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ELEMENTARY AND INTEGRAL-ELEMENTARY
FUNCTIONS

MIKLOS LACZKOVICH AND IMRE Z. RUZSA

ABSTRACT. By an integral-elementary function we mean any real function that can be obtained from
the constants, sinx, e*, logx, and arcsinx (defined on (—1, 1)) using the basic algebraic operations,
composition and integration. The rank of an integral-elementary function f is the depth of the formula
defining f. The integral-elementary functions of rank < n are real-analytic and satisfy a common algebraic
differential equation P,(f, f', ..., f®) = 0 with integer coefficients.

We prove that every continuous function f: R — R can be approximated uniformly by integral-
elementary functions of bounded rank. Consequently, there exists an algebraic differential equation with
integer coefficients such that its everywhere analytic solutions approximate every continuous function
uniformly. This solves a problem posed by L. A. Rubel.

Using the same basic functions as above, but allowing only the basic algebraic operations and com-
positions, we obtain the class of elementary functions. We show that every differentiable function with
a derivative not exceeding an iterated exponential can be uniformly approximated by elementary func-
tions of bounded rank. If we include the function arcsin x defined on [~1, 1], then the resulting class of
naive-elementary functions will approximate every continuous function uniformly.

We also show that every sequence can be uniformly approximated by elementary functions, and that
every integer sequence can be represented in the form f(n), where f is naive-elementary.

1. Introduction

The investigations of this paper were motivated by the following question posed
by J. Pintz: is it possible to approximate the function 7 (x) (the number of primes up
to x) using elementary functions in such a way that the error of the approximation is
smaller than, say, |7 (x)— Li(x)|? Of course, the answer to this question depends on
what we mean by elementary functions.

The “naive” approach is to consider a function f elementary if it can be given by a
finite closed expression,; that s, if f can be obtained from a given set of basic functions
using a given set of operations. Our choice is then to select the admissible basic
functions and operations. We shall choose one of the most restrictive possibilities,
and adopt the following definition. (In the sequel, by intervals we always mean
non-degenerate intervals.)
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The class of naive-elementary functions is the smallest class NE of real functions
defined on subintervals of R such that:

(i) NE contains the constants, the identity function x, the functions sin x, ¢*, log x,
and arcsin x (defined on [—1, 1]).

(ii) If f is a function defined on an interval I, and if there are functions g, h € NE
such that f equals the restriction of one of the functions g+, g-h, g/ h, goh,
to the interval I, then f € NE. (In the case of g/h we assume that 4 does not
vanish on 1.)

Let NE; denote the set of functions listed in (i). If NE,, is defined, then let NE,
denote the family of all functions f: I — R with the following properties: I is
an interval, and there are functions g, h € NE, such that f is the restriction of one
of g+ h,g-h,g/h, gohtol. Theelements of NE, will be called the naive-
elementary functions of rank n. From the minimality of the class NE it follows that
NE = U2 (NE,. Thus every element f of NE can be given by a finite expression,
and the rank of the function is given by the depth of the simplest formula defining f.

As we shall see, the class NE is surprisingly large. Namely, for every pair of
continuous functions g: R — R and e: R — (0, 00) there is a function f € NE
such that | f(x) — g(x)| < e(x) for every x € R (Theorem 6.2). Moreover, we may
take f € NEjg, and thus f can be obtained from NE, using only a bounded number
of operations. This result provides the following answer to Pintz’s question: There
is a naive-elementary function f such that | f(x) — w(x)| < 1 everywhere. As for
the sequence m(n), we show that there is a naive-elementary function f such that
f(n) = m(n) for every n. In fact, this is true for any sequence of integers in place of
m(n) (Corollary 4.3).

Considering the notion of naive-elementary functions it could be objected that,
although the elements of NE, are analytic, NE; already contains nondifferentiable
functions (take, for example, arcsin(sinx)). Since the elementary functions are re-
quired to be analytic, it seems natural to adopt the following definition.

The class of elementary functions is the smallest class E of real functions defined
on open subintervals of R such that:

(i) E contains the constants, the identity function x, the functions sinx, *, log x,
and arcsin x (defined on (—1, 1)).

(ii) If f is a function defined on an open interval 1, and if there are functions g, h €
E suchthat f equals the restriction of one of the functions g+h, g-h, g/ h, goh,
to the interval I, then f € E. (In the case of g/h we assume that k& does not
vanish on 1.)

We define the classes E,, in the same way as above. Then, by the minimality of the
class E it follows that E = U2 E,. Clearly, every elementary function is analytic
on its domain.
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We shall prove that every differentiable function with a derivative not exceed-
ing an iterated exponential can be uniformly approximated by elementary functions
(Theorem 5.1). (This easily implies that there is an elementary function f such that
| f(x) —m(x)| < 1everywhere.) Also, if a, is an arbitrary sequence of real numbers,
and g, is an arbitrary sequence of positive numbers, then there is a function f € Eo
such that | f(n) — a,| < &, for every n (Theorem 4.2). On the other hand, we do not
know whether or not every sequence of integers can be represented in the form f(n),
where f € E. We show, however, that not every real sequence is of the form f(n),
where f € NE. This is a special case of Theorem 4.5.

Our proof showing that every continuous function can be approximated by naive-
elementary functions breaks down if we are allowed to use elementary functions
only. In fact, it is very likely that if a continuous function is too large or oscillates too
rapidly, then it cannot be uniformly approximated by elementary functions. We shall
prove, however, that if integration is also allowed, then the resulting class, defined
below, approximates every continuous function.

The class of integral-elementary functions is the smallest class IE of real functions
defined on open subintervals of R satisfying the following conditions:

(i) IE contains the constants, the identity function x, the functions sinx, ¢*, logx,

and arcsin x (defined on (-1, 1)).

(i) If f is a function defined on an open interval I, and if there are functions
g, h € IE such that f equals the restriction of one of the functions g + &, g -
h, g/h, goh, tothe interval I, then f € IE. (In the case of g/h we assume
that ~ does not vanish on 1.)

(iii) If g € IE is defined on the interval I and if @ € I, then the function f defined
by f(x) = [ g(t)dt (x € I) also belongs to IE.

