
Acta Univ. Sapientiae, Informatica, 5, 1 (2013) 35–52

Finding suitable paths for the elliptic curve

primality proving algorithm

Antal JÁRAI
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Abstract. An important part of the Elliptic Curve Primality Proving
algorithm consists of finding a sequence of elliptic curves with appropriate
properties. In this paper we consider a strategy to search for an improved
sequence, as part of an implementation (implemented in Magma 2.19) to
obtain improved heuristics and compare it to an implementation which
does not use such heuristics, namely to a built-in Magma function.

1 Introduction

Although mathematicians have been interested in prime numbers since an-
cient times, there is still no general, deterministic, unconditional, practical,
polynomial time algorithm for primality proving. If we are willing to drop
some of these adjectives, the situation becomes different. There exist tests of
Lucas-Lehmer type that can certify primes of very large size but only of a
special form. The Miller-Rabin test has a version that is practical and runs
in polynomial time but only provides primality proofs conditional on a gen-
eralized version of the Riemann hypothesis; the variant commonly used only
produces probable primes, in the sense that with small probability a compos-
ite number will pass the tests. The now famous AKS test [1], on the other
hand, is deterministic and proves primality in polynomial time, but has yet
to be proven practical; for an improved randomized version see Bernstein [3].
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Somewhere in between there are two algorithms that can prove primality in
situations of practical importance (primes of hundreds or several thousands
of decimal digits), of which the complexity analysis shows sub-exponential de-
pendency on the size of the prime, but for which polynomial time bounds have
not been proven. The significance of such primality tests has increased with
the widespread use of primes for cryptographic purposes.
This paper aims to describe an implementation of one of the two successful

practical tests for primality proving, ECPP see [2], written in Magma, a high
performance software system. The test is based on elliptic curve arithmetic, by
looking at heuristics for an optimal choice of parameters and next step in the
recursion and to compare it to an implementation without heuristics, which is
a part of Magma.
In what follows, we will always assume that n is the input of our algorithm,

for which we want to construct a primality proof; also, we assume that n is a
probable prime in the sense that it has passed some compositeness tests, and
that it is free of small divisors. In particular, gcd(n, 6) = 1. However of course,
we do not assume that n is prime.

2 Elliptic curves

The main objective in the Elliptic Curve Primality Proving (ECPP for short)
algorithm, which will be described in detail in the next section, is to construct
a sequence of integers n0, n1, . . . , nk that will be proved prime in reversed
order, ending at n0 = n. When the proof is completed, these numbers ni will
be (divisors of) orders of groups of points of elliptic curves over finite fields,
as they are defined modulo ni−1. However, during the construction we can not
use yet that ni−1 is prime, and this means that we will have to be careful in
defining elliptic curves modulo n, and their arithmetic; see [8].

Definition 1 The projective plane modulo n, denoted P2(Z/nZ), for a posi-
tive integer n, consists of equivalence classes (x : y : z) of triples (x, y, z) ∈
(Z/nZ)3 satisfying gcd(x, y, z, n) = 1, under the equivalence (x, y, z) ∼ (λx,
λy, λz) for any λ ∈ (Z/nZ)∗.

Definition 2 Let n be an integer with gcd(n, 6) = 1. An elliptic curve E

modulo n is a pair (a, b) ∈ (Z/nZ)2 for which gcd(4a3 + 27b2, n) = 1. The
set of points E[Z/nZ] on an elliptic curve E modulo n consists of (x : y : z) ∈
P2(Z/nZ) for which

y2z = x3 + axz2 + bz3.
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Definition 3 Let n be an integer with gcd(n, 6) = 1, and a ∈ Z/nZ. Define
V = V [Z/nZ] as the set of all (x : y : 1) ∈ P2(Z/nZ) together with O =
(0 : 1 : 0) ∈ P2(Z/nZ). Given (V, a), the partial addition algorithm computes
for any pair P = (xp : yp : zp), Q = (xq : yq : zq) ∈ V either an element
R = (xr, yr, zr) ∈ V called the sum P +Q of P and Q, or a non-trivial divisor
d of n, as follows.

(1) If xp = xq and yp = −yq, then output R = (0 : 1 : 0).

