W(·) := ρW1(·) + σW2(·), V (·) := ρV1(·) + σV2(·), (3.7)

Q(·) := σV1(·) + ρV2(·), V �(·) := ρV1(·) − σV2(·), (3.8)

note that Q(·) and V �(·) are independent, and observe the intertwinements

V1(t) =
∫ t

0
sgn

(
Y(s)

)
dW1(s), V2(t) = −

∫ t

0
sgn

(
Y(s)

)
dW2(s),

(3.9)

V �(t) =
∫ t

0
sgn

(
Y(s)

)
dW(s).

• After this preparation, and recalling the first property of (1.5), we observe that the difference
Y(·) and the sum �(·) from (3.2) satisfy, respectively, the equations

Y(t) = y +
∫ t

0
sgn

(
Y(s)

)(−λds − dLX1∧X2(s) + dV �(s)
)

(3.10)

= y +
∫ t

0
sgn

(
Y(s)

)(−λds − dLX1∧X2(s)
) + W(t)
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and

�(t) = ξ + νt + V (t) + LX1∧X2(t), 0 ≤ t < ∞ (3.11)

in the notation of (1.1), (3.1). An application of the TANAKA formula (2.8) to the semimartingale
Y(·) of (3.10) represents now the size of the “gap” between X1(t) and X2(t) as∣∣Y(t)

∣∣ = |y| − λt − LX1∧X2(t) + V �(t) + 2LY (t), 0 ≤ t < ∞. (3.12)

On the other hand, with the help of the theory of the SKOROKHOD reflection problem (e.g.,
Karatzas and Shreve [23], page 210), we obtain from (3.12), (2.3) the equation

2LY (t) = max
0≤s≤t

(−|y| + λs + LX1∧X2(s) − V �(s)
)+

, 0 ≤ t < ∞. (3.13)

3.1. Ranks

It is convenient now to introduce explicitly the ranked versions

R1(·) := X1(·) ∨ X2(·), R2(·) := X1(·) ∧ X2(·) (3.14)

of the components of the vector process X (·) = (X1(·),X2(·))′. From (3.10), (3.12), we have

R1(t) + R2(t) = X1(t) + X2(t) = ξ + νt + V (t) + LR2(t), 0 ≤ t < ∞,
(3.15)

R1(t) − R2(t) = ∣∣X1(t) − X2(t)
∣∣ = ∣∣Y(t)

∣∣ = |y| + V �(t) − λt − LR2(t) + 2LY (t),

and these representations lead to the expressions

R1(t) = r1 − ht + ρV1(t) + LY (t), 0 ≤ t < ∞, (3.16)

R2(t) = r2 + gt + σV2(t) − LY (t) + LR2(t), 0 ≤ t < ∞. (3.17)

A few remarks are in order. The equations (3.16), (3.17) identify the processes V1(·) and
V2(·) of (3.5), (3.6) as the independent Brownian motions associated with individual ranks, the
“leader” R1(·) and the “laggard” R2(·), respectively; whereas the independent Brownian motions
B1(·) in (1.2) and B2(·) in (1.3) are associated with the specific “names” (indices, or identities)
of the individual particles. On the other hand the equation (3.17) leads, in conjunction with (2.3)
and the theory of the SKOROKHOD reflection problem once again, to the representation

LR2(t) = max
0≤s≤t

(−r2 − gs + LY (s) − σV2(s)
)+

, 0 ≤ t < ∞. (3.18)

• Let us apply the second observation in (2.3) to the nonnegative semimartingale R1(·)−R2(·) =
|Y(·)| in (3.15); we obtain the first property of (1.4), that is∫ ·

0
1{X1(t)=X2(t)} d

〈
V �

〉
(t) =

∫ ·

0
1{X1(t)=X2(t)} dt = 0, (3.19)
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therefore also
∫ ·

0 1{X1(t)=X2(t)} dV �(t) = 0. Whereas the observation (2.4) leads to

LR1−R2(·) =
∫ ·

0
1{X1(t)=X2(t)}

(−λdt − dLR2(t) + dV �(t) + 2 dLY (t)
) = 2LY (·). (3.20)

For this last identity, we have used the fact that LY (·) is supported on the set {t ≥ 0: Y(t) = 0} =
{t ≥ 0: X1(t) = X2(t)}, thanks to (2.3); that this set has zero LEBESGUE measure (the condition
(3.19)); and that the local time LR2(·) is flat on this set (from the first property in (1.5)).

Finally, we observe that the second property in (2.3), applied to the nonnegative semimartin-
gale R2(·) of (3.17), yields the second property in (1.4).

Remark 3.1. In light of (3.20), the equations (3.16), (3.17) assume the more suggestive form

R1(t) = r1 − ht + ρV1(t) + 1
2LR1−R2(t), 0 ≤ t < ∞, (3.21)

R2(t) = r2 + gt + σV2(t) − 1
2LR1−R2(t) + LR2(t), 0 ≤ t < ∞. (3.22)

In the nondegenerate case σ < 1, these equations (3.21), (3.22) give the filtration comparisons

F(V1,V2)(t) ⊆ F(R1,R2)(t), 0 ≤ t < ∞. (3.23)

3.2. Skew representations

On the strength of the representations (3.9), (3.15) and the notation of (1.1) and (3.8), the Brow-
nian motion V (·) in (3.7) can be cast in the form

V (t) = (
ρ2 − σ 2)V �(t) + 2ρσQ(t)

= (
ρ2 − σ 2)(∣∣Y(t)

∣∣ − |y| + λt + LR2(t) − 2LY (t)
) + 2ρσQ(t).

In conjunction with the equations X1(t)+X2(t) = ξ + νt +V (t)+LR2(t) and X1(t)−X2(t) =
Y(t), and with the notation

μ := 1
2

(
ν + λ

(
ρ2 − σ 2)) = gρ2 − hσ 2, (3.24)

this leads for all t ∈ [0,∞) to the skew representations

X1(t) = x1 + μt + ρ2(Y+(t) − y+) − σ 2(Y−(t) − y−)
(3.25)

+ ρσQ(t) + (
ρ2 − σ 2)( 1

2LR2(t) − LY (t)
)
,

X2(t) = x2 + μt − σ 2(Y+(t) − y+) + ρ2(Y−(t) − y−)
(3.26)

+ ρσQ(t) + (
ρ2 − σ 2)( 1

2LR2(t) − LY (t)
)
.
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4. Synthesis

Let us fix real constants x1 ≥ 0, x2 ≥ 0, h ≥ 0, g ≥ 0, ρ ≥ 0 and σ > 0, and recall the notation and
assumptions of (1.1), (3.1). We start with a filtered probability space (�̃, F̃, P̃), F̃ = {̃F(t)}0≤t<∞
and two independent Brownian motions V1(·),V2(·), use these to create additional Brownian
motions

V (·) := ρV1(·) + σV2(·), Q(·) := σV1(·) + ρV2(·), (4.1)

V �(·) := ρV1(·) − σV2(·), Q�(·) := σV1(·) − ρV2(·), (4.2)

as in (3.7), (3.8), and note that V (·),Q�(·) are independent; the same is true of Q(·),V �(·).
With these ingredients we construct two continuous, increasing and adapted processes A(·),

(·) with A(0) = (0) = 0 that satisfy for 0 ≤ t < ∞ the system of equations

2A(t) = max
0≤s≤t

(−|y| + λs + (s) − V �(s)
)+

, (4.3)

(t) = max
0≤s≤t

(−r2 − gs + A(s) − σV2(s)
)+

. (4.4)

These are modeled on (3.13) and (3.18), using the identifications A(·) ≡ LY (·), (·) ≡ LR2(·).
Such an approach is predicated on developing a theory for the unique solvability of the system

of equations (4.3) and (4.4); see Proposition 4.1 below and its proof in Section 5. The construction
presented there expresses the continuous, increasing and adapted processes A(·), (·) as

A(t) = A
(
t, (V1,V2)|[0,t]

)
, (t) = L

(
t, (V1,V2)|[0,t]

)
, 0 ≤ t < ∞, (4.5)

progressively measurable functionals of the restriction (V1,V2)|[0,t] = {(V1(s),V2(s)),

0 ≤ s ≤ t} of the planar Brownian motion (V1,V2) on the interval [0, t], and implies

F(A,)(t) ⊆ F(V1,V2)(t). (4.6)

Proposition 4.1. Given the planar Brownian motion (V1(·),V2(·)), there exists a unique solution
(A(·),(·)) to the system of equations (4.3) and (4.4); this is expressible as a progressively
measurable functional (4.5).

4.1. Constructing the gap, the laggard and the leader

With the processes constructed so far, we introduce now the continuous supermartingale

Z(t) := |y| − λt − (t) + V �(t), 0 ≤ t < ∞ (4.7)

and its SKOROKHOD reflection at the origin

G(t) := Z(t) + 2A(t) = Z(t) + max
0≤s≤t

(−Z(s)
)+ ≥ 0, 0 ≤ t < ∞. (4.8)
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(Here, the second equality is by virtue of (4.3); the nonnegative process G(·) will play the rôle
of the gap between the leader and the laggard of the two semimartingales X1(·), X2(·) that we
shall construct eventually, in Section 4.4.) We note that (G(·),2A(·)) is the solution to the SKO-
ROKHOD reflection problem for the continuous semimartingale Z(·) of (4.7), whose martingale
part has quadratic variation 〈V �〉(t) = t ; and with the help of the second property in (2.3) and of
(4.8), (4.7), we have the P-a.e. identities∫ ∞

0
1{G(t)>0} dA(t) = 0,

∫ ∞

0
1{G(t)=0} dt = 0. (4.9)

• Let us introduce also the continuous semimartingale

K(t) := r2 + gt − A(t) + σV2(t), 0 ≤ t < ∞ (4.10)

and its SKOROKHOD reflection at the origin

M(t) := K(t) + (t) = K(t) + max
0≤s≤t

(−K(s)
)+ ≥ 0. (4.11)

(Here, the second equality is by virtue of (4.4), (4.10); the nonnegative process M(·) will play
the rôle of the laggard of the two semimartingales X1(·), X2(·) that we shall construct in the
next subsection.) The pair (M(·),(·)) is the solution to the SKOROKHOD reflection problem
for the continuous semimartingale K(·) of (4.10), whose martingale part has quadratic variation
σ 2〈V2〉(t) = σ 2t with σ 2 > 0, so we have the P-a.e. identities∫ ∞

0
1{M(t)>0} d(t) = 0,

∫ ∞

0
1{M(t)=0} dt = 0. (4.12)

This last identity is a consequence of the second property in (2.3), and of (4.11), (4.10).
• Finally, we introduce the continuous semimartingale

N(t) := r1 − ht + A(t) + ρV1(t), 0 ≤ t < ∞ (4.13)

by analogy with (3.16), and note

N(t) − M(t) = |y| − λt − (t) + V �(t) + 2A(t) = G(t) ≥ 0, 0 ≤ t < ∞, (4.14)

as well as the similarity of (4.13) with (3.16), and of (4.11) with (3.17). The inequalities in (4.11),
(4.14) imply

P
(
N(t) ≥ M(t) ≥ 0,∀0 ≤ t < ∞) = 1.

