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Eötvös Loránd University

Faculty of Informatics
Budapest, Hungary

email: locsi@inf.elte.hu

Abstract. The Nelder–Mead simplex method is a widespread applied
numerical optimization method with a vast number of practical applica-
tions, but very few mathematically proven convergence properties. The
original formulation of the algorithm is stated in R

n using terms of Eu-
clidean geometry. In this paper we introduce the idea of a hyperbolic
variant of this algorithm using the Poincaré disk model of the Bolyai–
Lobachevsky geometry. We present a few basic properties of this method
and we also give a Matlab implementation in 2 and 3 dimensions.

1 Introduction

The Nelder–Mead simplex method [10] was published in 1965 and since then
it has been applied in an enormous amount of practical optimization prob-
lems basically in every area of applied science. It has became one of the most
widely known direct search methods for function minimization, it is also in-
corporated in the fminsearch command of numerical computational software
systems such as Matlab or Scilab. Also the method’s mathematical study has
gained much attention, unfortunately there is very little known about its con-
vergence properties. A breakthrough in lack of proven properties appeared in
[5] in 1998, unfortunately the most useful theorems are only stated in 1 and 2
dimensions. Immediately on the following pages of the same volume [9] a coun-
terexample is given in 2 dimensions where the method would fail to converge
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to the unique minimizer given a tricky (but smooth and convex) function and
a well-established initialization of the method. There are also quite a number
of attempts to modify or restrict the method to enable convergence proofs, see
e.g. [6, 11], or further related experiments in [3, 4]. A nice overview on the his-
tory of this method is given in [12]. Some of our recent works also summarizes
some application experiences using this algorithm [2, 7].

Today also the non-Euclidean geometries are well known and accepted, we
should mention the names of János Bolyai and Nikolai Lobachevsky who have
independently clarified the notions of hyperbolic geometry in the early nine-
teenth century and after whom it is sometimes referred to as the Bolyai–
Lobachevsky geometry. Later many models of hyperbolic geometry have been
developed, one of these being the Poincaré disk model. Hyperbolic geometry is
many times introduced or studied throughout this model, where the points of
the plane are those inside the unit circle and the lines are the circular arcs in-
tersecting the unit circle perpendicularly.1 Even nowadays works appear with
adapting some Euclidean notions and theorems to this model of hyperbolic
geometry, see e.g. [1].

Our current work is also a member of this family. Specifically we adapt
the Nelder–Mead simplex method (originally formulated in R

n using terms
of Euclidean geometry) to the hyperbolic space, to the Poincaré disk model
(in 2 dimensions) and its analogue using a unit sphere (in 3 dimensions). The
motivation for this research came from our practise. We had the problem to
choose some adequate points (“poles”) inside the unit circle, and we have
found the Nelder–Mead method to be the first to find a suitable set of poles
without any a priori knowledge of their location. But this way we had to map
the natural domain (Rn) of the Nelder–Mead algorithm inside the unit circle,
for details see e.g. [2, 7]. Along the way the adaptation of this method to
the natural domain of our problem (which corresponds to the Poincaré disk
model) seemed to be another promising path. In this paper we summarize
the current results of our efforts, we introduce the hyperbolic Nelder–Mead
method. We present a few basic properties of this method and we also give
a Matlab implementation. Our hope is that with this approach some new
directions will be opened both to the application and to the mathematical
study of this algorithm.

The software tools (Matlab programs) can be downloaded from
http://numanal.inf.elte.hu/~locsi/hypnm/ in order to enable the Reader
to reproduce the results presented in this paper.

1And of course diameters of the circle are also considered as lines.



A hyperbolic Nelder–Mead method 171

2 The original method by Nelder and Mead

In this section we describe ‘a simplex method for function minimization’ fol-
lowing the original publication [10]. The statement of the algorithm shall now
be given so that the specialities and calculations of R

n are skipped, only geo-
metric terms shall be used, and therefore we may immediately imagine both
the original idea and the hyperbolic realization.

The method relies on the comparison of the function values at the vertices of
a non-degenerate simplex in our n-dimensional space X. Let us call the vertices
of the simplex x1, x2, . . . , xn+1 ∈ X, the real valued function to be minimized
f, and yi := f(xi) (i = 1, 2, . . . , n+1). We may start with an arbitrary simplex,
which is usually chosen as a point xs ∈ X and some ‘nearby’ points.