(2) If xp �= xq and yp = −yq, then let v = xp−xq, otherwise let v = yp+yq;
then use the extended Euclidean algorithm to compute s, t ∈ Z/nZ such
that sv+ tn = d = gcd(v, n). If d > 1 then output d.

(3) Let λ = s(yp − yq) if xp �= xq and λ = s(3x2p + a) if xp = xq. Output

R = (λ2 − xp − xq : λ(λ2 − 2xp − xq) + yp : 1).

Remark 1 If n = p is prime, the set E[Z/pZ] forms an Abelian group for
any elliptic curve E = Ea,b, with unit element O. In this case, the partial
addition algorithm, which will now always produce a sum of two points on E,
is equivalent to the usual addition algorithm.
Moreover, it can be shown that for a prime divisor p of arbitrary n coprime

to 6, the sum R produced by the partial addition algorithm for any two points
P,Q on an elliptic curve Ea,b modulo n, has the property that Rp (obtained by
reducing the coordinates of R modulo p) is the sum of (the similarly defined)
points Pp and Qp in the group Eā,b̄[Z/pZ], where ā ≡ a mod p, and b̄ ≡
b mod p.

Using the partial addition algorithm repeatedly, it is of course possible to
obtain a partial multiplication algorithm, which computes either k · P or finds
a divisor of n, for any positive integer k, given any P ∈ V and any a as before.
However, there are various ways to speed up this computation of k · P, using
partial doubling, and the fact that it is not necessary to keep track of the
y-coordinate.
In the next sections we will occasionally be sloppy, and write about the

sum and multiples of points on elliptic curves modulo n; we mean the result
of application of the partial addition and multiplication algorithms, which in
exceptional cases means that a divisor of n is found, rather than a point.
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3 Elliptic Curve Primality Proving

We give an outline of the Elliptic Curve Primality Proving algorithm; some of
the necessary definitions and details will be given in the subsequent sections.
The algorithm is based on the following theorem.

Theorem 2 Let n0 ∈ N with gcd(6, n0) = 1. Let E be an elliptic curve modulo
n0, and let m,n1 ∈ N with n1 | m. Suppose that for every prime factor q of
n1 there exists P ∈ E such that mP = 0E and m

q P �= 0E. Then for all prime
factors p of n0 holds #E[Z/pZ] ≡ 0 mod n1.

Corollary 3 Suppose that the hypotheses of Theorem 2 are satisfied. Then:

n1 > (n
1
4

0 + 1)2 ⇒ n0 is prime.

Note that the requirement is that n1 exceeds a bound slightly larger than
√
n0.

Essential in the proof of the Corollary is the Theorem of Hasse, stating that
the number of points on any elliptic curve modulo a prime p equals p+1−t for
some integer t with |t| ≤ 2

√
p. Theorem 2 easily follows from the observation

that, modulo any prime divisor p of n0 the conditions imply that #E[Z/pZ]
can not be a proper divisor of n1.

Starting point for the application of ECPP, will always be a probable prime
n0 = n; it is assumed that n will be free of small prime factors (in particular
2 and 3), and that n has passed certain compositeness tests (of Miller-Rabin
type). This will make it very likely that n is indeed prime; the objective is to
prove that.
Given such an integer n, the basic Elliptic Curve Primality Proving algo-

rithm proceeds roughly in these three stages:

(D) starting with n0 = n, find a sequence of probable primes n0, n1, . . . , nk,
such that ni+1 divides the order of some elliptic curve modulo ni, such
that ni+1 > ( 4

√
ni + 1)2, and such that nk is so small that primality can

be verified by easy inspection (or trial division).

(F) For each of the integers ni with i = 0, 1, . . . , k − 1, construct an elliptic
curve Ei of order a multiple of ni+1 modulo ni, together with a point Pi
of order ni+1 on the curve modulo ni.

