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Abstract

The solidification sequence of an AlMg4.7Si8 alloy is imaged in situ by synchrotron microtomography. Tomograms with (1.4 lm)3/
voxel have been recorded every minute while cooling the melt from 600 �C at a cooling rate of 5 K min�1 to 540 �C in the solid state.
The solidification process starts with the three-dimensional evolution of the a-Al dendritic structure at 590 �C. The growth of the a-Al
dendrites is described by curvature parameters that represent the coarsening quantitatively, and ends in droplet-like shapes of the second-
ary dendrite arms at 577 �C. There, the eutectic valley of a-Al/Mg2Si is reached, forming initially octahedral Mg2Si particles preferentially
at the bases of the secondary dendrite arms. The eutectic grows with seaweed-like Mg2Si structures, with increasing connectivity. During
this solidification stage Fe-aluminides form and expand as thin objects within the interdendritic liquid. Finally, the remaining liquid freezes
as ternary a-Al/Mg2Si/Si eutectic at 558 �C, increasing further the connectivity of the intermetallic phases. The frozen alloy consists of four
phases exhibiting morphologies characteristic of their mode of solidification: a-Al dendrites, eutectic a-Al/Mg2Si “Chinese script” with
Fe-aluminides, and interpenetrating a-Al/Mg2Si/Si ternary eutectic.
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1. Introduction

Cast AlMgSi alloys are potential candidates for use in
the automotive and aerospace industries [1]. These alloys
usually contain a-Al dendrites, primary Mg2Si particles,
a-Al/Mg2Si eutectic and aluminides originating from Fe
and Mn impurities [2]. A ternary eutectic formed by
a-Al/Mg2Si/Si is added to the existing phases as an
additional solidification step in case of Si surplus to the
stoichiometric Mg:Si ratio (1.74:1) [2,3].

The solidification process during casting determines the
microstructure, which is in turn directly linked to the result-
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ing mechanical properties of the alloy. Thus, the morphol-
ogy of the Mg2Si phase is strongly dependent on the
cooling rate during casting: low cooling rates result in a
coarse structure, while fine microstructures can be achieved
with higher cooling rates. The primary Mg2Si particles can
have a dendritic or octahedral shape, while the eutectic
particles appear with a so-called “Chinese script” shape in
two-dimensional (2-D) sections [4,5]. Three-dimensional
(3-D) investigations show that the eutectic Mg2Si phase
forms an interconnected coral-like structure [4,6]. The
investigation of the kinetics of solidification is necessary
to understand how casting parameters, such as cooling rate
and temperature gradient in the melt, affect the develop-
ment of the internal architecture of alloys and consequently
determine their resulting mechanical properties.

The solidification of metals has previously been investi-
gated by ex situ methods. The most common way was to
s under CC BY-NC-ND license.
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interrupt the solidification at different temperatures, i.e. at
different stages of the microstructure’s development, by
quenching the sample (e.g. [7–9]). Conventional metallo-
graphic investigations can be performed on the quenched
samples, and quantitative parameters, such as phase area
fraction and parameters of the dendritic structure can be
determined. The advantage of this method is that it is rel-
atively simple, but it provides only 2-D information. This
information can be extended to 3-D by the application of
tomographic methods. X-ray tomography [10] and serial
sectioning [11,12] provide the possibility for proper spatial
quantification of the microstructure, but as in the case of
the ex situ methods, without time–temperature resolution
of the solidification process.

The development of synchrotron X-ray imaging [13]
allows the solidification process to be followed in situ.
For instance, a thin plate-like sample can be used as
specimen and radiographs can be taken with short acquisi-
tion times during solidification, providing an excellent time
resolution, as shown for the case of AlCu10 in Refs.
[14,15]. The disadvantage of this method is that it only
delivers 2-D information on thin samples.

