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Abstract. We present a near global statistics on the correla-
tion properties of daily temperature records. Data from ter-
restrial meteorological stations in the Global Daily Climatol-
ogy Network are analyzed by means of detrended fluctuation
analysis. Long-range temporal correlations extending up to
several years are detected for each station. In order to reveal
nonlinearity, we evaluated the magnitude of daily tempera-
ture changes (volatility) by the same method. The results
clearly indicate the presence of nonlinearities in temperature
time series, furthemore the geographic distribution of corre-
lation exponents exhibits well defined clustering.

1 Introduction

The time evolution of weather or climate is conveniently
characterized by its memory. Short-term memory of a dy-
namical system is associated with a finite integral timescale
ensuing from an exponential decay of the autocorrelation
function (von Storch and Zwiers, 1999). Long-term mem-
ory is characterized by a diverging integral timescale and
linked to power-law behavior of the autocorrelation func-
tion (Fraedrich, 2003). Irrespective of the functional form,
2-point correlations reveal only one aspect of the tempo-
ral complexity. In general, higher order statistics would be
needed to fully characterize the statistical properties of a dy-
namical system (Mendel, 1991).

When higher order (3-point, 4-point, ...) correlations
are trivially related to the 2-point correlation function, the
process is termed “linear” and “monofractal”. In case of
a nontrivial relationship, the process is called “nonlinear”
and “multifractal” (Kalisky et al., 2005). Instead of the
rather complicated direct methods for higher order statistics,
Ashkenazy et al.(2001) suggested a simple measure for non-
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linearity of a time series: when the magnitude of increment
series (called volatility) obeys nontrivial long-range correla-
tion, the original time series is nonlinear.

Besides biomedical (Ashkenazy et al., 2001; Kantelhardt
et al., 2002) or hydrological (Livina et al., 2003) applica-
tions, the evaluation of volatility correlations is widely used
in econometric time series (Liu et al., 1999; Qiu et al., 2006).
It has been recognized quite a time that the magnitudes of
price changes exhibit long-range correlations, reflecting the
fact that economic markets experience quiet periods with
clusters of less pronounced price fluctuations, followed by
more volatile periods with pronounced jumps up and down.
A similar behavior for temperature records was detected
too (Govindan et al., 2003), even on a paleoclimatic time
scale (Ashkenazy et al., 2003), or deep in the equatorial Pa-
cific (Kalisky et al., 2005). A fundamental difference be-
tween econometric and temperature records is that the prices
themselves are uncorrelated having a white noise spectrum,
in contrast temperature data exhibit long-range correlations
(Pelletier, 1997; Koscielny-Bunde et al., 1998; Talkner and
Weber, 2000; Kantelhardt et al., 2001; Weber and Talkner,
2001; Kir ály and J́anosi, 2002; Blender and Fraedrich, 2003;
Fraedrich, 2003; Fraedrich and Blender, 2003; Fraedrich
et al., 2003; Pattantýus-Ábrah́am et al., 2004; Kir ály and
Jánosi, 2005; Kir ály et al., 2006).

In this paper we provide an analysis of correlation prop-
erties for surface temperature data on a nearly global scale.
We use the method of detrended fluctuation analysis (Peng
et al., 1994, 1995), which became widely accepted in the
past years mostly because of its capability of treating nonsta-
tionary signals. We show that temperature volatility records
obey asymptotic correlations for most of the stations. The
geographic distribution of scaling exponents exhibits definite
spatial correlations.
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Fig. 1. Example time series evaluated in this work: Sydney station
(Australia), 33.87◦ S, 151.20◦ E. (a) Four years (out of the 138) of
daily maximum temperatures (black) with the empirical annual cy-
cle (blue). (b) Daily maximum temperature-anomaly time series.
(c) Volatility series with the empirical annual cycle (orange).(d)
Volatility-anomaly series.

2 Data and methods

We evaluated daily minimum and maximum tempera-
ture records from the Global Daily Climatology Network
(GDCN – http://www.ncdc.noaa.gov/oa/climate/re-search/
gdcn/gdcn.html). We concentrated our analysis on the 7320
stations (out of the total 14 737) where the number of
recorded data exceeds 8000 (approximately 22 years) with
less then 1% missing intervals. Since daily minima and max-
ima show very similar correlation properties (Kir ály et al.,
2006), we present results for maximum values only.

As a first step of the analysis, the annual periodicity is re-
moved from the daily temperature valuesTi (Fig. 1a) by the
long-time climatological mean〈T 〉d for the given calendar
dayd=1. . .366 (when leap days are included), as usual. Note
that this procedure, which provides the temperature-anomaly
dataai=Ti −〈T 〉d (Fig.1b), cannot remove slow trends from
the original time series, such as a gradual shift of the an-
nual means. The volatility is defined as the absolute value
of temperature-anomaly difference or temperature difference
vi=|ai−ai−1|≈|Ti−Ti−1|. The two definitions give practi-
cally the same numerical values, because the deviation of
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Fig. 2. The high frequency part of the power spectrum as a func-
tion of period for(a) the volatility series shown in Fig.1c, and(b)
the volatility-anomaly series shown in Fig.1d. Note the different
vertical scales. The horizontal axes are logarithmic.