Thus, the process N(·) of (4.13) is nonnegative; it will play the rôle of the leader of the two
semimartingales X1(·), X2(·) in the next subsection.
• Using results of Varadhan and Williams [33] and Reiman and Williams [31] on Brownian
motion with reflection in a wedge, we shall prove in Section 6 the following three propositions;
related results have been obtained by Burdzy and Marshall [4,5].
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Proposition 4.2. Under the condition 1/2 ≤ σ 2 < 1 of (1.6), the planar process (N(·),M(·))
with values in the acute (45-degree) wedge M = {(n,m) ∈ R2: 0 ≤ m ≤ n} never hits the corner
of the wedge:

P
(
N(t) > 0,∀0 ≤ t < ∞) = 1. (4.15)

Proposition 4.3. In the case

0 < σ 2 < 1/2, (4.16)

the planar process (N(·),M(·)) hits the corner of the wedge M with positive probability, that is,
P(N(t) = 0, for some t ∈ (0,∞)) > 0; this probability is equal to one if, in addition, g = h = 0.

Proposition 4.4. With the processes G(·) and M(·) introduced in (4.8) and (4.11), respectively,
the solution (A(·),(·)) of the system (4.3)–(4.4) satisfies the P-a.e. identities of (4.9), (4.12)
and ∫ ∞

0
1{M(t)=0} dA(t) = 0,

∫ ∞

0
1{G(t)=0} d(t) = 0. (4.17)

4.2. Unfolding the gap

Theorem 1 in Prokaj [29] guarantees that there exists an enlargement (�,F,P) of our filtered
probability space (�̃, F̃, P̃) with a measure-preserving mapping π :� → �̃; on this enlargement
V1(·),V2(·) are still independent Brownian motions, and there exists a continuous semimartin-
gale Y(·) such that

G(t) = ∣∣Y(t)
∣∣ and Y(t) = y +

∫ t

0
sgn

(
Y(s)

)
dZ(s), 0 ≤ t < ∞. (4.18)

(The symmetric definition of the signum function, the first one in (2.7), is crucial here.) In other
words, we represent the SKOROKHOD reflection G(·) of the semimartingale Z(·) in (4.8), (4.7) as
the “conventional” reflection |Y(·)| of an appropriate semimartingale Y(·), related to Z(·) via the
TANAKA equation in (4.18). From this equation and (4.7), we see that the process Y(·) satisfies
the analogue of the equation (3.10):

Y(t) = y +
∫ t

0
sgn

(
Y(s)

)(−λds − d(s) + dV �(s)
)
, 0 ≤ t < ∞. (4.19)

Whereas, on the strength of (4.9) and (4.17), we obtain also the P-a.e. properties∫ ∞

0
1{Y(t)=0} d(t) = 0,

∫ ∞

0
1{Y(t)=0} dt = 0. (4.20)

• In the interest of completeness, we review here this methodology from Prokaj [29] in the special
case y = 0: One considers the zero set Z := {t ≥ 0: G(t) = 0} of the continuous semimartingale
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G(·) in (4.8), and enumerates as {Ek}k∈N the components of the set [0,∞) \ Z, that is, the ex-
cursions of G(·) away from the origin. This is carried out in a measurable manner, so that the
event {t ∈ Ek} belongs to the σ -algebra F̃(∞) := σ(

⋃
0≤θ<∞ F̃(θ)) for all k ∈ N and t ≥ 0. In-

troducing independent Bernoulli random variables ξ1, ξ2, . . . with P̃(ξk = ±1) = 1/2, such that
the sequence {ξk}k∈N is independent of the σ -algebra F̃(∞), one sets

�(t) :=
∑
k∈N

ξk1{t∈Ek} and F(t) := F̃(t) ∨ F�(t); 0 ≤ t < ∞.

The key observation from Prokaj [29] is the balayage-type formula

�(·)G(·) =
∫ ·

0
�(t)dG(t) =

∫ ·

0
�(t)dZ(t),

with the second equality a consequence of (4.9). Defining this process above as Y(·) := �(·)G(·),
one observes the properties |Y(·)| = G(·), sgn(Y (·)) = �(·) and obtains the equation Y(·) =∫ ·

0 sgn(Y (t))dZ(t) from the equality of the first and third terms; this is (4.18) for y = 0.

4.3. Constructing the various Brownian motions

We are now in a position to trace the steps of the analysis we carried out in Section 3, in reverse.
Using the independent, standard Brownian motions V1(·),V2(·) we started this section with, and
the process Y(·) we generated from them in (4.18), (4.19) by enlarging the original probability
space, we introduce the two planar Brownian motions (B1(·),B2(·)) and (W1(·),W2(·)) via

B1(t) :=
∫ t

0
1{Y(s)>0} dV1(s) +

∫ t

0
1{Y(s)≤0} dV2(s), (4.21)

B2(t) :=
∫ t

0
1{Y(s)≤0} dV1(s) +

∫ t

0
1{Y(s)>0} dV2(s), (4.22)

and

W1(t) :=
∫ t

0
�(s)dV1(s) =

∫ t

0
sgn

(
Y(s)

)
dV1(s) =

∫ t

0
sgn

(
Y(s)

)
dV1(s), (4.23)

W2(t) := −
∫ t

0
�(s)dV2(s) = −

∫ t

0
sgn

(
Y(s)

)
dV2(s) = −

∫ t

0
sgn

(
Y(s)

)
dV2(s), (4.24)

respectively. The last equalities in (4.23), (4.24) are by virtue of the second equation in (4.20),
which also implies that the equations of (3.3)–(3.6) continue to hold.

Using these processes, we construct the Brownian motions W(·), V (·), Q(·) and V �(·) exactly
as in (3.7) and (3.8); whereas by analogy with (3.9), and once again thanks to the second equation
in (4.20), we note the representation

W(·) =
∫ ·

0
sgn

(
Y(t)

)
dV �(t) =

∫ ·

0
sgn

(
Y(t)

)
dV �(t). (4.25)
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• In conjunction with this last representation (4.25) and the TANAKA formula (2.8), the properties
of (4.20) allow us to write the equation (4.19) for Y(·) as

Y(t) = y +
∫ t

0
sgn

(
Y(s)

)(−λds − d(s)
) + W(t) (4.26)

and obtain G(t) = |Y(t)| = |y| − λt − (t) + V �(t) + 2LY (t) = Z(t) + 2LY (t),0 ≤ t < ∞ on
account of (4.7). A comparison of this last expression with (4.8), using (2.9) and (4.20), gives

2A(·) = 2LY (·) = L|Y |(·). (4.27)

4.4. Naming the particles, then ranking them

We can introduce now the continuous semimartingales

X1(t) := x1 +
∫ t

0
(g1{Y(s)≤0} − h1{Y(s)>0})ds

+ ρ

∫ t

0
1{Y(s)>0} dB1(s) +

∫ t

0
1{Y(s)≤0}

(
σ dB1(s) + d(s)

)
, (4.28)

0 ≤ t < ∞,

X2(t) := x2 +
∫ t

0
(g1{Y(s)>0} − h1{Y(s)≤0})ds

+ ρ

∫ t

0
1{Y(s)≤0} dB2(s) +

∫ t

0
1{Y(s)>0}

(
σ dB2(s) + d(s)

)
, (4.29)

0 ≤ t < ∞.

From (3.5)–(3.6), (4.1)–(4.2), (4.21)–(4.22) and (4.20), (4.26), we obtain for these two processes

X1(t) − X2(t) = y +
∫ t

0
sgn

(
Y(s)

)(−λds − d(s) + dV �(s)
) = Y(t), (4.30)

X1(t) + X2(t) = ξ + νt + V (t) + (t), 0 ≤ t < ∞. (4.31)

Repeating the analysis in Section 3 and recalling the notation of (3.24), we obtain for all
t ∈ [0,∞) the analogues of (3.25), (3.26), the skew representations

X1(t) = x1 + μt + ρ2(Y+(t) − y+) − σ 2(Y−(t) − y−)
(4.32)

+ ρσQ(t) + (
ρ2 − σ 2)( 1

2(t) − A(t)
)
,

X2(t) = x2 + μt − σ 2(Y+(t) − y+) + ρ2(Y−(t) − y−)
(4.33)

+ ρσQ(t) + (
ρ2 − σ 2)( 1

2(t) − A(t)
)
.
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• Let us consider now as in (3.14) the ranked versions R1(·) := X1(·) ∨ X2(·), R2(·) := X1(·) ∧
X2(·) of the semimartingales introduced in (4.28), (4.29). From (4.30), (4.31) we obtain

R1(t) + R2(t) = X1(t) + X2(t) = ξ + νt + V (t) + (t), 0 ≤ t < ∞,
(4.34)

R1(t) − R2(t) = ∣∣X1(t) − X2(t)
∣∣ = ∣∣Y(t)

∣∣ = G(t) = |y| + V �(t) − λt − (t) + 2A(t)

for their sum and gap, respectively, with the notation of Section 4.1. These last two relations lead
now with the help of (4.13), (4.11) to the analogues of the equations (3.16) and (3.17), that is,

R1(t) ≡ N(t) = r1 − ht + ρV1(t) + A(t), (4.35)

R2(t) ≡ M(t) = r2 + gt + σV2(t) − A(t) + (t). (4.36)

Remark 4.1. Under the condition (1.6), the planar process (X1(·),X2(·)) constructed in (4.28),
(4.29) takes values in the punctured nonnegative quadrant S. Indeed, Proposition 4.2 implies
then

P
(
X1(t) ∨ X2(t) > 0,∀0 ≤ t < ∞) = 1. (4.37)

Thus, the condition of (1.6) guarantees the absence of “collisions at the origin”; see Ichiba and
Karatzas [20] and Ichiba et al. [21] for similar conditions in a different context.

