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Abstract. Most of us must have been fascinated by the eye-catching displays
of collectively moving animals. Schools of fish can move in a rather orderly
fashion and then change direction amazingly abruptly. There are a large number
of further examples both from the living and the non-living world for phenomena
during which the many interacting, permanently moving units seem to arrive at a
common behavioural pattern taking place in a short time. As a paradigm of this
type of phenomena we consider the problem of how birds arrive at a decision
resulting in their synchronized landing. We introduce a simple model to interpret
this process. Collective motion prior to landing is modelled using a simple self-
propelled particle (SPP) system with a new kind of boundary condition, while the
tendency and the sudden propagation of the intention of landing are introduced
through rules analogous to the random field Ising model in an external field.
We show that our approach is capable of capturing the most relevant features
of collective decision making in a system of units with variance of individual
intentions and being under an increasing level of pressure to switch states. We
find that as a function of the few parameters of our model the collective switching
from the flying to the landing state is indeed much sharper than the distribution
of individual landing intentions. The transition is accompanied by a number of
interesting features discussed in this paper.
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1. Introduction

In recent years, there has been growing interest in the topic of consensus decision making in
several fields including animal behaviour [1], social sciences [2] and control theory [3]. In this
paper, we use the paradigm of animal groups, but we would like to stress already at this point
that there is considerable analogy between the decision-making processes in very different
systems and we expect that our simple model should be applicable to a wider range of systems.
Our object of study is the phenomenon during which the animals moving in groups seemingly
make unanimous decisions on the choice and time of performing activities even in the absence
of global leaders. It is expected that because of the heterogeneity in attributes such as the age,
sex and social status of the animals in a group or the differences in their perception of external
stimuli, there will be differences in motivations of the members at the time of making choices.
However, in spite of the differences, synchronization is seen to take place. Examples include
takeoff of a swarm of honeybees from nest sites [4], activity synchronization in sheep [5],
collective movement in monkeys [6], group departures of domestic geese [7] and departure
of ants from a feeding site [8].

The study of collective opinion formation in physics has mainly focused on human
societies [9]. Parallels have been drawn between phase transitions in magnets and the opinion
dynamics in populations. Alternatively, the subject of collective motion of animal groups has
been extensively modelled [10, 11]. Here, point-like particles, representing animals, move with
constant speed, each tending to align with its immediate neighbours, for low noise levels, giving
rise to a globally ordered state replicating the motion of flocks where all animals move in the
same direction.

In this paper, we model the process of landing of bird flocks performing foraging flights
as a typical example of collective decision making. We view this phenomenon as a shift of
the average opinion of the flock from that of continuing horizontal flight about some preferred
altitude to that of descent towards the surface below. We model the fact that birds land almost
synchronously even in the presence of heterogeneity in motivations, along the lines of the
random field Ising model (RFIM) [12, 13]. Our approach is similar to that used in [14] where
the authors analyse (among other cases) the manner in which people in concert halls, initially
joining the applause, stop clapping almost at the same time. In a very recent model [15] for
collective landing, birds are assumed to move under the action of different social forces. In
addition, the internal state of each bird is characterized by a continuous variable called landing
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intent such that the internal state of each bird is directly coupled to the internal state of its
neighbours. In contrast, we allow the motivation of individual birds to be influenced by only the
observable variables of their neighbours, such as position and velocity. In addition, as a part of
the model we introduce a method that enables us to work in open boundary conditions where the
birds in flight move cohesively and do not spread out in the horizontal plane even in the presence
of perturbations. With this model we investigate the level of synchronicity in collective landing
across time and space and explore the nature of fluctuations close to the point in time when
landing occurs.

2. Model

Below, we describe two aspects of the model, namely collective decision making and collective
motion, in detail. The birds in our model are represented by particles characterized by the
dynamical variables of position (x, y, z) and velocity (vx , vy, vz) in three-dimensional space.
The only natural boundary that we allow in the system is the z = 0 plane, which we consider
to be the landing surface. The z-coordinate of a flying bird gives its height above the ground.
We assign to each particle i a variable ai such that we refer to a bird in the flying state as active
(ai = 1) and a bird in the landed state as inactive (ai = 0). This variable is updated at discrete
times t according to the condition

ai(t) =

{
1 if zi(t − 1t) > 0,

0 if zi(t − 1t)6 0 or ai(t − 1t) = 0,
(1)

where 1t is the time increment. Once a bird i has landed we keep its position unchanged till
the end of the simulation. Also, from here onwards, we use the words ‘bird’ and ‘particle’
synonymously.