If we define the classes IE, in the obvious way, then we have IE = U IE,.
Clearly, every integral-elementary function is analytic on its domain. The class IE
is strictly larger than E, since it contains, for example, the nonelementary function
f 1" ((sint)/t) dt (x > 0). Still, the class /E is rather small in the sense that each of its
elements satisfies an algebraic differential equation, that is, an equation of the form
P(x, f, f,..., f®) = 0, where P(xo, ..., xx41) is a polynomial. Moreover, for
every n there is a nonzero polynomial P, with integer coefficients such that each ele-
ment of IE, satisfies the algebraic differential equation P, = 0. Indeed, the elements
of IE satisfy one of the equations

f=0,f =12 +(MN=1f=fxf=10=-x)(f=1
Thus for Py we may take
X (=1 GF x5 =1 (o —x1) - (xoxz — 1) - (1= x0)* - x5 — 1).

It is known that for every nonzero polynomial P with integer coefficients there are
nonzero polynomials @i, ..., Qs with integer coefficients such that whenever the
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analytic functions f and g satisfy the algebraic differential equation P = 0, then f +
8. f+8, f/8, fog, [ f satisfy the algebraic differential equations 0; =0, ..., Qs =
0 respectively. (See, e.g. [3, Theorem 5.4].) This easily implies, by induction on n,
that all the elements of IE, satisfy a common algebraic differential equation P, = 0,
where P, is a nonzero polynomial with integer coefficients.

We shall prove that for every pair of continuous functions g: R — Rande: R —
(0, 0o) there is a function f € IE)9 such that | f(x) — g(x)| < &e(x) forevery x € R
(Theorem 6.1). By the previous remark, this implies that there is a nontrivial algebraic
differential equation with integer coefficients, P = 0, with the following property: for
every pair of continuous functions g: R — Rand e: R — (0, 00) there is a solution
f of P = 0 such that f is everywhere analytic on R, and | f(x) — g(x)| < &(x) for
every x € R.

Whether such an algebraic differential equation exists was asked by L. A. Rubel in
[5] (see also Problem 19 in [6] and [7], and Conjecture 6.2 in [3]). A partial solution
was given by M. Boshernitzan in [3]. He proved that the family of functions

/"*“ bd cos(e’)
0

_— ¢ ,b,e,deR,d>0
1 + d? — cos(bt) @b,cde >0

is dense in C () for any compact interval I C R. It is easy to see that these functions
belong to IE7. In [3], M. Boshernitzan also constructed an algebraic differential
equation such that its polynomial solutions are dense in C(I) for every compact
interval I.

The history of Rubel’s problem goes back to a false conjecture of Borel claiming
that the solutions of an algebraic differential equation cannot grow faster than an
iterated exponential (for details see [3],[6],[7]). The simplest counterexample to
Borel’s conjecture was constructed in [2]. Let

fax) = sin? wx + sin® rax = (2 — cos 2wx — cos 2rrax)/2. (1.1)

In [2] it is shown that for every increasing function ¢: [1,00) — R there is an
irrational number «, and there is a sequence x,, — 00 such that £, (x,)™! > ¢(x,)
for every n. On the other hand, it is easy to prove that the functions f,! satisfy a
common algebraic differential equation independent of «.

Our proof of Theorem 6.2 is based on the observation that for every increasing
function ¢: [1,00) — R there are irrational numbers «, 8 such that f,(2")~! +
S8 2"~ > ¢(n) for every n (Theorem 2.1). Then we use an interpolation formula
involving NE-functions (Lemma 3.5) to prove that every continuous function can be
dominated by a naive-elementary function (Theorem 3.6).

It was proved in [1] that for every increasing function ¢: [1,00) — R there
is an irrational number « and a sequence x, — 00 such that flx " fu@®)"ldt >
¢ (x,) for every n. Our proof of Theorem 6.1, in turn, uses the fact that for every
increasing function ¢: [1,00) — R there are irrational numbers «, 8 such that
L fa@® + fp(0)™") dt > ¢ (x) forevery x > 2 (Theorem 3.2). On the other hand,
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we show that the functions | lx fa(t)~'dt do not dominate all increasing functions: for
every irrational « there is a sequence x; — 00 such that flx' fa®)~1dt < 40x; log x;
(Theorem 3.4).

If an integral-elementary or naive-elementary function f is defined on an interval
I, then f must be analytic on a subinterval of I. Consequently, the classes IE and
NE do not contain all continuous functions. We prove that even if we enlarge the
set of basic functions NE by an arbitrary countable set of continuous functions, the
resulting class cannot contain all continuous functions (Theorem 6.4).

2. Dominating sequences with elementary functions

In this section we show that every sequence can be dominated by elementary
functions of bounded rank. Recall that the function f, was defined in (1.1). Clearly,
if o is irrational, then the only real root of f;, is at x = 0.

THEOREM 2.1. For an arbitrary sequence of real numbers, A, (n = 1,2,...),
there is an elementary function f of rank 7 such that f is defined everywhere on R, and
f(n) > A, for every n € N. Namely, the function f(x) = fo(2*)~! + f5(2*)~! has
this property, where o and B are irrational numbers depending on the sequence A,.

Let ||x|| denote the distance of the real number x to the nearest integer. We shall
frequently use the fact that

2llx|l < Isinwx| < |lx]| @.1)

for every real number x.

LEMMA 2.2. Let C, (n = 1,2,...) be an arbitrary sequence of real numbers.
Then there are irrational numbers o, B such that

1 1
max | ——, —— ) > C, (2.2)
(nznau uwn) "
holds for everyn =1,2,....