4.5. Denouement

Let us start the final stretch of this synthesis by recalling the second properties in each of (4.20),
(4.12), which lead to the P-a.e. identities∫ ∞

0
1{X1(t)∧X2(t)=0} dt = 0,

∫ ∞

0
1{X1(t)=X2(t)} dt = 0; (4.38)

in particular, the “nonstickiness” conditions of (1.4), both along the boundary and along the
diagonal, are satisfied. On the other hand, the observation (2.4) applied to the nonnegative semi-
martingale R2(·) of (4.36), together with the properties of (4.38), (4.12) and (4.17), provides the
characterization

LX1∧X2(·) = LR2(·) =
∫ ·

0
1{R2(t)=0} dR2(t)

(4.39)

=
∫ ·

0
1{X1(t)∧X2(t)=0}

(
g dt + σ dV2(t) − dA(t) + d(t)

) = (·);

back into (4.20), this gives the identity∫ ∞

0
1{X1(t)=X2(t)} dLX1∧X2(t) = 0, P-a.e. (4.40)
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Arguing in a similar fashion, and applying the observation (2.4) to the nonnegative semimartin-
gale G(·) = R1(·) − R2(·) ≥ 0 of (4.34) in conjunction with the properties (4.38)–(4.40), (4.9),
(4.20) and (4.27), we obtain by analogy with (3.20) the P-a.e. identity

LR1−R2(·) =
∫ ·

0
1{X1(t)=X2(t)} d

(
R1(t) − R2(t)

)
=

∫ ·

0
1{X1(t)=X2(t)}

(
dV �(t) − λdt − d(t) + 2 dA(t)

)
(4.41)

= 2A(·) = 2LY (·) = L|Y |(·).
With the help of (4.35), (4.36), we recover from these last two observations the equations (3.21),
(3.22) for the ranks; whereas from (4.17) and the identifications A(·) = LY (·) = L|Y |(·)/2 in
(4.41), we deduce the P-a.e. identities∫ ∞

0
1{X1(t)∧X2(t)=0} dLX1−X2(t) = 0,

∫ ∞

0
1{X1(t)∧X2(t)=0} dLX2−X1(t) = 0. (4.42)

We conclude from (4.37)–(4.42) and Proposition 4.2 that we have proved the following result.

Proposition 4.5. The continuous, planar semimartingale X (·) = (X1(·),X2(·))′ defined in
(4.28), (4.29) takes values in the quadrant [0,∞)2. It satisfies the dynamics of (1.2) and (1.3);
the properties (1.4), (1.5) and (2.14); as well as the representations (3.25), (3.26).

Under the condition (1.6), the planar semimartingale X (·) takes values in the punctured non-
negative quadrant of (1.7), that is, never hits the corner of the quadrant.

Remark 4.2. From the equations (4.35), (4.36) and (4.5), we express the continuous, adapted
processes R1(·), R2(·) as progressively measurable functionals

R1(t) = R1
(
t, (V1,V2)|[0,t]

)
, R2(t) = R2

(
t, (V1,V2)|[0,t]

)
, 0 ≤ t < ∞

of the restriction (V1,V2)|[0,t] = {(V1(s),V2(s)),0 ≤ s ≤ t} of the planar Brownian motion
(V1,V2) on the interval [0, t]; this implies

F(R1,R2)(t) ⊆ F(V1,V2)(t). (4.43)

From these observations, from the identifications LR2(·) ≡ (·) and LY (·) ≡ A(·) in (4.39),
(4.41), and from the analysis of Section 3 that culminates with the equations (3.16)–(3.17), we
deduce that the distribution of the vector of ranked processes (R1(·),R2(·)) ≡ (N(·),M(·)) in
(3.14) is determined uniquely.

A more elaborate analysis, carried out in Section 7, will show that uniqueness in distribution
(indeed, pathwise uniqueness up until its first visit to the corner of the quadrant) holds also for
the vector process X (·) = (X1(·),X2(·))′ of the particles’ positions by name in (4.28), (4.29). If
the two particles never collide with each other at the origin, as is the case under condition (1.6),
then pathwise uniqueness – thus also uniqueness in distribution – holds for all times.
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Figure 1. Simulated processes; Black = X1(·), Gray = X2(·).

Remark 4.3. Coupled with (3.23) of Remark 3.1, the filtration inclusion in (4.43) gives in the
nondegenerate case σ < 1 the identity

F(R1,R2)(t) = F(V1,V2)(t), 0 ≤ t < ∞.

The Figure 1 is a simulation of the processes X1(·) and X2(·) in the degenerate case with
ρ = 0, σ = 1 and g = h = 1, taken from Fernholz [11]; we are grateful to DR. ROBERT FERN-
HOLZ for granting us permission to reproduce it here. The figure depicts clearly also the laggard
(from (4.36)) and the leader (from (4.35)) of the two processes – the latter as a function of finite
first variation which ascends by the continuous but singular, local time component LY (·) = A(·)
and descends by straight line segments (“ballistic motion”) of slope −1.

5. Proof of Proposition 4.1

Given the planar Brownian motion (V1(·),V2(·)), we shall apply the idea of the proof of Theo-
rem 1 of Harrison and Reiman [16] to study a system of equations for (2A(·),√2(·))′ equiva-
lent to (4.3)–(4.4):

2A(t) = max
0≤s≤t

(−|y| + λs + (s) − V �(s)
)+

,

√
2(t) = max

0≤s≤t

(−√
2r2 − √

2gs + √
2A(s) − √

2σV2(s)
)+

, (5.1)

0 ≤ t < ∞,
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with V �(·) = ρV1(·) − σV2(·) as in (3.8). Schematically, we shall write y(·) = πw(y)(·) for this
system, with the two-dimensional SKOROKHOD map πw introduced in Harrison and Reiman
[16]:

C0
([0,∞);R2) � y(·) �→ πw(y)(·) := sup

0≤s≤·
[
Hy(s) − w(s)

]+ ∈ C0
([0,∞);R2). (5.2)

Here the subscript indicates the pinning y1(0) = y2(0) = 0; the matrix H is defined as

H = 1√
2

(
0 1
1 0

)
,

and the component processes of the vector w(·) = (w1(·),w2(·))′ are

w1(t) = |y| − λt + V �(t) = |y| − λt + ρV1(t) − σV2(t),

w2(t) = √
2r2 + √

2gt + √
2σV2(t), (5.3)

0 ≤ t < ∞.

The supremum and the positive part (·)+ := max(·,0) are taken for each element in the vectors.
The matrix H has spectral radius 1/

√
2, so the mapping πw is a continuous, contraction map-

ping (Theorem 1 of Harrison and Reiman [16]); in particular, in terms of the sup-norm

‖y‖T := max
1≤i≤2

sup
0≤s≤T

∣∣yi(s)
∣∣

for every y,y� ∈ C0([0,∞);R2) and T ∈ [0,∞) we have the bounds∣∣πw(y) − πw

(
y�

)∣∣
T

= max

[
sup

0≤s≤T

∣∣∣∣ sup
0≤u≤s

(
−w1(s) + 1√

2
y2(s)

)+
− sup

0≤u≤s

(
−w1(s) + 1√

2
y�

2(s)

)+∣∣∣∣,
sup

0≤s≤T

∣∣∣∣ sup
0≤u≤s

(
−w2(s) + 1√

2
y1(s)

)+
− sup

0≤u≤s

(
−w2(s) + 1√

2
y�

1(s)

)+∣∣∣∣
]

≤ max

[
sup

0≤s≤T

∣∣∣∣−w1(s) + 1√
2

y2(s) −
(

−w1(s) + 1√
2

y�
2(s)

)∣∣∣∣,
sup

0≤s≤T

∣∣∣∣−w2(s) + 1√
2

y1(s) −
(

−w2(s) + 1√
2

y�
1(s)

)∣∣∣∣
]

≤ 1√
2

∥∥y − y�
∥∥

T
.
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We have used here the contraction property of the maximum: for two continuous, real-valued
functions y(·),y�(·) we have∣∣∣ sup

0≤s≤T

y(s) − sup
0≤s≤T

y�(s)

∣∣∣ ≤ sup
0≤s≤T

∣∣y(s) − y�(s)
∣∣, 0 ≤ T < ∞,

∣∣(y(s)
)+ − (

y�(s)
)+∣∣ ≤ ∣∣y(s) − y�(s)

∣∣, 0 ≤ s < ∞.

It follows from this contraction property that, given w(·), the solution y(·) to the system of (5.1)
can be obtained as the unique limit of a standard PICARD–LINDELÖF iteration: starting with
y(1)(·) ≡ 0, iterating y(n+1) := πw(y(n)) for n = 1,2, . . . , we obtain the uniform convergence on
compact intervals limn→∞ ‖y − y(n)‖T = 0 for T ∈ (0,∞). This concludes the proof of Propo-
sition 4.1.

It might be interesting to investigate possible connections between this construction and the
SKOROKHOD map on an interval, studied by Kruk et al. [24].

6. Proof of Propositions 4.2–4.4

Let us recall from (4.13), (4.11) that the process (N(·),M(·)) is a reflected planar Brownian
motion in the 45-degree wedge M with orthogonal reflection on the faces:

N(t) = r1 − ht + ρV1(t) + A(t), 0 ≤ t < ∞, (6.1)

M(t) = r2 + gt + σV2(t) − A(t) + (t), 0 ≤ t < ∞. (6.2)

This process does not hit the corner of the wedge M, if and only if it does not reach the corner
during the time-horizon [0, T ] for any T ∈ (0,∞). Hence, in the nondegenerate case we can
assume that the drift coefficients g,h are equal to zero. Indeed, after a suitable change of proba-
bility measure on F(T ), under the new measure and on the finite time-horizon [0, T ] the process
(V1(t)− (h/ρ)t,V2(t)+ (g/σ )t)t∈[0,T ] becomes then a two-dimensional standard Brownian mo-
tion, that is, a planar Brownian motion without drift.

