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ON WEYL GROUP EQUIVARIANT MAPS

ADAM KORÁNYI AND RÓBERT SZŐKE

(Communicated by Dan M. Barbasch)

Abstract. We prove an equivariant analogue of Chevalley’s isomorphism the-
orem for polynomial, C∞ or Cω maps.

0. Introduction

In the theory of symmetric spaces a fundamental role is played by Chevalley’s
extension theorem [H2, pp. 299, 340], [HC]:

Suppose g is a semisimple Lie algebra of noncompact type over R, θ a Cartan
involution, g = k + p the corresponding Cartan decomposition of g, and a ⊂ p a
maximal Abelian subspace. Let G be a connected Lie group with Lie algebra g,
and let K be the analytic subgroup corresponding to k. Then K acts on p by the
adjoint representation and W , the Weyl group, acts on a. The theorem states that
every W -invariant polynomial on a extends to a unique K-invariant polynomial on
p. It is an immediate consequence that the two polynomial algebras in question are
isomorphic.

This theorem remains true if “polynomial” is replaced by C∞ or Cω (see [D],
[H2, p. 295], and the comments at the beginning of our Section 1).

It is natural to ask whether analogous results hold for W -equivariant polynomial
(resp. C∞, Cω) mappings. In this paper we show that the answer is positive, and
in fact a substantial part of the solution is already contained, somewhat indirectly,
in [S] and [M1, M2].

Theorem 0.1. Any W -equivariant polynomial (resp. C∞, Cω) map a → a can be
extended to a K-equivariant polynomial (resp. C∞, Cω) map p → p. The extension
is unique.

The need for such an extension result arose in [D-Sz] in constructing hyperkähler
metrics on the tangent bundle of compact Hermitian symmetric spaces and where,
for the particular map in question it was checked case-by-case for the classical
groups. Another immediate consequence of the extension theorem is the following.
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Corollary 0.2. Let (M, g) be a symmetric space of compact or noncompact type,
m0 ∈ M , a ⊂ Tm0M a maximal flat subspace and W the Weyl group. Then every
W -equivariant C∞ (resp. Cω) map ϕ from a to a extends uniquely to an isometry
group equivariant C∞ (resp. Cω) map Φ from TM to TM . Φ is a (C∞ or Cω)
diffeomorphism iff ϕ is.

Theorem 0.1 provokes the next natural question. Does this theorem describe all
possible K-equivariant maps? This is answered by our next result, Theorem 0.3.

We call a K-equivariant map F : p → p radial if there exists a maximal Abelian
subspace a in p that is mapped into itself by F . Since K acts transitively on the
set of such a’s, a radial map necessarily maps every maximal Abelian subspace of
p into itself.

Assume now that g is simple. We say that g is of Hermitian type if p has a
K-invariant complex structure, i.e., if the associated symmetric space is Hermitian
symmetric.

Theorem 0.3. Let F : p → p be a K-equivariant polynomial (resp C∞ or Cω)
map. If g is not of Hermitian type, then F is radial. Let g be of Hermitian type
and let I be the complex structure on p. If Fj : p → p, j = 1, 2, are arbitrary
K-equivariant radial polynomial (resp. C∞ or Cω) maps, then F = F1 + IF2 is a
K-equivariant polynomial (resp. C∞ or Cω) map. Every K-equivariant polynomial
(resp. C∞ or Cω) map p → p arises in this way.

In Section 1 we discuss a structure theorem for W -invariant C∞ or Cω p-forms
inspired by Solomon’s similar result for W -invariant polynomial p-forms (cf. [S],
[H2, p. 363], [M1]). This structure theorem is important for our purpose because
W -invariant one forms are essentially the same thing as W -equivariant maps (see
Proposition 2.1).

In the first version of this paper we gave a complete proof of this theorem. But
while our paper was refereed, we discovered the papers [M1, M2], where P. Michor
already proved the result, essentially by the same method. Therefore, in this new
version we only include details that are important for our purposes.

Theorem 0.1 is proved in Section 2, and Theorem 0.3 is proved in Section 3.

1. W -invariant p-forms

Let E be an n-dimensional real vector space and W a finite reflection group on
E. A theorem of Chevalley ([C], [H2, Theorem 3.1, p. 356]) says that there exist
algebraically independent W -invariant real polynomials j1, . . . , jn, such that every
W -invariant real polynomial on E is a polynomial of j1, . . . , jn. In other words,
setting J (x) = (j1(x), . . . , jn(x)), for every W -invariant polynomial f on E we
have f = f̄ ◦ J with some polynomial f̄ on R

n. The same statement is true when
f (and f̄) are in C∞ [Sch], [D], or in Cω [L]. Note that these results immediately
imply the C∞ and Cω analogues of the Chevalley extension theorem.