Proof. Leta) < a; < ... be a sequence of positive integers such that a; = 1,
and
aiy1 > 2a; + 10k + max{|Cp|: n <a;} k=1,2,...). 2.3)

Weputa = Y 0, 27% and B = ) ;o 2 %+, Thena, B areirrational, as their dyadic
expansions are not eventually periodic. Let n be a positive integer, and suppose that
ax_1 < n < a. If k is even, then

o0
28l = > 2neun < 2mmwn . (14279, (2.4
i=k/2
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as ayya > agq1 + 10. Thus [|2" 87! > 2%#+1—%~1 5 26 5 C, by the choice of a4 ;.
If k is odd then we find, in the same way, that ||2"a||~! > C,, and thus (2.2) holds in
both cases. [

Proof of Theorem 2.1. Let «, B be irrational numbers satisfying (2.2) with C,, =
7 - &/|Ap]. Then by (2.1), we have,

f2N7T £ = sinT2(ma2)+ sin T2 (wB2") = (w127 |) T2+ (|27 )
1 2 mmane 1
—3 max (127l =2, 1278172) > FCZ = |An|

v

for every n > 1. Since f,(2*)~! + f3(2*)~! € E5, this completes the proof. O
The next supplement to Theorem 2.1 will be needed in later applications.

LEMMA 2.3. Letl = a; < a; < ... be a sequence of integers satisfying (2.3),
and let a, B be as in the proof of Lemma 2.2. Then the function f(x) = fy(2*)~! +
f8(2*)~! has the additional property that | f (n) — f(m)| > 1 foreveryl <n < m.

Proof. We shall prove first that if a;_; < n < gy then
0.9.772.22@n"" <« f(n) < 1.2 772 . 2Ha@n=m, (2.5)

Suppose that k is even (the case when k is odd can be treated similarly). Let ||2" 8] =
6; then

2" < 9 < 1.01 - 2" %
by (2.4). Thus we have
f) > f32)7 =sin? (7f2") = #7207 > p2 . 1.0172. 22 @0,

which proves the first inequality of (2.5). Since 768 < 0.1 and cos x > 0.99 for every
0 < x <0.1, we have sin(78) > 0.9970, and thus

@)™ = sin™? (7p2")
=sin2(70) <1.1- 772072 < 1.1 - x~2.2%@n-"_ (26)

The fractional part of 2"« equals

00
n—a

i=k/2
If n = a; — 1 then this gives ||2"«|| > 1/4 and

fa@D7 =sin7? (ma2") < 2)I2"l) T2 <4 < 0.1 772 220,
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On the other hand, if n < a; — 1, then ||2"«|| > 2"~%, and thus
fa@)7' < Q2% < 22 < 0.1 w2 Q2An ),
that is,
fa@)7h < 0.1 772 220

holds in both cases. Adding this inequality to (2.6), we obtain the second inequality
of (2.5).

Now let 1 < n < m be arbitrary integers, and suppose a;—; < n < a; and
aj_1 < m < aj. Then the numbers 2(a;41 —n) = N and 2(aj+, —m) = M are
different. Indeed, if k = j then N > M, and if k < j then, by ;41 > 2a; we have

j+1 —M > Qjy1 — 4j > Gj 2 Qkq] = Akl — N
and thus M > N. For example, if N > M then by (2.5) we have

09.772.28 —12.772.2M
18- 772.2M _12.772.2M
=0.6-7"2.2M > 1,

fn) = f(m)

v Vv

aaM=>5 0O

3. Dominating continuous functions with integral-elementary and
naive-elementary functions

In this section our aim is to show that every continuous function on R can be
dominated by integral-elementary and naive-elementary functions of bounded rank.

LEMMA 3.1. We have

/" dt - 1
n—1 Ja(t) T~ 50|Ine]]
whenever « is irrational, |a| < 1 andn € N.
Proof. By (2.1) we have
fa(n) = sin® wan < w?|na|?,
and

| fo(n)| = |rasin2ran| < 2rasinran| < 27r2||na||. 3.1
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Since | f/| < 4n? everywhere, Taylor’s formula gives

fll

| fan+ 0] = | faln) + fo(n)t + =12 < 72 (IInec|® + 2llne||] + 2¢2)

for every t. Consequently, for 0 < ¢ < ||| we obtain | fy(n — #)| < 572||ne||?.

Thus
n n
/ dtzf i _pet 1 O
n=1 fa@) = Jucjnay fa®) T 572[na? T 50|nal|

THEOREM 3.2. Forevery continuous function g: [1, 00) — R there areirrational
numbers a, B such that

X 1 1
2
,/; (fa(f) + fﬂ(t)) dt > g(x) (x =2).

Proof. Let «, B be irrationals satisfying (2.2) with

C, = 50 - max{|g(x)|: x € [1,2""]}.

We may assume «, B € (0,1). Let x > 2 and n = [logx/log2]; then n € N, and
2" < x < 2"*1, Putting F(x) = fo(x)~! + fg(x)~! by Lemma 3.1 we have

x z 1 1 1
F@)dt > F@)dt > + C, > O
/1 ® [2 L PO 2 Syt sopzrp ~ 50 = 8@

THEOREM 3.3. For every continuous function h: R — R there is an integral-
elementary function f of rank 8 such that f is defined everywhere on R, and f(x) >
h(x) for every x € R.

Proof. Let h: R — R be continuous, and put
g(x) = max{|h(®)|: |t| < |x|} (x € R).

Then g is also continuous and hence, by Theorem 3.2, there are irrational numbers,
a and B such that [ (fo(1)™! + fp(#)~!) dt > g(x) for every x > 2. Let

242

X2
Foo) = fl Fu®™ + f50) .
Then f € IEg, and f(x) > g(x? +2) > h(x) holds forevery x. [

For the sake of completeness we show that the functions flx fa()~1dt do not
dominate every continuous function.
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THEOREM 3.4. For every irrational « there is a sequence x; — 00 such that

Yo dt
1 fa(t)

< 40 - x; log x;
foreveryi.

