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Abstract. We study a transport equation in a network and control it in a
single vertex. We describe all possible reachable states and prove a criterion of

Kalman type for those vertices in which the problem is maximally controllable.
The results are then applied to concrete networks to show the complexity of
the problem.

1. Introduction. To motivate the problem treated in this paper we may start
from the following situation. Consider a closed network of tubes (such as a system
of wires or a circuit) in which material (electrons, information packets, goods) is
flowing with constant speed cj on each edge ej with no friction or loss. In the
nodes vi of the network the material is redistributed into the tubes according to
certain weights ω−

ij satisfying a Kirchhoff law. Simplifying the physical laws and
concentrating on the structure of the network, this situation can be described by a
system of linear transport equations on the edges

∂

∂t
xj(t, s) = cj

∂

∂s
xj(t, s) (1)

and conditions in the vertices saying that

outgoing flow on edge ej = ω−
ij

∑

incoming flows into vertex vi
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for every edge ej leaving from vertex vi (see Section 3 for precise definitions). The
authors of [9] proposed a semigroup approach to the study of such a system. Com-
bining graph theoretical and functional analytic tools, they proved well-posedness
and described the asymptotic behavior of the solutions by the structure of the un-
derlying graph. Based on their results we ask the following question:

Which states (mass distributions) in the network can be approximately reached
by controlling the flow (by adding or subtracting material) in a single vertex?

Let us first look at a very simple example. Consider the network described by the
directed and weighted graph presented in Figure 1 with all cj = 1 and the weights
α and 1−α representing the proportions of the mass leaving the vertex v1 into the
edges e1 and e3, respectively.

v1

v2 v3

v4

e 1

α

e
2

e
31

−
α

e 4

e5

Figure 1. The graph G1

This simple network already shows two typical phenomena that occur in general.

1. The mass distributions on the edges e1 and e3 will always satisfy the ratio
α

1−α
. Therefore not every mass distribution on the edges can be attained.

2. Taking 1 into account, all other distributions can be achieved if we control in
the vertices v2 or v3 but not by controlling in v1 or v4 (see Example 5.2).

In this paper we give a complete description of the maximal space of reachable
states for any given network (see Lemma 4.1). Moreover, we characterize by a finite
dimensional Kalman-type condition those vertices from where this maximal space
can be attained (see Theorem 4.4).

It seems that the researchers in graph theory have not yet investigated the prop-
erties of these vertices. The examples in Section 5 demonstrate their interesting
and complex behavior and we believe they deserve a thorough treatment (see also
open problems in Section 6).

Let us remark that controlling the network in more than one vertex is obvi-
ously an easier task which can be also seen from the modified Kalman condition in
Corollary 4.7.

We point out that the analogous control problem for the wave instead of the
transport equation on a graph has been studied intensively. We refer to the sys-
tematic treatment in [4]. However, a deeper connection between the results in the
two cases remains to be unveiled.
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The paper is organized in the following way. In Section 2 we start by some basic
definitions from control theory (we refer to [2] and [5] for more detailed explanation).
To tackle our network control problem we use the abstract results from [6]. In
Section 3 we collect terminology and results for the study of flows in networks.
We use the semigroup approach as developed in [9], [10], [11], and [3]. For graph
theoretical notions we refer to [1] and [7], while those needed here are all defined in
[9]. We introduce our network control problem in Section 4. We apply the abstract
results to vertex control in networks obtaining Theorem 4.4 as the main result. In
Section 5 we explain our results for concrete graphs. In Section 6 we conclude with
some open problems addressing a community of researchers from different areas.

2. Abstract boundary control. We start by recalling some notions from abstract
control theory.

Abstract Framework 2.1. We consider

(i) three Banach spaces X , ∂X and U called the state, boundary and control
space, respectively;

(ii) a closed, densely defined system operator Am : D(Am) ⊆ X → X ;
(iii) a boundary operator Q ∈ L([D(Am)], ∂X);
(iv) a control operator B ∈ L(U, ∂X).

