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Abstract. In a low-order chaotic global atmospheric circu-
lation model the effects of deterministic chaotic driving are
investigated. As a result of driving, peak-over-threshold type
extreme events, e.g. cyclonic activity in the model, become
more extreme, with increased frequency of recurrence. When
the characteristic time of the driving is comparable to that
of the undriven system, a resonance effect with amplified
variance shows up. For very fast driving we find a reduced
enhancement of variance, which is also the case with white
noise driving. Snapshot attractors and their natural measures
are determined as a function of time, and a resonance effects
is also identified. The extreme value statistics of group max-
ima is found to follow a Weibull distribution.

1 Introduction

In the modeling of climate systems the approach of stochastic
parametrization is a disputed topic and active area of research
(Wilks, 2008). Any model of such a complex system is in-
evitably a poor approximation of reality since many param-
eters, or perhaps even underlying physical processes, are not
precisely known. Therefore it is worth simulating these un-
certainties by the inclusion of proper noise terms into the pa-
rameters of the dynamics, as suggested by Ghil et al. (2008)
and Chekroun et al. (2010). In their studies stochasticity
is represented by white noise. Our aim is to extend the
stochastic approach from using white noise to using tempo-
rally chaotic drivings. The novelty of this is that, although
the driving remains random-like, its time scale need not to
be much shorter than that of the basic dynamics, but it can be
comparable or even longer than that.
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For a first test of the effects of replacing white noise by
chaotic driving a conceptual model of the atmosphere is used
here, Lorenz’s global atmospheric circulation model (L84)
(Lorenz, 1984). This low-order model is not only appeal-
ing (Shil’nikov et al., 1995; Provenzale and Balmford, 1999;
Tél and Gruiz, 2006, p. 293; Freire et al., 2008), but it
can be derived from the quasi-geostrophic equations gov-
erning the large-scale motion of the atmosphere (Roebber,
1995). As a driving, we choose a paradigmatic chaotic
signal, the first component of the classical Lorenz equa-
tions (L63) (Lorenz, 1963) coupled in an additive manner.
The coupling of low-order models has already been used in
the climate context, see e.g. the works of Palmer (1993) and
Ghil and Jiang (1998). We focus on changes in the variabil-
ity of the system, relative to either the undriven or the noisy
case.
The study of extreme events is timely, and has already

been investigated in elementary chaotic models (Nicolis
et al., 2006; Nicolis and Nicolis, 2009). In our chaotically
driven model climate we study extreme events, defined in a
peak-over-threshold sense (Blender et al., 2008), and their
return time statistics as a function of the time scales and the
threshold level. We demonstrate that with chaotic driving,
relative to the undriven system, (i) seldom occurring events
becomemore extreme, and (ii) the return times of moderately
extreme events might become shorter or longer depending on
the time scale of driving and the threshold level – while they
are always shorter with white noise. Given that the atmo-
spheric circulation model L84 derives from fluid dynamics
(Roebber, 1995), our results prompt the importance of using
a proper – perhaps chaotic – parametrization for more realis-
tic predictions.
The concept of pullback attractors of driven continuous-

time dynamical systems (Arnold, 1998; Ghil et al., 2008) has
been suggested (Chekroun et al., 2010) as a promising tool to
describe the variance of white noise-driven climate dynam-
ics in a novel way. They propose that one should investigate
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an ensemble of trajectories (a broadly applied method in the
spirit of ensemble forecasting), all subject to the same real-
ization of noise. After some time, the ensemble traces out
a pullback attractor, and also determines a distribution on
it. The attractor is changing continuously in time, and typ-
ically remains chaotic throughout its evolution. The pull-
back attractors, that are the fractal building blocks of fuzzy
noise-induced chaotic attractors (Bódai et al., 2011), provide
a more detailed description of the process than the traditional
methods.
In the dynamical systems community, a practically equiv-

alent concept, that of the snapshot attractors, has been known
for many years (Romeiras et al., 1990). The idea is particu-
larly well suited for understanding the advection of passive
particles in random flows (Sommerer and Ott, 1993; Jacobs
et al., 1997; Neufeld and Tél, 1998), and explains experi-
mental findings (Sommerer and Ott, 1993). In this setting
the driving might also be some chaotic process.
In general, a snapshot or pullback attractor is an object