(P) Verify that the conditions of Theorem 2 hold for the given probable
primes ni, curves Ei and points Pi, for i = k− 1, k− 2, . . . , 0.
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The original idea came from Goldwasser and Kilian, who designed such an
algorithm, which uses random elliptic curves over the integers ni, computes
the order of them and factors the orders. Computing the order of a random
elliptic curve over ni is very cumbersome. It is yet a faster way to determine
the curve order first and construct a curve with such order. Besides, we get
two elliptic curves for each integers, that increases the possibility of success. m
order has to be selected from the algebraic integer of an imaginary quadratic
field Q(

√
D). D is a negative fundamental discriminant, and as such, it has

certain properties: D ≡ 0 (mod 4), or D ≡ 1 (mod 4), for every k (> 1) D/k2

is not a fundamental discriminant, D ≤ 0 (from practical point of view we use
D ≤ −7 ). Moreover D must be appropriate for n, which means: (D|n) = 1,
where (D|n) is the Jacobi symbol and there exist such x, y ∈ Z for which

4n = (2x+ yD)2 − y2D. (1)

An appropriate D provides two possible orders: m = |ν± 1|2, where

ν = x+ y
D+

√
D

2
.

If (1) is valid, with the help of an x0 root of the Hilbert polynomial (mod n)
we get two elliptic curves with order m = |ν± 1|2. Refer to [2]
We will refer to this algorithm as ECPP in the rest of the paper.

3.1 Downrun

The ECPP algorithm consists of two parts. The first part of the algorithm will
be called recursively with input ni. The main objective is to find ni+1. This is
what happens at level i:

(D) select a pair D,m of negative discriminant D and integer m = mi+1 such
that m is the product of small primes and a probable prime ni+1 that
exceeds ( 4

√
ni + 1)2.

In practice this is what happens:

(D0) Prepare a list of primes up to some bound s = si, as well as list of
negative fundamental discriminants up to a bound d = di that factor
completely in a product of primes from the prime list, together with
their full prime factorization.

(D1) Select one discriminant D in the list, find the reduction of the binary
quadratic form Ax2 + Bxy+Cy2 of discriminant D, where A = n, B2 ≡



40 A. Járai, G. Kiss

−D mod n, and C = (B2 + D)/(4n). This requires the modular square
root of −D modulo n, which is obtained as a product of the square
roots of the prime factors of −D. If this provides ν with |ν|2 = n, then
m1 = |ν− 1|2, m2 = |ν+ 1|2.

(D2) From the two pairs D,m1, D,m2 found in the previous step, for which a
probably prime q1 dividing m1 = |ν− 1|2 can be found such that m1/q1

is the product of small primes only, similarly for m2, one is selected.

(D3) Let ni+1 be the probable prime q = q1 or q2, for which m = m1 or m2,
according to the selection in the previous step, m/q is the product of
small primes, if that satisfies the conditions, otherwise select another D
from the list.

Several comments are in order.
Usually a ‘master-list’ of primes up to some bound B is prepared in advance;

the bound si (and hence the list) in step (D0) may depend on i (the level
of the recursion arrived at), but should be at most B. Similarly for the list
of discriminants, and the bound di. This means that step (D0) will mainly
consist of the selection of sub-lists, from precompiled lists that are computed
once for all n up to a fixed size N. In Step (D2) the probable factorization of
possible curve order mi has to be found; one uses a smoothness bound b = bi,
that is, all prime factors smaller than b are removed (and considered small).
Note that backtracking may be necessary: it is possible that at some level

no D provides a new ni!
The output of the first phase of the algorithm will consist of a triple

(ni, Di,mi) for i = 0 to i = k − 1 such that mi is the product of small
primes and a probable prime ni+1 that exceeds ( 4

√
ni + 1)2.

3.2 Finding elliptic curves

The second phase is executed after the recursive call of the first part, which
results in a list of ni, Di,mi such triples, where ni is the input of the recursive
step produces ni+1. This phase in the primality testing algorithm can be done
as follows. Again, we describe the steps to be taken at level i.

(F) Find elliptic curves Ei and points Pi on Ei[Z/ni−1Z] with the property
that if ni−1 is prime, then the order of Pi is ni.

This is done as follows.

(F0) Compute an auxiliary polynomial Gi ∈ Z[x]; see the comments below.
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[F1) Find a root ji of Gi mod ni−1 in Z/ni−1Z, as well as an integer ti such

that the Jacobi symbol
(

ti
ni−1

)
equals −1.