First we focus on the variables x‖

i ≡ (xi , yi) and v‖

i ≡ (vx
i , v

y
i ) governing the cruising

motion of the birds parallel to the landing surface. This motion is assumed to be essentially
decoupled from the motion in the vertical direction and is modelled in the spirit of [10]. A
particle i is assumed to move, with some uncertainty, in the average direction of motion of all
neighboring particles j whose separation |x‖

j − x‖

i | from i is less than an interaction radius R.
From now on, we refer to the set of particles in this neighbourhood as Ni,R with respect to a
particle i such that the inactive particles and the particle i are included as well4. The expression
for updating velocity at a time t is given by

v‖

i (t) = v · N

M(ξ t
i ) · N

∑
j∈Ni,R
a j =1

v‖

j(t − 1t)

+ FB(x‖

i (t − 1t))

 , (2)

where v is the magnitude of the velocity, M(ξ t
i ) is the rotation matrix in two dimensions

representing a random perturbation by an angle ξ t
i and N(u) denotes the unit vector u/|u|. Here

ξ t
i is chosen with a uniform probability from the interval [−ηπ, ηπ], where η is the amplitude

of the noise. We describe the force-like term FB below. We follow the standard version [17] of
the original SPP model [10] for the updating of positions:

x‖

i (t) = x‖

i (t − 1t) + v‖

i (t)1t. (3)

4 Neighbourhood could be defined in alternative ways as well. For example, Ballerini et al [16] found that for
starlings, a better definition of the neighbourhood is based on the topological rather than the Euclidean distance.
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We mention here that it is a well-known problem with existing models of collective motion
to maintain the cohesiveness of a moving flock in the presence of a finite amount of noise
η and with finite ranged (as R) interaction between the members. A flock tends to break up
into smaller sub-flocks that eventually move in independent directions. A periodic boundary
condition (PBC) is used to prevent the flock from spreading out perpendicular to the direction
of motion. However, in the problem of landing we find that the imposition of a PBC would
be unrealistic in the sense that there is a possibility of a particle that has become inactive, and
hence ceased to move, to continually exchange information with the rest of the moving flock.
Therefore, we introduce a new kind of ‘comoving boundary’ condition where we imagine the
motion of the particles on the xy-plane to be governed by a circular bounding region with radius
RB and the centre lying at the centre of mass (CoM) of all active particles (the mass of each
assumed to be unity). This boundary therefore translates with the flock as the CoM is put into
motion due to collective motion of the particles. When a particle that is inside the region tries to
leave it, the particle is subjected to an attraction proportional to the distance from the boundary.
The direction of this attraction is along the resultant of the direction towards the location of the
CoM and the direction of motion of the CoM itself. For a particle located at x‖ at an instant of
time, the attraction FB(x‖) is given by

FB(x‖) =

{
DB[|x‖

− x‖
| − RB]C(x‖) if |x‖

− x‖
| > RB,

0 otherwise,
(4)

with

C(x‖) = −N(x‖
− x‖

) + βN(v‖
), (5)

where DB is the strength of the attraction, x‖ and v‖ are the position and velocity of the CoM,
respectively, parallel to the xy-plane at that instant and β is a parameter. The CoM and its
velocity are calculated with respect to the active particles. In figure 1, we plot FB when the
motion of the CoM is in a direction parallel to the Y -axis. Similarly, we assume that the
boundary adjusts itself to keep average separation between active particles constant. Thus, in
general RB is a function of time, given by

RB(t) =

√
N A(t)

πρ
, (6)

where A(t) =
∑

i ai(t)/N is the fraction of the active particles at time t and ρ is the number of
particles, initially active, per unit area of the xy-plane.