climatological averages for consecutive days is typically less
than the resolution of temperature data (0.1◦C). The volatil-
ity series shown in Fig.1c clearly exhibits a residual annual
periodicity as a consequence of seasonally changing variabil-
ity, which is a well-known attribute of extratropical climate.
Figure1d shows the volatility-anomaly seriesvai=vi−〈v〉d ,
produced by subtracting the climatological mean values from
the signal, as above. At first sight, the removal of annual
periodicity might seem to be unsuccessful, however stan-
dard Fourier tests (Fig.2) demonstrate convincingly that the
volatility-anomaly series do not have residual periodicities.
(Note that the vertical scale in Fig.2a is six times larger
than in Fig.2b.) Alternatively, the annual component can
be removed by normalization with the climatological mean
values:va′

i=vi/〈v〉d . Such series have positive sign every-
where and strongly suppressed magnitudes compared tovai ,
nevertheless the correlation properties reflected in the Fourier
spectra or DFA scaling (see below) are fully equivalent.

Next we consider the anomaly series as increments of a
random walk process. The “trajectory” or “profile” of the
signal xi is given by simple summation asyj=

∑j

i=1 xi ,
herexi denotes eitherai or vai . We divide the profile into
nonoverlapping segments of equal lengthn. In each seg-
ment, the local trend is fitted by a polynomial of orderp

and the profile is detrended by subtracting this local fit. The
usual measure of fluctuations is the standard deviation of the
detrended segment averaged over all the segments〈Fp(n)〉.
A power-law relationship between〈Fp(n)〉 andn indicates
scaling with an exponentδ (DFAp exponent):

〈Fp(n)〉 ∼ nδ . (1)
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Fig. 3. DFA2 curves for the signals shown in Fig.1. (a) Daily
maximum temperature-anomalies (yellow circles) and its surrogate
(black diamonds). The latter is produced by an iterative inverse
Fourier algorithm matching the autocorrelation functions and prob-
ability distributions (see text).(b) Volatility-anomalies (yellow cir-
cles) and the volatility-anomalies obtained from the surrogate tem-
perature record (black diamonds). Dashed lines illustrate a slope of
1/2 (uncorrelated processes), exponent values are indicated.

Notice that such a process has power-law autocorrelation
function and power spectrum

A(τ) = 〈aiai+τ 〉 ∼ τ−α , S(f ) ∼ f −β , (2)

where stationarity requires 0<α<1 and 0<β<1. The rela-
tionships between the correlation exponents are (Koscielny-
Bunde et al., 1998; Talkner and Weber, 2000)

α = 2(1 − δ) , β = 2δ − 1 . (3)

Processes of long-term memory are characterized by DFA
exponentsδ>1/2, uncorrelated time series (e.g., pure ran-
dom walk) obeyδ=1/2. Signals withδ<1/2 are called an-
tipersistent, expressing the tendency that an increasing trend
in the past implies a decreasing trend in the future, and vice
versa.

Local polynomial fits of orderp eliminate polynomial
background trends of orderp−1. In practice, long-term cor-
relation is inferred when the exponentδ does not depend
onp.

Figure3 illustrates results for the Sydney station. Since we
observed slope differences between DFA1 and DFA2 curves
for a few stations but not between DFA2, DFA3 and DFA4
within the numerical accuracy of the fitting procedure, we
performed the overall evaluation by second order local de-
trending (DFA2). Exponent values were obtained by linear
fits in the interval [30, 2000] days (log10(n) ∈ [1.47, 3.30]).

In order to demonstrate that long-range correlation in the
volatility-anomaly series is indeed a consequence of higher
order (nonlinear) correlations, we implemented the method
of data surrogation bySchreiber and Schmitz(2000). (For
technical details see:Hegger et al., 1999). This proce-
dure does not affect 2-point correlations, whatever is their
nature (short-term or long-term), but effectively destroys
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Fig. 4. Normalized histogram of asymptotic DFA2 exponents
for (a) daily maximum temperature-anomalies, and(b) volatility-
anomalies. Statistics for 7320 stations is shown.

higher order correlations in the series. The DFA2 curve of
volatility-anomaly series obtained from the surrogate tem-
perature record (Fig.3b, black diamonds) clearly indicates
the lack of long-range correlations, while the surrogate se-
ries itself has the same 2-point correlation behavior (Fig.3a).

3 Results

Figure4 shows the overall statistics of DFA2 exponents for
the analyzed stations. Since exponent values could be ob-
tained with a numerical accuracy of±0.05 (see also:Kir ály
et al., 2006), we conclude that daily temperature anomalies
obey significant long-term correlations everywhere. The his-
togram of volatility-anomaly exponentsδvol (Fig. 4b) is nar-
rower, significant scaling behavior (δvol>0.55) can be de-
clared for 6526 stations (89%) out of the total 7320.

