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Abstract. Percolation theory is usually applied to lattices with a uniform
probability p that a site is occupied or that a bond is closed. The more general
case, where p is a function of the position x , has received less attention. Previous
studies with long-range spatial variations in p(x) have only investigated cases
where p has a finite, non-zero gradient at the critical point pc. Here we extend
the theory to two-dimensional cases in which the gradient can change from
zero to infinity. We present scaling laws for the width and length of the hull
(i.e. the boundary of the spanning cluster). We show that the scaling exponents
for the width and the length depend on the shape of p(x), but they always have
a constant ratio 4/3 so that the hull’s fractal dimension D = 7/4 is invariant.
On this basis, we derive and verify numerically an asymptotic expression for the
probability h(x) that a site at a given distance x from pc is on the hull.
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1. Introduction

Percolation theory is a powerful tool in describing systems of randomly located objects that are
placed on the sites or bonds of a network [1]. The sites or bonds are independently occupied
with a probability p or remain vacant with probability 1 − p. The task of percolation theory is to
identify the properties of the clusters formed by the connected components. In most theoretical
studies, p is assumed to be equal everywhere (i.e. the system is assumed to be uniform).
However, in many real-world applications, it is more natural to allow some variation in p among
the sites or bonds. In spatial systems, p often depends on the position. For example, if occupied
sites represent particles that diffuse from the right-hand edge of a two-dimensional lattice and
are absorbed on the left-hand edge, then the concentration of particles exhibits a gradient [2]
and the system looks qualitatively like the lattice in figure 1. Gradients also frequently arise
in the spatial distribution of biological populations because the environmental conditions may
change gradually in space (e.g. from lower to higher elevation along a hillside). If occupied sites
represent the presence of a species, the population can exhibit a spatial transition from isolated
individuals to a large connected component [3, 4].

Given such a transition in connectivity, the focus of gradient percolation is on the hull [5],
defined as the interface between adjacent occupied and vacant clusters that both fully span the
lattice’s y-direction (black curve in figure 1)5. The hull has been used in practice, for example,
in studies of the surface structure of polymers [7], of the treeline dividing woodland from
grassland [3, 4], of the boundary of urban settlements [8] and as an example of a non-trapping
self-avoiding random walk whose properties have been investigated theoretically [9, 10] and
with computer simulations [11, 12]. Apart from its many applications, gradient percolation
is also an active field of theoretical investigation. It allows highly accurate measurements
of the smallest occupancy probability pc for which an infinite spanning cluster of occupied
sites exists. The value of pc is equal for gradient and non-gradient (i.e. uniform) lattices.
Introducing a gradient has the advantage that p does not need to be carefully fine-tuned to
achieve excellent numerical results [13, 14]. Furthermore, the geometry of the hull is particularly

5 If the length L y of the lattice in the y-direction is finite, then there is a finite probability to find more than one
pair of adjacent occupied and vacant spanning clusters and hence multiple hulls. However, this probability goes
rapidly to zero as L y → ∞ [6], see [15] for a rigorous proof. We never encountered this situation in our numerical
simulations with L y > 4096.
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Figure 1. Site percolation on a triangular lattice where occupied sites (grey
hexagons) are more abundant towards increasing x-coordinates. The hull (black
curve) marks the boundary between the vacant spanning cluster on the left and
the occupied spanning cluster on the right. The hull width w, defined in (1), is
the standard deviation in the hull’s x-coordinates.

intriguing. Suppose the hull connects the sequence of coordinates (x1, y1 = 0), . . . , (xl, yl =

L y) delineating the boundary of the spanning cluster, where L y is the system size in the
y-direction. If p can be approximated near pc by a linear function p(x) = ax + pc, then the
hull width w, defined as the standard deviation of the hull’s x-coordinates,

w =

√∑
i x2

i

l
−

(∑
i xi

l

)2

(1)

is known to scale as a−4/7 in the limit a → 0. The hull length l is proportional to L ya−3/7 and,
on length scales below w, the hull’s fractal dimension is D = 7/4 [2]. These non-trivial scaling
laws—recently proved rigorously by Nolin [15, 16]—have sparked a lot of interest (see [17] for
a survey of the literature) and some researchers have generalized the results to gradients in more
complicated lattice models [18–23]. So far, all studies have assumed that p(x) can be treated, at
least locally, as a linear function (figure 2(a)). However, this is frequently not the case in reality.
As a → 0, higher order terms in the Taylor expansion of p may become dominant so that w and l
do not diverge, although this is predicted when interpreting w ∝ a−4/7 and l ∝ L ya−3/7 literally.
Local linearization is not possible either if the gradient does not exist at all, for instance if p
jumps discontinuously from one value to another.