The above results describe the structure of the W -invariant polynomial (resp.
C∞, Cω) functions, i.e., W -invariant 0-forms. We proceed to describe an analogous
structure theorem for W -invariant p-forms, where p > 0.

Proposition 1.1. Let 0 ∈ G ⊂ R
n−1 be open, B = G × (−ε, ε) ⊂ R

n, f ∈ Ck(B)
(resp. C∞(B) or Cω(B)) and f(x′, 0) ≡ 0, x′ ∈ G. Then F := f

xn
∈ Ck−1(B)

(resp. C∞(B) or Cω(B)) and F (x′, 0) = ∂xn
f(x′, 0).
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Proof. Let x = (x′, xn) be fixed and let g : B×[0, 1] → R be defined as g(x′, xn, t) =
f(x′, txn). The Newton-Leibniz formula applied to the function g(x, .) yields

f(x) =
∫ 1

0

(∂tg)(x, s)ds =
∫ 1

0

xn∂xn
f(x′, sxn)ds.

Proposition 1.2. Let X be a C∞-manifold and h ∈ C∞(X, R). Let Z(h) denote
the zeroes of h. Suppose dh(x) �= 0 if x ∈ Z(h). Now let f ∈ C∞(X, R), f |Z(h) ≡ 0.

Then F := f
h ∈ C∞(X, R). If X, h, f ∈ Cω, then F ∈ Cω as well.

Proof. The implicit function theorem and Proposition 1.1 yield the statement. �

Proposition 1.3. Let X be a Cω-manifold and h1, . . . , hr ∈ Cω(X, R). Let Zj

be the zero set of hj and Z =
⋃r

j=1 Zj. Assume that for each j, dhj |Zj
�= 0.

Furthermore, suppose that for every component M of Zj , for each k �= j, hk|M �≡ 0.
Let f ∈ C∞(X, R) (resp. ∈ Cω(X, R)) and f |Z ≡ 0. Then

F =
f

h1h2 . . . hr
∈ C∞(X, R) (resp. ∈ Cω(X, R)).

Proof. We prove the statement by induction on r. For r = 1 this is Proposition
1.2. Suppose we proved the statement for r − 1. Then

Fr−1 =
f

h1h2 . . . hr−1
∈ C∞(X, R) (resp. ∈ Cω(X, R)).

Let M be an arbitrary component of Zr. Then for 1 ≤ j ≤ r − 1, hj |M is �≡ 0 and
real-analytic. Therefore, the interior of Zj ∩ M in M is empty. Consequently, the
set

H := M \ (
r−1⋃
j=1

(Zj ∩ M))

is open and dense in M . By our assumption Fr−1|H ≡ 0. Hence Fr−1|M ≡ 0,
yielding that Fr−1|Zr

≡ 0. This together with Proposition 1.2 proves our claim. �

Now let E, W, j1, . . . , jn be as at the beginning of this section.

Structure Theorem I. Let α be a W -invariant polynomial, C∞ or Cω p-form
(p > 0) on E. Then α can be expressed uniquely as

(1.1) α =
∑

i1<···<ip

αi1,...,ip
dji1 ∧ · · · ∧ djip

,

where αi1,...,ip
are W -invariant polynomial, C∞ or Cω functions on E.

The polynomial case is Solomon’s theorem [S]. The C∞ case was proved by
P. Michor [M1, Lemma 3.3]. His proof could be slightly simplified by quoting [H2,
Lemma 3.7, p. 361], that immediately yields formula (4) in [M1, p. 1636]. The
real-analytic version follows the same line of reasoning as the C∞ case. To be
more precise, let σ1, . . . , σr be the reflections in W and β1 = 0, . . . , βr = 0 the
corresponding reflecting hyperplanes. Let π =

∏r
i=1 βi. If a Cω function g satisfies

g ◦ σ = detσ−1g for each σ ∈ W , then g must vanish on the zero locus of π and
Proposition 1.3 implies that g = πh, where h is a W -invariant Cω function.