Since this result is independent of the rest of the paper, we shall give the proof in the
appendix. Our next aim is to dominate continuous functions with naive-elementary
functions. To this end we shall need two auxiliary functions, p and g, defined as
follows. Let p(0) =0, p(1/4) = p(1/2) =1, p(3/4) = p(1) = 0, let p be linear
on the intervals [({ — 1)/4,i/4] (( = 1, 2, 3, 4), and let p be periodic mod 1 on R.
Letg(x) = nifx € [n,n + (3/4)] (n € Z), and let g be linear on the intervals
[n+ (3/4),n + 1] (n € Z). We show that p, g € NE. Since

1 1
|x|| = =— arcsin(sinrx — (7/2))) + -, 3.2)
2 4
the function ||.|| belongs to NEg. It is easy to check that
p(x) =2xll +2llx + (1/Hl - (1/2) (3.3)
and

qx) =x — |Ix[| + llx + (A/HI = (1/2) - [I2x ]| — (1/4). (34)

Since the functions 2||x + (1/4)|| — (1/2) and (1/2) - ||2x]| + (1/4) are still of rank
6, we have p € NE; and q € NE3.

LEMMA 3.5. Let F: R — R be an arbitrary function, and put

Fi(x) = p(x) - F(g(x)) + (1 = p(x)) - F(q(x + (1/2))) (x € R). (3.5

Then Fy(n) = F(n) for every n € Z, and F) is piecewise linear and monotone in
each interval [n,n + 1] (n € Z).

Proof. Let {x} denote the fractional part of the real number x. It is easy to check
that

F([xD if {x} < 1/2;
Fi(x)={p&x) - F(xD+ A = px)) - F(Ix]+1) if1/2<{x} <3/4; (3.6)
F(Ix]+1) if {x} > 3/4.

Then the statement of the lemma follows from the fact that p islinearin[1/2,3/4]. O

THEOREM 3.6. For every continuous function h: R — R there is a naive-
elementary function f of rank 11 such that f is defined everywhere on R, and
f(x) > h(x) for every x € R.
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Proof. Let A, = max{|h(x)]: |x| <n+1} (n =1,2,...). By Theorem 2.1,
there is a function fi € E; such that fy(n) > A, foreveryn = 1,2,.... Let
fo(x) = fi(x2+1); then f, € Eg, and fo(n) > max{|a(x)|: x € [n — 1, n + 1]} for
every n € Z. Finally, if we put

f@x)=px) - falg®) + (1= p(x) - fa(gx +(1/2))) (x €R),
then f € NEj;, and it follows from Lemma 3.5 that f > h everywhereon R. O

4. Approximating sequences with elementary functions

In this section we shall prove that every sequence can be approximated with arbi-
trary precision by an elementary function of bounded rank.

LEMMA 4.1. Letx,andc, (n =1,2,...) betwo sequences of real numbers such
that infuzm |xn] = |Xm|] > O0and|c,| < |x.| for every n. Then there are real numbers
¥, M such that the function f(x) = x - sin(y - eM "‘2) satisfies | f (x,) — cu| < 1 for
everyn=1,2,....

Proof. We may assume x, # 0 for every n. After rearranging the sequences we
may also suppose that |x;| < |x2| < ....Letinf,(|xy+1| — |x.|) = 8 > 0, and put
M =10/4. Let

1 1
L= [C—"———,i”—+—-]n[—1,u;
Xn o |xal Xn o lxal
then |1,| > 1/|x,| for every n. We have to prove that the intersection of the sets

E, = [y eR: sin(y -eM*3) c 1,,} n=12..)

is nonempty. Since |sinx — sin y| < |x — y| for every x, y, there is a closed interval
Ju C [—m/2, /2] for every n, such that |J,| > 1/|x,| and sin(J,) C I,. The set E,
is periodic mod p, = 2we~M*:, and contains the interval K, = {y-e~*: y € J,}.
Therefore, K, + p,k C E, for every k € Z. To complete the proof, it is enough to
find integers ki, k5, . .. such that

Ky + Pukn O Kni1 + Prtiknta @.1)
for every n. Indeed, in this case the intersection ﬂ:":l (Kn + pnks) is nonempty, and
then so is (g En. Let k; = 0 and suppose that k, has been selected. Now

Doyl = 27 e~ M, <27 - || - 1] . e~ M-(xa|+8)?
< 2|l - €M x| oM = 2 K| (- €72 < (K72,
and thus the interval K, + pnk, is longer than 2p,,,, twice the period of E, ;. Since

[{Knt1| < P+, it follows that K, 1 can be translated by an integer multiple of p,1
such that the translated copy is covered by K, + pnpkn; thatis, (4.1) holds. O
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THEOREM 4.2. Ifa, (n = 1,2,...) are arbitrary real numbers and &, (n =
1,2,...) are arbitrary positive numbers, then there is an elementary function f of
rank 9 such that f is defined everywhere on R and | f (n) — a,| < &, for everyn € N.

Proof. By Theorem 2.1 we can choose a function w € E; such that w > 0
everywhere and w(n) > 1/g, for every n. Applying Theorem 2.1 and Lemma 2.3,
we find a function v € E7 with the following properties: v is defined everywhere,
v(n) > |a,| - w(n) foreveryn € N, and |v(n) —v(m)| > 1foreveryn # m. Applying
Lemma 4.1 with x, = v(n) and ¢, = a, - w(n) we obtain a function g € Eg such that
lg(v(n)) —a, - w(n)| < 1foreveryn =1,2,.... Then the function f = (g o v)/w
belongs to Ey, and satisfies

[ f(n) —a,] = |g(v(n)) —a, - wn)|/wn) < 1/wh) <s,

foreveryn. O

COROLLARY 4.3. Let a, (n € N) be an arbitrary sequence of integers. Then
there is an f € NE o such that f(n) = a, for everyn € N.

Proof. Let g € Eg be such thata, < g(n) < a, + (3/4) for every n. Then the
function f = q o g satisfies the requirements (compare (3.4)). O

Since the function g does not belong to /E, the following question remains open.

PROBLEM 4.4. Let a, (n € N) be an arbitrary sequence of integers. Does there
exist an integral-elementary (or even an elementary) function f such that f(n) = a,
for every n?

In light of the statements of Theorem 4.2 and Corollary 4.3 it is natural to ask
whether or not every sequence is actually equal to the sequence f(r) with a suitable
naive-elementary function f. In the next theorem we show that the answer is negative.
Let

[0, 1N = {(x1, x2,...): % €[0,11 G = 1,2,...)}

denote the set of sequences in [0, 1], and let .« denote the product measure on [0, 1N,
where each component is endowed with the Lebesgue measure A. We shall prove that
the set

{(f(mN, e RN: f e NEUIEYN [0, 11N

is of p-measure zero.