The abstract boundary control system ΣBC(Am, B, Q) associated to the abstract
Cauchy problem with boundary control on the Banach space X with boundary space
∂X and control space U is defined as











ẋ(t) = Amx(t), t ≥ 0,

Qx(t) = Bu(t), t ≥ 0,

x(0) = x0.

(2)

The function u ∈ L1
loc(R+, U) and a function x(·) = x(·, x0, u) ∈ C1(R+, X) with

x(t) ∈ D(Am) for all t ≥ 0 satisfying (2) is called a classical solution.
We are mainly concerned to describe all states a given system can possibly attain.

Therefore we define

Definition 2.2. The approximate reachability space associated to (2) is

R
BC := cl

{

y ∈ X | ∃t > 0 and u(·) ∈ L1([0, t], U) such that y = x(t),

where x(·) is the solution of (2) with x(0) = 0} .
(3)

The boundary control system ΣBC(Am, B, Q) is called approximately boundary con-
trollable, if RBC = X .

In the following Lemma we collect some results due to Greiner [8, Lem. 1.2,
Lem. 1.3] we shall need to describe the space RBC.

Lemma 2.3. Assume the following properties to hold.

(i) The restricted operator A ⊂ Am with domain D(A) := kerQ generates a
strongly continuous semigroup (T (t))t≥0 on X;

(ii) the boundary operator Q : D(Am)→ ∂X is surjective.

Then for each λ ∈ ρ(A), D(Am) = D(A) ⊕ ker(λ− Am), the operator Q|ker(λ−Am)

is invertible and the inverse Qλ := (Q|ker(λ−Am))
−1 : ∂X → ker(λ − Am) ⊆ X is

bounded.
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For λ ∈ ρ(A) we call the operator Qλ, introduced in Lemma 2.3, the Dirichlet
operator and define

Bλ := QλB ∈ L (U, ker(λ−Am)) .

Recall that the spectral bound of A is defined as ω0(A) = sup{Reλ : λ ∈ σ(A)}.
By rg(C) we denote the range of an operator C. The following has been shown in
[6].

Theorem 2.4. The approximate reachability space RBC of ΣBC(Am, B, Q) coin-
cides with

(i) the smallest closed, (T (t))t≥0-invariant subspace of X containing rg(Bµ) for
all µ sufficiently large,

(ii) the smallest closed, R(µ, A)-invariant, µ > ω > ω0(A), subspace of X con-
taining rg(Bµ) for all µ sufficiently large, and

(iii) span
(
⋃

λ>ω rg(Bλ)
)

for some ω > ω0(A).

The approximate reachability space is related to a subspace, which is independent
of the specific control operator.

Definition 2.5. The maximal reachability space associated to (2) is

R
BC
max := span

⋃

λ>ω0(A)

ker(λ−Am). (4)

The system ΣBC(Am, B, Q) is called maximally controllable if RBC = RBC
max.

It has been shown in [6] that RBC ⊂ RBC
max, so RBC

max is indeed the largest possible
space of states that can be approximately reached by applying some boundary
control B. We will see that the relevant question for controllability of our network
problem is when are these two spaces equal.

3. Flows in networks. We consider a finite network modeled by a simple, directed
graph. We denote by V = {v1, . . . , vn} the set of vertices and by E = {e1, . . . , em}
the set of (directed) edges of the graph. The edges are parameterized on the interval
[0, 1], to the contrary of their directions. The vertex ej(0) is thus called the head
and the vertex ej(1) the tail of the edge ej ∈ E. The edge ej is an incoming edge for
the vertex vi if vi = ej(0) holds, and it is called an outgoing edge for vi if vi = ej(1)
holds. We assume that in every vertex there is at least one incoming as well as at
least one outgoing edge.

We will use the following graph matrices (see [9, Sect. 1]) to describe the structure
of the network.

Definition 3.1. (i) The outgoing incidence matrix Φ− =
(

φ−
ij

)

n×m
has entries

φ−
ij :=

{

1, vi tail of ej ,

0, else;

(ii) The incoming incidence matrix Φ+ =
(

φ+
ij

)

n×m
has entries

φ+
ij :=

{

1, vi head of ej ,

0, else;

(iii) The weighted outgoing incidence matrix is Φ−
w =

(

ω−
ij

)

n×m
, where 0 ≤ ω−

ij ≤ 1

satisfy ω−
ij = 0⇔ φ−

ij = 0 and
∑m

j=1 ω−
ij = 1 for all i = 1, . . . , n;
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(iv) The weighted adjacency matrix is defined by A = (aik)n×n := Φ+(Φ−
w)⊤;

(v) The weighted adjacency matrix of the line graph is defined as B = (blj)m×m :=
(Φ−

w)⊤Φ+.