One step of the algorithm is basically a substitution of one point of the
simplex, with a better one. Let us define the indices h and l such that yh

and yl are respectively the highest (worst) and lowest (best) function values,
and x the centroid of the points xi with i �= h. To carry out an update of the
simplex, four operations are used.

1. Reflection. Reflect xh across the point x to get xr, yr := f(xr). If yl ≤
yr < yh then replace xh with xr and continue with the next step.

2. Expansion. If yr < yl, then reflect x across the point xr to get xe,
ye := f(xe). Now replace xh with the xe if ye < yr or with xr if ye ≥ yr

and continue with the next step. (Thus we either stick with a new simplex
gained with reflection, or create an expanded simplex.)

3. Contraction. If yr ≥ yi for all i �= h then define xb as xr if yr < yh or
as xh if yr ≥ yh (so the ’better’ of xr and xh), and find the midpoint
xc of x and xb, yc := f(xc). Now replace xh with xc and continue with
the next step (with this contracted simplex); unless yc > min { yh, yr },
in this case perform the following operation.

4. Shrink. Leave only the point xl and for all i �= l replace xi with the
midpoint of xi and xl; continue with the next step. (This operation is
reported in [5] to be needed very rarely.)

With these steps our initial simplex ‘adapts itself to the local landscape’ (de-
fined by the function f) and finally ‘contracts on to the final minimum’ as [10]
summarizes the behaviour of the algorithm.2

2In the original description of the algorithm these four operations each depend on a given
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We may stop the iteration e.g. if the function values have smaller standard
deviation than a small given ε > 0 value or if we have made more steps than
a prescribed limit etc.

Figure 1 presents the operations possible in one step of the Nelder–Mead
algorithm in 2 dimensions, on the Euclidean plane. In this case the simplex is
a triangle. On Figure 2 an example is shown for the progress of the algorithm
optimizing the R

2 → R quadratic function f(x, y) = x2 + 6y2 + 2xy with the
initial simplex of coordinates (1.2, 0.7), (1.1, 1.4) and (1.7, 1.1). The first 10
steps are presented.
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Figure 1: Operations on an Euclidean simplex in 2 dimensions. Respectively:
reflection, expansion, (outside and inside) contraction and shrink. The old
simplex is marked with dark gray, the new simplex with light grey, the reflected
simplex is shown in white for the expansion and contraction operations.

Note that midpoints and reflected points can be calculated through simple
linear combinations. This makes the (Euclidean) Nelder–Mead algorithm easy
to implement, and quite effective, even in higher dimensions.

parameter. It is also shown that the ‘natural choice’ of these parameters, which are equivalent

of calculating reflections and midpoints (as used above), are also the most efficient choice in

practise.
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Figure 2: The Nelder–Mead algorithm optimizing a quadratic function on the
Euclidean plane.

3 Constructions in hyperbolic spaces

We have given the statement of the Nelder–Mead simplex method so that in
each step of the iteration some simple geometric calculations shall be done:
finding centroid, midpoint, reflection across a point. These are valid construc-
tions not only in Euclidean geometry, but also in hyperbolic geometry. In
this section we give an overview of some possible approaches to numerically
calculate the locations of the required points. Using these we will be able to
put together the hyperbolic version of the Nelder–Mead algorithm in 2 and 3
dimensions.

3.1 In 2 dimensions

We will use the Poincaré disk model of hyperbolic geometry. It is useful to
identify this model with the complex unit disk D := { z ∈ C : |z| < 1 }. So the
points of the plane are the complex numbers z ∈ D. Let us also define the unit
torus T = { z ∈ C : |z| = 1 }, and D

∗ := C \ (D ∪ T). The isometric transforms
in this model (except for reflecting through a line) can be written by means
of Blaschke functions, defined as

Ba,d(z) := d ·
z − a

1 − az
(a ∈ D, d ∈ T, z ∈ C).

One approach makes use of the fact that for any w1, w2 ∈ D, w1 �= w2
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there exists a unique set of values (a, d, p) ∈ D×T×(0, 1) such that Ba,d(0) =

w1, Ba,d(p) = w2 and Ba,d maps the interval [0, p] onto the hyperbolic line
segment connecting w1 and w2. This way the calculation of midpoints and
reflected points can be reduced to finding the appropriate points on (0, 1).
More on this method can be found in [2]. The advantage of this approach is the
elegant and straightforward calculation with complex functions, the downside
is that it is too much bound to the complex domain, to two dimensions, the
generalization to higher dimensions is troublesome, if not impossible.