(F2) Define elliptic curves E ′
i and E

′′
i by

E ′
i : y2 = x3 + 3kx+ 2k

and
E

′′
i : y2 = x3 + 3kt2ix+ 2kt3i ,

where k =
j

1728− j
.

(F3) Find (for example by randomly choosing) a point on E ′
i or E

′′
i that has

order ni, if ni−1 is prime.

Remark 4 The auxiliary polynomial Gi is the Hilbert (or Weber) polynomial
or a variant of this. The two elliptic curves are the twists of the elliptic curve
with j-invariant ji. We refer to [2] and [8] for more details, as this part of the
algorithm plays no major role in what follows.

4 Magma

Magma [4] is a large computer algebra system, with high-performance compu-
tations in number theory as one of its specializations, including very advanced
integer factorization and primality proving algorithms. Since its launch (Lon-
don, August 1993) a large body of intrinsic functions (implemented in the
C language), have been supplemented by packages developed on top of this,
making use of the Pascal-like user language and the programming environment
that is provided.

4.1 Magma-ECPP

Magma has a built-in primality test, which uses a combination of the Miller-
Rabin compositness test, and ECPP. It can be invoked by

IsPrime(n: parameter) : RngIntElt �→ BoolElt

function. By default, this function proves primality using ECPP (after a quick
test to throw out composites), but it is possible to set the optional Boolean pa-
rameter Proof to FALSE, in which case the function only uses the probabilistic
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Miller-Rabin test, with the default number of bases (20). In the rest of the
paper we refer to the function in Magma v2.19 (December 2012) as Magma-
ECPP. We would like to compare our ECPP implementation, Modified-ECPP
to this function.
This function is based on F. Morain’s implementation of ECPP in the C

language, and works more or less according to the description above as one
can tell from the verbose printing (although the details of the source code are
hidden from the user). It has a list of base discriminants in a file, likely fully
factored and ordered by the value of their field h, where it loops through in
each iteration. In the ith iteration it first applies a trial division sieve on ni

with bound Pmax, then on each discriminant, it performs (D) until it either
finds ni+1 or runs out of discriminants. In the case of success it goes into the
(i+ 1)th iteration with the new input; in the second case it loops through the
same set of discriminants, but applies stronger factoring methods to each of
the numbers mi. It applies trial division, Pollard’s ρ and Pollard’s p−1 in the
first round and if (D) is not successful, supposedly ECM is used too. If the
second round still yields no ni+1, it has to backtrack to input ni−1. As after
each iteration the information on which discriminants it succeeded is stored,
on backtracking it starts from the next discriminant in the list.

4.2 Modified-ECPP

In the Modified-ECPP version, one does not abort executing the ith iteration
as soon as a good discriminant is found, but only after a certain range of
discriminants are scanned, thus we could gain a range of ni+1,j’s instead of a
single one in each (recursive) call of step (D), from which the input ni+1 for the
next call is to be selected. Choosing one ni+1 out of the range of possibilities
can be done based on criteria depending on certain properties of the numbers.

4.2.1 Theoretical observations

The following observation plays an important role in the running time analysis:
if we are able to find all prime factors of curve cardinalities mi+1 up to a bound
bi in the ith iteration, the probability that one such curve cardinality mi+1

leads to a new node will be the probability that the second largest prime factor
of mi+1 is less then bi; this is approximately

eγ
log bi

logni
.
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It is then reasonable to suppose that, if we have ei such curve orders mi+1,
the number of new nodes has a probability distribution with average approx-
imately

λi = eγ
log bi

logni
ei.

Refer to [7].
For each negative discriminant D ≤ −7 the probability of success is

1

2h(D)
,

where h(D) is the ideal class number of Q(
√
D). As each successful case results

in 2 mi+1’s, we expect

ei ≈
∑
D

1

h(D)
.

Refer to [2].