As examples for the graph matrices Φ−
w and A we refer to Example 4.2 in Section

5.

Remark 3.2. Simple computations show that

Φ−(Φ−
w)⊤ = ICn (5)

and that both adjacency matrices A and B are column stochastic hence

‖A‖1 = 1 and ‖B‖1 = 1.

Furthermore, the relation

(Φ−
w)⊤A = B(Φ−

w)⊤ (6)

holds.

The mathematical model for flows in networks is as follows (see [9, Sect. 1]).

• We consider transport equations on the m edges of the graph:

∂

∂t
xj(t, s) = cj

∂

∂s
xj(t, s), (7)

where cj > 0 is the velocity of the flow on the edge ej .
• The boundary conditions say that in each vertex vi the incoming flow is dis-

tributed on the outgoing edges by fixed proportions ω−
ij , called the weights of

the edges ej in vertex vi:

φ−
ij xj(t, 1) = ω−

ij

m
∑

k=1

φ+
ik xk(t, 0). (8)

Observe that by the assumption in Definition 3.1(iii) this implies that the
Kirchhoff law is satisfied, i.e., the total incoming flow mass equals the total
outgoing flow mass.

• We further need initial conditions on the edges:

xj(0, s) = fj (s) . (9)

In the above formulas

t ≥ 0 is the time variable,
s ∈ [0, 1] is the space variable on the edges,
j = 1, . . . , m are the indices of edges, and
i = 1, . . . , n are the indices of vertices.

We now rewrite this in the form of an abstract Cauchy problem
{

ẋ(t) = Ax(t), t ≥ 0,

x(0) = f,
(10)

on X , where

• X := L1([0, 1], Cm),
• A := diag

(

cj
d
ds

)

j=1,...,m
with the domain (see [9, Sect. 2])

D(A) := {g ∈W1,1([0, 1], Cm) | g(1) ∈ rg(Φ−
w)⊤ and Φ−g(1) = Φ+g(0)}, (11)

• x(t) = x(t, ·), f = (f1, . . . , fm)⊤.
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In the domain of A, the first condition

g(1) ∈ rg(Φ−
w)⊤

means that in every vertex the total incoming flow is distributed in (given) weighted
proportions to the outgoing edges. The second condition

Φ−g(1) = Φ+g(0)

is the Kirchhoff’s law in each vertex.
By [9, Cor. 2.7] this problem is well-posed. Furthermore, it was shown in [3] that

in case when all the velocities cj coincide, we can explicitly describe the semigroup
governing the problem. For this reason and in order to simplify our control problem,
we assume in the following that

cj = 1, j = 1, . . . , m. (12)

Proposition 3.3. Let (12) holds. Then the domain (11) of the operator A can be
written as

D(A) =
{

g ∈W1,1([0, 1], Cm) | g(1) = B g(0)
}

and (A, D(A)) generates the strongly continuous semigroup

[T (t)g](s) = B
n g(t + s− n) if t + s ∈ [n, n + 1) for n ∈ N,

where B0 := I. Moreover, the spectral bound ω0(A) = 0.

Proof. See [3, Propositions 3.1 and 3.4] and [9, Corollary 3.5].

Remark 3.4. If needed one may work in the (reflexive) space Xp := Lp([0, 1], Cm),
1 < p <∞, where the same proposition holds for the bounded (but not necessarily
contractive) flow semigroup.

4. Vertex control in networks. Now we focus on maximal controllability of flows
in networks by controls acting in one of the vertices only. Throughout the section
we will assume that the condition (12) holds.

We start by (10) and add appropriate boundary and control operators to ob-
tain an abstract Cauchy problem with boundary control. In our setting X =
L1([0, 1], Cm) is the state space for our problem while the boundary space is ∂X :=
Cn corresponding to the vertices of the graph. We further need the following nota-
tions and results from [9].