In contrast to the analytic techniques of the first approach, the second ap-
proach arises from geometric considerations. (Of course in two dimensions
sometimes the use of complex expressions and Blaschke functions again makes
the calculations easier.) We give a more detailed overview here, because our
implementation relies on this second approach. Basically we have to imitate
the regular constructions numerically.

• A hyperbolic line is basically a circular arc intersecting the unit circle
perpendicularly.3 It turns out that for the centre c ∈ C and radius r ∈
R, r > 0 of such circles c ∈ D

∗ and cc = |c|2 = 1 + r2 holds.

• Given two points a, b ∈ D, a �= b we can fit a hyperbolic line on these
two points by finding the centre of the circle which intersects the unit
circle perpendicularly and passes through a and b. We know that the
inverse image of a with respect to the unit circle can be expressed as
1/a and also lies on the circle in question. (The same holds for b.) Now
this circle can be found as the one fitted on the three points a, b and
1/b. This can be done e.g. by solving a linear system of equations.

• Finding the intersection of two hyperbolic lines translates to finding the
intersection points of two circles (if they exist) and choosing the one
inside D. Note that also in hyperbolic geometry it cannot occur that two
lines have exactly two intersections.

• The perpendicular bisector of a line segment between a and b can be
found as a circle with centre both on the Euclidean line on a, b and
the radical axis of the unit circle and the hyperbolic line (as Euclidean
circle) on a and b.

3Since the diameters are also considered as lines, they should be handled as special cases

in an implementation. The calculation is also easier in that case. These special cases will

also occur in 3 dimensions, but we will not treat them here in more detail.
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• The above three constructions allow us to find the midpoint of a line
segment, which is also a centroid of two points: find the intersection
of the hyperbolic line fitted on the two points and the perpendicular
bisector of the line segment between the two points.

• The reflection across a point a ∈ D can be formalized e.g. using Blaschke
functions. The formula B−a,0(−Ba,0(z)) gives the reflected image of z ∈ D

through a. (The idea is to reduce to reflect across the origin.)

Now we have all the constructions which are needed to adapt the Nelder–
Mead method to the hyperbolic plane. But further geometric constructions can
also be formulated. We have the hyperbolic analogue of: translation, reflection
through a line, rotation around a point, perpendicular line at a point.

Figure 3 presents some basic elements in the Poincaré disk model of hyper-
bolic geometry, and the operations possible in one step of the Nelder–Mead
algorithm (c.f. Figure 1 in the Euclidean case, and to the outline of the algo-
rithm given in Section 2). In this case the simplex is a hyperbolic triangle.
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Figure 3: Left: Some basic elements of hyperbolic geometry. The line fitted on
two points, perpendicular lines from the points, and a perpendicular bisector.
Right: Operations on a hyperbolic simplex in 2 dimensions: reflection, expan-
sion, (outside and inside) contraction and shrink. The old simplex is marked
with dark gray, the reflected simplex with white, the further simplices are
either shown in light grey or just their outlines.
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3.2 In 3 dimensions

To define the analogue of the Poincaré disk model in 3 dimensions, i.e. a
hyperbolic space, we will use S :=

{
(x, y, z) ∈ R

3 : x2 + y2 + z2 = 1
}
, the unit

sphere. The points will be the ones inside S, the lines will be the circular arcs
intersecting the surface of S perpendicularly, the planes will be the spherical
caps intersecting S perpendicularly.

It turns out that the usual basic constructions in Euclidean space (such
as fitting a line on two points, fitting a plane on three points, finding the
intersection line of two planes, finding the perpendicular bisector plane of a
line segment etc.) can be also done and calculated in this hyperbolic space.
Of course now we can not use the help of complex analysis, we have to deal
with terms of analytic geometry in R

3 by translating the required notions of
hyperbolic lines and planes to circular arcs and spherical caps.

We refer to the program codes referenced in this paper (see end of Section
1) for construction and implementation details. Figure 4 presents some basic
elements in the geometry of this three-dimensional hyperbolic space and the
possible moves of a simplex in one step of the Nelder–Mead algorithm. In this
case the simplex is a hyperbolic tetrahedron.