4.2.2 The tree structure

The process of ECPPmay be envisaged as choosing a path through a (directed)
tree of which the nodes represent probable primes. (Note that strictly speaking
the graph is not a tree, as it is possible, but not really likely that different paths
lead to the same node!) The root of this tree is n0, the leaves correspond to
probable primes that are small enough to be recognized as primes by some
direct method. The aim is to find a relatively short and “easy” path from the
root n0 to a leaf nk as fast as possible; in particular, one would like to avoid
computing too many nodes explicitly.
By the latter we mean that we store certain information with the nodes that

we compute explicitly: for possible descendants ni,j, j = 1, . . . , ti of ni, we store
some information to base our choice of ni+1 on it. (For the rest of the paper
with ni+1 we mean the selected ni,j.) This includes the value ni,j, as well as
si,j, di,j and bi,j, (respectively: the smoothness bound for the discriminants, the
bound on the size of the discriminants and the smoothness bound on the curve
order), the level i in the tree and a parameter measuring the suitability. The
choice of node ni+1 is based on this suitability parameter, which is determined
when the node is produced. The value of the suitability is initialized to the
value of the field di,j stored with the nodes. Backtracking is unfavorable as,
besides the useless work decreasing the level in the tree, the size of the primes
in the nodes is likely to increase, therefore there is a fixed, global penalty value
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p added to the suitability of each node when a new level starts up, except for
the nodes of the new level.
The idea is that the computations for smaller discriminants will be cheaper,

and hence the algorithm will be completed faster. The field di,j that gives the
initial value of suitability of the node, is determined based on the function λ,
searching for the minimal power of di,j = log(ni,j)

δi,j allowing the value of λ
to exceed a certain bound given si,j, bi,j. The power δi,j is stored as the initial
value of suitability. The nodes are stored in an array, and a certain penalty
p is added, if necessary. The value of p depends on how hard we want to
punish backtrack steps. Order by suitability and select the smallest one and
call algorithm (T) recursively with that node as input. If (T) is successful the
new nodes are added to the array and the sorting process starts again. If there
is no new node found the value of suitability and the field di,j of the selected
node is increased. The power di,j can reach a given bound where the node falls
out from the array of possible nodes. The nodes are reordered. Repeat this
procedure, until the size of the nodes reaches a limit which is small enough to
recognize the prime.

4.2.3 The path finding algorithm

The path finding algorithm (T) in the ‘tree’ then has three main stages:

(T0) Step (D) is being applied for n0 looking for the minimal choice of d(n0) =
log(n0)

δ0 for which D is successful with a kind of brute force strategy,
using a loop in which the value of d0 is incremented until there exists at
least one descendant n1,j, as the next step requires a non-empty list of
n1,j’s. This part is called just once at the beginning.

The next steps are repeated for i = 1, 2, . . . , k, where nk is the first probable
prime that can be proven prime directly.

(T1) Keeping the value of λ = λi,j above 1.5, determine the value of di,j for
given si,j, bi,j for each newly found ni,j, and store a list of (at most
100 of) the best values according to suitability. Sort the list of the best
hundred nodes and select the best as ni+1.

(T2) Apply Step (D) again on ni+1, with the parameter di+1 = logδi+1(ni+1);
if no new node is found increase the δi+1 by 0.1, repeat ordering and se-
lection until at least one new ni+1,j is found. Once Step (D) is successful,
go back to (T1) with the new list of nodes as input.
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5 Experiments

In this section we are going to point out some typical situations that occur
during the process of ECPP and that are handled differently by Magma-ECPP
and Modified-ECPP. We describe the effects of these differences with respect
to outcome and running time in one particular example.
We ran Magma-ECPP and Modified-ECPP on a probable prime with more

than one thousand digits and show the output that describes the first three
steps of the process. We present the number of digits and the first 10 and last
10 digits of big numbers occuring during the process. Describing the whole pro-
cess or presenting whole numbers in the process for probable primes of this size
would be far too space-consuming, as it usually consists of more than a hundred
iterations and contains numbers in the size of the input probable prime. The
output of the whole process for both implementations and the proof provided
by Modified-ECPP can be found on one of the authors’ homepage. Follow the
links: http://www.math.ru.nl/~kiss/Modified-ECPP_Proof.pdf, http://
www.math.ru.nl/~kiss/Modified-ECPP_Output.pdf and http://www.math.
ru.nl/~kiss/Magma-ECPP_Output.pdf. For more big probable primes (com-
ing from the generalized Pascal triangles), tested by Modified-ECPP refer to
[6]. Note that G. Farkas and G. Kallós already have dealt with such numbers
and tested them with the ECPP. Refer to [5] about the details.
The test was running in Magma v2.19 on a machine with 8001 Mb RAM