which attracts any trajectories initialized in the infinitely re-
mote past within a basin of attraction (Ghil et al., 2008). A
snapshot attractor can be either a simple object or a fractal.
In the following, extreme-event-related return time statis-

tics is pursued also in the snapshot attractor framework. We
find that the magnitude of seldom occurring events also de-
pends on the time scale of chaotic driving in a non-monotonic
manner, revealing a resonance effect. In terms of snapshot
probability distributions this resonance manifests itself in
sharp peaks.
The paper is organized as follows. Next, in Sect. 2, the

model is introduced and explained. In Sect. 3 the concept
of snapshot attractors is reviewed in more details, and the
technique of their construction is described. Measures of ex-
tremal behavior in the snapshot framework are then identi-
fied. Subsequently, in Sect. 4, the results of extreme event
return time statistics are presented, in the snapshot ensemble
as well as the single trajectory framework. The extreme value
statistics is identified as Weibullian. In the end, in Sect. 5, we
discuss our results and draw conclusions.

2 Model

The model to be studied reads as follows:

ẋ = −y2
−z2 −ax +a(F0+Ax̃),

ẏ = xy −bxz −y +1,
ż = xz+bxy −z,

 (L84)

˙̃x = τσ (ỹ − x̃),

˙̃y = τ(ρx̃ − ỹ − x̃z̃),

˙̃z = τ(−βz̃+ x̃ỹ).

 (L63)

The physical content of Eq. (L84) is that the time-dependent
solar forcing

F(t) = F0+Ax̃(t) (1)

creates a temperature difference between the equator and the
pole, which influences most directly the wind speed of the
Westerlies represented by x. As a counter effect to thermal
imbalances, cyclonic activity facilitates poleward heat trans-
port, two modes of which are represented by y and z. By
definition, the variables correspond to global averages, and
there is no possibility for studying local quantities as in more
realistic models or by measurement data.
Note that the coupling between L84 an L63 acts one way

only, that is, L84 does not influence L63. The coupled sys-
tem of L84 and L63 is autonomous. Being interested in the
climate model L84, we can consider it as a non-autonomous,
or driven, subsystem subject to a time-dependent solar ra-
diation F(t) (1) where the temporally irregular part of the
driving follows from the x̃-component of L63 for A 6= 0.
For the parameter setting we take the common choice:

a = 1/4, b = 4 (L84) and σ = 10, ρ = 28, β = 8/3 (L63).
Parameter a is the ratio of the damping times of the Wester-
lies and the cyclonic eddies, while b is the ratio of relaxation
times of respectively the displacement and amplification of
eddies by the Westerlies. Both sets of equations appear in a
dimensionless form with the time unit in L84 corresponding
to about 5 days, the characteristic damping time of eddies.
The time-scale factor τ is viewed as the ratio of the char-
acteristic times in L63 and L84. The choice of τ ≈ 5 can
be interpreted as a daily influence of, say, convectional ori-
gin, while τ ≈ 1/73 corresponds with an annual time scale
of driving. The coupling strength A is set to realize rather
strong perturbation, superimposed onto a static part of the
forcing, F0. The standard choices with A = 0 are (Lorenz,
1984): F0 = 6 for summer, and F0 = 8 for winter. For the
driven case we choose F0 = 8 and A = 0.025. Given that
x̃(t) ∈ [−17.5,17.5], we have F(t) ∈ [7.56,8.44]. In Eq. (1)
Ax̃ may be interpreted as the variation of the albedo either
through cloud formation due to varying weather conditions
(τ ≥ 1), or orbital eccentricity (τ � 1). More generally F(t)

can also be related to the strength of the green house effect.