Now we explain how the collective decision-making process takes place in the flock
and how it is related to the cohesion and eventual landing along the vertical direction. We
characterize the decision of an individual bird as a binary choice problem [14]. To each bird
i we assign an internal state variable si such that when si = 1 the bird continues to cruise above
ground and when si = −1 the bird decides to land. For the cruising state, we assume that a bird
likes to fly about an altitude z0 on average without deviating too far above or below. However,
we expect the elevation of a bird to fluctuate with time pertaining to factors like the noise in
the medium and collision avoidance. Thus, when si = 1, we consider the vertical motion of the
particle to be essentially a random walk bounded by imaginary walls at z = z0 − (1z0/2) and
z = z0 + (1z0/2), where 1z0 is the thickness of the flock. In the case the bird decides to land,
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Figure 1. A typical snapshot of the vector field FB(x‖) on the xy-plane, defined
through (4) for the value of β = 0.75. The direction of motion of the CoM is
assumed to be along the Y -axis, indicated by the arrow at the centre of the circle.
The length of a vector is directly proportional to the distance from the boundary.

the vertical motion is directed toward the landing surface at z = 0. Formally we define

vz
i (t) =


εt

i · v if si(t) = 1 and |δ(t − 1t)|61z0/2,

−v · sign
[
δ(t − 1t)

]
if si(t) = 1 and |δ(t − 1t)| > 1z0/2,

−v if si(t) = −1,

(7)

where εt
i takes values ±1 with equal probability and δ(t − 1t) = z(t − 1t) − z0 is the amount

of deviation from the height z0 at time t − 1t .
To model the motivational differences in birds, we assign to each bird i an inherent

switching time ti [18] such that if the bird begins an isolated flight at time t = 0, it would
decide to land at time t = ti . We assume that the value of ti for the bird i will, in general, depend
on its energy reserves [19] and thus, in general, will be different for different birds. We choose
ti ’s from a Gaussian distribution with a given standard deviation σ0. The value of σ0 allows
us to control the level of heterogeneity in a flock. Although we assign a priori values of ti to
birds, due to the randomness in the choice of these switching times, they can be thought to be
additionally including the effects of the environment such as the quality of the foraging patches
over which the flocks fly.
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For a particle in the flock, it will have a finite number of particles in its neighbourhood and
therefore will be influenced by their actions while taking a decision. Hence, the internal state of
a particle will be a function of two competing factors, (i) its inherent switching time and (ii) the
internal state of the neighbours, which we assume to be reflected by the nature of their motion.
In an approach similar to that of the RFIM at zero temperature [14], we write

si(t) = sign[ti − t + J S̄Ni,R(t − 1t)], (8)

where J is the propensity of a particle to follow the decision of its neighbours and S̄Ni,R is the
local mean field through which the bird i senses the average decision in its neighbourhoodNi,R.
We expect that the inclination of a bird i to land will be enhanced by a resultant motion of birds
in Ni,R towards the landing surface, and also by the number of birds that have already landed.
We define S̄Ni,R at a time t as

S̄Ni,R(t) = 1 + 2ANi,R(t)
〈vz(t)〉Ni,R

v
− 2(1 − ANi,R(t)), (9)

where 〈vz(t)〉Ni,R
and ANi,R(t) are the average values of the z-component of velocity of active

particles and fraction of active particles, respectively, in the neighbourhood Ni,R at time t . At
times t � 〈ti〉 − σ0, the birds on average have no inclination to land and therefore we expect
them to maintain a height around z = z0 without any resultant vertical motion towards the
landing surface. In this regime, we expect for any particle i , 〈vz〉Ni,R

∼ 0, and also, 1 − ANi,R = 0,
implying that S̄Ni,R ∼ 1. On the other hand, a resultant vertical motion in the negative z-direction
would imply 〈vz〉Ni,R

→ −v. Thus in a regime when the majority move towards the landing
surface at z = 0 and eventually reach inactive states, we expect S̄Ni,R → −1. We now move on
to characterize the resulting collective landing as a function of different states of collective
motion. We would like to emphasize at this point that although the detailed description of
our model involves specifying nine expressions, the essential concept and the ingredients of
the model are rather simple (SPP + RFIM) and the number of independent parameters is
low (η, R, σ , J ).