The outgoing boundary operator L : X → ∂X is

Lg := Φ−g(1), D(L) := W 1,1 ([0, 1], Cm) ,

while the incoming boundary operator M : X → ∂X is

Mg := Φ+g(0), D(M) := W 1,1 ([0, 1], Cm) .

Both operators are bounded and map from the Banach space W 1,1 ([0, 1], Cm) to
Cn. Then the domain of A defined in (11) can be written as

D(A) =
{

g ∈W1,1([0, 1], Cm) | g(1) ∈ rg(Φ−
w)⊤ and (L−M)g = 0

}

.

Hence, defining Am = d
ds

with domain

D(Am) =
{

g ∈W1,1([0, 1], Cm) | g(1) ∈ rg(Φ−
w)⊤

}

(13)

and the boundary operator

Q := L−M ∈ L([D(Am)], ∂X), (14)
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the abstract Cauchy problem (10) obtains the form










ẋ(t) = Amx(t), t ≥ 0,

Qx(t) = 0, t ≥ 0,

x(0) = x0.

Finally, we impose control in the vertex v = vi ∈ V for some fixed i ∈ {1, . . . , n}.
In the following we identify this vertex with a vector v ∈ Cn

v =

















0
...
1
...
0

















← ith.

As (one dimensional) control space U and control operator B we choose

U := C, B : U → span{v} ⊂ ∂X = C
n,

where B is any (bounded) linear operator acting between the given vector spaces.
With these notations we arrive at an abstract Cauchy problem with boundary con-
trol of the form (2).











ẋ(t) = Amx(t), t ≥ 0,

Qx(t) = Bu(t), t ≥ 0,

x(0) = x0.

(15)

Now we can apply the abstract results from Section 2 to our problem. Since
the eigenvectors of Am have to satisfy the boundary conditions in the vertices
(c.f. (13)), it follows that in general RBC

max from (4) cannot be equal to the state
space X = L1([0, 1], Cm) (see section 5 for some concrete examples). Our aim is
to find out when RBC = RBC

max can be achieved, i.e., when the system is maximally
controllable. For this purpose we will give explicit descriptions of R

BC
max and R

BC in
terms of the graph matrices. In the following ελ denotes the exponential function

ελ(s) := eλs for s ∈ [0, 1] and some λ ∈ C.

Lemma 4.1. The maximal reachability space RBC
max is equal to

R
BC
max = span

















a1g
...

amg







∣

∣

∣

∣

∣

∣

∣

g ∈ L1 ([0, 1], C) and







a1

...
am






∈ rg(Φ−

w)⊤











.

Briefly,

R
BC
max = L1 ([0, 1], C)⊗ rg(Φ−

w)⊤ = L1 ([0, 1], C)⊗ (Φ−
w)⊤C

n. (16)

Proof. Using [9, p. 147] we have that

ker(λ−Am) =

















a1ελ

...
amελ







∣

∣

∣

∣

∣

∣

∣







a1

...
am






∈ rg(Φ−

w)⊤











. (17)

Observe that by the Stone-Weierstrass theorem

span
⋃

λ>ω0(A)

{ελ} = L1([0, 1], C),
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hence we are done.

In order to describe RBC using Theorem 2.4(iii) we will need the form of the
operators Bλ = QλB for λ large enough. We start with

Qλ = (Q|ker(λ−Am
))−1

from Lemma 2.3 and compute it for the boundary operator Q defined in (14).

Lemma 4.2. For λ > 0 = ω0(A) we have

Qλ = ελ(Φ−
w)⊤R

(

eλ, A
)

,

where R
(

eλ, A
)

:=
(

eλ − A
)−1

denotes the resolvent of A in eλ.

Proof. First compute

(L−M)ελ(Φ−
w)⊤R

(

eλ, A
)

= eλΦ−(Φ−
w)⊤R

(

eλ, A
)

− Φ+(Φ−
w)⊤R

(

eλ, A
)

= eλR
(

eλ, A
)

− AR
(

eλ, A
)

= ICn ,

where we used (5).
By (17), taking any f ∈ ker(λ−Am) we have

f =







a1ελ

...
amελ






for some







a1

...
am






= (Φ−

w)⊤d, d ∈ C
n.