3 Snapshot attractors

The autonomous L84 system (A = 0) exhibits regular sum-
mer and chaotic winter (see bifurcation diagram in Fig. 1e).
The dynamics can be conveniently visualized by a 2-D
Poincaré section of the attractor, taken traditionally as the
z = 0 section.
In the driven, nonautonomous system, when using a sin-

gle trajectory, the attractor on the z = 0 Poincaré section (PS)
is fuzzy. In contrast, if an ensemble of trajectories of the
L84 system is followed – with a smooth initial distribution
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Fig. 1. (a) Chaotic attractor on the Poincaré section z = 0,ż > 0,
of the undriven system (A = 0) with F0 = 8 and (b–d) snapshot
attractors of the chaotically driven system (A = 0.025) with τ = 1,
taken at the indicated times (when F takes values of 7.89, 8.16, and
7.65, respectively, and the instantaneous measure µ of the island is
also indicated). (e) Bifurcation diagram of the y coordinate with
A = 0. The arrow indicates the range swept by the signal F given
by Eq. (1). Dots around y ≈ 2 correspond to a chaotic “island” or
points from periodic attractors.

at t0 = 0 – up to a certain time t � 1, the momentary coordi-
nates x,y,z trace out a fractal object, the snapshot attractor,
whose shape is continuously changing over time t . Its z = 0
section is also a fractal, which is commonly referred to also
as a snapshot attractor. The ensemble is necessarily of finite
size in numerical studies, and particles fall on the surface of
intersection with zero probability at any given time. This sit-
uation can be catered for naively by considering a δz neigh-
borhood of the chosen sectioning surface, viewing particles
from within a “thick slice”. The problem with this technique
is, however, that the resulting distribution of retained parti-
cles does not represent the distribution over the true instan-
taneous PS. An appropriate technique to overcome this is the
following. The unique time instants when the particles, each
and every one, cross the surface are recorded, and those par-
ticles together are retained to form a PS whose crossing time
fall in a particular time interval of length δt � 1. We use
δt = 0.01.

Snapshot attractors are shown in Fig. 1b–d in various time
instants. It is remarkable that the snapshot attractors of this
model remain in the first quadrant of the x–y (z = 0) plane
for any time. The time is measured from after 100 time
units when the N = 107 particles, initially evenly distributed
in x ∈ [1.15,1.25], y ∈ [1,1.1], z = 0, already reached the
3-D snapshot attractor. (A typical convergence time to the
attractor is estimated to be 30 time units.) The equations
were simulated using a fourth order Runge-Kutta integrator,
with a fixed time step of h = 0.005. Note that the pattern
changes with time, but keeps the fractal character. The snap-
shot attractor consists of a “mainland”, slightly displaced and
distorted over time, and occasionally an “island” which can
grow large or disappear for finite periods of time. Thus, the
island is identified as a feature in which the deviation of the
driven system from the undriven one (Fig. 1a) is clearly man-
ifested, since the PS and hence the island certainly never
changes in the undriven case.
One might ask if the appearance of the island is not an arte-

fact due to a special choice of the PS. To answer this ques-
tion a 3-D snapshot attractor is shown in Fig. 2, whose PS
is shown in Fig. 1c. It can be seen that its “front view” is
not centrally symmetric. The maximal extension of the at-
tractor consist in a bulge, which can be regarded to represent
extremal behavior. When traditionally taking an intersection
with z = 0 for the better visualization of the fractality, it is
this bulge that appears as an island. It is fortunate that the
traditional section z = 0 properly reflects the presence of the
bulge.
In physical terms any region belonging to only large values

of y or z represents extreme cyclonic activity in the model.
Since the bulge or the island is associated with large y (> 1.9)
values, and because of their unique shape in this model, the
island is particularly well suited to represent extreme events
in this model. The natural measure µ of the island is the
probability that a trajectory of the ensemble visits the island
on the PS. Numerically it is well approximated by the rel-
ative number of particles hitting the region of the island on
the PS at a given instant of time. In Fig. 3 time series of
µ is shown for various values of τ . These are segments of
longer time series of length tf = 500. In the diagrams, the
upper horizontal line indicates the maximal island measure
of all those undriven systems (A = 0) for which F0 is from
the range of the arrow of Fig. 1e. Regular regimes where no
islands exist are excluded. It is perhaps the most remarkable
feature of the diagram that the maximal value 0.044 of the
island measure with constant F = F0 (found at F0 = 8.33) is
exceeded regularly and significantly. The island measure µ

can range up to 0.6 or more with τ = 1 (not shown). The
snapshot in Fig. 1b represents a case with µ = 0.174. We
note that defining an island by y > 1.9 results in a maximal
island “measure” of 1/13 = 0.077 for the dominant period-13
attractor in the periodic window. This value is also exceeded
by far.
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Fig. 2. Front, side and top views of the 3-D snapshot attractor at t =

2.9, the z = 0 section of which is shown in Fig. 1c. The horizontal
line indicates the z = 0 surface of intersection.