Figure 4: Left: Some basic elements of geometry in hyperbolic space. Three
points on a plane, the lines of the arising triangle’s edges and a perpendicular
line at one of the points. Right: Operations on a hyperbolic simplex in 3
dimensions (without shrink), circles denote the vertices of the original simplex,
a star the centroid of one side, exes the possible new vertices of a new simplex.
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Figure 5: The Nelder–Mead algorithm adapted to the hyperbolic plane.

4 The hyperbolic simplex method

Having defined the Nelder–Mead simplex method in geometric terms (Section
2), and the needed constructions being present on the Poincaré disk model
(and its three-dimensional analogue) of hyperbolic geometry (Section 3), now
we have the hyperbolic realization of the method in our hands.

Figure 5 gives an example of the Nelder–Mead method optimizing a function
on the hyperbolic plane. The function being minimized is similar to the famous
Rosenbrock-function (or banana function, see [10]), with its natural domain
R

2 being mapped onto D using a map detailed in e.g. [7]. This function earned
his fame, because numerical methods prior to the one proposed by Nelder and
Mead were unable to determine its minimum. Now we see that the hyperbolic
version is also capable of tending towards the optimum.

Furthermore an optimization process can be observed on Figure 6 in case
of a quadratic function on the hyperbolic space as carried out by the Nelder–
Mead algorithm.

The Reader is encouraged to download the collection of Matlab programs
from the referenced homepage (see Section 1) and experiment with the algo-
rithm, specific functions to optimize and constructions in hyperbolic geometry.
Especially the three-dimensional graphics are more comprehensible when the
user can interact with the figures, not just observe a printed planar projection.
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Figure 6: The Nelder–Mead algorithm adapted to the hyperbolic space.

5 Some basic properties

The mathematical study of the original Nelder–Mead simplex method (without
any restrictions or modifications) has quite few proven properties or conver-
gence theorems. Basically all known results are summarized in [5]. Some of
its general results easily translate also to the hyperbolic versions introduced
above. In this section we revisit these straightforward properties of the algo-
rithm.

Proposition 1 (Nondegeneracy4 of hyperbolic simplices) If the initial

simplex is nondegenerate, so are all subsequent simplices produced by the hy-

perbolic version of the Nelder–Mead algorithm. (C.f. [5, Lemma 3.1.(1)].)

Proof. By construction, each of the trial points xr, xe and xc (either inside
or outside) lies strictly outside the face defined by the n best vertices, along
the line joining xh and x. If a nonshrink operation occurs, the worst vertex is
replaced by one of these trial points, thus the simplex remains nondegenerate.
If a shrink operation occurs, then each vertex (except the best) is replaced by
the midpoint of the line segment defined by the current and the best vertex.

4We understand by nondegeneracy that the vertices of a simplex are not collinear on the

hyperbolic plane, not coplanar in the hyperbolic space, and in general: no lower-dimensional

hyperspace can be found which contains all vertices of the simplex.
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Also in this case it is clear from the geometry that the simplex’ nondegeneracy
is again preserved. �

The function values at the vertices of the simplex were denoted by yi, now
let us also mark the number of iterations, and require that at the beginning
of each iteration step the vertices are ordered, i.e. in step k

y
(k)

1 ≤ y
(k)

2 ≤ . . . ≤ y
(k)

n+1

holds in case of a simplex in n dimensions.

Proposition 2 (Convergence of function values at vertices) Let f be a

function defined on the n-dimensional hyperbolic space X, that is bounded from

below. When the Nelder–Mead algorithm is applied to minimize f, starting with

a nondegenerate simplex, then (c.f. [5, Lemma 3.3])

1. the sequence
(

y
(k)

1

)
always converges;

2. at every nonshrink iteration k, y
(k+1)

i ≤ y
(k)

i (1 ≤ i ≤ n + 1) with strict

inequality for at least one value of i;

3. if there are only a finite number of shrink steps, then

(a) each sequence
(

y
(k)

i

)
(1 ≤ i ≤ n + 1) converges as k → ∞,

(b) limk→∞ y
(k)

i =: y∗

i ≤ y
(k)

i for 1 ≤ i ≤ n + 1 and all k,

(c) y∗

1 ≤ y∗

2 ≤ . . . ≤ y∗

n+1.

Note that this proposition does not state that the algorithm will converge
to a global (or even local) minimum point. This is unfortunately not true in
general (see counterexample in [9]).

