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Abstract. The set of all positive selfadjoint extensions of a positive operator
T (which is not assumed to be densely defined) is described with the help
of the partial order which is relevant to the theory of quadratic forms. This
enables us to improve and extend a result of M. G. Krein to the case of not
necessarily densely defined operators T .

1.

In the present paper we continue our investigations of the extension problem we
started in [19] (see [1] for the case of closed positive operators and [16, 17, 21] for
the case of bounded positive operators; see also [12, 6, 5, 13, 14, 2, 20, 18, 3, 4] for
related papers). Our aim is to describe the set of all positive selfadjoint extensions
of a given positive operator (not necessarily densely defined) using the language of
quadratic forms.

Throughout what follows, H stands for a complex Hilbert space. By an operator
in H we understand a linear mapping A : H ⊇ D(A) → H defined on a linear
subspace D(A) of H, called the domain of A; N(A) and R(A) stand for the kernel
and the range of A, respectively. If A and B are operators in H such that D(A) ⊆
D(B) and Ah = Bh for all h ∈ D(A), then we say that B extends A and write
A ⊆ B. If A is a densely defined operator in H, then its adjoint is denoted by A∗.
A densely defined operator A in H is called selfadjoint if A = A∗. We write B(H)
for the C∗-algebra of all bounded operators in H whose domains are equal to H.

An operator A in H is said to be positive if 〈Ah, h〉 � 0 for all h ∈ D(A) (we
do not assume A to be densely defined). Positive operators may not be closable.
If A is a positive selfadjoint operator in H, then there exists a unique positive
selfadjoint operator X in H solving the equation A = X2 (cf. [11, 7]); such X is
usually denoted by A1/2. If A and B are positive selfadjoint operators in H which
satisfy the condition

D(B1/2) ⊆ D(A1/2) and ‖A1/2h‖2 � ‖B1/2h‖2 for all h ∈ D(B1/2),
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then we write A ≺ B. The relation ≺ is a partial order on the set of all positive
selfadjoint operators in H. In particular, the following property of ≺ turns out to
be useful:

if A ≺ B and B ≺ A, then A = B.(1)

The reader should be aware of the fact that, in general, A ≺ B does not coincide
with A � B, where A � B means that D(A) ⊆ D(B) and 〈Ah, h〉 � 〈Bh, h〉 for
all h ∈ D(A). However, the relations ≺ and � coincide on the set of all bounded
positive selfadjoint operators on H. Recall that according to [2, Lemma 2.1], A ≺ B
if and only if

D(B) ⊆ D(A1/2) and ‖A1/2h‖2 � 〈Bh, h〉 for all h ∈ D(B).

One can also show that A ≺ B if and only if there exists a contraction C ∈
B(H) such that CB1/2 ⊆ A1/2 (consequently CB1/2 ⊆ A1/2 ⊆ B1/2C∗, which
implies that CB1/2 is a symmetric operator). The contraction C can always be
chosen so that N(B) ⊆ N(C). This property determines C uniquely. Another
characterization of the relation ≺ can be written in terms of the resolvents of A
and B as follows: A ≺ B if and only if (B − x)−1 � (A − x)−1 for all real x < 0
or equivalently for some real x < 0 (cf. [11, page 330, Theorem 2.21]). For more
details on this subject we refer the reader to [11] or [23].

2.

Given a positive operator T in H, we define

Ext(T ) = {S : S is a positive selfadjoint operator in H such that T ⊆ S},
νT (f) = sup{|〈f, Tg〉|2 : g ∈ D(T ), 〈Tg, g〉 � 1}, f ∈ H,

D∗[T ] =
{
f ∈ H : νT (f) < ∞

}
.

It may happen that Ext(T ) is an empty set and D∗[T ] is not dense in H (see [20]
for explicit examples illustrating this phenomenon).

We now list some basic properties of the function νT : H → [0,∞].