The rest of the proof of [M1, Lemma 3.3] goes through literally, C∞ replaced by
Cω everywhere, proving the real-analytic version.
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Remarks. 1) If D is a W invariant open subset of E and α is a W -invariant p-form
over D, the same proof shows that α can be expressed by the same formula as in the
theorem, except the functions αi1,...,ip

are defined only on D and their smoothness
(i.e., C∞ or real-analytic) agrees with that of α.

2) The structure theorem can be restated as follows: For every W -invariant
polynomial, C∞ or Cω p-form α on E there exists a p-form ᾱ of the same smoothness
on R

n such that α = J ∗ᾱ. �

2. Equivariant maps

Let E be a finite-dimensional real vector space. As usual we identify the tangent
space of E at all points with E. Let b be a nondegenerate symmetric bilinear form
on E. Given a 1-form α on E (i.e., a section of T ∗E) we associate to it the map
hα : E → E defined by

(2.1) b(hα(p), v) = αp(v) (∀v ∈ E).

Clearly, α → hα is a bijection between 1-forms on E and maps of E to E.
If A is a linear transformation on E, we have A∗v = Av under our identifications.

If A is orthogonal with respect to b, then

(2.2) (A∗α)p(v) = αAp(Av) = b(hα(Ap), Av) = b(A−1hα(Ap), v).

Comparison with (2.1) shows that

(2.3) A∗α = α ⇐⇒ A−1 ◦ hα ◦ A = hα,

i.e., α is A-invariant iff hα is A-equivariant.
So we have proved the following:

Proposition 2.1. Let E be a finite-dimensional real vector space equipped with
a nondegenerate symmetric bilinear form b. Let G be a group acting on E by b-
orthogonal transformations and let α be a 1-form on E. Then α is G-invariant iff
the corresponding map hα : E → E is G-equivariant.

Now let f : E → R be a smooth function and A a linear transformation on E.
Since the pull-back by a smooth map commutes with the exterior derivative and
the origin is a fixed point of A we have

(2.4) f ◦ A ≡ f iff A∗df ≡ df.

We write ∇f for hdf . This is then just the classical notion of the gradient of f
regarded as an E-valued function on E. Now (2.2), (2.3) and (2.4) together imply:

Proposition 2.2. Let E be a finite-dimensional real vector space equipped with
a nondegenerate symmetric bilinear form b. Let G be a group acting on E by b-
orthogonal transformations and f : E → R a differentiable function. Then the
following statements are equivalent:

(1) f is G-invariant,
(2) df is G-invariant,
(3) ∇f is G-equivariant.

Now let j1 . . . jn be as at the beginning of Section 1. In light of Proposition 2.2,
the maps ∇ji : a → a are W -equivariant. Furthermore, as a consequence of the
Structure Theorem of Section 1 and of Proposition 2.1 we get the following.
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Proposition 2.3. Let En be an n-dimensional real vector space and W a finite
reflection group on E. Then every W -equivariant polynomial (resp. C∞ or Cω)
map ϕ : E → E is of the form

ϕ =
n∑

i=1

hi∇ji,

where each hi is a W -invariant polynomial (resp. C∞ or Cω) function.

We now return to the case of a real semisimple Lie algebra g with k, p, a, G, K,
W , as in the Introduction.

Proof of Theorem 0.1. Let j̃i be the K-invariant extension of ji to p. In view of
Proposition 2.3 and of the Chevalley extension theorem (and its C∞ and Cω ver-
sions, cf. the beginning of Section 1) it suffices to show that each ∇ji extends to a
K-equivariant polynomial map p → p. To prove this, we note that for H ∈ a the
K-orbit OH of H is orthogonal to a, since every tangent vector at H to OH is of the
form [Z, H] with Z ∈ k, and for every H ′ ∈ a, B([Z, H], H ′) = B(Z, [H, H ′]) = 0
(where B is the Killing form). If H is a regular element, comparison of the Iwasawa
and Bruhat decompositions shows that the codimension of OH in p equals dim a.
Since j̃i is constant on OH , it follows that

∇pj̃i(H) = (∇aji)(H).

By continuity this is then true for all H ∈ a. By Proposition 2.2, ∇pj̃i is K-
equivariant, so the proof is finished. �

Recall from the Introduction that a K-equivariant map F : p → p is called
radial, if there exists a maximal Abelian subspace a in p, that is carried into itself
by F . Theorem 0.1 yields an isomorphism between the space of W -equivariant
polynomial, C∞, resp. Cω, maps and K-equivariant radial polynomial, C∞, resp.
Cω, maps. The question whether there are other kinds of K-equivariant maps, will
be addressed in the next section.