Here we examine representative cases in which no linear approximation for p(x) exists at
pc. We investigate the class of functions

p(x) =

{
max(0, pc − a(−x)b) if x < 0,

min(1, pc + axb) if x > 0
(2)
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Figure 2. The studied occupancy probabilities p(x). (a) Linear function. This
has been, at least as a local approximation, the assumption in all previous studies
of gradient percolation. (b) Discontinuous function (b = 0 in (2)). (c) and (d)
Continuous function with infinite or zero slope at x = 0 (0 < b < 1 or b > 1,
respectively).

for b > 0 and a > 0. If b = 0, p(x) makes a discontinuous jump over the percolation threshold
pc (figure 2(b))6. For 0 < b < 1, p(x) is continuous, but the gradient at pc is infinite (figure 2(c)).
If b > 1, the gradient is zero (figure 2(d)), so that |p(x) − pc| approaches zero faster than any
linear function at x = 0. We have chosen the coefficient a in (2) to be equal on the positive and
negative x-axis. This is a convenient choice because, as we show below, the probability to find
the hull at a coordinate x is in this case symmetric about x = 0. The results described below can
be easily generalized to cases where the coefficients differ in the positive and negative direction.
We present numerical simulations for site percolation on triangular lattices, where pc = 1/2,
and apply periodic boundary conditions in the y-direction (L y > 4096). For a comparison, we
also performed simulations for site and bond percolation on square lattices. We found the same
scaling exponents, indicating that they are independent of the lattice type and presumably also
valid in continuum models [24].

2. Hull width, length and fractal dimension

Let us first consider the hull width w in the discontinuous case (b = 0 in (2)). Because a > 0,
the hull must navigate around those occupied clusters to the left that are not part of the occupied
spanning cluster (figure 3). Similarly, on the right-hand side, excursions of the hull must steer
clear of smaller vacant islands that have not merged with the vacant spanning cluster. The
typical linear size of these smaller clusters is given by the correlation length ξ which scales
in uniform systems ∝ |p − pc|

−ν if p ≈ pc. Because the critical exponent ν is equal to 4/3 in

6 For functions defined only on the discrete coordinates of a lattice, we cannot, strictly speaking, distinguish
continuous from discontinuous behaviour. However, for p(x) defined in (2), we can apply the following criterion.
Let x− and x+ be the neighbouring left and right coordinates of x in the lattice. If and only if p(x) → p(x−) and
p(x) → p(x+) in the limit a → 0+, then the underlying function p of real-valued coordinates must be continuous
at x . In this case, we also call the discretized function continuous.
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Figure 3. Illustration of the relation between hull width w and correlation length
ξ near x = 0, where the hull meanders between islands of vacant and occupied
sites. The linear size of these obstacles is of the order of ξ . Therefore, the
hull width w, which measures the fluctuations of the hull around x = 0, is also
approximately ξ .

two dimensions [1, 26] and because the hull width scales in proportion to the cluster sizes,
we expect w ∝ a−4/3. Our numerical simulations confirm this intuition (black filled circles in
figure 4(a)).

If b > 0, the situation is more complicated because p(x), and hence also ξ(p(x)), change
gradually as a function of x . For b = 1, Sapoval et al [2] have pointed out that we can still
derive the correct scaling behaviour by assuming that w is proportional to the correlation length
at w. The self-consistent relation w ∝ ξ(p(w)), where the local correlation length satisfies
ξ(p(x)) ∝ |p(x) − pc|

−ν and p(x) = pc + ax , yields the aforementioned w ∝ a−ν/(ν+1)
= a−4/7

(black open squares in figure 4(a)). Carrying out the calculation more generally for p(x) given
by (2) with arbitrary b and assuming a to be small, we obtain

w ∝ a−ν/(νb+1). (3)

The same self-consistency requirement has been noticed and tested for the Ising quantum
chain [28, 29], where the exponent ν however has a value different from the exponent in
percolation. In figure 4(a), we compare data from numerical simulations with the prediction
of equation (3) based on the two-dimensional percolation exponent ν = 4/3. The data show
excellent agreement.