Proposition 1. Let T be a positive operator in H. Then

©1 D∗[T ] is a linear subspace of H,
©2 a vector f ∈ H is a member of D∗[T ] if and only if there exists a constant

M � 0 such that |〈f, Tg〉|2 � M〈Tg, g〉 for all g ∈ D(T ); the least such
constant M is equal to νT (f),

©3 if T is closable, then its closure T is positive, νT = νT and D∗[T ] = D∗[T ],
©4 if D∗[T ] is dense in H, then T is closable,1

©5 D(T ) ⊆ D∗[T ] and νT (g) = 〈Tg, g〉 for all g ∈ D(T ),
©6 the function tT : H ⊇ D(tT ) → C defined by

1 One can show more, namely that T is positively closable; cf. [1, Corollary 1].
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D(tT ) = D∗[T ] and tT [f ] = νT (f) for f ∈ D(tT )(2)

is a closed positive quadratic form2 in H.

Proof. The proof of ©1 and ©2 is straightforward. It follows from ©2 that

|〈f, Tg〉|2 � νT (f)〈Tg, g〉, f ∈ D∗[T ], g ∈ D(T ),(3)

which implies that |〈f, Tg〉|2 � νT (f)〈Tg, g〉 for all f ∈ D∗[T ] and g ∈ D(T ).
This leads to νT � νT . Since the reverse inequality is obvious, the proof of ©3 is
complete. For ©4 , take {gn}∞n=1 ⊆ D(T ) and h ∈ H such that gn → 0 and Tgn → h
as n → ∞. Then, by (3), h ⊥ D∗[T ], which yields h = 0. Hence T is closable.

©5 Applying the Schwarz inequality to the positive definite sesquilinear form
D(T )×D(T ) � (f, g) 
→ 〈Tf, g〉 ∈ C, we see that g ∈ D∗[T ] and νT (g) � 〈Tg, g〉 for
all g ∈ D(T ). If g ∈ D(T ) and 〈Tg, g〉 > 0, then g̃

def= 1√
〈Tg,g〉

g ∈ D(T ), 〈T g̃, g̃〉 = 1

and |〈g, T g̃〉|2 = 〈Tg, g〉, which implies that νT (g) = 〈Tg, g〉.
©6 Since the operator T is positive, the set NT = {g ∈ D(T ) : 〈Tg, g〉 = 0} is a

linear subspace of D(T ), and the formula

〈f + NT , g + NT 〉 := 〈Tf, g〉, f, g ∈ D(T ),

defines an inner product on the quotient linear space D(T )/NT . Denote by HT

the completion of D(T )/NT with respect to the so-defined inner product (this
construction appears in [19]). It is now a matter of routine to show that a vector
f ∈ H belongs to D∗[T ] if and only if there exists a continuous linear functional ξf

on HT such that

ξf (g + NT ) = 〈Tg, f〉, g ∈ D(T ).(4)

This in turn, by the Riesz representation theorem applied to the functional ξf , is
equivalent to the existence of a (unique) vector T̃ f ∈ HT such that

〈Tg, f〉 = 〈g + NT , T̃ f〉, g ∈ D(T ).(5)

It follows from (4) and (5) that

νT (f) = ‖ξf‖2 = ‖T̃ f‖2, f ∈ D∗[T ].(6)

By (5), the mapping T̃ : D∗[T ] −→ HT is linear. In turn, (6) leads to

tT [f ] = 〈T̃ f, T̃ f〉, f ∈ D∗[T ],(7)

which shows that tT is a positive quadratic form in H. To prove its closedness,
take a sequence {fn}∞n=1 ⊆ D(tT ) and a vector f ∈ H such that fn → f as n → ∞
and tT [fm − fn] → 0 as m, n → ∞. It follows from (7) that ‖T̃ (fm − fn)‖ → 0 as
m, n → ∞. Hence, there exists h ∈ HT such that T̃ fn → h as n → ∞. Employing
(5), we get

〈Tg, f〉 = lim
n→∞

〈Tg, fn〉 = lim
n→∞

〈g + NT , T̃ fn〉 = 〈g + NT , h〉, g ∈ D(T ).

This implies that f ∈ D(tT ) and T̃ f = h. Thus, by (7), tT [fn − f ] → 0 as n → ∞.
This means that the form tT is closed. �

2 We refer the reader to [11] for the foundations of the theory of quadratic forms including
necessary terminology.
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3.

The following theorem is a recapitulation of [19, Theorem 1 and Corollary 3].
In view of Proposition 1, Theorem 2 can also be deduced from [1, Theorem 1
and Corollary 1], where closed positive operators are considered. For the reader’s
convenience, we sketch the proof of Theorem 2, focusing our attention on the last
part of the conclusion (see [13, 14] for other variants of the proof).