The geographic distribution of exponent values is shown in
Fig. 5. Unfortunately South-America and Africa are strongly
underrepresented in the GDCN data base, furthermore the
spatial coverage is very uneven (Kir ály et al., 2006). Never-
theless it seems that relatively lowδ values are characteristic
at the south-eastern continental boundaries (Fig.5a). As for
the volatility exponentsδvol, the geographic pattern is quite
different (Fig.5b). Probably the only solid conclusion which
can be drawn is the tendency of clustering: there are rela-
tively large areas where the exponent values for neighboring
stations are similar. This suggests that the results are not nu-
merical artefacts, but they can have a climatological origin.

The comparison of maps in Figs.5a and b already suggests
that there is no strong correlation between the exponent val-
uesδ andδvol for individual stations. The scatter plot shown
in Fig. 6 confirms completely this suspicion.

The original observations on a possible link between non-
linearity and long-range volatility correlations (Ashkenazy et
al., 2001) were fully empirical. Later,Kalisky et al.(2005)
andJun et al.(2006) have developed analytical tools to estab-
lish relations between the scaling exponents of a time series
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Fig. 5. Geographic distribution of asymptotic DFA2 exponent val-
ues for 7320 stations.(a) δ for daily maximum temperature anoma-
lies. (b) δvol for volatility anomalies. (The color scale is nonlinear
and codes different intervals for the two cases.)

and its volatility. In Fig.6 we show a comparison with the
predictions ofKalisky et al.(2005). The black dashed line in-
dicates the expected behavior for a linear process, where the
2-point correlations obey a power law with DFA exponentδ.
Up to the valueδ≈0.75, the volatility exponent is practically
constantδvol=0.5, and then changes to an approximately
linear increase. Unfortunately the number of stations with
the strong correlationδ>0.75 is quite limited, c.f. Fig.4a,
thus the possible crossover in the empirical data is not clear
enough. Nevertheless we can probably reject the hypothe-
sis that the temperature records can be fully represented by
linear processes with 2-point (power-law) correlations only.

The blue line in Fig.6 shows the predictions for multifrac-
tal processes with a parameterσ=0.05, which characterizes
the width of the multifractal spectra (Kalisky et al., 2005).
The red cloud of the scatter plot does not follow this pre-
diction neither, but at least the blue line crosses its center.
One possible explanation of the unstructured scatter plot in
Fig. 6 can be that the numerical differentiation used to pro-
duce volatility series is known to strongly enhance inherent
noise level in the data, therefore the weak dependence ofδvol
on δ remains hidden.

In the original proposal,Ashkenazy et al.(2001) decom-
posed the derivatives of the time series into a volatility and
a sign series. The latter is formed by assigning +1 when the
one-day differenceTi−Ti−1 is positive, and−1 when it is
negative. We evaluated the sign series for daily maximum
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Fig. 6. Correlation plot for the temperature anomaly exponent
(δ) and volatility anomaly exponent (δvol) for each station. Black
dashed line indicates the theoretical prediction by Kalisky et
al. (2005) for long-range correlated linear processes, the blue line is
the same for multifractal series with the parameterσ=0.05.

temperatures as well, but we did not find nontrivial results.
Figure 7 reveals that the sign of temperature changes can
have a weak anticorrelation for time lags up to 4 days, and a
clear annual periodicity reflecting the seasonal changes. Oth-
erwise the sign series are uncorrelated. The DFA method is
not really suitable to analyze such series, because the typi-
cal magnitude of fluctuations around the local trends is ex-
tremely small.

4 Conclusions

Although the application of detrended fluctuation analysis
has its own pitfalls (Metzler, 2003; Maraun et al., 2004),
we can conclude with low risk that terrestrial temperature
records obey long-range nonlinear correlations. The term
“long-range correlation” obviously does not mean an infinite
memory, it reflects simply the fact that we did not observe
any breakdown of empirical DFA curves in the available time
intervals for temperature anomaly and volatility signals with-
out annual periodicities (c.f. Fig.3). Indeed,Blender and
Fraedrich(2003) andFraedrich and Blender(2003) demon-
strated by globally coupled models that the scaling regime
might be restricted, and correlations fade away over∼150
years for terrestrial locations far from the oceans.Huybers
and Curry(2006) suggest also a change in correlation scal-
ing at around the same timescale, however in the opposite
direction: they predict larger exponent values for periods
longer than centuries. A clear empirical discrimination be-
tween such predictions would require instrumental or proxy

Nonlin. Processes Geophys., 13, 571–576, 2006 www.nonlin-processes-geophys.net/13/571/2006/



I. Bartos and I. M. J́anosi: Nonlinear correlations of daily temperature records 575

0 10 20 30 40 50 60
τ  [day]

-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15

A
(τ

)

0.01 0.1 1 10
period  [year]

0.00

0.01

0.02

0.03

Fo
ur

ie
r 

am
pl

itu
de

(a)

(b)

Fig. 7. Autocorrelation function(a) and power spectrum(b) for the
sign time series of the derivative of the Sydney record.

records of length∼600 years at least, which are not available
with the required temporal resolution (≤1 month) yet.

As for the detected nonlinearity, the opposite result would
be more surprising, since we have no doubt that the atmo-
sphere is inherently nonlinear.
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