For comparison we also studied L84 driven bywhite noise:
x̃ in L84 is replaced by a homogeneously distributed random
variable in [−17.5,17.5]. It is worth noting that in this case
the island on the PS was found to never disappear. This in
itself is a hint of the fact that the variance of extremes is
larger with chaotic driving.
By a mere observation of the islands it is surprising that

their measure can be comparable with that of the full at-
tractor. The distribution on the snapshot attractor, how-
ever, explains the phenomenon (Fig. 4b), showing a strong
accumulation of particles in some parts of the island. For
comparison, Fig. 4a shows the undriven case from Fig. 1a
with µ = 0.011.
The probability distribution Py of y for the 3-D snapshot

attractors, whose PS’s are displayed in Fig. 1b–d, is also eval-
uated (Fig. 5). With chaotic driving there is a clear tendency
of the distribution to have sharp peaks, which are displaced
and resized over time. These are similar features to those
exposed in Fig. 4.
It is worth emphasizing that for the range of parameters in-

vestigated the snapshot attractor is never found to be regular
in spite of the fact that the admittable F values cover sev-
eral periodic windows of the undriven problem (see Fig. 1e);
i.e. chaos suppresses the regular behavior.
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Fig. 3. Time series of the island measureµ for (a) τ = 1/10, (b) τ =

1, and (c) τ = 10. The measure of the island is plotted with a time
increment of 0.05. The number of points in the sections is varying
between about 5000 and 16 000 (with N = 106). Upper horizontal
line indicates the maximal value of µ = 0.044 for the undriven sys-
tem with fixed F0 in [7.56, 8.44], i.e. in the interval in which the
driving changes; the lower one indicates µ(F0 = 8) = 0.011.

Fig. 4. The natural distribution P of the attractor on the PS indicates
the strong differences in the island measure. The distributions in
panels (a) and (b) correspond to Fig. 1a and b with µ = 0.011 and
µ = 0.174, respectively. A number of 250 bins are used in both x

and y directions, and the PS’s involve about 35 000 attractor points
each.

4 Extreme event recurrence time and extreme
value statistics

4.1 Recurrence time statistics

Ensemble (snapshot) framework

The statistics of extreme events in terms of the time series of
µ(t) can be studied in a peak-over-threshold sense with some
threshold level µT . The return time tr of an extreme event
is the time interval between a pair of subsequent descend-
ing and ascending branches of the time series belonging to a
chosen value of µT . The dependence of mean return times t̄r
on threshold µT is displayed in Fig. 6. Each curve is shown
up to a threshold value µmax beyond which the statistics is
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Fig. 5. Probability distribution (histogram) Py of y on the 3-D snap-
shot attractors corresponding to Fig. 1. A bin size of 0.005 is used
to construct the histograms.
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Fig. 6. Dependence of the mean return times t̄r on the threshold
island measure µT of the snapshot attractors, based on a time series
of length tf = 500 time units (parts of them shown in Fig. 3).

poor because of the finite length tf = 500. For all τ ’s stud-
ied, a close to exponential scaling can be observed beyond a
certain threshold level. The τ -dependence is nonmonotonic,
which can be seen as a resonance effect; the return times are
the shortest in case of τ = 1, when extreme events tend also
to be much more extreme. Indeed, more high peaks can be
seen in Fig. 3b than in a and c. Near zero level (µ < 0.03)
events, on the other hand, reveal monotonic dependence of t̄r
on τ , also consistent with the time series. A minimum occurs
at these low levels, presumably because of the one-sided fea-
ture of the time series: lower turning points are missing due
to the disappearances of the island.