There is a similar scaling relation between the normalized hull length l/L y and a, where
l is the number of steps in the hull in a lattice of vertical dimension L y . The scaling of l/L y

cannot be derived as intuitively as the scaling of the hull width. However, previous numerical
evidence in the case b = 1 has supported the hypothesis l/L y ∝ a−3/7 [2], now known to be
correct [15]. For arbitrary b, our data (figure 4(b)) indicate the more general relation

l/L y ∝ a−1/(νb+1), (4)

which includes the scaling law for b = 1 as a special case.
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Figure 4. (a) The hull width w versus a for different values of b in (2) from
computer simulations (shown as circles, squares, and diamonds). The lines
indicate the expected power law w ∝ a−B with B = ν/(νb + 1). The number
next to each line states the value of B. Error bars are smaller than the symbol
sizes. (b) The normalized hull length l/L y scales ∝ a−C with C = 1/(νb + 1) as
displayed by the lines. (c) The fractal dimension D of the hull is determined with
the equipaced polygon method [25] described in the appendix. In this method,
we compute the mean Euclidean distance d̄(k) between hull coordinates that are
k steps apart. A numerical estimate of D can be obtained by fitting d̄(k) ∝ k1/D.
We observe that D = 7/4 is independent of b. Inset: D = 1.75, numerically
calculated as the derivative d(log k)/d(log d̄), is within the error bars for almost
three orders of magnitude of k.
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The scaling of l and w is related to the fractal dimension D of the hull as follows. For a
given value a = a1 and system size L y,1, let us denote the hull length by l1 and the width by w1.
If we coarse-grain the hull by measuring it with rulers whose length is A times longer than the
lattice constant, we need l2 ∝ A−Dl1 rulers to cover the full length of the hull [30]. The width
and the system size, however, are linear objects: it requires w2 ∝ A−1w1 rulers to span across
the hull’s x- and L y,2 ∝ A−1L y,1 rulers to cover its y-extent. Thus, measured in units that are
increased by a factor A, the hull length, width and system size all appear smaller by either a
factor A−D or A−1. Now suppose that the hull geometry scales as w ∝ a−B and l ∝ L ya−C . We
obtain the same w2 and L y,2 as before if the lattice constant remains our fundamental length
scale, but we first replace a1 by a2 ∝ A1/Ba1 and then, from the original system of length L y,1,
we cut out a strip of size A−1L y,1. In this geometry l2 ∝ (A−1L y,1)(A−C/Ba−C

1 ) ∝ A−(1+C/B)l1.
Comparing this with our previous expression for l2, we conclude that

D = 1 +
C

B
. (5)

Inserting B = ν/(νb + 1) and C = 1/(νb + 1) from equations (3) and (4) we find D = 1 + 1/ν =

7/4, independent of b. We also measured the fractal dimension directly using an independent
numerical method (following [12, 25] and outlined in the appendix) and again find good
agreement with D = 7/4 (figure 4(c)). The fractal dimension of cluster hulls has recently
received a lot of interest. In uniform percolation, where p = pc at all sites (i.e. a = 0 in (2)),
D = 7/4 is now known to be exact, thanks to mathematical advances in stochastic Loewner
evolution [26]. Recent work by Nolin and Werner [27] proves that the Hausdorff dimension
remains 7/4 if p is near, but not exactly equal to pc. In constant gradients (b = 1 in (2)),
D = 7/4 was already conjectured in early studies [2] and related to the scaling of w and l.
Our results demonstrate that D = 7/4 holds much more generally. Although B = ν/(νb + 1)

and C = 1/(νb + 1) depend on b and thus differ in the different scenarios depicted in figure 2,
the ratio B/C = ν and hence the fractal dimension D = 1 + 1/ν are invariant properties of the
hull geometry.

3. Hull density profile

The hull width and length are simple measures of the hull geometry, but the distribution of the
hull’s x-coordinates contains yet more information. For fixed x , we define the hull density h(x)

as the fraction of coordinates (x, y) in the lattice that are on the hull. We focus first on the case
b = 0 where p(x) = pc ∓ a provided that a is sufficiently small. The ∓ sign is to be interpreted
as a minus (plus) sign for negative (positive) x . Our simulations for b = 0 show that h(x) has a
maximum at x = 0 and falls off exponentially and symmetrically to both sides (figure 5(a)),

h(x) = E0aν−1 exp(−Faν
|x |), (6)

where E0 and F are positive constants. The exponential decay of h(x) is reminiscent of the off-
critical correlation function gc(r) ∝ exp(−|r|/ξ) in uniform percolation, where gc(r) denotes
the probability that r and the origin are part of the same finite cluster. The decay rate (Faν)−1