Proof.

1. Since the algorithm never replaces the best vertex with a point of higher

function value, the sequence
(

y
(k)

1

)
is monotonically non-increasing and

bounded from below (like f), thus it is convergent.

2. A shrink step could result in higher function values at the simplex’ ver-
tices, but other operations always replace the worst value with a better
one, thus—taking to account also the ordering at the beginning of each
step—some values will be strictly lower and none of them will increase.
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3. Shrink steps are reported to be taken extremely rarely, so assuming
their finiteness is a very weak restriction. Otherwise these statements are
immediate consequences of the previous arguments and the properties
of convergent sequences.

�

Now we will show that shrink steps will not occur at all if the method is
applied to a strictly convex function on the hyperbolic space X, endowed with
the metric ρ : X × X → R.5

Definition 1 (Strict convexity) The function f defined on the points of hy-

perbolic space X is called strictly convex if for every a, b ∈ X, a �= b, and for

every point p on the line segment connecting a and b (with endpoints excluded)

the following formula holds:

f(p) < λ · f(a) + (1 − λ) · f(b), with λ :=
ρ(p, b)

ρ(a, b)
.

Basically this is the usual definition of strict convexity, but now, because of
dealing with hyperbolic spaces, the usual terms with linear combinations also
with the points of the metric space had to be omitted.

It is easy to see that in case of a strictly convex function f, for every point
p on the open line segment connecting a and b

f(p) < max { f(a), f(b) }

holds6, specifically also a centroid of 2, 3 (or more) points has lower function
value than the maximum of the function values at the given points.

Proposition 3 (No shrink for strictly convex functions) Assume that f

is a strictly convex function defined on the points of the hyperbolic space X and

that the Nelder–Mead algorithm is applied to minimize f, starting with a non-

degenerate simplex. Then no shrink steps will be taken. (C.f. [5, Lemma 3.5].)

Proof. A shrink should be performed when we fail to accept the relevant
contraction point xc. We will show now that this can not happen.

5For instance the usual metric on the Poincaré disk model can be expressed using Blaschke

functions as ρ(a, b) = |Ba(b)|.
6Furthermore it turns out that this property would have been sufficient to prove Propo-

sition 3.
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It follows from the statement of the algorithm that if we are considering a
contraction point, then yn ≤ yr and of course yn ≤ yn+1 = yh holds. We
can assume that yr < yn+1 (i.e. yn ≤ yr < yn+1 holds), the other case is
settled similarly. Now x is the centroid of x1, . . . , xn, so by the strict convexity
of f, f(x) < yn holds. The point xc is the midpoint of x and xr, so yc <

max { f(x), yr } = yr. So now yc < yr < yh holds, hence xc will be accepted, a
contraction shall be made and a shrink step will not be taken. �

6 Summary

In this paper we have introduced a hyperbolic variant of the Nelder–Mead
simplex method. The algorithm was adapted to the Poincaré disk model of
the Bolyai–Lobachevsky geometry (in two dimensions), as well as its three-
dimensional analogue.

Matlab implementations (and resulting graphics) were presented about the
necessary geometric constructions in the hyperbolic spaces at hand, which
are—together with the adapted variant of the Nelder–Mead method—available
to download at http://numanal.inf.elte.hu/~locsi/hypnm/.

Finally some straightforward mathematical properties of the original sim-
plex method were translated to the hyperbolic case.

7 Directions of further research

Apart from the Poincaré disk model, it might be interesting to adapt the
Nelder–Mead simplex method to other models (such as the Klein model,
Poincaré half-plane model etc.) or other geometries.

Naturally also the higher-dimensional cases should be investigated and im-
plemented.

Of course the detailed analysis of both

• the practical convergence properties of this method (compared to the
original Nelder–Mead method), and

• the mathematical convergence properties of the hyperbolic Nelder–Mead
method

awaits to be carried out, with the first task requiring more of an engineering
approach, and the second one likely to be quite unpromising taking to account
the similar efforts in the case of the original algorithm. Nevertheless we may
have some hope at least in low dimensions.
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Our current investigation lacks the most basic special case: optimization
in 1 dimension, on a hyperbolic line—a line or line segment endowed with a
hyperbolic metric. Note that [5] contains results also in 1 dimensions.
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at the János Bolyai Memorial Conference in 2010, Budapest–Târgu Mureş [8].
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