Single trajectory framework

The effects of chaotic driving and its time scale τ are studied
also in terms of the continuous time-dependence of y. Qual-
itatively the time series (not shown) look very similar for the
different τ ’s. However, the dependence of the mean return
times on a threshold yT, displayed in Fig. 7, admits more
difference. Each curve is shown up to a maximal threshold
value ymax beyond which the statistics is poor. Two main
features can be seen: (i) The driving turns out to make the
dynamics more prone to extremes, both in terms of increased
levels of ymax, i.e. amplified variances, and increased fre-
quency of occurrence of the most extreme events. This latter
is not independent from the former, as in fact the maximal
extreme event takes infinitely long time to occur again and
because of an increase in ymax with driving, extremes of a
magnitude that was maximal for the undriven case will have
a finite frequency. To compare the relative frequency of ex-
tremal behavior for different time-scale factors (τ ), regard-
less the ymax limit values that the behavior is bounded by, the
kurtosis is commonly evaluated. We found that in the driven
cases the kurtosis is also enhanced. The increased levels of
ymax are consistent with the appearance of islands of larger
extent in the y-direction, as exemplified by Fig. 1a vs. b, and
depend nonmonotonically on τ . (ii) As for moderately ex-
treme events, the mean return time varies in a nonmonotonic
manner with τ , and can be larger or smaller relative to the
undriven case. In the limit of increasingly fast driving the
undriven problem is approached. This is attributed to a “re-
sistance” of the attractor to fast driving.
Points (i) and (ii) are independent but both of them are

related to the distribution of the values of y realized over
time. They are respectively reflected in (i) a longer and
(ii) a broader or thinner tail. As for (ii), it is noted that
the mean return times are related to the normalized cumu-
lative distribution F(yT < y) by the Kac lemma, such that
t̄r ∝ 1/F (yT < y) (Altmann and Kantz, 2005).
For comparison, results obtained with white noise driving

(by replacing x̃ in (L84) by a random variable uniformly dis-
tributed in [−17.5,17.5]) are also shown in Fig. 7. Similarly
to fast chaotic drivings, the graph deviates only slightly from
that of the undriven case, but a slight increase in the fre-
quency of extreme events applies uniformly over the consid-
ered range of thresholds.
To characterize the frequency of extreme events, we eval-

uate the distribution P(tr) of return times tr (Bunde et al.,
2004) (inset of Fig. 7) with chaotic driving. The distri-
bution appears to be consistent with an exponential decay,
∝ e−0.055tr . Such a form has been found in simple chaotic
maps (Nicolis and Nicolis, 2009), and corresponds in general
to approximately uncorrelated data (Blender et al., 2008),
in agreement with the property of Poincaré recurrences in
chaotic systems (Altmann and Kantz, 2005).
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Fig. 7. Dependence of the mean return times t̄r on the threshold
yT, based on the y(t) time evolution over 500 time units. The un-
driven case (·) and the scenario of driving with white noise (+) are
included. Inset: distribution P(tr ) of return times tr for τ = 1, based
on data of about 4 ·105 values, represented on 2 ·104 bins.

4.2 Extreme value statistics

The extreme value statistics characterizes the tail of the dis-
tribution of model variable y. Therefore the maximal ele-
ments of large groups of consecutive maxima of the time
series are considered. As an example, distributions of max-
imal elements in groups of 500 are displayed in Fig. 8 for
F(t)’s centered at different F0’s. The values of F0 were
chosen such that the excitation signal F(t) sweeps regular
(F0 = 6) or chaotic (F0 = 8) regimes of the bifurcation di-
agram (Fig. 1e), and also that it sweeps both regular and
chaotic regimes (F0 = 7.5).
Distributions of such maxima in the asymptotic limit can