By rotating the sample during solidification, 3-D tomog-
raphy can be performed [16]. This requires that the tomo-
graphic scan be performed faster than the changes in the
microstructure within the resolution range. With this
method the whole solidification process can be imaged by
cooling down the sample to solid state [17–19]. The applica-
tion of in situ imaging during solidification allows the evo-
lution of the dendritic structure to be followed and permits
spatial characterization of the changes in the microstruc-
tural parameters, such as interconnectivity or contiguity
of eutectic and intermetallic phases. The aim of this work
is to characterize the formation and the evolution of the
microstructure of an AlMg4.7Si8 alloy by in situ synchro-
tron tomography during solidification.
Fig. 1. Backscatter scanning electron image of the investigated material
with phases identified by energy dispersive spectroscopy.
2. Experimental methods

2.1. Material

A laboratory gravity cast AlMg4.7Si8 alloy was studied.
The Mg:Si ratio in this alloy is 0.58:1, which is lower than
the Mg2Si stoichiometric ratio (1.74:1) [2,3]. The micro-
structure of the alloy was previously investigated by
conventional metallography [3] and ex situ synchrotron
tomography [3,6]. It contains four microstructural phases:
a-Al dendrites, a-Al/Mg2Si eutectic, a-Al/Mg2Si/Si ternary
eutectic and Fe-aluminides originating from Fe impurities
(�0.5 wt.%). The microstructure of the alloy is shown in a
backscattered electron micrograph in Fig. 1 with the phases
indicated. Cylindrical specimens 10 mm long and 1.5 mm in
diameter were used for the in situ solidification experiments.

2.2. Tomography

The tomography experiment was carried out at the ID15A
beamline of the ESRF [20]. A pink beam provided by an U22
undulator was used [21]. 800 Projections were taken between
0� and 180� using an acquisition time of 18 ms per projection
resulting in a total scanning time of �15 s for a complete
tomogram. The reconstructions resulted in volumes of
10243 voxel with a voxel size of (1.4 lm)3. The furnace to melt
the sample comprised two heaters inside a cubic chamber with
Fig. 2. (a) Schematic representation and (b) picture of the experimental
set-up for in situ synchrotron tomography during solidification.



Fig. 3. Reconstructed tomographic slices obtained during in situ solidification of AlMg4.7Si8 at the temperatures at which consecutive solidification of the
different phases is observed.
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a hole in the bottom through which the specimen can be
inserted (Fig. 2). Two windows for the X-ray beam are located
on the sides of the furnace chamber. The sample was glued
onto a ceramic stick. The molten sample was held by its
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own oxide skin during the experiment. The temperature was
measured by a thermocouple at the top of the sample. The
cooling rate was 5 K min�1, so that the temperature changed
by less than 1.5 K during each tomographic scan, which were
carried out every minute.
2.3. Image processing

The reconstructed volumes were subjected to a 2-D
Gaussian filtering [22] using a mask with a radius of 2 pixels.
The 32 bit datasets were converted into 8 bit within the his-
togram limits �1.5 and 1.5. Registered sub-volumes with a
size of 540 � 400 � 190 voxels (0.11 mm3) were used to
analyze the Mg2Si. This phase was segmented by global
thresholding and applying a region-growing algorithm
which takes into account the variation of the grey levels in
the local environment of the phase considered (a detailed
description of the algorithm is given in Ref. [23]). A morpho-
logical smoothing was then applied: voxels outside the seg-
mented region having four or more touching neighbours
were added to the segmented phase, while voxels belonging
to the segmented region and having only one touching neigh-
bour were removed. Only particles larger than 27 voxels
(>74 lm3) were considered for evaluation.

The a-Al dendritic structure was segmented by hand
into sub-volumes of 350 � 220 � 200 voxels (0.4 mm3),
which had been previously filtered by a 2-D anisotropic
Fig. 4. Growth of the a-Al dendrites in approximately the same region of AlMg
The different colours correspond to different a-Al dendrites within the conside
legend, the reader is referred to the web version of this article.)
diffusion filter [24] to improve the quality of the recon-
structed slices.

Although the qualitative and quantitative results
presented in this work are strongly sensitive to the accuracy
of the segmentation procedure, the investigations are
focused on relative changes during the evolution of the
microstructure. Therefore, the results can be considered
in relative terms between successive 3-D images treated in
the same way.

2.4. Morphological parameters

Morphological parameters have been calculated in order
to quantify the changes in the microstructure during the
solidification process.

2.4.1. Interconnectivity

In this study the interconnectivity is defined as the rela-
tive volume fraction of the largest individual particle (par-
ticle = continuous 3-D region of the corresponding phase)
of the investigated phase with respect to its total volume
fraction in the analyzed volume.