Theorem 2. Let T be a positive operator in H. Then the following conditions are
equivalent:

(i) Ext(T ) �= ∅,
(ii) the linear space D∗[T ] is dense in H.

Moreover, if (i) holds, then there exists the smallest member TN of Ext(T ) with
respect to the partial order ≺. The operator TN is a unique positive selfadjoint
operator in H satisfying the following two conditions:

D(T 1/2
N ) = D∗[T ],(8)

‖T 1/2
N f‖2 = νT (f), f ∈ D∗[T ].(9)

A sketch of the proof (see [19] for more details). Assume that Ext(T ) is nonempty.
Then there exists a complex Hilbert space K and a linear mapping Q : H ⊇ D(T ) →
K such that

〈Tf, g〉 = 〈Qf, Qg〉, f, g ∈ D(T ),(10)

K = Q(D(T )).(11)

Define the operator V : K ⊇ Q(D(T )) → H by

V (Qg) = Tg, g ∈ D(T ).(12)

Its adjoint V ∗ : H ⊇ D(V ∗) → K is densely defined, and TN
def= V ∗∗V ∗ is the smallest

member of Ext(T ). It follows from (10) and (12) that

νT (f) = sup{|〈f, V (Qg)〉|2 : g ∈ D(T ), ‖Qg‖2 � 1}, f ∈ H.

This, the definition of V ∗ and (11) yield

D(V ∗) = {f ∈ H : νT (f) < ∞} and ‖V ∗f‖2 = νT (f) for all f ∈ D(V ∗).

Since3 D(V ∗) = D(T 1/2
N ) and ‖V ∗f‖2 = ‖T 1/2

N f‖2 for all f ∈ D∗[T ], we conclude
that TN satisfies the conditions (8) and (9).

The uniqueness of TN satisfying (8) and (9) is a direct consequence of (1). �

If the operator T is densely defined, then the operator TN defined in Theorem 2
is called the Krein-von Neumann extension of T (cf. [24, 12]). Note that if S is a
positive selfadjoint operator in H, then Ext(S) = {S}. Thus Theorem 2 yields

D∗[S] = D(S1/2) and ‖S1/2f‖2 = νS(f) for all f ∈ D∗[S] (S selfadjoint).(13)

4.

In this section we give an example of the application of Theorem 2.

3 It is well known [7] that if A : H ⊇ D(A) −→ K is a closed densely defined operator (in our

case A = V ∗), then D((A∗A)1/2) = D(A) and ‖(A∗A)1/2h‖2 = ‖Ah‖2 for all h ∈ D(A).
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Corollary 3. Suppose T is a positive operator in H and Ext(T ) is nonempty. Then
there exists a net {Sσ}σ∈Σ ⊆ B(H) such that

(i) Sσ is positive for all σ ∈ Σ,
(ii) Sσ � Sτ ≺ TN for all σ, τ ∈ Σ such that σ ≤ τ ,
(iii) dimR(Sσ) < ∞ for all σ ∈ Σ,
(iv) Tf = limσ∈Σ Sσf for all f ∈ D(T ).

Before proving Corollary 3, we formulate a useful lemma which is of independent
interest (compare with [1, Corollary 3]; see also [12]).

Lemma 4. Suppose T is a positive operator in H and Ext(T ) is nonempty. If
dim D(T ) < ∞, then

(a) TN ∈ B(H),
(b) R(TN) = R(T ),
(c) dim R(TN) = dim D(T ) − dimD(T ) ∩ R(T )⊥ � dim D(T ).