has the same scaling as the correlation length ξ , namely ∝ |p − pc|
−ν for both p < pc and

p > pc. However, there is one important difference between (Faν)−1 and the correlation length.
In uniform percolation, ξ has different amplitudes on the sub- and supercritical branch [31]. By
contrast, we observe that F is equal for x < 0 and x > 0.
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Figure 5. (a) Hull density h as a function of position x for b = 0 in equation (2).
Inset: data collapse for h̃(x̃) = a(1−ν)(νb+1)h(a−ν/(νb+1) x̃). (b) Hull density for
a piecewise continuous function p(x) with multiple discontinuities. The local
value of p(x) is given by the grey numbers under the graph. In every interval
of constant p, h is approximately exponential, resulting in straight lines in this
logarithmic plot. (c) Hull density for b = 4.

Equation (6) has several interesting consequences. Firstly, h(x) is a symmetric function
(i.e. h(x) = h(−x)). We observed this symmetry in all investigated lattice types (triangular
site percolation, square site and bond percolation). Secondly, (6) is consistent with the scaling
relations (3) and (4) of the width and length for b = 0. This can be proved by inserting (6)
into l =

∫
∞

−∞
h(x) dx and w2

=
∫

∞

−∞
(x2h(x) dx)/ l. Thirdly, after appropriate rescaling of h,
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the function h̃(x̃) = a1−νh(a−ν x̃) is independent of a (see the data collapse in the inset of
figure 5(a)).

The case b > 0, where p(x) changes continuously, requires a little more effort than b = 0,
where p(x) is constant except for one discontinuity. Our goal is to approximate h(x) for b > 0
by discretizing p(x). To this end, let us consider the intermediate case where p has more
than one discontinuity: p(x) = 0 for x < x1, p(x) = π1 for x ∈ [x1, x2), . . ., p(x) = πn−1 for
x ∈ [xn−1, xn) and p(x) = 1 for xn 6 x with 0 < π1 < · · · < πn−1 < 1. Let us assume that the
length (xi − xi−1) of each plateau is larger than the exponential decay length (F |πi − pc|

ν)−1.
In this case, h consists of piecewise exponential functions ∝ exp(±F |πi − pc|

νx) that are
continuously joined together at the breakpoints x1, . . . , xn (an example is shown in figure 5(b)).
In terms of a differential equation, we can express this as

d

dx
log h(x) = ±F |p(x) − pc|

ν, (7)

where F is a constant. The plus sign holds for p(x) < pc; otherwise the minus sign applies.
We now make two approximations to obtain an analytic expression for h(x) if p(x)

changes continuously. First we assume that the rate of change in p(x) is small compared to
the characteristic decay length (F |p(x) − pc|

ν)−1 for all x . This allows us to insert (2) directly
into (7). We obtain

d

dx
log h(x) = ±Faν(∓x)νb (8)

for x in the interval [−(pc/a)1/b, ((1 − pc)/a)1/b]. We know from (3) that the hull width is a
vanishing fraction of the width of this interval for a → 0+. Thus, our second approximation
consists of extending (8) over the entire real line. The solution is

h(x) = Eba(ν−1)/(νb+1) exp

(
−

F

νb + 1
aν

|x |
νb+1

)
, (9)

where we have factored out a(ν−1)/(νb+1) from the integration constant so that, according to (4),
the remaining factor Eb does not depend on a.

4. Discussion

Straightforward integration proves that (9) is consistent with the scaling of the hull width in (3).
Because (9) also satisfies the scaling of the length (4), it implies the correct fractal dimension
7/4 according to (5). In addition to the scaling laws, (9) also provides an analytic expression
for the functional form of the hull density profile: h(x) is, in this approximation, proportional
to a generalized normal distribution [32]. For b = 1/ν, we predict a Gaussian profile. Another
special case is b = 0, where we retrieve the Laplace distribution of (6). For 06 b < 1/ν the
distribution is leptokurtic (i.e. it has a narrower peak and fatter tails than a Gaussian); for
b > 1/ν it is platykurtic (broader peak, thinner tails).