2.4.2. Curvatures

The mean (K) and Gauss curvatures (H), defined as the
mean and the product of the principal curvatures, have
been determined for the a-Al dendrites during solidification
4.7Si8 at different temperatures during cooling. The voxel size is (1.4 lm)3.
red volumes. (For interpretation of the references to colour in this figure
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using the Avizo� software [25]. A surface of the voxel-
based volume of the segmented phase was produced by a
triangular approximation prior to the calculation. The
osculant curves have been determined for each triangle of
the rendered surface taking into account the neighbouring
triangles up to the fifth order. The local radii of these
curves were averaged five times with the radii of direct
neighbour triangles before the reciprocal of the local radius
was calculated. Surfaces which exhibit zero values for the
mean and Gauss curvatures simultaneously were excluded
from further evaluation in order to avoid phases cut by
the borders of the region of interest.
2.5. Differential scanning calorimetry

Calorimetric investigations were performed during cool-
ing at 5 K min�1 from 630 to 530 �C with a Perkin-Elmer
power-compensated differential scanning calorimeter to
analyze the solidification process of the materials. A
high-purity Al (99.99 wt.%) sample was used as reference.
Fig. 5. Curvature distribution of the a-Al dendrites in AlMg4.7Si8 at different
of surfaces are indicated in the first diagram.
3. Results

3.1. In situ synchrotron tomography during solidification

Reconstructed tomographic slices extracted from the
in situ solidification experiment of the AlMg4.7Si8 alloy
are shown in Fig. 3. The slices show the characteristic tem-
peratures where the phases were first observed during solid-
ification. The a-Al dendrites are resolved for the first time
during the experiment at a measured temperature of
�590 �C followed by the a-Al/Mg2Si eutectic at �575 �C.
Regarding the location where soldification starts: the phys-
ical size of the sample (1.5 mm diameter) is larger than the
field of view of the radiographies (�1.4 � 1.4 mm2), and
therefore the oxide skin is not visible in Fig. 3a (590 �C).
However, looking at the reconstructed slices, one can
observe that the dendrites are growing from the outside to
the inside, suggesting that the solidification of the dendrites
is initiated by the oxide skin of the sample, impeding thus
their sinking in the liquid [17]. The Fe aluminides start to
grow at �565 �C. There, the liquid–solid shrinkage pro-
duces pores. The last step of the solidification sequence is
the formation of the ternary a-Al/Mg2Si/Si eutectic at
temperatures during solidification; correlated characteristic morphologies



Fig. 6. Mg2Si particles segmented from microtomography at the onset of
their growth at 575 �C.

Fig. 7. Mg2Si particles segmented from the same volume of microtomog
interconnectivity of the eutectic Mg2Si particles in AlMg4.7Si8 during solid
volumes.

D. Tolnai et al. / Acta Materialia 60 (2012) 2568–2577 2573
�555 �C. The slice at 540 �C shows the completely solidified
2-D microstructure.

Rendered 3-D images of the a-Al dendritic solidification
at different temperatures during cooling are shown for
approximately the same volume in Fig. 4. The smaller sec-
ondary dendrite arms tend to disappear, while the larger
ones grow, resulting in a coarsening of the dendritic struc-
ture during cooling. The growth is asymmetric, with the
top of the secondary arms growing faster than the bases.
This results in a droplet-like shape and a coalescence of
the tops of the secondary dendrite arms.

The distribution of mean and Gauss curvature of the
surface of the a-Al dendritic structure at different stages
(temperatures) of the solidification process is shown in
Fig. 5. The characteristic morphologies for the axes and
for each quadrant are indicated schematically in Fig. 5a.
raphies at the indicated temperatures, revealing the evolution of the
ification. The different colours indicate unconnected particles within the



Fig. 8. The evolution of volume fraction and interconnectivity in the
eutectic Mg2Si.

Fig. 9. DSC thermogram during solidification of the AlMg4.7Si8 alloy.

Fig. 10. Thermocalc simulation of the solidification of AlMg4.7Si8 [3].
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A tail extending to high curvature values can be
observed in the positive–positive quadrant of the coordi-
nate system at the onset of solidification. This tail, which
indicates the presence of spheroid-like regions with small
radii, tends to disappear as the solidification advances.
Two maxima of the distribution appear—one close to the
origin (flat shape), and one in the positive–positive quad-
rant (spheroid-like shape)—and both increase in frequency
during solidification.