Proof. It follows from dimD(T ) < ∞ that dim R(T ) < ∞ and R(T ) is a closed
linear subspace of H. By [18, Theorem 2(v)], we have N(TN) = R(T )⊥. Since the
kernel of any selfadjoint operator reduces it, we obtain

TN = A ⊕ 0,(14)

where A ∈ B(R(T )) is positive and N(A) = {0}. The injectivity of A and
dim R(T ) < ∞ imply that R(A) = R(T ). This and (14) yield R(TN) = R(A) =
R(T ). The condition (c) can be inferred from (b) and the equality N(T ) = D(T )∩
R(T )⊥ which in turn follows from N(TN) = R(T )⊥. �

Proof of Corollary 3. Denote by Σ the set of all finite-dimensional linear subspaces
of D(T ) partially ordered by inclusion. For σ ∈ Σ, we set Sσ = (T |σ)N. By Lemma
4, the so-defined operator Sσ is bounded, positive and of finite rank. If σ, τ ∈ Σ
and σ ⊆ τ , then Sτ ∈ Ext(T |σ) and TN ∈ Ext(T |τ ). Applying Theorem 2, we obtain
Sσ � Sτ ≺ TN. The condition (iv) is easily seen to be true.4 �

Remark 5. Note that Corollary 3 is equivalent to its particular version in which T is
assumed to be positive and selfadjoint (hence TN = T ). Slightly modifying the proof
of Corollary 3, one can show that if E is a linear subspace of D(T ) of linear dimension
ℵ0, then there exists a sequence {Sn}∞n=1 ⊆ B(H) of positive operators such that
Sn � Sn+1 ≺ TN, dimR(Sn) � n for all n � 1, and Tf = limn→∞ Snf for all f ∈ E .
If D(T ) is an infinite-dimensional linear subspace of a separable Hilbert space H,
then there always exists a linear subspace E of D(T ) of linear dimension ℵ0 which
is a core for T , i.e. T ⊆ T |E , where T |E is the closure of T |E (see the proof of [10,
Proposition 4.1]). The interested reader is referred to the monograph [22] in which
Stone worked out a different procedure for approximating a symmetric operator in
an infinite-dimensional separable Hilbert space by a sequence of bounded selfadjoint
operators; this approximation procedure enabled him to solve the extension problem
in the case of densely defined semi-bounded operators (cf. [22, Theorems 5.1 and
9.21]).

4 Recall that T |σ ⊆ Sσ and dim R(Sσ) � dim σ for all σ ∈ Σ.
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5.

The ensuing theorem is the main result of the paper.

Theorem 6. Suppose T is a positive operator in H and R ∈ Ext(T ). If S is a
positive selfadjoint operator in H satisfying the following three conditions:

(i) D(T ) ⊆ D(S1/2),
(ii) ‖S1/2g‖2 � 〈Tg, g〉 for all g ∈ D(T ),
(iii) R ≺ S,

then S ∈ Ext(T ).

Proof. Define the map γ : D(S1/2) × D(S1/2) → C by

γ(f, g) = 〈S1/2f, S1/2g〉 − 〈R1/2f, R1/2g〉, f, g ∈ D(S1/2).

According to (iii), γ is a semi-inner product. By (i), (ii), (iii) and T ⊆ R, we have

‖S1/2g‖2 � 〈Tg, g〉 = 〈Rg, g〉 = ‖R1/2g‖2 � ‖S1/2g‖2, g ∈ D(T ),

which gives us

γ(g, g) = 0, g ∈ D(T ).

This and the Schwarz inequality applied to the semi-inner product γ leads to

|γ(f, g)|2 � γ(f, f)γ(g, g) = 0, f ∈ D(S1/2), g ∈ D(T ),

which, together with T ⊆ R, yields

〈S1/2f, S1/2g〉 = 〈R1/2f, R1/2g〉 = 〈f, Tg〉, f ∈ D(S1/2), g ∈ D(T ).(15)

Exploiting the fact that the operator S1/2 is selfadjoint, we obtain

D(S) = {g ∈ D(S1/2) : S1/2g ∈ D(S1/2)}

=
{

g ∈ D(S1/2) : sup{|〈S1/2f, S1/2g〉| : f ∈ D(S1/2), ‖f‖ � 1} < ∞
}
.

(16)

If g ∈ D(T ), then (15) implies that

sup{|〈S1/2f, S1/2g〉| : f ∈ D(S1/2), ‖f‖ � 1} � ‖Tg‖.

This combined with (16) gives us the inclusion D(T ) ⊆ D(S). By the density of
D(S1/2) in H, we deduce from (15) that Sg = Tg for all g ∈ D(T ), which completes
the proof. �

Corollary 7. Suppose T is a positive operator in H and Ext(T ) is nonempty. A
positive selfadjoint operator S in H extends T if and only if the following three
conditions hold:

(i) D(T ) ⊆ D(S1/2),
(ii) ‖S1/2g‖2 � 〈Tg, g〉 for all g ∈ D(T ),
(iii) TN ≺ S.