A differential form α on p is called horizontal if α vanishes on the tangent vectors
of the K-orbits, i.e., ιX�α = 0 for all X ∈ k, where X� denotes the induced vector
field on p. Clearly, a K-invariant 1-form is horizontal iff the corresponding K-
equivariant map is radial.

As in the proof of Theorem 0.1, let j̃i be the K-invariant extension of ji to p.
Structure Theorem I, Proposition 2.2, Chevalley’s extension theorem and its C∞

and Cω versions imply:

Structure Theorem II. A polynomial (resp, C∞ or Cω) horizontal p-form on p

is K-invariant iff α can be expressed as

α =
∑

i1<···<ip

αi1,...,ip
dj̃i1 ∧ · · · ∧ dj̃ip

,

where αi1,...,ip
are K-invariant polynomials (resp. C∞, or Cω functions). The

imbedding ι : a → p yields an isomorphism between the space of horizontal K-
invariant p-forms on p and the space of W -invariant p-forms on a (cf. [M1, 3.7
Theorem]).
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3. Proof of Theorem 0.3

Let g be a real simple Lie algebra of noncompact type, with θ, k, p, a, G, K,
W , as in the Introduction. As usual, we write M , M ′ for the centralizer, resp. the
normalizer, of a in K. We set

pM = {v ∈ p | Ad(k)v = v, ∀k ∈ M}.

Lemma 3.1. If g is not of Hermitian type, then

(3.1) pM = a.

If g is of Hermitian type, then

(3.2) pM = a ⊕ Ia.

Proof. Denote by Σ the set of nonzero restricted roots with respect to θ, a. Let gλ

be the root space corresponding to λ ∈ Σ. The group M maps every root space gλ

into itself. Let S denote the (possibly empty) set of all roots λ ∈ Σ such that M
acts trivially on gλ. M ′ (and so the Weyl group as well) acts on Σ and it is not
hard to see that S is the union of full W orbits. The M action and θ commute on
g and θgλ = g−λ. This shows that λ ∈ S iff −λ ∈ S.

Choose an ordering in the dual of a. Then

(3.3) p = a ⊕ (Id − θ)(
⊕
λ>0

gλ).

Denote by S+ the positive roots in S. (3.3) implies

(3.4) pM = a ⊕ (Id − θ)(
⊕

λ∈S+

gλ).

It is well known that in case dim gλ > 1, M acts transitively on the unit sphere in
gλ. Therefore, all root spaces in (3.4) are 1-dimensional.

Let B be the Killing form of g (which is positive definite on p) and for a λ ∈ Σ,
denote by Aλ ∈ a the vector such that λ(.) = B(., Aλ). Let

A′
λ :=

2
λ(Aλ)

Aλ.

Our statements involve only the adjoint action of G and K. This is the same
for any connected version of G. Therefore, in the following we may assume that
G is contained in the simply connected version of its complexification. [H1, (4), p.
322] then says, that mλ := expGC

(iπA′
λ) ∈ K and then obviously mλ ∈ M for each

λ ∈ Σ.
Let λ, α ∈ Σ be arbitrary simple roots. Then

α(A′
λ) =

2α(Aλ)
λ(Aλ)

= n(α, λ)

is the corresponding Cartan integer. Let Xα ∈ gα be a nonzero vector. Then

(3.5) Ad(mλ)Xα = Ad(expGC
(iπA′

λ))Xα = eiπα(A′
λ)Xα = eiπn(α,λ)Xα.

(3.5) implies that M will certainly be nontrivial on gα (i.e., α �∈ S) if there is a
simple λ such that n(α, λ) is odd. This is the case if in the Dynkin diagram α is
tied to some λ by a single or a triple tie and also if there is a λ tied to α by a double
tie but α is shorter than λ (in which case n(α, λ) = −1).
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Assume now that Σ is reduced. The discussion above shows that S cannot
contain any simple root, except possibly in the case Cl (l ≥ 2, where l = dim a),
when there is one simple root, namely the longest one, to be called α, with only a
double tie to a shorter root, and in the case A1, where we call α the only simple
root.

One of the standard properties of reduced root systems (cf. [B, p. 279]) is that
every W -orbit in Σ contains a simple root. Therefore, S may possible be nonempty
only if the root system is of type A1 or Cl, (l ≥ 2) and α has multiplicity one. The
table in [H1, pp. 532–533] shows that in these cases g is of Hermitian type.