and eight 2.5 GHz Intel Xeon processors.
Modified-ECPP is currently using different variants of trial divisions to fac-

tor the curve orders. With bound t = 1000 it applies normal trial division,
and after that a batch trial division with bound bi working on a list of mi,j’s
instead of factoring them one by one. The value of the penalty p is 0.8.
On an iteration we mean in the case of Magma-ECPP that we run (D) on

one discriminant and in the case of Modified-ECPP that we run (D) on a set
of discriminants up to logdi(ni) (starting from a previously reached limit, or
from the beginning of the discriminant list). On one step in both cases we
mean a sequence of iterations, which either results in at least one new node,
or runs out of discriminants and has to backtrack to another node. Going back
to the same node is not considered as backtracking. In the implementation of
Modified-ECPP one step also contains (T1) running on the new nodes, if there
is any.
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5.1 Example

The input number

n= 8565190451...2658848547

was used. This number has 1015 digits.

5.1.1 Magma-ECPP

In the first step Magma-ECPP needs 58 iterations to provide a new node and
uses trial division to factor m1.

% Pmax=4000000

% N_0=8565190451...683952658848547 1015 digits

% next D is 0 at 1.950000s

% next D is 7 at 10.180000s

...

% next D is 14683 at 495.940000s

% next D is 14083 at 513.280000s

% Cofactor after sieve is a probable prime

% D[[0]]=14083

%

% End of depth 0 at 513.990000 s

In the second step, Magma-ECPP fails to find an n2 after running through
a fixed list of discriminants twice, supposedly using trial division, Pollard’s
p − 1 and Pollard’s ρ in the first turn, and other, possibly harder and more
time consuming, methods in the second, thus backtracking to n0.

% Pmax=4000000

% N_1=8985609131...1613020571 1009 digits

% next D is 0 at 514.760000s

% next D is 7 at 522.780000s

...

% next D is 991 at 1140.930000s

% next D is 19963 at 1151.780000s

%!% No next D

%!% Forced to retry, snif...

% next D is 0 at 1163.620000s

% next D is 7 at 1184.430000s

...

% next D is 991 at 2754.460000s

% next D is 19963 at 2778.880000s

%!% No next D
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%!% One redo was not enough...

% Backtracking

% End of depth -1 at 2803.580000 s

In the third step Magma-ECPP, as it backtracked in the previous step,
uses n0 again and starts from the first discriminant that was not used in the
first step. It does not find a new n1 just using trial division on the rest of the
discriminants, so it applies stronger factorization methods running through the
same set of discriminants from the beginning. As there is only one successful
discriminant in the set, it finds the n1 produced also by the first step. Therefore
it gets to an endless loop finding the same n1 and backtracking to n0 again.

% Pmax=4000000

% N_0=8565190451...683952658848547 1015 digits

% next D is 19963 at 2805.250000s

% next D is 2339 at 2814.730000s

%!% No next D

%!% Forced to retry, snif...

% next D is 0 at 2825.470000s

% next D is 7 at 2847.600000s

...

% next D is 14683 at 4084.320000s

% next D is 14083 at 4114.750000s

% Cofactor after sieve is a probable prime

% D[[0]]=14083

% End of depth 0 at 4115.470000 s

Magma-ECPP needs 58 iterations to produce a new node in the first step and
has to backtrack after the second step, and as it does not find another node
where it could continue, gets stuck in an endless loop.

5.1.2 Modified-ECPP

By default, Modified-ECPP uses parameters bi = log2(ni) and si = log(ni),
where bi is the bound to the primes used to factor the mi-s and si is the
bound to primes used to factor the discriminants (refer to section 4.2.2). This
configuration found a path to the leaves in 1246.99 seconds after 139 steps and
it finished the proof using this path in 977.65 seconds; thus the total time was
2224.64 seconds.
Below we provide more information on the process in a configuration where

we put si = log1.3(ni), as the first configuration does not find the node where
Magma-ECPP gets stuck (because limit si is too low to factor 14083, a prime
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in fact), and it is therefore complicated to compare the default case with the
Magma-ECPP output.
In the first step, Modified-ECPP provides two n1,j-s for n0 = n after 4 itera-

tions. The discriminant bound d0 = logδ0(n0) is increased after each iteration,
moving up from δ0 = 1 to 1.3, where it finds two appropriate nodes, n1,1 and
n1,2. It initiates bound δ = 1.2 for both of them. n1,2 is the same number that
Magma-ECPP gets stuck on and as it is smaller than n1,1, it is selected at the
end of this step.