be described by a three parameter (E,σ,γ ) family of gen-
eralized extreme value distributions (GEV), which combines
the Gumbel (γ → 0), Fréchet (γ > 0) and Weibull (γ < 0)
families (Coles, 2001). The functional form of the GEV dis-
tribution can be fitted to sample data in order to determine the
prevailing type of distribution. The location (E) and scale
parameters (σ ) are the mean and standard deviation of the
sample, and the shape parameter γ is varied to minimize the
fitting error. The fitting procedure is done iteratively by in-
creasing the size of groups of consecutive maxima (Embrecht
et al., 1997). For a fixed length of time series, the increasing
group size will compromise the number of group maxima
used for fitting, and therefore increasing errors in estimating
γ are incurred. The original time series length has to be long
enough that an approximation of the limit value be possible
with relatively small errors. For our analysis we generated a
number of about 107 maxima, with which an iterative esti-
mation of the shape parameter resulted in the diagram shown
in Fig. 9. From this an approximation of the limit values
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Fig. 8. Distribution (histogram) P(yT) of maximal elements yT in
groups of 500 consecutive maxima of y(t) for different values of
F0 (and τ = 1). Each histogram is constructed using 17 000 data
points, represented uniformly over 1000 bins in the range [1.6,2.5].

are obtained as γ = −0.27, −0.38, −0.35, respectively for
F0 = 6, 7.5, 8, which admit Weibull distributions in all cases.
These findings, single-sided distributions, are in agreement
with the fact that extreme events are limited by a finite max-
imum determined by the attractor of the driven L84 system.
The shape parameter γ is almost the same for the chaotic and
mixed cases. In all cases 1/|γ | > 2.
For a reference it is noted that uniform, triangu-

lar, and gaussian parent distributions generate exponential
(1/|γ | = 1), Rayleigh (1/|γ | = 2), and Gumbel (1/|γ | →∞)
extreme value distributions, respectively. With a continuous
variation of γ , the case of the Rayleigh distribution consti-
tutes a critical one when the tail of the distribution turns from
convex to concave in a point of inflection. In all our cases the
tails of the probability density of group maxima and also the
(unknown) parent distribution are convex, i.e. they have gra-
dients that are monotonically vanishing.
What is markedly different for the regular case, is the scale

parameter σ , as indicated by Fig. 8. We have found the fol-
lowing values: σ = 0.0047, 0.1191, 0.0306, respectively for
F0 = 6, 7.5, 8. These figures reveal another interesting effect
that the greatest variability of extremes occurs for the mixed
case.

5 Discussions

Our model climate is a fully deterministic one without any
noise. The climate model L84 is a nonautonomous subsys-
tem driven by the other subsystem L63. As a consequence
of the driving, the method of snapshot (pullback) attractors
can be applied. For the information dimension of the snap-
shot attractor the Kaplan-Yorke formula holds (Ledrappier
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Fig. 9. Estimates of the shape parameter γ of the GEV distribution
for varying group size and for different values of F0 (and τ = 1).
The errorbars indicate the 95% confidence interval of estimation.

and Young, 1988) implying that the dimension is indepen-
dent of time. The numerically determined values can, how-
ever, exhibit large fluctuations (Bódai et al., 2011).
We checked that other realizations of the driving (e.g. L63

initialized with a different state) do not modify the statistics.
When the Rössler model (Tél and Gruiz, 2006, p. 190) is
used for driving, the main characteristics (i) and (ii) remain
the same. In comparison with this, when using L63 for
driving, the convergence to the undriven problem is slower,
which is believed to be due to the alternation between the
“wings of the butterfly”, whose time scale is longer than that
of the motion on one wing. Approaching the undriven case
entails the permanent presence of the island for sufficiently
large τ ’s. Having no “island” is thus an extreme event, not
observed with fast driving. This is the case also for the white
noise-driven dynamics, i.e. it has the characteristics of a fast
driving.
As a deterministic driving has a nontrivial time scale, a

resonance effect might occur and thereby enhance variabil-
ity, i.e. the magnitude of extremes, and also their relative fre-
quency. Indeed, we also evaluated the kurtosis of the distri-
bution of variable y, and found a small but marked increase
in resonance.
The structured chaotic “noise”, with the possibility of

varying time scales, thus, renders chaotic driving to be more
interesting and realistic than white noise. This observation
might lead to better predictions when applied to more realis-
tic climate models. In a more general sense, in any kind of
complex modeling where uncertainties are taken into account
as noise, the use of chaotic driving might lead to increased
variability than white noise.

Acknowledgements. Valuable comments by M. Ghil, Z. Rácz,
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