Now let Σ be nonreduced, i.e., of type BCl (l ≥ 2) or A1.
Now the discussion after (3.5) and the requirement dim gλ = 1 imply, by the

table in [H1, pp. 532–533], that S cannot contain any simple root. The union of
the W -orbits of the simple roots in Σ is everything, except the set of longest roots
and they form a single W -orbit. If β denotes the unique shortest simple root, this
is the W -orbit of 2β.

Consequently, in the nonreduced case S may only contain the orbit of longest
roots. In the non-Hermitian case, again by checking the table in [H1, pp. 532–533],
one can see that dim g2β > 1, showing that in this case S = ∅. This proves (3.1).

When g is of Hermitian type, I is in the center of Ad(K), whence it follows
that pM contains a ⊕ Ia. To see that pM cannot be larger we observe that, by the
discussion above, S may contain only the longest roots of the root systems Cl, or
BCl or A1, with the roots having multiplicity one. The number of longest positive
roots in these systems is l (resp. 1). So dim pM cannot exceed 2 dim a, proving
(3.2). �

Armed with the result of Lemma 3.1 we can now prove Theorem 0.3. Let F :
p → p be a K-equivariant map. Then F is, in particular, M -equivariant and thus
maps pM into itself.

If g is not of Hermitian type, (3.1) implies that F is radial.
If g is of Hermitian type, then I = Ad(k0), where k0 is in the center of K. In

particular, I as a map, p → p is K-equivariant and linear.
Hence for any two K-equivariant radial maps Fj , the sum F1 + IF2 is also K-

equivariant and its smoothness agrees with that of Fj .
Now let F : p → p be an arbitrary K-equivariant polynomial (resp. C∞ or Cω)

map. The restriction of F to a determines F completely. In light of (3.2) this
restriction maps into a⊕ Ia. Therefore, it is of the form f1 + If2, where fj : a → a.

Since F is K-equivariant, in particular, it is M ′-equivariant as well. But k0 is
central in K. This yields that fj are M ′-, and consequently W -equivariant maps.
Now from Theorem 0.1 we know that fj extends to a K-equivariant map Fj : p → p.
The maps G = F1 + IF2 and F are K-equivariant and their restriction to a is the
same. Therefore, G ≡ F .

Since a K-invariant 1-form α is horizontal iff the corresponding K-equivariant
map hα is radial, as an immediate corollary of Theorem 0.3 we get:

Corollary 3.2. Suppose α is a K-invariant polynomial (resp. C∞ or Cω) 1-form.
If g is not of Hermitian type, then α is horizontal. If g is of Hermitian type, then
there exist unique K-invariant horizontal polynomial (resp. C∞ or Cω) 1-forms
βj, j = 1, 2, such that α = β1 + Iβ2 and every 1-form of this type is K-invariant.
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1117 Hungary

E-mail address: rszoke@cs.elte.hu

http://www.ams.org/mathscinet-getitem?mr=0240238
http://www.ams.org/mathscinet-getitem?mr=0240238
http://www.ams.org/mathscinet-getitem?mr=0072877
http://www.ams.org/mathscinet-getitem?mr=0072877
http://www.ams.org/mathscinet-getitem?mr=1439696
http://www.ams.org/mathscinet-getitem?mr=1439696
http://www.ams.org/mathscinet-getitem?mr=0658537
http://www.ams.org/mathscinet-getitem?mr=0658537
http://www.ams.org/mathscinet-getitem?mr=1834454
http://www.ams.org/mathscinet-getitem?mr=1834454
http://www.ams.org/mathscinet-getitem?mr=1790156
http://www.ams.org/mathscinet-getitem?mr=1790156
http://www.ams.org/mathscinet-getitem?mr=0094407
http://www.ams.org/mathscinet-getitem?mr=0094407
http://www.ams.org/mathscinet-getitem?mr=0423398
http://www.ams.org/mathscinet-getitem?mr=0423398
http://www.ams.org/mathscinet-getitem?mr=1307550
http://www.ams.org/mathscinet-getitem?mr=1307550
http://www.ams.org/mathscinet-getitem?mr=1401750
http://www.ams.org/mathscinet-getitem?mr=1401750
http://www.ams.org/mathscinet-getitem?mr=0370643
http://www.ams.org/mathscinet-getitem?mr=0370643
http://www.ams.org/mathscinet-getitem?mr=0154929
http://www.ams.org/mathscinet-getitem?mr=0154929

	0. Introduction
	1. W-invariant p-forms
	2. Equivariant maps
	3. Proof of Theorem 0.3
	Acknowledgement
	References