Proof. In view of Theorem 2, it is enough to show that conditions (i), (ii) and (iii)
imply T ⊆ S. However this is a direct consequence of Theorem 6. �

Notice that Theorem 6 can be inferred form Theorem 2 and Corollary 7.
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6.

Our next aim is to translate Corollary 7 into the language of quadratic forms.
Given a positive selfadjoint operator S in H, we attach to it the closed densely
defined positive quadratic form tS in H via

D(tS) = D(S1/2) and tS [f ] = ‖S1/2f‖2 for f ∈ D(tS).

In view of (13), the above definition agrees with the one given in (2) in the case in
which T is a positive selfadjoint operator in H. According to [11, Theorem 2.23,
page 331], each closed densely defined positive quadratic form t in H is associated
with a (unique) positive selfadjoint operator S in H, i.e. t = tS . Moreover, if t1

and t2 are two such forms and S1 and S2 are corresponding positive selfadjoint
operators, then5 t1 ≺ t2 if and only if S1 ≺ S2.

Corollary 8. If T is a positive operator in H and t is a closed densely defined
positive quadratic form in H, then the following conditions are equivalent:

(i) there exists S ∈ Ext(T ) such that tS = t,
(ii) D(T ) ⊆ D(t), t[g] � 〈Tg, g〉 for all g ∈ D(T ) and tT ≺ t, where tT is as in

(2).

Proof. Since tT ≺ t implies D(tT ) = H, Corollary 8 follows from Theorem 2 and
Corollary 7. �

7.

M. G. Krein gave a complete characterization of the class Ext(T ) in the case in
which T is densely defined (cf. [12, 15]; see also [6, 3, 4] for further investigation
in this direction). The next theorem extends this characterization to the case in
which T is not assumed to be densely defined.

Theorem 9. Let T be a positive operator in H. If R, Q ∈ Ext(T ) and S is a
positive selfadjoint operator in H such that R ≺ S ≺ Q, then S ∈ Ext(T ).

Proof. Since

D(T ) ⊆ D(Q) ⊆ D(Q1/2) ⊆ D(S1/2)

and

‖S1/2g‖2 � ‖Q1/2g‖2 = 〈Qg, g〉 = 〈Tg, g〉, g ∈ D(T ),

we can apply Theorem 6 to complete the proof. �

The ensuing corollary is a consequence of Theorems 2 and 9. On the other hand,
Theorem 9 follows from Theorem 2 and Corollary 10.

Corollary 10. Suppose T is a positive operator in H and Ext(T ) is nonempty. A
positive selfadjoint operator S in H belongs to Ext(T ) if and only if there exists
Q ∈ Ext(T ) such that TN ≺ S ≺ Q.

5 Recall that for positive quadratic forms t1 and t2 in H, the order relation t1 ≺ t2 is understood
to mean that D(t2) ⊆ D(t1) and t1[g] � t2[g] for all g ∈ D(t2) (cf. [11, page 330]).
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If T is a densely defined positive operator in H, then Ext(T ) is nonempty and
there exists the largest member TF of Ext(T ) with respect to the partial order ≺.
TF is called the Friedrichs extension of T (cf. [9, 8, 11, 23]; see also [15] for historical
comments). We conclude this paper with a result which is due to M. G. Krein [12].
It is an immediate consequence of Corollary 10.

Corollary 11. Let T be a densely defined positive operator in H. Then

Ext(T ) = {S : S is a positive selfadjoint operator in H such that TN ≺ S ≺ TF}.
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Poland

E-mail address: stochel@im.uj.edu.pl

http://www.ams.org/mathscinet-getitem?mr=2120258
http://www.ams.org/mathscinet-getitem?mr=1451877
http://www.ams.org/mathscinet-getitem?mr=1451877
http://www.ams.org/mathscinet-getitem?mr=0566954
http://www.ams.org/mathscinet-getitem?mr=0566954

	1. 
	2. 
	3. 
	4. 
	5. 
	6. 
	7. 
	Acknowledgement
	References