One rendered 3-D volume of the Mg2Si phase is shown in
Fig. 6 at the temperature at which the solidification of the
phase was first observed, i.e. �575 �C. The primary parti-
cles present an octahedral shape, while the eutectic structure
is seaweed-like. Branches of this structure thicker than 5 lm
are resolved. The growth and coalescence of Mg2Si particles
during solidification in the same volume is shown in Fig. 7.
The different colours indicate unconnected particles within
the investigated volume. At 575 �C (Fig. 7a) several parti-
cles are present in the volume; these coalesce during cooling
(Fig. 7b–d) and finally join into one interconnected particle
as shown in the volume at 540 �C (Fig. 7e). The evolution of
interconnectivity and the volume fraction of the Mg2Si
phase are shown in Fig. 8 for a volume of 750 �
350 � 265 lm3. The interconnectivity at the temperature
where the Mg2Si phase was first observed, namely 575 �C,
is 0.19 and shows a monotonic growth until 0.49 at the
end of the solidification at 540 �C. The volume fraction of
the phase is 1.3% at 575 �C and grows up to 6.4% at the
end of the solidification process, counting only particles
with diameters >4.2 lm.

3.2. DSC results

The DSC thermogram obtained during cooling from the
liquid state at the same rate as in the in situ tomography
experiments is shown in Fig. 9. The solidification of the
AlMg4.7Si8 alloy starts at �594 �C with the solidification
of the a-Al dendrites. This is followed by an exothermal
peak which starts at �575 �C and reaches its maximum at
�572 �C. The exothermal heat evolution decreases steadily
until a third solidification peak starts at�555 �C. This third
peak presents an asymmetric shape that may be an indica-
tion of overlapping solidification peaks. The solidus tem-
perature of the alloy is at �541 �C at the given cooling rate.

4. Discussion

4.1. Solidification sequence

The solidification sequence of the AlMg4.7Si8 alloy at a
cooling rate of 5 K min�1 can be determined by correlating
the results obtained from in situ synchrotron tomography
and DSC. The latter technique gives a more accurate tem-
perature measurement, while identification of the individ-
ual phases can be performed unequivocally by in situ
tomography by reference to the phase diagram. Fig. 10 pre-
sents the liquid–solid phase limits for thermodynamic
equilibrium according to Thermocalc [3] without consider-
ing the Fe content. There, the solidification of the a-Al den-
drites starts at Tm = 591 �C, reaching the eutectic valley at
Teut = 577.5 �C, where Mg2Si continuously solidifies until
558 �C, where the remaining liquid freezes as a ternary



D. Tolnai et al. / Acta Materialia 60 (2012) 2568–2577 2575
a-Al/Mg2Si/Si eutectic. The solidification sequence can be
summarized as follows:

a-Al dendrites ð594–575 �CÞ ! a-Al=Mg2Si eutecticð575–555 �CÞ
! onset of Fe aluminides at 565 �C

! a-ternary Al=Mg2Si=Si eutectic ð555–541 �CÞ:
Table 1
Temperatures of onset of phase solidification in AlMg4.7Si8.

Phases Calorimetry (�C), cooling rate 5 K min�1 In situ tom

a-Al 594–575 590–575
a-Al/Mg2Si 575–555 575–555
Fe aluminides Overlap Onset at 5
a-Al/Mg2Si/Si 555–541 555–540

Fig. 11. Typical parts of the dendritic structure during solidification. The colou
grey parts are outside this range.
The solidification intervals obtained by both experimen-
tal techniques in Table 1 agree reasonably well with the
equilibrium conditions calculated by Thermocalc [3],
although the experiments were carried out with a finite
cooling rate. The asymmetric shape of the first two solidi-
fication peaks 594–575 �C and 575–555 �C in the DSC
ography (�C), cooling rate 5 K min�1 Thermocalc (�C) equilibrium

591
577.5–558

65 Not considered
558

rs represent the Gauss curvature between �0.005 and 0.005 lm2, while the



Fig. 12. Tomographic slice recorded at 575 �C showing a-Al dendrites,
primary Mg2Si particles and sections of “Chinese script” Mg2Si.

2576 D. Tolnai et al. / Acta Materialia 60 (2012) 2568–2577
thermogram (Fig. 9) are due to the continuous solidifica-
tion of a-Al and of a-Al/Mg2Si, respectively. The latter
exothermal peak is also extended by the formation of Fe-
aluminides. On the other hand, the asymmetry of the last
solidification peak (555–540 �C) towards the higher tem-
perature can be understood as an overlap of the almost
simultaneous solidification of some Fe-aluminides and
the ternary a-Al/Mg2Si/Si eutectic.