Let f be areal valued function defined on aset H C R”. We say that f is Lipschitz
«a, if there is a constant K such that | f(y) — f(x)| < K|y — x|* forevery x,y € H.
We say that f is locally Lipschitz «, if every x € H has a neighbourhood U such that
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the restriction of f to HNU is Lipschitz «. Finally, we say that f is locally Lipschitz
if there is @ > O such that f is locally Lipschitz a. Clearly, every C' function is
locally Lipschitz. Since

| arcsin x — arcsin y| < —J—_z_lx —y|'2 “4.2)

for every x, y € [—1, 1], the function arcsin x is Lipschitz 1/2 on [—1, 1].

Let F be a family of functions defined on subintervals of R. We shall denote by
IE(F) the smallest class satisfying the following conditions: (i) IE(F) contains F
and also the constant functions; (ii) if f is a function defined on an interval I, and
if there are functions g, h € IE(F) such that f equals the restriction of one of the
functions g + h, g -h, g/h, goh,to the interval I, then f € IE(F); and finally,
(iii) if g € IE(F) is defined on the interval I and if a € I, then the function f defined
by f(x) = [ g(t)dt (x € I) also belongs to IE(F).

THEOREM 4.5. Let F be a countable family of locally Lipschitz functions defined
on subintervals of R. Then the set

Sr={(fm)L;: f € IEP}INO, 1N

is of w-measure zero.

The proof is given in the appendix. The local Lipschitz property cannot be replaced
by continuity in the previous theorem. Moreover, there is a single continuous function
F: R — Rsuch that

[0, 1IN C ((F2: f € IEGFD).

Indeed, since the Hilbert cube [0, 1]V is the continuous image of [0, 1], there are
continuous functions ¢,: [0, 1] — [0, 1] such that

[0, 1IN = {(¢a())2;: 1 € [0, 11}

Let F(2n + x) = ¢,(x) forevery n € N and x € [0, 1], and let F be extended to R
as a continuous function. If a, € [0, 11N and « is such that a, = ¢,(c) for every n,
then we have f(n) = a, (n € N), where f(x) = F(2x + a) € IE({F}).

In this example the set {(f(n));2,: f € IE({F})} will actually contain every
sequence. In fact, every sequence (a,) can be written in the form (b, T c, 1y, where
b,, c, € (0, 1), and thus a, = f(n), where

1 1

IO =5 sh " Fox 1)

with suitable 8, vy € [0, 1].

We also remark that analogous results concerning the set of sequences represented
by differentially algebraic functions were proved in [4].
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S. Approximation of functions by elementary functions

In this section our aim is to prove that differentiable functions with not too large
derivatives can be uniformly approximated by elementary functions. Recall that e; (x)
denotes the iterated exponential function; thatis e; (x) = e* and ex41(x) = %™ (k =
1,2,...).

THEOREM 5.1. Let g: R — R be a differentiable function, and suppose that
lg'(x)] < ex(|x|) for every x € R with a suitable positive integer k. Then for every
n € Nthere is an elementary function f: R — Rsuchthat | f(x)—g(x)| < 1/e,(|x])
everywhere on R.

LEMMA 5.2. Let g: R — R be a continuous function such that |g(y) —g(x)| < 1
whenever |y — x| < 1. Then there is f € E7 such that | f (x) — g(x)| < 7 for every
x €R.

Proof. First we suppose that g(0) = 0, and construct a function f € E;¢ such
that | f — g| < 7. Then the statement of the general case will follow by considering
the function g — g(0) instead of g, and by adding the constant g(0) to f.

Since g(0) = 0, the assumption on g implies that |g(n)| < |n| for every n € Z.
Then we can choose real numbers ¢, such that |c, — g(n)| < 1/3, and |c,] < |n +
(1/3)| (n € Z). Since ||n+(1/3)| — |m+ (1/3)|| = 1/3 foreveryn,m € Z, n # m,
we may apply Lemma 4.1, and find real numbers y and M such that the function
fi(x) = x - sin(y -eM"‘z) satisfies | fi(n + (1/3)) —cy| < 1 foreveryn € Z. Let
F(x) = fi(x + (1/3)),then F € E; and

|[F(n) —gm)| < |fi(n + (1/3)) —cnl +lcn — ()| <2

forevery n € Z. Let F) be defined by (3.5). If n < x < n+ 1, then we have | F(n) —
gm)| <2, [Fn+1)—gn+1| <2, |gx)—gm)| < land|g(x)—g(n+1)| <1,
and hence |F(n) — g(x)| <3 and |F(n+ 1) — g(x)| < 3. Thus, by Lemma 3.5, we
have |F}(x) — g(x)| < 3.

In the sequel we shall write exp(x) for ¢*. We put K = 8(|My| + |M| + 1),
& = exp(—5K) and 8(x) = € - exp(—2K x?). Let

1 1
R(x) = > arcsin (1 = 8(x)?) sin@mrx — (7/2))) + 7
then it follows from (3.2) and (4.2) that
[R(x) — llx ||| < 8(x) (5.1

for every x € R. Also, R € Eqy, and hence the functions

p1(x) =2-R(x)+2-R(x + (1/4)) — (1/2)
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and

q1(x) =x — R(x) + R(x + (1/4)) — (1/2) - R(2x) — (1/4)

belong to Ey3. Now we define

f&x)=pi1(x) - F(qi(x)) + (1 = p1(x)) - F(q1(x + (1/2)));

then f € E16. We shall prove that | f — Fi| < 4. Since |F; — g| < 3, this will finish
the proof. Let Q = g(x + (1/2)) and Q; = q1(x + (1/2)). Then, by (3.5) we have

|f —Fil < |p-F(@) —p1-F(g)l+I|(1=p) - F(Q)— (- p1)-F(Q)l
< p-IF(@) — F(g)l+Ip1—pl-|F@@)l+ 1 —p)-|F(Q)— F(Q)l
+|p1— pl- |F(QD)I
= A+B+C+D.

o
-

We shall prove that each of A, B, C, D is less than 1. Since exp(K|x|) < exp(X) -
exp(K x?) for every x, we have

8(x + (1/4)) = &-exp(=2K (x + (1/4))*) < & - exp(—2Kx?) - exp(K |x|)
< ¢ exp(—2Kx2) - exp(K) - exp(KxZ) = exp(—4K) ~exp(—Kx2).