Thus, in what follows we shall assume h = g = 0 and apply the transformation T =
diag(1/ρ,1/σ) to the process (N(·),M(·)) as in (6.1), (6.2). In matrix form, we can write

T

[
N(t)

M(t)

]
= T

[
r1
r2

]
+

[
V1(t)

V2(t)

]
+ T

[
1 0

−1 1

][
A(t)

(t)

]
; 0 ≤ t < ∞. (6.3)

Then the transformed process is a reflected Brownian motion in the wedge W = T(M) with
oblique reflection on the faces.

We need to compute the angle ξ of the wedge W at the corner, and also the reflection angles
θ i ∈ (−π/2,π/2) i = 1,2 measured from the inward normal vector on the boundary, and positive
if and only if they direct the process toward the corner; see Figure 2 below. We introduce also
the scalar parameter

α := (θ1 + θ2)/ξ . (6.4)
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According to Theorems 2.2 and 3.10 of Varadhan and Williams [33], the reflected Brownian
motion in the wedge W never hits the corner of the wedge W, with probability one, if α ≤ 0; hits
the corner with probability one, if α > 0; and is well-defined by the corresponding submartingale
problem for all times, starting at any initial point including the corner, if α < 2.

Now the faces of the wedge W are given by half-lines emanating from the origin and parallel
to the vectors v1 = T(1,0)′ = (1/ρ,0)′ and v2 = T(1,1)′ = (1/ρ,1/σ)′, hence

cos(ξ) = 〈v1,v2〉
‖v1‖‖v2‖ = ρ−2√

ρ−2 + σ−2
√

ρ−2
= σ. (6.5)

The reflection vector on the face of the wedge W parallel to v2 = (1/ρ,1/σ)′ is ν2 :=
(1/ρ,−1/σ)′, while the normal vector of this face pointing inward is n2 = (ρ,−σ)′. Then

ν2 − 〈ν2,n2〉
‖n2‖2

n2 = ν2 − 2n2 = (1/ρ − 2ρ,2σ − 1/σ)′ = (
σ 2 − ρ2) · (1/ρ,1/σ)′,

so ν2 points towards to the corner exactly when σ 2 < ρ2. That is, θ2 > 0 holds if and only if
σ 2 < 1/2.

The other face of the wedge W is parallel to (1,0)′ and the reflection vector on this face is
(0,1/σ)′, which is a normal vector to this face, whence θ1 = 0.

Proof of Proposition 4.2. If 1 > σ 2 ≥ 1/2, then

θ1 = 0, θ2 ≤ 0, ξ > 0, (6.6)

so α ≤ 0. Thus, according to the result of Harrison and Reiman [16] and Varadhan and Williams
[33], with probability one the process (N(·),M(·)) never hits the corner of the wedge M. The
case σ 2 = 1 is discussed in Section 6.1. �

Proof of Proposition 4.3. In the case 0 < σ 2 < 1/2, we obtain cos(ξ) < 1/
√

2 from (6.5) and

θ1 = 0, 0 < θ2 < π/2, ξ > π/4,

so 0 < α < 2. Then the process (N(·),M(·)) hits the corner of the wedge M almost surely. This
gives the result for g = h = 0.

When g + h > 0, we can only ascertain that the process (N(·),M(·)) hits the corner of the
wedge with positive probability, due to the measure change step that we deployed to reduce the
general case to the driftless case. �

6.1. Nonattainability of the corner in the degenerate case ρ = 0

In this subsection, we develop the proof of Proposition 4.2 in the degenerate case σ = 1, ρ = 0.
The equations of (6.1), (6.2) for the ranked processes N(·) ≥ M(·) ≥ 0 simplify then to

N(t) = r1 − ht + A(t), 0 ≤ t < ∞, (6.7)

M(t) = r2 + gt + V (t) − A(t) + (t), 0 ≤ t < ∞; (6.8)
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we recall that the “regulating” continuous, increasing and adapted processes A(·),(·) of (4.3),
(4.4) satisfy the P-a.e. requirements∫ ∞

0
1{N(t)>M(t)} dA(t) = 0,

∫ ∞

0
1{M(t)>0} d(t) = 0 (6.9)

as in (4.9), (4.12). We introduce the stopping time τ = inf{t > 0: N(t) = 0}, and shall establish
below the property P(τ = ∞) = 1.

For this, it suffices to consider h > 0; for if h = 0, the process N(·) is nondecreasing, and there
is nothing to prove. Whereas, by the Girsanov theorem, it is enough to deal with the case g = 0.
We shall present two distinct, very different arguments.
• FIRST ARGUMENT: In the manner of Section 4.2, we consider the unfolded process (N(·),
M†(·)), where M(·) = |M†(·)| and dM†(t) = sgn(M†(t))dM(t), stopped upon reaching the
corner:

N(t) = r1 − ht + A(t), M†(t) = r2 + V †(t) −
∫ t

0
sgn

(
M†(s)

)
dA(s)

for 0 ≤ t ≤ τ ; and M(t) = N(t) = 0 for t ≥ τ . Here V †(·) := ∫ ·
0 sgn(M†(s))dV (s) =∫ ·

0 sgn(M†(s))dV (s) is of course standard Brownian motion; the equality of the two stochas-
tic integrals follows by applying the second property of (2.3) to the semimartingale M(·) of
(6.8).

The planar process (N(·),M†(·)) evolves in the cone {(x, y): 0 ≤ |y| ≤ x}, with normal re-
flection on the faces and absorption when the corner of the cone is reached. It is clear that
(N(·),M†(·)) is a strong Markov process; when started at (x, y), the distribution of this pro-
cess will be denoted by P(x,y). We shall show that P(τ = ∞) = 1.

For this purpose, we define a Markov chain {(S̃n, Yn)}n≥0 with

S̃n := log(2)

(
N(τn)/r1

)
, Yn := M†(τn)/N(τn),

where we have set τ0 := 0 and recursively τn+1 := inf{t > τn: (N(t)/N(τn)) /∈ [1/2,2]}, and
noted that τn is a.s. finite, for all n ∈ N0. The state-space of this Markov chain is Z × [−1,1].
For k > 0, we shall denote

ρ̃k := inf{n ∈ N0: S̃n = S̃0 + k}.
A simple sufficient condition for the nonattainability of the origin by N(·) is that

ρ̃k is finite almost surely for all k > 0. (6.10)

Indeed, on {τ < ∞} the sample path of the process N(·) is bounded, because it is continuous. It
is clear from this that {τ < ∞} ⊂ ⋃

k{ρ̃k = ∞}, and P(τ < ∞) = 0 follows from (6.10).
We compare S̃ = {S̃n}n≥0 with a random walk S = {Sn}n≥0 on Z, which starts at S0 = 0 and is

defined by

P(Sn+1 = Sn + 1 | S0, . . . , Sn) = p
(
r12Sn

)
, P(Sn+1 = Sn − 1 | S0, . . . , Sn) = 1 − p

(
r12Sn

)
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as its transition probabilities, where

p(r) := inf
y∈[−r,r]P(r,y)

(
N(τ1) = 2r

)
.

To wit: we start the process (N(·),M†(·)) from a point on the vertical line at x = r , and denote
by p(r) the greatest lower bound on the probability that N(·) hits 2r before it hits r/2. We prove
below that

lim
r→0+p(r) = 1 and p(r) > 0 for all r > 0. (6.11)

On a suitable extension of our probability space there is a coupling between S̃ and the random
walk S, such that S̃n ≥ Sn, ∀n ∈ N0. Therefore, the sufficient condition (6.10) will be established
as soon as we show that ρk = inf{n ≥ 0: Sn = k} ≥ ρ̃k is a.s. finite, for all k > 0.

Let �0 ≤ 0 be such that p(r12�) ≥ 1/2 holds for � ≤ �0, and consider a simple, symmetric
random walk Ŝ = {Ŝn}n≥0 on the state space {�: � ≤ �0}, with �0 as both reflecting barrier and
starting point. Using coupling again, we can assume that Ŝn ≤ Sn holds for all n ∈ N0. Fix k > 0
and recall that Ŝ is recurrent. Thus, if S does not reach k before reaching �0 − 1, it will return to
the level �0 almost surely; and from �0 it will reach k before reaching �0 − 1, with some positive
probability. If, on the other hand, S hits �0 −1 first, then the whole thing starts again and finally k

is reached almost surely by S. By a standard renewal argument, this implies that S reaches S0 + k

almost surely, and that ρk = inf{n ≥ 0: Sn = S0 + k} is finite almost surely.
It remains now only to argue (6.11). Let r > 0 and observe that, if N(0) = r and |M†(0)| ≤ r ,

then N(τ1) = r/2 implies that τ1 ≥ (r/2h) and |V †(r/2h)| < 4r , hence

1 − p(r) = sup
y∈[−r,r]

P(r,y)

(
N(τ1) = r/2

) ≤ P
(∣∣∣∣V †

(
r

2h

)∣∣∣∣ < 4r

)
,

that is,

p(r) ≥ 1 − P
(∣∣∣∣V †

(
r

2h

)∣∣∣∣ < 4r

)
= P

(∣∣V †(1)
∣∣ > 4

√
2hr

)
.

This justifies (6.11) and completes the proof of the nonattainability of the corner in the degenerate
case, thus also the proof of Proposition 4.2.
• SECOND ARGUMENT: Here follows another argument, due to DR.E.ROBERT FERNHOLZ; we
shall take r2 = 0 for simplicity. With B(·) a standard Brownian motion, we denote by �(·) the
SKOROKHOD reflection of the process r1 −ht −B(t),0 ≤ t < ∞, and by �(·) the SKOROKHOD

reflection of r1 − ht + B(t),0 ≤ t < ∞:

�(t) = r1 − ht − B(t) + L�(t) ≥ 0, �(t) = r1 − ht + B(t) + L�(t) ≥ 0, (6.12)

where the continuous, increasing processes

L�(t) := max
0≤s≤t

(
hs + B(s) − r1

)+
, L�(t) := max

0≤s≤t

(
hs − B(s) − r1

)+
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satisfy the P-a.s. identities
∫ ∞

0 1{�(t)>0} dL�(t) = 0,
∫ ∞

0 1{�(t)>0} dL�(t) = 0. We define

Y2(t) := B(t) − 1
2L�(t) + 1

2L�(t), Y1(t) := Y2(t) + �(t),
(6.13)

Y3(t) := Y2(t) − �(t),

and note

Y1(t) = −Y3(t) = r1 − ht + 1
2

(
L�(t) + L�(t)

) ≥ ∣∣Y2(t)
∣∣, 0 ≤ t < ∞. (6.14)

We shall show below that, with probability one,

the three-dimensional process
(
Y1(·), Y2(·), Y3(·)

)
exhibits no triple point. (6.15)

Then the comparisons in (6.14) imply

P
(
Y1(t) > 0,∀t ∈ [0,∞)

) = 1. (6.16)

To prove (6.15), it suffices to rule out triple points for the process (Ŷ1(·), Ŷ2(·), Ŷ3(·)) with
components Ŷj (·) := Yj (·) + (L�(·) − L�(·))/2, j = 1,2,3, namely

Ŷ1(t) = r1 − ht + L�(t) ≥ Ŷ2(t) = B(t) ≥ Ŷ3(t) = −r1 + ht − L�(t), 0 ≤ t < ∞.