SLimit: 23946.87 1.3

BLimit: 5461424.06 2.0

n0 8565190451...683952658848547 1015 digits

DLimit, delta: 2336.97, 1.00

Filtering discriminants and reduction takes 7.700 seconds for

711 D-s, where 56 was succesful On average that is 0.011

The time for 56 trial divisions is 0.000 seconds, 0.000 on average

Batch trial division takes 3.270 seconds for 56 D, 0.058 on average

Time of Miller-Rabin test for 55 is 2.280 seconds, 0.041 on average

This resulted 0 new nodes

...

delta: 1.30

Filtering discriminants and reduction takes 33.380 seconds for

3930 D-s, where 50 was succesful On average that is 0.009

The time for 50 trial divisions is 0.020 seconds, 0.000 on average

Batch trial division takes 3.220 seconds for 50 D, 0.064 on average

Time of Miller-Rabin test for 46 is 3.580 seconds, 0.078 on average

This resulted 2 new nodes

lambda 1.93

delta 1.20

The total time of estimation is 3.140

lambda 1.49

delta 1.20

The total time of estimation is 3.050

1 level completed in 97.930 seconds

In the second step Modified-ECPP neither provides new node in one itera-
tion, with bound δ1 = 1.2, therefore the suitability values had to be reevaluated
and the other child is selected, as after the failure of the iteration the suitability
of n1,2 is increased to 1.3.

n1: 898560913...903551613020571 1009 digits
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SLimit: 23763.64 1.3

DLimit: 10947.23 1.2

BLimit: 5397264.73590251461588576356885 2.0

Filtering discriminants and reduction takes 27.250 seconds for

3331 D-s, where 130 was succesful On average that is 0.008

The time for 130 trial divisions is 0.030 seconds, 0.000 on average

Batch trial division takes 3.410 seconds for 130 D, 0.026 on average

Time of Miller-Rabin test for 127 is 4.960 seconds, 0.039 on average

This resulted 0 new nodes

2 level completed in 36.790 seconds

It has more luck with n1,1; in the third step provides four new nodes and
initiates δ2,j, 1 ≤ j ≤ 4 for them.

n1: 1928293492...0513347699 1010 digits

SLimit: 23773.79 1.3

DLimit: 10951.55 1.2

BLimit: 5400813.29 2

Filtering discriminants and reduction takes 28.930 seconds for

3333 D-s, where 166 was succesful On average that is 0.009

The time for 166 trial divisions is 0.040 seconds, 0.000 on average

Batch trial division takes 3.480 seconds for 166 D, 0.021 on average

Time of Miller-Rabin test for 153 is 9.190 seconds, 0.060 on average

This resulted 4 new nodes

lambda 1.95

delta 1.20

The time of estimation is 3.110

...

lambda 2.06

delta 1.20

The time of estimation is 3.140

3 level completed in 51.070

Modified-ECPP provides two new nodes after 4 iterations in the first step.
Note that it does not apply any heuristics in (T0). Then it picks up the same
node n1,2 where Magma-ECPP got stuck and also has bad luck with this
number, as it produces no new node after one iteration. Therefore it had to
backtrack to n1,1. In this case λ does not help us very much as it underesti-
mated the necessary amount of discriminants to provide a new node, but as
there is another node produced on the same level, Modified-ECPP does not
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even have to go back to the previous level to provide a new node. In the third
step it provides four new nodes in one iteration; λ seems to work better there.
The algorithm reached the small primes in 1794.97 seconds after 146 steps.
Completing the proof using this path took 1119.23 seconds, and thus the total
running time was 2914.2 seconds.
Note that one iteration for Modified-ECPP takes a list of discriminants, this

way the 4 iterations from the first step were running through discriminants up
to 23946.
The first step took 513.99 seconds for Magma-ECPP and 97.93 seconds for