3. Results

We note that in our model, the shape of a coherently moving flock, far from the landing regime,
is roughly cylindrical with a radius of cross-section RB(0) =

√
N/ρ and thickness 1z0. We

argue that from the point of view of our model, for large flocks 1z0 will have in general weak
or no dependence on the number of birds. We choose the thickness of the flock 1z0 as the unit to
measure distances (1z0 = 1.0). We choose the projected density ρ = 2.0, the interaction radius
R = 2.0 and the preferred altitude of flying z0 = 10.0. In our simulations we take N = 1024,
unless mentioned otherwise, the order of which is typical for moderately large flocks [20]. Also
the ratio 1z0/z0 would be typical in these flocks, which have thickness of the order of 10 m and
fly at altitudes of about 100 m. At the time t = 0 in (8) we expect the flock to be already in the
steady state of collective motion. So, before we switch on time as in (8), we evolve a flock to its
steady state of motion according to equations (2), (3) and (7) where each particle i has si = 1.
It is known [10, 11] that the nature of the collective motion depends on the amplitude of the
noise. We find that for sufficiently low values of η, all the particles align their directions and the
flock as a whole translates in some spontaneously chosen direction parallel to the xy-plane. As
the value of η is increased, the tendency for alignment is gradually lost leading to weak or no
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translation. However, the actual nature of this transition is not known precisely enough and its
detailed investigation is outside the scope of the present paper.

3.1. Time scales

We make an observation that there are two independent time scales in the problem—the time
scale of motion and the time scale over which the inherent switching times are distributed. The
former is given by Tv = 1z0/v, which is the time required to move one unit of length (or half
interaction radius R = 2). In the presence of a finite amount of noise η, this time scale would
also govern the mixing between particles. The width of the distribution of ti ’s (≈ 2σ0) gives a
measure of the time over which the energy reserves of the majority in the flock are exhausted.
Therefore, when σ0 . Tv, there is hardly any motion during the collective decision making.
When σ0 � Tv, the flock actually translates (at low values of η) over a long distance during the
process. We call the ratio of these two time scales λ0, where λ0 = σ0/Tv = σ0v/1z0, and we
investigate the nature of landing at its different values.

We set the time scale for choosing values of v and σ0 as the time increment 1t = 1.0.
The value of magnitude of velocity v is kept around and below 0.1 so that change in the set
of neighbours Ni,R of any bird i is gradual. We choose the value of the parameters for the
comoving boundary described by equations (4) and (5) to be DB ∼ 10−3 and β = 0.75. We also
observe that the parameter β controls the degree of asymmetry of the vector field C (5) outside
the comoving boundary. For β → 0, the system enters a rotating phase [21], and for β � 1, the
flock has a tendency to accumulate at the boundary.

3.2. The landing process

The role played by the coupling J in (8) is well known [13, 14] and has also been a topic under
investigation. However, in our model we fix J to an optimal value for which we find the desired
behaviour, as explained below. In figure 2(a), we compare the process of landing across time
for different values of the coupling. For a flock with inherent switching times {ti} chosen with
a fixed σ0, we monitor the fraction of active particles AJ (t) with time t for different values
of J . We observe that when J = 0 the particles become inactive independent of each other at
their own switching times as seen from the curve A0(t), which falls smoothly with time. On
choosing J = 10σ0, the behaviour is quite the opposite. A very sharp fall occurs in the curve
A10σ 0(t), implying that there is indeed a collective decision making taking place when a large
number of particles reach inactive states within a short period of time. However, comparing the
two curves A0(t) and A10σ 0(t) it appears that in the latter case, the collective landing occurs at a
point in time that is much larger (by an amount of order σ0) than the switching times of most of
the birds. We find that a much lower value of J = 2σ0 is relevant biologically. The curve A2σ 0(t)
sharply falls, indicating collective behaviour, and the fall occurs near a time when about half of
the birds have just crossed their inherent switching times.