By (3.3), (3.4) and (5.1) this implies

Ip(x) = p1()] < 2-8(x) +2-8(x + (1/4)) < 4 - exp(—4K) - exp(—Kx?)

< exp(-3) - exp(—x2) <

1
, 5.2
|x]+3 5.2

and

lg(x) —q1(x)| < 8(x) +8(x + (1/4)) +8(2x) <2-8(x) +8(x + (1/4))
< 4.exp(—4K) - exp(—K x?)

< % -exp(—K) - exp(—Kx?) < 1. (5.3)

Sincex — 1 < g(x) < x,wehavex —2 < g;(x) < x + 1. Thus
[F (g1 = | filqi(x) + 1/3N] < lqi(x) + A/3)] < Ix] +2,
and |F(Q1)] < |x + (1/2)| +2 < |x| + 3. By (5.2), this gives B < 1 and D < 1.

Since 0 < p < 1, in order to prove A < 1 and C < 1, it is enough to show that
|F(q1) — F(q)| < 1. We have

F(gi(x))—F@®)) = F'(c)(q1(x)—q(x)) = fi(c+ A/3))(q1(x)—q(x)), (5.4)
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wherec € (x —2,x +1). If d = ¢+ (1/3) thend € (x — 2, x + 2), and thus
|f{@] < 1+d|- |y|-exp(Md®) - 2|Md]|
< 1+2IMy|(Ix| +2)* - exp(M(lx| + 2))
< 2.exp(K) - exp(sz).
Thus (5.3) and (5.4) yield |F(q1) — F(g)| < 1, which completes the proof. O

Proof of Theorem 5.1. Let D; denote the family of all differentiable functions
h: R — R satisfying |h'(x)| < e;(|x]) for every x € R, and put D = U2, D;.
If h € D; then |h(x)| < |h(0)| + e;(|x]) for every x, as e; > e; on [0, 00). Since
e;(|x])? < ej41(|x|), thisimplies thath,-hy € Dandhjoh, € Dforeveryhy, hy € D.

Letci(x) = €* + e and ¢;41 (x) = c1(c;i(x)) foreveryx e Randi = 1,2, ....
It is easy to prove by induction that ¢; € D and ¢;(x) > e;(|x]) (x € R) for every
i. Also, the functions ¢; are even and satisfy x - ¢;(x) > O for all x € R. Let
v;(x) = x - ¢;(x). Then v; € E N D and v(x) > ¢;(x) everywhere.

Letk,n € Nand g: R — R be as in the theorem, and put gy =7 - g - ¢,. Since
g € D by assumption, it follows that g; € D; for asuitable i. Then v(x) > ¢;(|x]) >
|g}(x)| everywhere, and thus |v;(x) — v;(y)| = |g1(x) — g1(y)| for every x, y. Let
g2=g10 v,.", then |g2(x) — g2(¥)] < |x — y| for every x, y. By Lemma 5.2, there
isu € E such that |u — g3] < 7. Let f = (uov;)/(7cy,). Then f € E, and

Uov; 81

Tcn Tcn

|uov; — g0 1 1
= —————< — < .
Ten ¢ en(lx])

If—gl=

6. Approximation of functions by integral-elementary
and naive-elementary functions

In this section we shall prove that every continuous function can be approximated
with an arbitrarily small error by integral-elementary and naive-elementary functions
of bounded rank.

THEOREM 6.1.  For every pair of continuous functions g: R —> Rand e: R —
(0, 00) there is afunction f € IE\q defined everywhere on R such that | f (x)—g(x)| <
&(x) for every x € R.

Proof. By Theorem 3.3, there is a function w € IEg such that w > 7/¢ every-
where. Let gy = g - w. Since g; is continuous on R, there is a positive number
8, < 1foreveryn € Z such thatif x,y € [n —2,n] and |y — x| < §,, then
|g1(») — g1(x)| < 1. Let h be a continuous function such that 2(x) > 1/6, for every
x € [n—2,n)andn € Z. Applying Theorem 3.3 again we obtain a function v; € IE3
such that v; > h. Let v(x) = f(f vi(¢)dt. Then v € IEy, v is a strictly increasing
homeomorphism of R onto itself, and v'(x) > h(x) > 1 everywhere.
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We show that if x, y € Rand |[v(y) — v(x)] < 1 then |g1(y) — g1(x)| < 1. Let
x,y € Rbefixed suchthat |v(y)—v(x)| < 1. Thenwehave |y—x| < |v(y)—v(x)| <
1, and thus there is n € Z such that x, y € [n — 2, n]. Then

y
/ h(t)d:

from which we obtain |y — x| <, and |g;(y) — g1(x)| < 1.

Let g2 = g1 ov™!. Then g is continuous on R and has the property that |g>(y) —
g2(x)| < 1 holds whenever |y — x| < 1. By Lemma 5.2, there is u € E7 such that
|u — g2| < 7 everywhere on R. Let f = (u o v)/w. Then we have f € IE)9, and

ly —x1/8n = <) -vx)I <1,

uov Uov—grov 7
—&‘=——————I L2 |<—<s. O

If—gl=

w w w

THEOREM 6.2.  For every pair of continuous functions g: R — Rand e: R —
(0, 00) there is a function f € NE)g defined everywhere on R such that | f(x) —
g(x)] < &(x) for every x € R.

Proof. 'We shall repeat the previous proof with minor modifications. By Theorem
3.6, there is a function w € NE); such that w > 7/¢ everywhere. Then let g;, 6,
and h be as in the previous proof. We shall construct a function v € NE)s such that
v is a strictly increasing homeomorphism of R onto itself, v is piecewise linear, and
v'(x) > h(x) > 1 at every point x where v’ exists. This will conclude the proof,
since defining g; = gjov™!, uand f = (uov)/w in the same way as in the previous
proof, it follows that f € NEjgand |f — g| < €.