Modified-ECPP. The difference probably comes from the fact that Magma-
ECPP has to force the mi-s with strong factoring methods and big factoring
bounds to provide a new node while Modified-ECPP works with a much bigger
set of discriminants (up to 1010) and therefore it can use batch trial division
and lower factoring bounds. In this case the bounds on lower levels in the
tree are around 5300000. In the third step Modified-ECPP provides 4 new
nodes with one iteration, where the predictions have been already applied on
the value of D1. The goal of the estimation of the initial value of δi using
λ is to decrease the probability of backtracking and selecting the same node
more often by predicting the minimal interval where one iteration will run
successfully. This gives also the basis of the suitability value to predict on which
node do we have to process the least number of discriminants to provide at
least one new node. The total number of iterations in this case is 187 where 146
provides a new node. The other iterations provided the same node as the input
or provided another node to backtrack. We do not count the four iterations of
the first step in the number of the iterations, as there is no heuristics applied.

6 Remarks and conclusions

We described a strategy applied during the process of ECPP; produce more
nodes in a step in the recursion, estimate the suitability of the new nodes
and select the most suitable. With this strategy we try to avoid backtracking
(or repetition on the same node) by estimating the interval for discriminants
to search through for each new node and by predicting which ni,j to pick in
order to be able to successfully continue. 78% of the iterations ran in the test
terminated successfully on the nodes and intervals selected this way.
As we can see, the predictions give us no hundred percent certainty to avoid

such situation; for instance, in the second step from the example n1,2 provided
no new node, but at least we have an idea, what we can expect in theory
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from considering a node. Roughly speaking we could not avoid backtracking
or repetition after 22% of the iterations in this case. What to do then?
First of all we are trying to avoid backtracking to the previous level because

that might make our whole effort on the current level useless, and also because
the size of the numbers is growing going up in the tree. There we can use the
penalty value, that is added to the nodes in the previous levels’ suitability,
influencing the probability of selecting a node from previous levels. The default
value of the penalty is high, 0.8. After one unsuccessful iteration we increase
the value suitability with 0.1, and thus 0.8 would mean 8 unsuccessful iterations
on the node; this is a tough condition, does not occur frequently. Of course
different nodes starts from different suitability, thus in practice we do not
always need 8 unsuccessful iterations; if none of the nodes on the current level
is suitable enough, the numbers are just to get a feeling about the size of the
penalty. In this example backtracking to the previous level does not occur.
The goal of producing more nodes in a step is to make the implementation

more robust against backtracking to the previous level, as the nodes in the
current level are likely more suitable, and to avoid running multiple iteration
on the same node by switching between the nodes on the same level. In ad-
dition, if it turns out that a node is not as successful as estimated, and thus
produces no new node after the first iteration on the expected interval, we
become more careful and try to take small steps at a time. We increase the
value δi,j of the current node ni,j with 0.1 after each unsuccessful iteration
and reorder the list of possible nodes to see whether our selected node is still
the best. This way it tries to keep backtracking fast and flexible. That is what
happens in the second step in the example.
Modified-ECPP was tested with several numbers with around 1000 digits

and it provided proof in each situation in 2000–3000 seconds. Magma-ECPP
was running on the same numbers failed on the number from the example,
and provided proof in 2000–8000 seconds in every other cases, depending on
whether we backtrack or not there are bigger differences in running time.
It seems that the running times of Modified-ECPP are more balanced for
numbers with similar size.
The implementation works on a list of preprocessed discriminants up to 1010,

thus it can process the discriminants fast, without the need of factoring the
discriminants or the computed mi-s with high factoring bounds. By default
Modified-ECPP runs with configuration si,j = log(ni,j) and bi,j = log2(ni,j),
which for numbers with such size are around 2 300 and 5 300 000, and in our
tests always terminated successfully.
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As it still has to backtrack in a number of situations, there are further plans
to tune the strategy to reduce this number by involving all the important
parameters si,j, bi,j, di,j (refer to Section 4.2.2) to determine suitability. Also
the implementation is not the final version, stronger factoring methods are
going to be applied on the mi,j-s in order to gain shorter paths and to be able
to prove primality for bigger numbers.
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