4.2. Dendritic solidification

The change in the morphology of the dendrites during
cooling is characterized by coarsening, which is a simulta-
neous process of growth and coalescence of the secondary
dendrite arms, similarly to the case of isothermal coarsen-
ing [12]. This can be followed qualitatively on the recon-
structed tomographic slices and the rendered volumes
shown in Figs. 3 and 4, respectively. As the solidification
advances, the growth of the secondary dendritic arms
becomes asymmetric, and the tips grow with a higher rate
than the bases, resulting in a droplet-like shape, where
the tips of neighbouring arms can coalesce [12,26]. This
evolution can be followed quantitatively on the curvature
distributions (Fig. 5). It should be noted that the dendritic
structure in Fig. 4a (590 �C) shows already grown dendrites
with secondary arms growing from some primary dendritic
arms. This indicates that the very beginning of solidifica-
tion, where the primary dendrites form, was missed during
the experiment. This is due to two reasons: the relatively
coarse resolution used (roughly estimated as �3 � voxel
size �3 � (1.4 lm)3) which limits the possibility of resolv-
ing smaller structures; and the fact that scans were carried
out every minute, resulting of a “blind” time of up to 60 s
during which no tomographic images were taken.

Parts of the dendritic structure during solidification are
shown in Fig. 11. The colours represent the Gauss curva-
ture between �0.005 and 0.005 lm2, while the grey parts
are outside this range. It can be seen that two maxima
emerge from the curvature distributions during solidification
(Fig. 5): one closer to the origin representing slightly saddle-
like phases which are related to the bases and sides of the
secondary dendritic arms, and another in the positive–
positive quadrant representing spheroid-like regions due to
the secondary dendrite tips.

The temperature at which a continuous skeletal dendritic
network builds up, known as the dendritic coherence tem-
perature [27], can be estimated between 580 and 575 �C
based on the tomographies. Below this temperature the
overall macroscopic dimension of the structure remains,
except where shrinkage contracts the outer surface;
however, shrinkage of the liquid also occurs within the
interdendritic spaces, resulting in the formation of porosity.
4.3. Solidification of eutectic Mg2Si

The location of the onset of the solidification of the
Mg2Si phase can be linked to the bases of the secondary
dendrite arms in the interdendritic space as shown in
Fig. 12. The solidification of this phase starts with the octa-
hedral shaped particles, from which the seaweed-like eutec-
tic Mg2Si structure grows [3,6,28].

Several nucleation sites can be observed on the tomogra-
phies during solidification, implying that the solidification
starts with individually unconnected Mg2Si structures,
which then coalesce as the solidification advances. The
ternary eutectic Mg2Si particles also contribute to the coa-
lescence. Finally, the phase forms a long-range intercon-
nected 3-D structure like that usually found in as-cast
conditions (Fig. 7) [6,28].
5. Conclusions

The solidification of an AlMg4.7Si8 alloy has been
followed in situ by fast synchrotron microtomography.
The following conclusions can be drawn from the results
obtained:

� The a-Al dendritic structure coarsens during solidifica-
tion as a result of the coalescence and growth of the
secondary dendrite arms. As the cooling proceeds, the
growth becomes asymmetric with the tips of the second-
ary dendritic arms growing faster than the bases, result-
ing in a drop-like shape.
� The dendritic coherency temperature is between 580 and

575 �C as determined based on the tomographies.
� The nucleation of the Mg2Si particles can be linked to

the base of the secondary dendrite arms. First, octahe-
dral primary Mg2Si particles start to solidify at several
nucleation sites, followed by the seaweed-like eutectic
solidification. The initially separated Mg2Si particles
grow during cooling and finally coalesce to form the
long-range interconnected structure observed in the as-
cast condition.
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� The exact solidification sequence at a cooling rate of
5 K min�1 can be determined unequivocally by combin-
ing in situ synchrotron tomography and DSC:

a-Al dendrites (594–575 �C)! a-Al/Mg2Si eutectic
(575–555 �C)! Fe aluminides (onset at 565 �C, deter-
mined from the in situ tomographic test)! a-Al/Mg2Si/
Si ternary eutectic (555–541 �C).
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