Hence, using ‖e−λA‖1 < 1 for λ > 0, Definition 3.1, (5) and (6) we have

ελ(Φ−
w)⊤R

(

eλ, A
)

(L−M)f =

= ελ(Φ−
w)⊤R

(

eλ, A
) (

Φ−f(1)− Φ+f(0)
)

= ελe−λ(Φ−
w)⊤

∞
∑

k=0

e−λk
A

k






eλΦ−







a1

...
am






− Φ+f(0)







= ελe−λ

(

eλ

∞
∑

k=0

e−λk
B

k(Φ−
w)⊤d−

∞
∑

k=0

e−λk
B

k+1f(0)

)

= ελ







∞
∑

k=0

e−λk
B

k







a1

...
am






−

∞
∑

k=0

e−λ(k+1)
B

k+1







a1

...
am













=







a1ελ

...
amελ






= f.

We have thus shown that

ελ(Φ−
w)⊤R

(

eλ, A
)

(L−M) = Iker(λ−Am),

hence we are done.

Using Theorem 2.4(iii) we obtain the following.
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Corollary 4.3. There exists ω > 0 such that

R
BC = span

⋃

λ>ω

{

ελ(Φ−
w)⊤R

(

eλ, A
)

v
}

(18)

= L1 ([0, 1], C)⊗ (Φ−
w)⊤

(

span
{

v, Av, . . . , An−1
v
})

. (19)

Proof. We only have to prove the second equality. By Proposition 3.3 together
with Theorem 2.4 we have

T (1)
(

ελ(Φ−
w)⊤R

(

eλ, A
)

v
)

= ελB(Φ−
w)⊤R

(

eλ, A
)

v ∈ R
BC.

Using (6) we obtain

ελ(Φ−
w)⊤R

(

eλ, A
)

Av ∈ R
BC.

Applying T (1) to this vector again yields

T (1)
(

ελ(Φ−
w)⊤R

(

eλ, A
)

Av
)

= ελ(Φ−
w)⊤R

(

eλ, A
)

A
2
v ∈ R

BC.

Continuing this procedure we obtain that

ελ(Φ−
w)⊤R

(

eλ, A
)

A
k
v ∈ R

BC, k = 0, 1, . . .

Since RBC is a linear subspace, we also have that

eλ · ελ(Φ−
w)⊤R

(

eλ, A
)

A
k
v − ελ(Φ−

w)⊤R
(

eλ, A
)

A
k+1

v

= ελ(Φ−
w)⊤R

(

eλ, A
) (

eλ − A
)

A
k
v

= ελ(Φ−
w)⊤A

k
v ∈ R

BC, k = 0, 1, . . . , n− 1.

Using the Stone-Weierstrass theorem and the Neumann series expansion of R
(

eλ, A
)

,
we finally obtain the result.

Let us emphasize that the space R
BC
max consists of all possible states in the network

and is independent of the control. The space RBC ⊆ RBC
max however depends on the

specific control operator, in our case on the vertex in which the control takes place.
We are now able to characterize the vertices in which these two spaces coincide.

Theorem 4.4. The following assertions are equivalent for a vertex v.

(a) RBC = RBC
max, i.e., the flow is maximally controllable in the vertex v.

(b) span
{

v, Av, . . . , An−1
v
}

= Cn.

Proof. Using (16) and (19), (a) is equivalent to

R
BC
max = L1 ([0, 1], C)⊗ (Φ−

w)⊤C
n

= L1 ([0, 1], C)⊗ (Φ−
w)⊤

(

span
{

v, Av, . . . , An−1
v
})

= R
BC.

Since (Φ−
w)⊤ is injective hence left invertible, this holds if and only if

span
{

v, Av, . . . , An−1
v
}

= C
n.