Consider the set E of all ω ∈ � for which Ŷ1(T ) = Ŷ2(T ) = Ŷ3(T ) =: y holds for some T =
T (ω) ∈ (0,∞). Then, for each t ∈ [0, T ) we have

y + h(T − t) ≥ y + h(T − t) − L�(T ) + L�(t) = Ŷ1(t) ≥ Ŷ2(t) = y + B(T ) − B(t)

≥ Ŷ3(t) = y − h(T − t) + L�(T ) − L�(t) ≥ y − h(T − t)

thus also

−h ≤ B(T ) − B(t)

T − t
≤ h.

In conjunction with the PALEY, WIENER AND ZYGMUND theorem (cf. page 110 in Karatzas
and Shreve [23]), we conclude that E is included in an event of P-measure zero, so (6.15) follows.
(We are indebted to DR. JOHANNES RUF, for pointing out the relevance of the PALEY–WIENER–
ZYGMUND theorem here.)

Let us define now

Q1(·) := Y1(·), Q2(·) := ∣∣Y2(·)
∣∣ (6.17)

and apply the companion TANAKA formula (2.10) to get Q2(·) = ∫ ·
0 sgn(Y2(t))dY2(t) + LQ2(·).

In conjunction with (6.13), the fact that L�(·) = LY1−Y2(·) is flat off the set {t ≥ 0: Y2(t) =
Y1(t) > 0}, and the fact that L�(·) = LY2−Y3(·) is flat off the set {t ≥ 0: Y2(t) = Y3(t) < 0}, this
leads to

Q2(·) = V̂ (·) − 1
2

(
LY1−Y2(·) + LY1+Y2(·)) + LQ2(·), (6.18)
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where

V̂ (·) :=
∫ ·

0
sgn

(
Y2(t)

)
dB(t) =

∫ ·

0
sgn

(
Y2(t)

)
dB(t)

is standard Brownian motion (for this last equality, we have applied the second property of (2.3)
to the semimartingale Y2(·) in (6.13)). From (6.17), (6.13) and (6.14), we have then

Q1(·) = r1 − ht + 1
2

(
LY1−Y2(·) + LY1+Y2(·)), (6.19)

0 ≤ Q1(·) − Q2(·) = r1 − ht − V̂ (·) − LQ2(·) + (
LY1−Y2(·) + LY1+Y2(·)). (6.20)

But the continuous, increasing process LY1−Y2(·) + LY1+Y2(·) is flat away from the set {Q1(·) =
Q2(·)} = {Y1(·) ± Y2(·) = 0}, so the theory of the SKOROKHOD reflection problem gives the
P-a.e. identities

LY1−Y2(·) + LY1+Y2(·) ≡ LQ1−Q2(·),
∫ ∞

0
1{Q1(t)>Q2(t)} dLQ1−Q2(t) = 0.

With this identification, the system (6.20), (6.19) is written equivalently as

Q1(t) = r1 − ht + 1
2LQ1−Q2(t), (6.21)

Q2(t) = V̂ (t) − 1
2LQ1−Q2(t) + LQ2(t) (6.22)

with
∫ ∞

0 1{Q2(t)>0} dLQ2(t) = 0,
∫ ∞

0 1{Q1(t)>Q2(t)} dLQ1−Q2(t) = 0; that is, precisely in the form
(6.7)–(6.9) with g = 0, r2 = 0. Thus, the pairs (Q1(·),Q2(·)) and (N(·),M(·)) have the same
distribution, so the property P(N(t) > 0,∀t ∈ [0,∞)) = 1 follows now from (6.16) and (6.17).

6.2. Proof of Proposition 4.4

In the nondegenerate case σ 2 < 1, the properties of (4.17) follow from Theorem 1 in Reiman
and Williams [31]; see also Theorem 7.7 in Bhardwaj and Williams [3]. In the degener-
ate case σ 2 = 1, they follow from (4.9), (4.12) – which give A(·) = ∫ ·

0 1{G(t)=0} dA(t) and
(·) = ∫ ·

0 1{M(t)=0} d(t), respectively – and the nonattainability of the corner that we just
proved.

7. Questions of uniqueness

Let B(·) = (B1(·),B2(·))′ be a planar Brownian motion, and define the matrix- and vector-valued
functions � : R2 → R2×2 and μ : R2 → R2 by

�(x) = 1{x1>x2} diag(ρ,σ ) + 1{x1≤x2} diag(σ,ρ),

μ(x) = 1{x1>x2}(−h,g)′ + 1{x1≤x2}(g,−h)′



Diffusions with rank-based characteristics and values in the nonnegative quadrant 2479

for x = (x1, x2) ∈ R2. We are interested in questions of uniqueness for the system of stochastic
differential equations (2.15) and (2.16), written now a bit more conveniently in the vector form

dX (t) = μ
(

X (t)
)

dt + �
(

X (t)
)

dB(t) + dL X (t). (7.1)

Here we have denoted the vector of semimartingale local time processes accumulated at the
origin by the components of the planar process X (·) = (X1(·),X2(·))′ as

L X (·) := (
LX1(·),LX2(·))′; (7.2)

these local times are responsible for keeping the planar process X (·) in the nonnegative quadrant.

7.1. Pathwise uniqueness

For any given initial condition X (0) in the punctured nonnegative quadrant of (1.7), we have
shown that the stochastic differential equation (7.1) has a solution. We want to show that this
solution is pathwise unique, up to the first hitting time of the corner of the quadrant. Under the
condition (1.6), the origin is never hit by the process X (·), so pathwise uniqueness will hold then
for all times. The key step is to define the new planar process

Z(·) = (
Z1(·),Z2(·)

)′ with Zi(·) := Xi(·) − LXi (·) (i = 1,2), (7.3)

and note, from the SKOROKHOD reflection problem once again, that

LXi (t) = Z∗
i (t) := max

0≤s≤t

(−Zi(s)
) ∨ 0, 0 ≤ t < ∞. (7.4)

(In particular, each Xi(·), i = 1,2 is the SKOROKHOD reflection of the semimartingale Zi(·) in
(7.3).) We observe that X (·) solves the equation (7.1), if and only if Z(·) solves the stochastic
differential equation with path-dependent coefficients

dZ(t) = μ
(

Z(t) + Z ∗(t)
)

dt + �
(

Z(t) + Z ∗(t)
)

dB(t), Z(0) = X (0) ∈ S, (7.5)

where, with the notation of (7.4), we have set

Z ∗(t) := (
Z∗

1(t),Z∗
2(t)

)′ =
(

max
0≤s≤t

(−Z1(t)
) ∨ 0, max

0≤s≤t

(−Z2(t)
) ∨ 0

)′
. (7.6)

Indeed, if (X (·), B(·)) is a solution of (7.1) with the vector process LX (·) given as in (7.2),
and if we define Z(·) in accordance with (7.3), then (Z(·), B(·)) is a solution of (7.5). And
conversely, if (Z(·), B(·)) is a solution of (7.5) and we define

X (·) := Z(·) + Z ∗(·) (7.7)

in the notation of (7.6), we identify Z ∗(·) as the coordinate-wise local time of X (·), namely
Z ∗(·) = L X (·) as in (7.2). In particular, pathwise uniqueness for the equation (7.5) with path-
dependent coefficients, implies pathwise uniqueness for the equation (7.1) with local times.
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For the equation (7.5), this pathwise uniqueness result can be seen by exploiting the fact that
the only critical time-points occur when the process X (·) of (7.7) hits either the boundary of the
quadrant, or its diagonal. Thus, we set τ0 := 0, and introduce inductively the stopping times

τ2n+1 := inf
{
t > τ2n:

(
Z1(t) + Z∗

1(t)
)(

Z2(t) + Z∗
2(t)

) = 0
}
,

τ2n+2 := inf
{
t > τ2n+1: Z1(t) + Z∗

1(t) = Z2(t) + Z∗
2(t)

}
for n ∈ N0. It might happen that τ1 = τ0 = 0 holds with positive probability, if X (0) = Z(0)

is on one of the faces of the quadrant. Apart from that, we have τk+1 > τk for all k ≥ 1; and
with τ := supk∈N τk , we observe that X (τ ) = Z(τ ) + Z ∗(τ ) lies on one of the faces of the
quadrant and also on its diagonal, hence X (τ ) = (0,0). Whereas, under the condition (1.6), we
know that X (·) never reaches the corner of the quadrant, so τ is almost surely infinite. Then
pathwise uniqueness up to τ can be established by induction; namely, by showing that on each
time-interval [τk−1, τk] with k ≥ 1 the process Z(·) solves an equation with pathwise unique
solution.

Assume first that k − 1 is odd; then on the time-interval [τk−1, τk] the drift and diffusion
coefficients are constant, so pathwise uniqueness follows immediately. If k−1 is even, then Z ∗(·)
is constant on the interval [τk−1, τk], and the process X (·) = Z(·) + Z ∗(·) solves on [τk−1, τk]
the equation studied in Fernholz et al. [13], Theorem 5.1, where it was shown that the solution
of this equation is pathwise unique. This completes the induction argument.

Invoking the YAMADA–WATANABE theory (e.g., Karatzas and Shreve [23], pages 308–311),
we obtain from all this the following result.

Proposition 7.1. For the system of equations (2.15) and (2.16), pathwise uniqueness holds up
until the first hitting time τ of (1.8).