In figure 2(a), we also plot S2σ 0(t), which is the fraction of birds that have a momentary
intention to land at time t , i.e. the fraction of particles with si = −1. Unlike A2σ 0(t), the quantity
S2σ 0(t) is seen to fluctuate before becoming equal to the maximum value unity. This shows that
before finally deciding to land, birds may intermittently change their decision. This is caused by
the fluctuations in the vertical motion (7) of neighbours as well as the changing neighbourhood
due to finite value of η. However, these fluctuations only become important near the landing
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Figure 2. (a) The quantity A(t) denotes the fraction of birds not landed yet as
time t progresses. The curves A0(t), A2σ 0(t) and A10σ 0(t) correspond to values of
coupling J = 0, 2σ0 and 10σ0, respectively. Also, S2σ 0(t) shows the fraction of
birds in state si = −1 at time t for J = 2σ0. (b) A snapshot of a collective landing
of a bird flock with N = 1024, ρ = 2.0, η = 0.2, R = 2.0 and v = 0.01 with
σ0 = 1000 and J = 2σ0. The arrowheads point in the direction of the velocity
of the birds.

regime. We explore an aspect of these fluctuations later. In figure 2(b), we plot the velocity field
of a typical flock when the majority have decided to land.

3.3. Role of parameters

Below we quantify the extent to which the presence of the coupling affects the collectiveness
in landing as we vary the scaled value of the heterogeneity (λ0). We define a measure of
the sharpness of the decrease in the fraction of active particles A(t) (figure 2). During the
process of landing, we record the times at which individual particles become inactive. Then
we calculate the standard deviation σ of the distribution of these landing times. Finally, we
divide σ by σ0 to get the normalized measure. The dimensionless quantity σ/σ0 averaged over
different realizations of ti ’s provides a measure of the extent to which the landing of the flock is
coherent in time such that σ = σ0 implies the complete absence of collective decision making. In
figure 3(a), we plot σ/σ0 versus η for different values of λ0. We make the following observations.
For λ0 ' 1, the flock almost reaches consensus in the absence of any motion. As a result there
is no variation of σ/σ0 with the magnitude of noise. In this regime, the value of σ is governed
by the spread of the flock in the steady state along the vertical direction, i.e. 1z0. Therefore,
we expect that σ ∼ 1z0/v. In inset (A) of figure 3(a), we plot the ratio λ = σ/(1z0/v) against
η. It is worth mentioning that the quantity λ provides an alternative normalization of σ with
respect to the other independent time scale Tv (= 1z0/v). We find that for λ0 close to unity,
λ < 1, asserting that the landing is coherent and the separation between landing times is due to
the width 1z0. For larger values of λ0, the value of σ/σ0 also becomes large, signifying gradual
loss of coherence. We also observe that, in general, σ/σ0 has a maximum for intermediate values
of the noise.

We find that if we choose to ignore the particles that become inactive either too early or
too late, then the level of temporal coherence is better. For a particular landing, we measure
the times t20 and t80 at which 20% and 80% of the particles, respectively, in the flock have
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Figure 3. (a) Plot of the ratio of the standard deviation (σ ) of actual landing times
to the standard deviation (σ0) of inherent switching times as a function of noise
η for different values of λ0, i.e., σ0 scaled by the scale of motion Tv, as indicated
by different symbols. Inset (A) shows variation of λ, i.e., σ scaled by Tv, with
noise. Inset (B) shows the variation of 〈T/T0〉, which ignores the first and last
20% of the landings. (b) The variation of the spread of the landed flock over the
xy-plane, relative to the spread at time t = 0, as a function of noise.

just become inactive. Thus we define T = t80 − t20 as the width of the time window in which a
majority i.e. 60% of the particles become inactive. We normalize T by the corresponding time
window (T0) for a flock with the coupling J = 0. In inset (B) of figure 3(a), we plot 〈T/T0〉

versus η for different values of λ0. The average behaviour reveals a level of coherence such that
two birds originally having their inherent switching times separated by T0 land within a period
of about 7% of T0.

We investigate the degree of collectiveness as a function of the distance over which a flock
lands in figure 3(b). We calculate the following quantity:

1r =

√√√√∑
i (x‖

i )
2

N
−

(∑
i x‖

i

N

)2

. (10)

This quantifies the spread of the flock across the landing surface. We normalize the value of this
spread (1r ) when all particles become inactive by the corresponding value (1r0) calculated with
the positions of the active particles at time t = 0. In figure 3(b), we plot 〈1r/1r0〉 as a function
of noise varying the values of λ0. For low and moderate values of λ0, the value of 〈1r/1r0〉 is
of the order of unity. The landing occurs over a region whose dimensions are comparable to the
dimensions of the flock.