For any particular b in (9), the rescaled hull density h̃(x̃) = a(1−ν)/(νb+1)h(a−ν/(νb+1) x̃) is
independent of a (insets in figures 5(a) and (c)). Rescaling can even go further. Above we have
assumed that the constant F in (7) is independent of b so that the functions

fb(x̃) = log{a(1−ν)/(νb+1)h[((νb + 1)a−ν x̃)1/(νb+1)]} (10)
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density decays as exp(−Faνxνb+1/(νb + 1)) with the same factor F ≈ 4.3 for
all b.

ought to be linear functions with the same slope −F for all b. Figure 6 demonstrates that this
is indeed true for x̃ & 1, which is valid if x & w. From linear regression to fb, we estimate
F = 4.3 ± 0.1.7

For b � 1, a simple line in figure 6 fits the data very well for all x̃ > 0 and this
is presumably exact for b = 0. However, as b becomes larger, there are visible departures
from the asymptotic line for x̃ � 1. In this regime, p(x) varies significantly over length
scales comparable to the correlation length, thus violating the assumption behind (8). If
b � 1, we are effectively dealing with a system at the critical point confined to the strip
−(pc/a)1/b < x < ((1 − pc)/a)1/b. Some properties of critical cluster geometry in a strip are
known exactly [33–35]. From the known results for the ‘one-pinch point density’ in rectangular
domains [36], it is plausible that h(x) is analytic and has a Taylor expansion around x = 0 with
leading terms h(x) = h(0) + h′′(0)x2/2 + O(x4) and h′′(0) < 0. As a consequence, as x → 0
we expect log(h) to be approximately quadratic (i.e. log(h(x)) ≈ G0 − H0x2), in contrast to
log(h(x)) ≈ G∞ − H∞|x |

νb+1 for |x | → ∞ as predicted by (9).
We test this hypothesis with nonlinear least-squares regressions of the general form

G − H |x |
J to fit either the core or the tail of log(h(x)). The best fitting exponents for |x | → ∞

are indeed consistent with J = νb + 1 (figure 7) for all b. Performing the regression around
x = 0, on the other hand, we find a crossover from J = νb + 1 to J = 2 at b ≈ 1/ν = 3/4. This
suggests that for b < 1/ν, (9) approximates the hull density well, but for b > 1/ν we should
replace it with

h(x) ≈ Eba(ν−1)/(νb+1) exp

(
−

F

νb + 1
aν

|x |
νb+1

− Kba2ν/(νb+1)x2

)
. (11)

This approximation has the observed asymptotic behaviour for both x = 0 and |x | → ∞: h(x)

is Gaussian in the centre, but drops more rapidly in the tails. In the inset of figure 5(c) we have
used F = 4.3 from above and fitted Eb and Kb to the hull density for b = 4. The regression
curve indeed fits the core of the distribution better than (9) and also provides an excellent
approximation in the tails.

7 F depends on the lattice type, unlike B, C and D. The stated value is for triangular site percolation. For square
site percolation, we find F = 3.9 ± 0.1, for square bond percolation F = 5.4 ± 0.1.
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Figure 7. If the hull density is locally approximated as a function proportional
to exp(−H |x |

J ), the best fitting exponent J increases as νb + 1 in the tail (i.e. as
x → ∞), but is close to 2 for b > 3/4 in the core (i.e. as x → 0).

5. Conclusion

In summary, we have investigated a generalization of gradient percolation where the occupancy
probability p(x) is nonlinear at the critical point pc. If, to lowest-order, |p(x) − pc| = a|x |

b

for a > 0 and b > 0, then the hull width and length scale as w ∝ a−ν/(νb+1) and l ∝ a−1/(νb+1).
The hull’s fractal dimension D = 7/4 is independent of b. The hull density is symmetric
and drops for x far away from pc in proportion to exp(−Faν

|x |
νb+1/(νb + 1)), where F is

a lattice-dependent constant independent of a and b. Closer to pc, the hull density becomes
approximately Gaussian if b > 1/ν.
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Appendix. Equipaced polygon method to determine the fractal dimension

There are many different ways to determine the fractal dimension of the hull. We tested several
of them and found that the equipaced polygon method of [25] provides a good trade-off between
simplicity and consistent numerical results. We begin by labelling all hull coordinates (xi , yi)

with a subscript i equal to the number of steps required to reach this position along a walk on
the hull starting at the bottom of the lattice. At this stage, the hull is described by a sequence
of coordinates (x1, y1 = 0) . . . (xl, yl = L y), where l is the hull length. For a given k and for
16 i 6 l − k, we then calculate the Euclidean distances di(k) between (xi , yi) and (xi+k, yi+k).
Finally we compute the mean d̄(k) =

∑
i di(k)/(l − k + 1). If the hull is a fractal of dimension

D, we expect d̄(k) ∝ k1/D [4].
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