We can choose real numbers a; (k € Z) such that

iy — a > 3+ max{h(x): x € [k, k + 1]}

foreveryk € Z. Let b, = a; if k € Z and n = 2k* + k + 1, and let b, = O if there is
nok € Zsuchthatn = 2k?+k+ 1. Since the function 2x2+ x + 1 maps Z injectively
into N, the definition of the sequence b, makes sense. By Theorem 4.2, there exists
a function ¢ € Ey such that ¢ is defined everywhere on R and |¢(n) — b,| < 1 for
every n. Putting F(x) = ¢(2x%2 +x + 1), we have F € Ejq, and | F(k) — a;| < 1 for
every k € Z. Let F) be defined by (3.5), then F| € NE)3; and, by Lemma 3.5, Fj is
increasing and is piecewise linear. Since Fy(k + 1) — Fy(k) = F(k+ 1) — F(k) >
g1 —ag — 2 > 1, we have

lim Fi(x) =00 and lim Fj(x) = —00.
X—00 xX—>—00

Also, it follows from (3.6) that Fj is linear on [k + (1/2), k + (3/4)], and

Qg1 —a — 2

Fle > =7
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in the interior of this interval. By the choice of the numbers a; this implies that
F{(x) > max{h(x): x € [k, k + 1]}
for every x € (k + (1/2), k + (3/4)). This easily implies that the function
v(x) = Fi(x + (1/2)) + Fi(x + (1/4)) + Fi(x) + Fi(x — (1/4))

satisfies the requirements. [

As we remarked in the introduction, Theorem 6.1 implies the following.

THEOREM 6.3.  There is a nontrivial algebraic differential equation with integer
coefficients, P = 0, withthe following property: forevery pair of continuous functions
g: R —> Rande: R — (0,00) there is a solution f of P = 0 such that f is
everywhere analytic on R, and | f (x) — g(x)| < e(x) for every x € R.

If an integral-elementary or naive-elementary function f is defined on an interval
I, then f must be analytic on a subinterval of /. Consequently, the classes IE and
NE do not contain all continuous functions. Thus, we may ask whether or not all
continuous functions can be obtained by starting from a suitable finite or countable
collection of continuous functions. We close this section by showing that the answer
is negative.

THEOREM 6.4. Let F be a countable family of continuous functions defined on
subintervals of R. Then for every compact andinfinite set K C Rthereis a continuous
function f: K — Rsuchthat f ¢ {g|K: g € IE(F)}.

Proof. Let f be a continuous function defined on the compact set A C R. By
the modulus of continuity of f we mean the function ws: Rt — R* defined by

wr(8) = max{|f(y) — f(xX)]: x,y € A, |y —x| < &}.

Clearly, we have lim;_, 04 ws(8) = 0. We shall prove that for every k = 0, 1, ...
there is a countable family € of functions from R* to R* such that

(1) lims_, 04 7(8) = O for every T € Q4; and
(ii) if f € IE(F)isofrank k, A C R is compact, and f is defined on A, then there
is a function T € ; such that

wra®) < T(8) (8> 0).

We shall prove this statement by induction on k. Let f € F be fixed, and suppose
that f is defined on the interval I. Then there are compact sets A; C I such that
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1= Uf_"__l A;, and whenever A C I is compact, then A C A; holds for some i. Let
Qf ={ofa: i =1,2,...}).

Clearly, if f is defined on a compact set A, then wyj4(8) < 7(8) holds for at least one

T e Q. Let
QO=UQf.
feF

Then £ satisfies (i) and (ii) for k¥ = 0, since the functions of rank zero are the
elements of F and the constants, and the modulus of continuity of a constant function
is identically zero.

Let £ > 0, and suppose that the countable family €2 has been constructed so that
it satisfies (i) and (ii). We put

Qr1=(N- (1 +1): 71, 26, NeN}H J{mom: 11, e} | JIV - x: NeN}.

Clearly, €24 is countable and satisfies (i) (with k + 1 instead of k). To prove (ii), let
f € IE(F) be an arbitrary function of rank £ + 1, and let A be a compact subset of the
domain of f. Then there are functions g, 4 of rank k such that one of the following
statements is true:

e f = g+h.Inthiscase g, h mustbedefinedon A. Letwga < tand 4 < 72,
where 11, 72 € Q. Then wpja <11 + 12 € Q1.

o f = g-h. Again, g, h must be defined on A. Let w4 < 71 and wy 4 < 12,
where 71, 2 € €. If [g(x)], |h(x)| < N for every x € A then wfqa <
N(t1 + 17) € Q4.

e f = g/h. This is similar to the previous case, taking into consideration that &
must be nonzero on A and thus |2(x)| > 1/N for every x € A with a suitable
N eN.

o f(x)= f: g(¢) dt with an a € R. In this case g must be defined on a closed
interval J containing A. If [g| < N on J, then we have

wf1a(8) < wyr)y(8) < N8.

Since N - x € 2.1, this completes the proof of (ii).

Let 71, 72, ... be an enumeration of the elements of UZ2,S2%. Then for every
f € IE(F) and for every compact subset A of the domain of f there is an i such that
wfa < 7. Letd; > Obesuchthat 7;(5) < 1/i (i =1,2,...).