We observe that in the regime of large λ0, the value of noise plays a major role in deciding
the overall nature of landing. For very low values of η, the flock translates over large distances.
Due to this translation, the particles reaching inactive states early are unable to influence the
decision of the active particles in the flock as the CoM moves away from these particles. In
this case, the landing occurs in a few large clusters separated in space and time. In the case
of higher values of the noise, there is weak or no translation of the CoM. However, the scale
of the difference in inherent switching times, i.e. σ0, being very slow compared to the scale of
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Figure 4. (a) The snapshot after the flock, described in figure 2(b), has landed.
The line shows the trajectory of the CoM of the birds in flight. The arrows
indicate the average direction of motion of the CoM at different points in time.
The circle drawn is centred at the CoM of all landed birds and is drawn with the
radius RB(0) of the comoving boundary. (b) The measure of spatial coherence
9 as a function of λ0 for the value of η = 0.5. Different symbols indicate the
system sizes N = 512, 1024, 2048 and 4096. Inset (A) shows the plots with λ0

rescaled to λ0/λ
c
0(N ). Inset (B) shows the variation of λc

0(N ) with system size N .

motion, it provides scope for a particle with a low value of ti to diffuse to the boundary. As a
result, temporarily the influence of the neighbourhood is weakened. This allows the particle to
switch its state and become inactive. Initially, the excursions of the particles to the comoving
boundary become the reason behind independent landings. The shrinking of the boundary (6)
effectively screens (depending on the interaction radius R) the active particles from the inactive
particles. For moderate values of η, the path of the CoM becomes tortuous. However, the effect
of segregation of inactive particles from the active particles still persists. The landing occurs in
a large number of smaller clusters.

We further characterize the above behaviour by the following definition. After the landing
we calculate the CoM of the particles positioned on the xy-plane. We define the measure of
spatial coherence 9 as the fraction of particles that lie within a distance RB(0) from the CoM.
Formally,

9 =
1

N

N∑
i=1

H(RB(0) − |x‖

i − x‖
|), (11)

where x‖

i is the position of the i th inactive particle, x‖ is the position of the CoM and H(. . .) is
the Heaviside step function. We expect from the above observations that 9 is close to unity for
a spatially coherent landing and zero in the opposite case.

In figure 4(a), we plot the positions of the birds on the xy-plane after all the birds have
landed. The line shows the trajectory of the CoM and the circle is drawn with the radius RB(0)

about the CoM calculated with the final positions of the landed birds. That the majority of
the birds are lying within the circle shows that in such a case, spatial coherence is retained. In
figure 4(b), we plot 9 as a function of λ0 for the value of η = 0.5. The different plots correspond
to different system sizes. The decrease in 9 with an increase in λ0 is consistent with all the
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Figure 5. (a) The scaled values (λ) of the standard deviation of the actual
landing times as a function of the scaled values (λ0) of the standard deviation
of the assigned switching times for different system sizes (N = 512, 1024, 2048
and 4096) indicated by different symbols. Inset (A) shows the collapse of the
previous plots as a result of transformation of the horizontal axis from λ0 to
N−αlog(λ0/λ

′

0) with α = 0.1 and λ′

0 = 32.0. Inset (B) shows the variation of the
ratio σ/σ0 with λ0. (b) The variation of λ as a function of the interaction radius
R for different values of λ0 = 16, 128 and 512 as indicated by different symbols,
in flocks of size N = 1024. The value of η in both (a) and (b) is 0.5.

previous observations. In inset (A) of figure 4(b), we obtain a collapse of the data after rescaling
λ0 by λc

0(N ). The variation of λc
0 with the system size N , as shown in inset (B), is found to be

λc
0 ∼ N γ , where γ ' 0.6 (we note that the dimension of the flock varies as N 0.5). This relation

suggests that with the increase in system size there is an increase in the value of λ0 below which
spatial coherence is expected. We investigate the dependence on system size of the temporal
behaviour in the next paragraph.