Remark 4.5. Assertion (b) in Theorem 4.4 is a Kalman-type condition, well-known in
control theory. In our situation, it guarantees that by controlling in the vertex v the
largest possible space of mass distributions in the network can be (approximately)
reached.
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In concrete situations (and for large graphs) it may be quite difficult to verify
this Kalman-type criterion. In particular, it depends on the structure of the graph
and on the distribution of the weights ω−

ij (see Example 5.6 below). Therefore it
is desirable to have a sufficient condition for maximal controllability which can be
seen directly (and only) from the graph.

Remark 4.6. If there exists a vertex vj in G such that the shortest (directed) path
between vi and vj has length n−1, then the condition (b) in Theorem 4.4 is satisfied
for the vertex vi (see e.g. [7, Lemma 2.5]).

This condition of the graph can be tested in linear time if the vertex is given.
Unfortunately it is far from being also necessary (see Example 5.3 or 5.6).

Finally, let us mention that the proof of Theorem 4.4 can be easily adopted to the
case when the control takes place in more than one vertex, obtaining the following
obvious modification of the Kalman condition.

Corollary 4.7. Assume that we control in the vertices vi1 , . . . , vik
, and for the

velocities (12) holds. Then the following assertions are equivalent.

(a) RBC = RBC
max,

(b) span
{

vi1 , Avi1 , . . . , A
n−1

vi1 , . . . , vik
, Avik

, . . . , An−1
vik

}

= Cn.

5. Examples. We conclude with some examples of networks showing the complex-
ity of our problem already for small graphs.

Example 5.1. Starting with the basic graph C4, the undirected cycle on 4 vertices,
we first note that there is only one possible orientation of the edges yielding a
strongly connected directed graph G0, see Figure 2.

v1

v2 v3

v4

Figure 2. The graph G0

By checking condition (b) of Theorem 4.4 it follows easily that our problem is
maximally controllable in all the vertices of G0. It is also obvious that the condition
in the Remark 4.6 holds for every vertex of G0.

Example 5.2. Now let us orient the edges of C4 in a different way and add an extra
edge from v4 to v1. We take the weights on the edges as

ω−
11 = α, ω−

22 = 1, ω−
13 = 1− α, ω−

34 = ω−
45 = 1 for some 0 < α < 1,

and denote the network thus obtained by G1, see Figure 1 (in the Introduction).
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Note that the network G1 is strongly connected and its incidence and adjacency
matrices are

(Φ−
w)⊤ =













α 0 0 0
0 1 0 0

1− α 0 0 0
0 0 1 0
0 0 0 1













and A =









0 0 0 1
α 0 0 0

1− α 0 0 0
0 1 1 0









.

By Lemma 4.1,

R
BC
max = span

















a1g
...

a5g







∣

∣

∣

∣

∣

∣

∣

g ∈ L1([0, 1], C), ai ∈ C,
a3

a1
=

1− α

α

}

.

Verifying the Kalman-type condition in Theorem 4.4 we obtain that

R
BC
max = R

BC ⇐⇒ v = v2 or v = v3.

So, we can control the flow in the network G1 only in the vertices v2 or v3. Also in
this case, the condition from Remark 4.6 is satisfied for the vertices v2 and v3 – the
shortest directed path between them in both directions has length 3.

Example 5.3. Let G2 be the network obtained from G1 by inserting an edge from
v2 to v3 and taking the weights

ω−
11 = α, ω−

22 = 1−β, ω−
13 = 1−α, ω−

34 = ω−
45 = 1, ω−

26 = β for some 0 < α, β < 1,

see Figure 3.

v1

v2 v3

v4

e 1

α

e
2

1
−

β

e
31

−
α

e 4

e5

e6

β

Figure 3. The graph G2

Note that this is a directed version of K4, the complete graph with 4 vertices or
the tetrahedron graph. The appropriate adjacency matrix is

A =









0 0 0 1
α 0 0 0

1− α β 0 0
0 1− β 1 0









.
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The maximal reachability space in this case is

R
BC
max = span

















a1g
...

a6g







∣

∣

∣

∣

∣

∣

∣

g ∈ L1([0, 1], C), ai ∈ C,
a3

a1
=

1− α

α
,

a6

a2
=

β

1− β

}

.