Let K be a compact infinite subset of R, and let x be a point of accumulation of
K. Then we can select a sequence x; of distinct points of K such that lim;_, 00 x; = x
and 0 < |x — x;] < §; foreveryi. Let f(x;) = 1/i (i = 1,2,...), and extend f
continuously to K. Then ws(8;) > 1/i > 1;(§;) for every i and, consequently, f
cannot be the restriction of any of the elements of IE(F) to K. O
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7. Appendix

Proof of Theorem 3.4. We shall prove that for every irrational number 0 < o < 1
there is a sequence x; — 0o such that

Yodt
1 Ja(®)
for every i. Then the case of & > 1 follows easily by using fi,.(x) = fo(x/@), and
by making the substitution u = ¢ /«.
First we show that
n+(1/2) dt 6
/ < @.1)
w1/ Ja®) T llnall

for every n € N. By (2.1) we have f,(n) = sin® man > 4||na||. Then, by (3.1) and
| f2| < 4m? we obtain

< 36 - x;logx;

om0l = |fuw) + £+ 2212 > dlnal? — 252 - 222

for every t. For |t] < ||na]|/10 this gives
| fan + 0] = 4lne|? = 2|lne|)? — lIna|)* = |Ine|?,
and thus, putting I) = [n — ||ne||/10, n + |jna||/10], we have

dt |1 1
< < .
n fa@® T lIne|2  na|
If |nx]]/10 <t < 1/2 then

fao(n+1) > sin? w(n + 1) = sin® wr > 412,

Therefore, denoting I = [n + ||n«||/10, n + (1/2)] we obtain

dt /1/2 dt 2.5
< — <=
n Ja () Inali/10 4t lnc|

Similarly, f,3 fa®)7ldt < 3/|nall, where Iy = [n — (1/2),n — ||na||/10]. Since
[n—(1/2),n+(1/2)] = U L, U I3, (7.1) follows. If x is a positive integer then
(7.1) gives

* dt 01
<6 .
1 fa@) Z lne|l

n=1

7.2)

Let p;/q; denote the convergents of the continued fraction expansion of «. It is well
known that g; > F; holds for every i, where F; is the sequence of Fibonacci-numbers.
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Since Fi11/F; — (+/5 4 1)/2, this implies that g;11/q; > 1.6 for infinitely many
indices i. We shall prove that if x = ¢; — 1, where g;4+,/¢; > 1.6 and i is large
enough, then Y7 _, lInar||~! < 6x logx. By (7.2), this will finish the proof.

Since | —(pi/qi)| < 1/(giqi+1), wehave [na—(np;i/q:)| < n/(giqi+1) < 1/qi+1
for every n < g;. If np; = j (mod g;) where 0 < j < g;, then this implies

. . ) . . )
Ina|l > min (i, 1— i) > min (i, 1— i) -
qi qi Gi+1 qi qi 1.6 - g;

3 . .
> —-min(—J—,l—i).
8 qi qi

If n runs through the numbers 1, ..., g; — 1 then so does np; (mod ¢;) and hence

1 8 Ax4a
Z <—--2~Zﬁ:—<6xlogx
Snall "3 &7

if i is large enough. O

Proof of Theorem 4.5. Let F be a countable family of locally Lipschitz functions
defined on subintervals of R. Let P denote the smallest family of functions (of
arbitrary many variables) satisfying the following conditions.

@ PoOF.

(ii) P contains the function (y, x) — y (y,x € R).

(ili) If the functions f: H — R (H c R**!), g: K — R (K C R¥!) are in
‘P then so are the following functions (defined on the largest set where their
definition makes sense):

3,2, %)= f(y,x)+ gz x) (yeR", zeRF x eR),
()’,Z,x) e f()”x) -g(z,x) (}’ € Rn, Z€ Rk, X € R)’
0,2, %)~ f(,x)/8(z,x) (y €R", ze R, x €R),
0,2, x) > f(7,8(z, %)) (y €R*, zeR¥, x eR).

(iv) Ifthe function f: H — R (H C R"*!) belongs to P then so does the function
h: K - R,where K = {(y,z,x): yeR", ze R, x € R, {y} x[z,x] C H}
and h(y, z,x) = [, f(y, 1) dt.

Clearly, P is countable. It is easy to check that if f and g are locally Lipschitz
then so are the functions defined in (iii) and (iv). Since JF consists of locally Lipschitz
functions, this implies that the locally Lipschitz elements of P also satisfy (i)-(iv).
Therefore, by the minimality of P, it follows that each element of P is locally
Lipschitz.

We claim that for every f € IE(F) thereis afunctiong: H — R (H C R"*1),and
there is a point y € R” such that g € P and g(y, x) = f(x) for every x eDom(f).
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This is obviously true (with n = 0) for the elements of F. By (ii), this holds true for
the constant functions as well. Then the general statement easily follows by induction
on the rank of the function f € IE(F).

Letg: K — Rbe given, where K C R*¥*!, Let K denote the set of points y € R*
for which g is defined at (y, n). If

Sg = [(g(y,n)),‘i‘;,: y€ ﬂK,f} :

n=1

then it follows from our last remark that

sy |Jsenio, 11N,
geP

Since P is countable, 4 (Sx) = 0 will follow, if we can show that 1(s; N[O, 1M =0
for every g € P.

Let g € P be given, where g: K — R, K C R*¥*!, and suppose that g is locally
Lipschitz with exponent &. Let N > k/« be fixed, and let pry denote the projection
of [0, 11N to R¥; that is, let

P"N((xla X2y« )) = (xla oo ,XN) ((X1, X2y« - ) € [O’ I]N)

We shall prove that Ay (pry (s, N[O, 11N)) = 0. This will finish the proof, as u(A) <
An(pra(A)) for every A C [0, 1]N.

Let the function g, be defined by g, (y) = g(y, n) (y € K5). By the local Lipschitz
property of g, for every n € N and y € K§ there is a neighbourhood U, of y such
that g, is Lipschitz « in K§ N U,. This implies, by Lindelof’s theorem, that K§ can
be covered by a sequence U7, U7, ... of sets such that g, is Lipschitz « restricted to
each U!'. Let Vi, V,, ... be an enumeration of the sets

N
(U Giiz,...,iv €N).

n=1

It is clear that the sets sg = {(g(y, n)),',"=1: y € Vi} (G = L,2,...) cover
pry(s; N[O, 11V), and thus it is enough to show that An(s3) = O for every j. From
the construction of the sets V; it follows that the function G;: V; — s; defined by

Gi=WD,....e»,N)) (yeV)

is Lipschitz  for every j. Since V; C R, this implies that the k/a-dimensional
Hausdorff-measure of s; = G;(V;) is o-finite. Since N > k/a, we have Ay (s3) =0
O
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