In figure 5(a), we plot λ versus λ0 for four different system sizes for the value of noise
η = 0.5. The figure reveals how the spread in actual landing times increases with the value of
λ0. A data collapse in inset (A) reveals a scaling relation of the form

λ ∼

[λ0

λ′

0

]1/Nα

, (12)

with α = 0.1 and λ′

0 = 32.0. In general, we expect λ′

0 to be a function of parameters such as ρ

and R. Equation (12) suggests that for a fixed value of λ0, with the increase in system size there
is an increase in temporal coherence. We also plot the corresponding values of the ratio σ/σ0 in
inset (B). The plot shows how this ratio approaches the maximum value unity with an increase
in the value of λ0. The reason for the rise in σ/σ0 for very low values of λ0 is already stated
with respect to figure 3(a). In all the above investigations, we have assumed that the interaction
radius controlling the average number of neighbours of any particle is R = 2.0. We now address
the issue of having larger (or smaller) interaction radii. In figure 5(b), we plot the variation of λ

with the value of R for different values of λ0 with the value of noise set at η = 0.5. We find a
significant decrease in the spread λ for large values of R. This suggests that global information
can lead to a more coherent decision-making process.
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Figure 6. (a) The probability density function P(dmax) of the maximum depth
dmax of excursions below the flock of birds, before returning to the flock as
a result of temporarily reverting from the decision to land. The parameter sets
indicated by symbols are v = 0.05, σ0 = 200 (circles) and v = 0.01, σ0 = 1000
(squares). The solid line has a slope −1.85 and is a guide to the eye. (b) The
probability density function P(1CoM) of the distance travelled by the CoM
of birds in flight, 1CoM between consecutive time steps. The parameter sets
indicated by symbols are the same as in the case of (a). The measured slopes
of the power-law fits to the curves are around −2.2. In both (a) and (b) the value
of λ0 = σ0v/1z0 = 10, η = 0.2 and the magnitude of the velocity v controls the
lower cut-off of the power-law decays.

3.4. Fluctuations

Lastly, we focus on the nature of fluctuations during the landing process. As a result of the
decision reversals in birds under the influence of the neighbourhood (as reflected by S2σ 0(t) in
figure 2(a)), we find that birds originally moving towards the landing surface sometimes return
back to the cruising altitude. We characterize these fluctuations by the maximum depth dmax

to which a bird makes an excursion before returning to an altitude greater than z0 − 1z0/2.
In figure 6(a), we plot the probability density P(dmax). We find that the distribution of dmax

is a power-law decay bounded by a minimum and a maximum governed by the magnitude
of velocity v and the maximum possible depth z0, respectively. We also study the jumps that
occur in the position of the CoM (on the xy-plane) of flying birds once the landing process
starts. As is seen from figure 4(a), the trajectory of the CoM becomes irregular near the end.
The CoM actually jumps from a cluster that ceases to move to a cluster that continues moving.
We construct the probability density P(1CoM) for the separation 1CoM between the CoM at
two consecutive time steps. We find that P(1CoM) has a fat tail during the landing process. In
figure 6(b), we plot the tail of P(1CoM) after binning. The plots reveal power-law decays with
close exponents. The power law has a cut-off that is governed by RB(0).
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4. Conclusion

In this paper, we have investigated the interplay between the dynamics of collective motion
and collective decision making. In particular, we have presented a model for landing of bird
flocks. We have identified the relevant scales in such a problem and we have worked in the
coupling regime that is expected to be biologically relevant. It appears that higher values of
the coupling delay the process of the global opinion shift. We have characterized the degree
of the resulting collective behaviour by different measures. We found that—as a function of the
few parameters of our model—the collective switching from the flying to the landing state is
indeed much sharper than the distribution of individual (inherent) landing intentions. Among
the several interesting features of the model we have proposed, we showed that if the flock is
subjected to larger fluctuations, the spatial spreading of the fully landed flock becomes smaller
due to a better mixing of the information about the momentary landing intentions of the birds.
We also find that there is a characteristic value of heterogeneity that scales with the size of
the flock. Below this value of heterogeneity, flocks remain spatially coherent in the process
of landing, and above this value, the coherence is lost. In addition, we have formulated a
boundary condition that is pertinent to models of flocking. We believe that the approach we
have proposed is also relevant for many other systems where abrupt behavioural changes are
observed. Possible applications include various kinds of animal or even robotic groups in which
an almost instantaneous global switching to a new desired state takes place.
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