The condition (b) in Theorem 4.4 holds for every vertex hence the problem is
maximally controllable in each of the vertices. Here only the vertex v3 has the
property from the Remark 4.6.

Example 5.4. Let us see what happens by inserting more vertices. Take G1 and
insert a new vertex v5 on the edge e5, thus obtaining the network G3 shown in
Figure 4.

v1

v2 v3

v4

v5

α
1
−

α

Figure 4. The graph G3

We leave it to the reader to write down the appropriate matrices and see that
the problem remains maximally controllable only in the vertices v2 or v3. Again,
the vertices v2 and v3 satisfy the condition from Remark 4.6.

Example 5.5. The situation becomes completely different by adding one more vertex
to G3. Let G4 be the network presented in Figure 5, for some 0 < α, β < 1.

v1

v2 v3

v4

v5 v6

α
1
−

α

β
1−

β

Figure 5. The graph G4
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Checking the Kalman-type condition for this graph we obtain

R
BC
max 6= R

BC for all vertices v1, . . . , v6.

Thus we do not have control in any of the vertices! Observe that also none of the
vertices has the property described in Remark 4.6.

Example 5.6. At the end we give an example on the impact of the weights on the
edges to our problem. We add two more edges to G3 leaving the vertex v5 and
obtain an oriented version of the graph W4, known as the wheel on 4 vertices. Let
0 < α, β, γ < 1 be arbitrary numbers such that β + γ < 1.

v1

v2 v3

v4

v5

α
1
−

α

β 1 − β − γ

γ

Figure 6. The graph G5

The graph G5 presented in Figure 6 admits the following adjacency matrix.

A =













0 0 0 0 γ

α 0 0 0 β

1− α 0 0 0 1− β − γ

0 1 1 0 0
0 0 0 1 0













.

One can easily compute that, according to Theorem 4.4, this network is maxi-
mally controllable in the vertices v2 and v3, independently of the particular choice of
the weights. It is not controllable in v4 and v5, also independently of the particular
choice of the weights. However, G5 is controllable in v1 if and only if

α− β − α · γ 6= 0.

Hence, controllability in v1 depends on the weights of the edges. Note that the
condition from Remark 4.6 is independent of the weights and is not fulfilled for any
of the vertices of G5.

6. Open problems. The general results (Theorem 4.4 and Remark 4.6) and the
above examples lead to the following open problems.

(i) A systematic investigation from the perspective of graph theory of the vertices
having property Theorem 4.4(b) remains an interesting task.

(ii) The problem of vertex control in case when the velocities on the edges are
different but rationally dependent (see [9]) can be reduced to the situation
treated in Section 4. However, the case of rationally independent velocities is
completely open.
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(iii) More general transport processes in networks allowing space dependent ve-
locities and absorption on the edges have been studied in [10]. The analogous
control problem in this more realistic situation remains to be investigated.

(iv) It seems natural to ask what can be said about exact instead of approximate
control (i.e. about states reachable in some fixed final time).

Acknowledgements. The authors thank Britta Dorn, Gašper Fijavž and Agnes
Radl for helpful discussions.

REFERENCES

[1] B. Bollobás, “Modern Graph Theory,” Graduate Texts in Math., vol. 184, Springer-Verlag,
New York, 1998.

[2] R. F. Curtain and H. J. Zwart, “An Introduction to Infinite-Dimensional Linear Systems
Theory,” Texts Appl. Math., vol. 21, Springer-Verlag, New York, 1995.

[3] B. Dorn, Semigroups for flows in infinite networks, Semigroup Forum, 76 (2008), 341–356.
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[6] K.-J. Engel, M. Kramar Fijavž, B. Klöss, R. Nagel and E. Sikolya, Maximal controllability

for boundary control problems, preprint.
[7] Ch. D. Godsil and G. Royle, “Algebraic Graph Theory,” Graduate Texts in Mathematics,

vol. 207, Springer-Verlag, New York, 2001.
[8] G. Greiner, Perturbing the boundary conditions of a generator, Houston J. Math., 13 (1987),

213–229.
[9] M. Kramar and E. Sikolya, Spectral properties and asymptotic periodicity of flows in networks,

Math. Z., 249 (2005), 139–162.
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