Under the condition 1/2 ≤ σ 2 < 1 of (1.6) pathwise uniqueness, thus also uniqueness in dis-
tribution, hold for all times, so the solution of (2.15) and (2.16) is then strong; that is, for all
0 ≤ t < ∞ we have

F(X1,X2)(t) ⊆ F(B1,B2)(t). (7.8)

This completes the proof of Theorems 1.1 and 1.3. It is an open question to settle, whether
such pathwise uniqueness and strength hold also past the first hitting time of the corner, or not.

7.2. Uniqueness in distribution

This section will be devoted to the proof of Theorem 1.2 on uniqueness in distribution. In the
light of Proposition 7.1 and Theorem 1.3, this needs elaboration only when 0 < σ 2 < 1/2 as in
(4.16). In this case, the state process X (·) = (X1(·),X2(·))′ of (7.1) can reach the corner of the
quadrant [0,∞)2 in finite time, and the question is whether it can be continued beyond that time
in a well-defined and unique-in-distribution manner.

Proof of Theorem 1.2. It is quite straightforward to see that the weak solution construction
of Section 4, culminating with the continuous, nonnegative processes X1(·),X2(·) defined in
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Section 4.4, makes perfectly good sense also for an initial condition (X1(0),X2(0)) = (x1, x2) =
(0,0) at the corner of the quadrant. Together with the independent Brownian motions B1(·),B2(·)
of (4.21), (4.22), these processes X1(·),X2(·) are constituents of a weak solution for the system
(7.1), and from (7.2)–(7.4) we have the representations

Xi(·) = Zi(·) + max
0≤s≤·

(−Zi(s)
)
, i = 1,2.

Now, on an extension of the filtered probability space on which (B1(·),B2(·)) is still planar
Brownian motion, we unfold these continuous, nonnegative semimartingales as

Xi(·) = ∣∣Z�
i (·)

∣∣, where Z
�
i (·) =

∫ ·

0
sgn

(
Z

�
i (s)

)
dZi(s).

This is done using the Prokaj [29] construction of Section 4.2 once again. It follows that the pro-
cess Z �(·) := (Z

�
1(·),Z�

2(·))′ with component-wise absolute values |Z �(·)| := (|Z�
1(·)|, |Z�

2(·)|)′= X (·) satisfies the vector stochastic differential equation

dZ �(·) = I
(

Z �(t)
)(

μ
(

X (t)
)

dt + �
(

X (t)
)

dB(t)
)

(7.9)
= I

(
Z �(t)

)
μ

(∣∣Z �(t)
∣∣)dt + I

(
Z �(t)

)
�

(∣∣Z �(t)
∣∣)dB(t), 0 ≤ t < ∞,

with the initial condition Z �(0) = 0, the indicator matrix function

I(z) := diag
(
sgn(z1), sgn(z2)

)
and the notation z = (z1, z2)

′ ∈ R2, |z| := (|z1|, |z2|
)′
.

The functions I(·)μ(| · |) and I(·)�(| · |) are piecewise constant in the interior of each one of the
eight wedges{

(z1, z2): z1 ≥ 0, z2 ≥ 0, z1 > z2
}
,

{
(z1, z2): z1 ≥ 0, z2 ≥ 0, z1 ≤ z2

}
,{

(z1, z2): z1 < 0, z2 ≥ 0, z1 ≥ z2
}
,

{
(z1, z2): z1 < 0, z2 ≥ 0, z1 ≤ z2

}
,{

(z1, z2): z1 ≥ 0, z2 < 0, z1 > z2
}
,

{
(z1, z2): z1 ≥ 0, z2 < 0, z1 ≤ z2

}
,{

(z1, z2): z1 < 0, z2 < 0, z1 > z2
}
,

{
(z1, z2): z1 < 0, z2 < 0, z1 ≤ z2

}
.

Theorem 2.1 of Bass and Pardoux [2] (see also Theorem 5.5 in Krylov [25], as well as Ex-
ercise 7.3.4, pages 193–194 in Stroock and Varadhan [32]) guarantees that uniqueness in dis-
tribution holds for the system of equations (7.9) with piecewise constant coefficients. (For the
applicability of this result, the nondegeneracy condition ρσ > 0 is crucial.) Whereas, because
the distribution of Z �(·) is uniquely determined from (7.9), it is checked fairly easily that the
distribution of X (·) = |Z �(·)| is uniquely determined from (7.1). �

The proofs of all three Theorems 1.1–1.3 are now complete. We have shown in particular that,
under the condition 0 < σ 2 < 1/2 as in (4.16), the planar process X (·) can hit the corner of the
quadrant but then “finds a way to extricate itself” in such a manner that uniqueness in distribution
holds. This aspect of the diffusion is reminiscent of Section 3 of Bass and Pardoux [2]; we will
see in the Appendix that these features hold also in the other degenerate case σ = 0, ρ = 1.
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8. Alternative systems and filtration identities

Throughout this section, we shall place ourselves under the condition

1/2 ≤ σ 2 < 1

for simplicity. We disentangle the pair (B1(·),B2(·)) from (W1(·),W2(·)) in (3.3) and (3.4), and
rewrite (4.28), (4.29) in the form of a system of equations driven by the planar Brownian motion
W (·) = (W1(·),W2(·))′, namely

X1(t) = x1 +
∫ t

0
(g1{X1(s)≤X2(s)} − h1{X1(s)>X2(s)})ds + ρ

∫ t

0
1{X1(s)>X2(s)} dW1(s)

(8.1)

+
∫ t

0
1{X1(s)≤X2(s)}

(
σ dW2(s) + dLX1∧X2(s)

)
, 0 ≤ t < ∞,

X2(t) = x2 +
∫ t

0
(g1{X1(s)>X2(s)} − h1{X1(s)≤X2(s)})ds − ρ

∫ t

0
1{X1(s)≤X2(s)} dW1(s)

(8.2)

+
∫ t

0
1{X1(s)>X2(s)}

(−σ dW2(s) + dLX1∧X2(s)
)
, 0 ≤ t < ∞.

Repeating the argument of Proposition 7.1 and using once again pathwise uniqueness results
from Theorem 4.2 in Fernholz et al. [13], one can show the pathwise uniqueness and strong
solvability of the system (8.1) and (8.2), under the condition (1.6). In particular, we have

F(X1,X2)(t) ⊆ F(W1,W2)(t) ∀0 ≤ t < ∞. (8.3)

• In a similar manner, recalling the expressions for (B1(·),B2(·)) in terms of (V1(·),V2(·)) in
(4.21), (4.22) and disentangling the former from the latter, we can rewrite the system of equations
(4.28), (4.29) in the form

X1(t) = x1 +
∫ t

0
(g1{X1(s)≤X2(s)} − h1{X1(s)>X2(s)})ds + ρ

∫ t

0
1{X1(s)>X2(s)} dV1(s)

(8.4)

+
∫ t

0
1{X1(s)≤X2(s)}

(
σ dV2(s) + dLX1∧X2(s)

)
, 0 ≤ t < ∞,

X2(t) = x2 +
∫ t

0
(g1{X1(s)>X2(s)} − h1{X1(s)≤X2(s)})ds + ρ

∫ t

0
1{X1(s)≤X2(s)} dV1(s)

(8.5)

+
∫ t

0
1{X1(s)>X2(s)}

(
σ dV2(s) + dLX1∧X2(s)

)
, 0 ≤ t < ∞.

This system admits a unique-in-distribution weak solution (recall Remark 4.2), but not a strong
one. Indeed, pathwise uniqueness cannot hold for (8.4) and (8.5) if the process X (·) hits the
diagonal of the quadrant; but the diagonal is hit with positive probability during any time-interval
(0, t) with 0 < t < ∞, so in conjunction with Remark 4.3 we have (with strict inclusion)

F(V1,V2)(t) = F(R1,R2)(t) � F(X1,X2)(t). (8.6)



Diffusions with rank-based characteristics and values in the nonnegative quadrant 2483

8.1. Filtration identities

Let us recall the equations of (4.21) and (4.22), written now a bit more conspicuously in the form

B1(t) =
∫ t

0
1{X1(s)>X2(s)} dV1(s) +

∫ t

0
1{X1(s)≤X2(s)} dV2(s),

B2(t) =
∫ t

0
1{X1(s)≤X2(s)} dV1(s) +

∫ t

0
1{X1(s)>X2(s)} dV2(s).

From these equations and the filtration inclusion F(V1,V2)(t) ⊆ F(X1,X2)(t) of (8.6), we conclude
that the reverse inclusion F(B1,B2)(t) ⊆ F(X1,X2)(t) of (7.8) also holds. We have thus argued, for
all 0 ≤ t < ∞, the filtration identity

F(X1,X2)(t) = F(B1,B2)(t). (8.7)

Similar reasoning, applied to the equations

W1(t) =
∫ t

0
sgn

(
X1(s) − X2(s)

)
dV1(s) and W2(t) = −

∫ t

0
sgn

(
X1(s) − X2(s)

)
dV2(s)

from (4.23), (4.24), leads in conjunction with (8.3) to the filtration identity

F(X1,X2)(t) = F(W1,W2)(t), 0 ≤ t < ∞. (8.8)

• We conclude from these two identities and (8.6) that, under the condition (1.6), both of the pla-
nar Brownian motions (B1(·),B2(·)) and (W1(·),W2(·)) generate the same filtration as the state-
process (X1(·),X2(·)); whereas the planar Brownian motion (V1(·),V2(·)) generates a strictly
smaller filtration, that of the ranked processes (R1(·),R2(·)) in (3.14).

9. Questions of recurrence and transience

Hobson and Rogers [19] (see also Dupuis and Williams [9] and Chen [6]) study a reflecting
Brownian motion Z(t) := (X(t), Y (t)), 0 ≤ t < ∞ where the coördinate processes satisfy the
equations

X(t) = x + B(t) + μt + αLY (t) + LX(t), (9.1)

Y(t) = y + W(t) + νt + βLX(t) + LY (t). (9.2)

Here α,β,μ, ν are fixed real numbers with (μ, ν) �= (0,0); the process (B(·),W(·)) is a planar
Brownian motion with nonsingular covariance; and LX(·) (resp., LY (·)) is the local time process
at the origin of X(·) (resp., Y(·)).

Consider a bounded neighborhood N of the origin in [0,∞)2, and let T :=
inf{s ≥ 0: (X(s), Y (s)) ∈ N } be the first entry time in N . Theorem 1.1 in Hobson and Rogers
[19] provides a classification of recurrence and transience for the reflecting Brownian motion:
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1. For every initial point Z(0) = z ∈ [0,∞)2, we have

μ + αν− ≤ 0, ν + βμ− ≤ 0 ⇐⇒ Pz(T < ∞) = 1.

2. For every initial point Z(0) = z ∈ [0,∞)2 and for some constant C > 0, we have

Ez(T) < ∞ ⇐⇒ μ + αν− < 0, ν + βμ− < 0 �⇒ Ez(T) ≤ C
(
1 + ‖z‖).

Here the dichotomies are determined by the effective drift rates μ + αν− and ν + βμ−, rather
than the pure drift rates μ and ν. This is because the local time LX(t) grows like μ−t , so the
effective drift rate of the process Y(·) is ν +βμ−; similarly, the local time LY (t) grows like ν−t ,
so the effective drift rate of the process X(·) is μ + αν−.
• Let us apply this result to the system of (4.35) and (4.36) for the ranks R1(·) = X1(·) ∨ X2(·),
R2(·) = X1(·) ∧ X2(·) of the processes X1(·),X2(·) constructed in (4.28) and (4.29), assuming

λ > 0 and 0 < σ < 1

in (1.1). Comparing (9.1)–(9.2) with

R1(t) − R2(t) = (r1 − r2) − λt + ρV1(t) − σV2(t) + LR1−R2(t) − LR2(t), (9.3)

R2(t) = r2 + gt + σV2(t) − (
LR1−R2(t)/2

) + LR2(t), (9.4)

an equivalent form in which the system of (3.21)–(3.22) can be cast, we make the identifications

μ = −λ = −(g + h) < 0, ν = g > 0, α = −1, β = (−1/2).

The first passage time takes the form T := inf{s ≥ 0: (R1(s) − R2(s),R2(s)) ∈ N }, and the
effective drift rates become

−(g + h) + (−1) · 0 = −(g + h) < 0, g + (−1/2)(g + h) = (g − h)/2.

Thus, from Hobson and Rogers [19], for every initial point (r1 − r2, r2) ∈ (0,∞)2 we have:

P(T < ∞) < 1, if g > h;
P(T < ∞) = 1, if g ≤ h; and
E(T) < ∞, if g < h.

We translate this observation to the following claims for (X1(·),X2(·)):
• If g > h, we have P(inf0≤t<∞ R1(t) = 0) < 1;
• If g ≤ h, we have P(inf0≤t<∞ R1(t) = 0) = 1. Furthermore, the condition g < h is neces-

sary and sufficient for positive recurrence, that is, for the hitting time of any given Borel set
with positive Lebesgue measure by the vector process (X1(·),X2(·)) to have finite expecta-
tion for all starting points z ∈ [0,∞)2.

The reflection and covariance matrices in (9.3)–(9.4) do not satisfy in general the so-called
“skew-symmetry condition” of Harrison and Williams [18], Williams [34]. Hence, the unique
invariant distribution is not of “exponential form” in general. It is an open problem to identify
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the general form of the invariant distribution for the process (R1(·) − R2(·),R2(·)); but we de-
scribe this invariant distribution in a special case in the subsection that follows, based on results
of Dieker and Moriarty [8].

9.1. Densities of sum-of-exponentials type

In this subsection, we shall study a special type of invariant densities for the ranks (R1(·),R2(·)),
applying Theorem 1 of Dieker and Moriarty [8]. This result provides, in certain cases, a formula
for the invariant probability density of a reflected Brownian motion with drift, in a wedge with
oblique constant reflection on its faces. If α = (θ1 + θ2)/ξ = −� for some integer � ≥ 0, then the
invariant probability density p(·, ·) is of the sum-of-exponentials type, that is, proportional to

π(x) =
�∑

k=0

ck

[〈
μ, (I2 − Rotk)ν1

〉
e−〈μ,(I2−Rotk)x〉 − 〈

μ, (I2 − Refk)ν1
〉
e−〈μ,(I2−Refk)x〉] (9.5)

for x ∈ {(x1, x2) ∈ (0,∞)2 : 0 < x2 < x1 tan(ξ)}. Here Rotk and Refk are rotation and reflection
matrices, respectively,

Rotk := −
(

cos(2θ1 + 2kξ) − sin(2θ1 + 2kξ)

sin(2θ1 + 2kξ) cos(2θ1 + 2kξ)

)
, k = 0,1, . . . , �,

Refk := RotkJ,

J := diag(1,−1)

and

ck := (−1)k ·
∏

0≤i<j≤�,i,j �=k〈μ, (Roti − Rotj )e1〉
〈μ, (Refk − Rotk)ν1〉 , k = 0,1, . . . , �.

In formula (9.5) and in the definition of ck , the vector νi denotes the reflection vector on the ith
face; see Figure 2. This vector is usually normalized so that 〈νi,ni〉 = 1. Note, however, that this
normalization is made just for convenience; it does not affect either the reflected process itself,
or even the formula (9.5) (as its effect cancels out). Thus, we can safely apply the result with
unnormalized reflection vectors that we have already computed in Section 6.

To apply Theorem 1 of Dieker and Moriarty [8], first we transform (3.16) and (3.17) into
R1(·) = R1(·)/ρ, R2(·) = R2(·)/σ . The resulting process (R1(·),R2(·)) takes values in{

(x, y) ∈ R2: 0 ≤ y ≤ tan(ξ)x
}
,

where we use the notation cos(ξ) = σ from (6.5). The data of the reflection problem become

μ = (h/ρ,−g/σ)′, n1 = ν1 = (0,1)′, n2 = (ρ,−σ)′, ν2 = (1/ρ,−1/σ)′,

θ1 = 0, θ2 = 2ξ − π

2
, α = θ1 + θ2

ξ
= 2 − π

2ξ
.
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Figure 2. The wedge with the reflection parameters and the drift.

The result of DIEKER AND MORIARTY can be applied if α is a nonpositive integer −�, and this
amounts to ξ = π

2(�+2)
, that is, σ = cos(ξ) = cos( π

2(�+2)
). In particular,

α = 0, if σ 2 = 1/2;
α = −1, if σ 2 = 3/4; . . . and
ξ ↓ 0, θ2 ↓ −π/2, α ↓ −∞, as σ 2 ↑ 1 in the limit.

Note that the way of measuring the reflection angles in their paper is to add π/2 to the angles
(θ1, θ2) of Varadhan and Williams [33] but the parameter α is the same in both papers. Harri-
son [15], Foschini [14] and Dai and Harrison [7] also studied the stationary distribution of the
semimartingale reflected Brownian motion.
• In the case h > g > 0, σ 2 = ρ2 = 1/2 with α = 0 = �, θ1 = 0 = θ2, we may compute the
invariant distribution of the ranks explicitly. From (9.5), the stationary density function p(ξ1, ξ2)

of (R1(·),R2(·)) is given by

p(ξ1, ξ2) = 16h(h − g) exp
(−4(hξ1 − gξ2)

)
, 0 < ξ2 < ξ1 < ∞. (9.6)

In fact, by direct computation the second term of (9.5) is zero. The first term of (9.5) is propor-
tional to the exponential form exp(−2〈μ,x〉). We obtain (9.6) by observing that x = √

2(ξ1, ξ2)
′

and μ = √
2(h,−g)′. The value of the normalizing constant comes from the fact that the invariant

density of (R1(·) − R2(·),R2(·)) is the product of exponentials with parameters (4h,4(h − g)).

Remark 9.1. The skew-symmetry condition of Harrison and Williams [18] holds for the process
(
√

2R1(·),
√

2R2(·)) in the case of equal variances. Under this skew-symmetry condition, the
invariant density has the form of a product of exponentials.

These parameters may be derived from the following heuristics. By (3.15) and (3.16) and the
strong law of large numbers for Brownian motion, the local time grows linearly with

lim
t→∞

(
LR2(t)/t

) = lim
t→∞

(
R1(t) + R2(t) − ξ − νt − V (t)

)
/t = h − g,

lim
t→∞

(
LY (t)/t

) = h, a.s.
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Thus, with these growth rates of the local times, the effective drift rate of R1(·) − R2(·) in (3.15)
is heuristically −λt −R2(t) ≈ −(g +h)t − (h−g)t = −2ht for the large t > 0. Similarly, from
(3.16) the effective drift rate for R2(·) is (g −h)/(1/2) = −2(h−g), where we divide (g −h) by
1/2 because the quadratic variation of σV2(·) is a half of that of the standard Brownian motion.
Since the invariant density of Brownian motion in R+ with drift rate −λ < 0 reflected at the
origin is known to be exponential (2λ), we derive the parameters (4h,4(h − g)) for (R1(·) −
R2(·),R2(·)); this is consistent with the consequence of (9.6) mentioned in the first paragraph of
this Remark.

• Similarly, in each case of α = −�, � ∈ N we may compute the invariant density of (R1(·),R2(·))
from (9.5). For example, in the case h > g > 0, ρ2 = 1/4, σ 2 = 3/4 with

α = −1 = −�, θ1 = 0, θ2 = −π/6, ξ = π/6,

substituting x′ = (x1, x2) = (2ξ1,2ξ2/
√

3) and μ′ = (2h,−2g/
√

3) into (9.5), we obtain for
0 < ξ2 < ξ1 < ∞ the invariant density p(ξ1, ξ2) of (R1(·),R2(·)) as a linear combination of

π0(x) ∝ exp
{−8[hξ1 − gξ2/3]},

exp

{
−μ′

( 3
2 −

√
3

2√
3

2
3
2

)
x
}

= exp
{−[

(6h − 2g)ξ1 − 2(g + h)ξ2
]}

and

exp

{
−μ′

( 3
2

√
3

2√
3

2
1
2

)
x
}

= exp
{−[

(6h − 2g)ξ1 + (2h − 2g/3)ξ2
]}

.

Since limσ↑1 α = −∞, the invariant distribution of (R1(·),R2(·)) in (3.21), (3.22) with σ = 1
is conjectured to be proportional to the infinite sum of exponentials as the limit of (9.5). It is an
interesting open problem to determine the invariant distribution for the degenerate case σ 2 = 1,
as well as for general values of σ 2 that correspond to noninteger scalars α = (θ1 + θ2)/ξ = −�.

Appendix: The other degenerate case, σ = 0

We have assumed throughout this work that the variance of the laggard is positive. In this Ap-
pendix, we shall discuss briefly what happens when the laggard undergoes a “ballistic motion”
with positive drift g > 0, and the leader has unit variance, that is ρ = 1 and σ = 0.

Let us assume then that we have, on some filtered probability space (�,F,P),F =
{F(t)}0≤t<∞, two continuous, nonnegative and adapted processes X1(·), X2(·) that satisfy

dX1(t) = (g1{X1(t)≤X2(t)} − h1{X1(t)>X2(t)})dt + 1{X1(t)>X2(t)} dV (t), (A.1)

dX2(t) = (g1{X1(t)>X2(t)} − h1{X1(t)≤X2(t)})dt + 1{X1(t)≤X2(t)} dV (t) + d(t) (A.2)

for 0 ≤ t < ∞; here V (·) is standard Brownian motion, and (·) is a continuous, adapted and
nondecreasing process with (0) = 0 and∫ ∞

0
1{X2(t)>0} d(t) = 0, a.e. (A.3)
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The system of (A.1), (A.2) corresponds formally to that of (8.4), (8.5), in light of the notation
(3.7). No increasing component (such as (·) of (A.2)) is needed in (A.1) because, when the
process X1(·) finds itself at the origin, the positivity of its drift g > 0 and the fact that its motion
is purely ballistic at that point are sufficient to ensure that X1(·) stays nonnegative.

With the notation of (1.1), (3.1) it is fairly clear that the difference Y(·) = X1(·) − X2(·)
satisfies the equation

dY(t) = sgn
(
Y(t)

)(−λdt + dV (t)
) − d(t); (A.4)

we recall also the TANAKA formulae dY+(t) = 1{Y(t)>0} dY(t) + dLY (t) and (2.8), the latter
written now in the form

d
∣∣Y(t)

∣∣ = −λdt + dV (t) − sgn
(
Y(t)

)
d(t) + 2 dLY (t). (A.5)

With their help, we express the rankings of (3.14) as

R1(t) = X2(t) + Y+(t) = r1 − ht + V (t) +
∫ t

0
1{X1(s)≤X2(s)} d(s) + LY (t), (A.6)

R2(t) = X1(t) − Y+(t) = r2 + gt +
∫ t

0
1{X1(s)>X2(s)} d(s) − LY (t). (A.7)

We claim that we have the P-a.e. identities∫ ∞

0
1{X1(t)=X2(t)} dt = 0,

∫ ∞

0
1{X1(t) �=X2(t)} d(t) = 0. (A.8)

Indeed, the first identity is a direct consequence of (2.3) and (A.5). As for the second, we
observe that for any point t at which 1{X1(·)>X2(·)} d(·) increases, we have X2(t) = 0, thus
R2(t) = 0; but since g > 0, we see from (A.7) that t must then be also a point of increase for
LY (·), therefore X1(t) − X2(t) = Y(t) = 0. We conclude

∫ ∞
0 1{X1(t)>X2(t)} d(t) ≡ 0, thus

(·) =
∫ ·

0
1{X1(t)≤X2(t)=0} d(t) =

∫ ·

0
1{R1(t)=0} d(t)

in conjunction with (A.3), and so

d(R1 − R2)(t) = −λdt + dV (t) − 1{R1(t)=0} d(t) + 2 dLY (t);
a comparison with (A.5) gives now the second identity of (A.8). In particular, we have shown
that the process (·) is supported on the set of visits by the process (X1(·),X2(·)) to the corner
of the quadrant:

supp
(
(·)) ⊆ {

t ≥ 0: R1(t) = 0
} ⊆ {

t ≥ 0: R2(t) = 0
}
. (A.9)

After all this, the equations of (A.6), (A.7) take the particularly simple form

R1(t) = r1 − ht + V (t) + (t) + LY (t), R2(t) = r2 + gt − LY (t), (A.10)



Diffusions with rank-based characteristics and values in the nonnegative quadrant 2489

and give

X1(t) + X2(t) = R1(t) + R2(t) = ξ + νt + V (t) + (t), (A.11)

R1(t) − R2(t) = |y| − λt + V (t) + (t) + 2LY (t). (A.12)

• We observe from (A.9), (2.3) that supp((·) + 2LY (·)) ⊆ {t ≥ 0: R1(t) − R2(t) = 0}, so it
follows from (A.12) that the process R1(·) − R2(·) ≥ 0 is the SKOROKHOD reflection at the
origin of the Brownian motion with negative drift

Z(t) = |y| − λt + V (t), 0 ≤ t < ∞, (A.13)

namely

(t) + 2LY (t) = max
0≤s≤t

(−Z(s)
)+ = max

0≤s≤t

(−|y| + λs − V (s)
)+

, 0 ≤ t < ∞. (A.14)

• On the other hand, we observe from (A.10) that

0 ≤ 2R2(t) = 2r2 + 2gt − (
(t) + 2LY (t)

) + (t), 0 ≤ t < ∞,

so in light of (A.9) and the theory of the SKOROKHOD reflection problem once again, we obtain

(t) = max
0≤s≤t

(−2r2 − 2gs + (s) + 2LY (s)
)+

, 0 ≤ t < ∞. (A.15)

Remark A.1. Likewise, from (A.9) the support of (·) is included in the zero-set of the process
R1(·) + R2(·) ≥ 0; then (A.11) and the theory of the SKOROKHOD reflection problem give

(t) = max
0≤s≤t

(−ξ − νs − V (s)
)+

, 0 ≤ t < ∞. (A.16)

In other words, the sum X1(·) + X2(·) = R1(·) + R2(·) is Brownian motion with drift ν = g − h

and reflection at the origin; we are indebted to DR. PHILLIP WHITMAN for this observation.
Consequently, if h ≥ g, the process (X1(·),X2(·)) visits the corner of the nonnegative quadrant

with probability one; whereas, if h < g, we have

P
(
X1(t) = X2(t) = 0, for some t ≥ 0

) = e−2(g−h)ξ .

Remark A.2. Applying the TANAKA formula (2.8) to the continuous, nonnegative semimartin-
gales X1(·) + X2(·) in (A.11) and R1(·) − R2(·) in (A.12), we obtain the identifications

(·) = LX1+X2(·), (·) + 2LY (·) = LR1−R2(·), (A.17)

thus also

L|X1−X2|(·) − 2LX1−X2(·) = LX1+X2(·).
On the other hand, we have the P-a.e. properties

∫ ∞
0 1{R1(t)=0} dt = 0,

∫ ∞
0 1{R1(t)=R2(t)} dt = 0

from (A.10), (A.12) and (2.3). In conjunction with (2.4) and (2.2) – in particular, the fact that
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LX(·) ≡ 0 holds for a continuous semimartingale X(·) of finite variation – we obtain from these
equations and (A.9) the identifications

LR1(·) =
∫ ·

0
1{R1(t)=0} dR1(t) = (·) +

∫ ·

0
1{R1(t)=0} dLY (t),

0 = LR2(·) =
∫ ·

0
1{R2(t)=0} dR2(t) = g

∫ ·

0
1{R2(t)=0} dt −

∫ ·

0
1{R2(t)=0} dLY (t),

thus also ∫ ·

0
1{R1(t)=0} dLY (t) = g

∫ ·

0
1{R1(t)=0} dt = 0, (·) = LX1∨X2(·). (A.18)

It is rather interesting that the same process (·) should do “triple duty”, as the local time of
both the sum X1(·)+X2(·) and the maximum X1(·)∨X2(·), and as the increasing process in the
SKOROKHOD reflection for the minimum X1(·) ∧ X2(·).

Synthesis: Now we can reverse the above steps. Starting with a standard Brownian motion
V (·), we define Z(·), (·) and LY (·) via (A.13)–(A.15); then R1(·), R2(·) via (A.10), and

G(·) := R1(·) − R2(·) = Z(·) + (·) + 2LY (·) (A.19)

as in (A.12). It is clear from (A.14) that this process G(·) is the SKOROKHOD reflection at the
origin of the Brownian motion with negative drift Z(·) in (A.15), thus nonnegative. It is also clear
that the process (·) satisfies (A.9), as well as (A.16)–(A.18).

On a suitable extension of the probability space we need to find now a continuous semimartin-
gale Y(·) of the form (A.4), with the help of which we can “unfold” the process G(·) of (A.19)
in the form G(·) = |Y(·)|. Once this has been done we can define

X1(·) := R2(·) + Y+(·), X2(·) := R1(·) − Y+(·)
and verify the equations (A.1), (A.2) in a straightforward manner. In order to carry out this
unfolding, the method outlined in Section 4.2 is inadequate; it has to be modified as follows.

We enumerate the excursions of G(·) away from the origin, just as before, but now distinguish
between those that originate at the corner of the quadrant (R1 = 0), and the rest (R1 > 0). Ex-
cursions of the first type are always marked � = −1; while excursions of the second type are
assigned marks � = ±1 independently of each other, and with equal probabilities (1/2), just as
in Section 4.2. The resulting process Y(·) = �(·)G(·) satisfies G(·) = |Y(·)| and

dY(t) = sgn
(
Y(t)

)
1{R1(t)>0} dG(t) − 1{R1(t)=0} dG(t)

= sgn
(
Y(t)

)
1{R1(t)>0} · 1{G(t)>0} dG(t) − 1{R1(t)=0} · 1{R1(t)=R2(t)} d(R1 − R2)(t)

= sgn
(
Y(t)

)
1{R1(t)>0} · 1{G(t)>0} dZ(t) − 1{R1(t)=0} dLR1−R2(t)

= sgn
(
Y(t)

)
1{G(t)>0} dZ(t) − 1{R1(t)=0} dLR1−R2(t)
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= sgn
(
Y(t)

)(−λdt + dV (t)
) − 1{R1(t)=0}

(
d(t) + 2 dLY (t)

)
= sgn

(
Y(t)

)(−λdt + dV (t)
) − d(t),

that is, the equation of (A.4), as promised. We have used (2.4), (A.9), (A.17), (A.18) as well as
the P-a.e. properties

∫ ∞
0 1{G(t)=0} dt = 0,

∫ ∞
0 1{G(t)>0} d(G − Z)(t) = 0; the first of these is a

consequence of (2.3), and the second of SKOROKHOD reflection.
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