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ABSTRACT OF THE DISSERTATION 
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Cancer is a complex molecular process due to abnormal changes in the genome, such as 

mutation and copy number variation, and epigenetic aberrations such as dysregulations of 

long non-coding RNA (lncRNA). These abnormal changes are reflected in transcriptome 

by turning oncogenes on and tumor suppressor genes off, which are considered cancer 

biomarkers. 

However, transcriptomic data is high dimensional, and finding the best subset of genes 

(features) related to causing cancer is computationally challenging and expensive. Thus, 

developing a feature selection framework to discover molecular biomarkers for cancer is 

critical. 

Traditional approaches for biomarker discovery calculate the fold change for each gene, 

comparing expression profiles between tumor and healthy samples, thus failing to capture 

the combined effect of the whole gene set. Also, these approaches do not always investigate 

cancer-type prediction capabilities using discovered biomarkers. 

In this work, we proposed a machine learning-based framework to address all of the above 

challenges in discovering lncRNA biomarkers. First, we developed a machine learning 
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pipeline that takes lncRNA expression profiles of cancer samples as input and outputs a 

small set of key lncRNAs that can accurately predict multiple cancer types. A significant 

innovation of our work is its ability to identify biomarkers without using healthy samples. 

However, this initial framework cannot identify cancer-specific lncRNAs. Second, we 

extended our framework to identify cancer type and subtype-specific lncRNAs. Third, we 

proposed to use a state-of-the-art deep learning algorithm concrete autoencoder (CAE) in 

an unsupervised setting, which efficiently identifies a subset of the most informative 

features. However, CAE does not identify reproducible features in different runs due to its 

stochastic nature. Thus, we proposed a multi-run CAE (mrCAE) to identify a stable set of 

features to address this issue. Our deep learning-based pipeline significantly extended the 

previous state-of-the-art feature selection techniques.  

Finally, we showed that discovered biomarkers are biologically relevant using literature 

review and prognostically significant using survival analyses. The discovered novel 

biomarkers could be used as a screening tool for different cancer diagnoses and as 

therapeutic targets. 
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CHAPTER 1 INTRODUCTION 

1.1 Motivation and Goals 

Cancer is one of the most deadly diseases worldwide, as one in three people develop cancer 

during their lifetime [1]. Cancer is a complex multi-omics molecular process, and it 

normally happens due to over-expression of oncogenes and under-expression of tumor 

suppressor genes [2].  

Epigenetics, meaning above genetics, which works on top of the genome without 

modifying the genetic material, controls the normal development of different types of cells 

and organs [3]. Any aberration in epigenetic processes such as DNA methylation at 

promoter regions [4], histone modifications (addition of methyl or acetyl group at histone 

proteins, for example) [5], and dysregulations of non-coding RNA (ncRNA) including both 

micro RNA (miRNA) [6] and long non-coding RNA (lncRNA) [7] could play critical roles 

in causing cancer by turning oncogenes on and tumor suppressor genes off. Thus, cancer 

is a multi-omics molecular process combining abnormal gene expression, DNA 

methylation, histone modifications, and miRNA and lncRNA dysregulations.  

Dysregulation of multiple lncRNAs was reported to play major roles in many different 

cancers. The lncRNAs are a class of RNA transcripts with a length of >200 nucleotides 

that do not encode proteins. Studies have revealed that lncRNAs play an important role in 

cancer biology, and the expression of specific lncRNAs is implicated in the development 

and progression of cancer [8]. The lncRNAs also have key roles in transcriptional, post-

transcriptional, and epigenetic gene regulation [9]. They also impact cancer pathways [10] 

and are involved in six cancer hallmarks such as proliferation, growth suppression, 

motility, immortality, angiogenesis, and viability [11].  
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One can find the molecular biomarkers (molecules involved in causing a disease) for 

cancer, considering each transcriptomic (RNA Type) data separately or combining all RNA 

types. The transcriptomic data are high-dimensional in nature. For example, human 

genome has about 20K (20,000) coding genes [12], and 40K non-coding genes (miRNA 

and lncRNA) [13]. Thus, to represent a human genome or an individual human being, we 

need 20K and 40K dimensions for coding genes and non-coding genes, respectively. A 

subset of 20K coding genes and 40K non-coding genes are responsible for cancer, called 

cancer biomarkers. Any dataset with an N-number of features has 2𝑁 possible subset of 

features [14]. In the presence of such a large number of possible combinations, finding the 

best subset of N features, which are related to causing cancer, is computationally 

challenging and expensive [15]. Since transcriptomic data carry valuable information about 

cancers, RNA expression data is used for the early prediction of cancer in many studies 

[16]–[18]. However, there is a high risk of overfitting if a machine learning model is trained 

using such high dimensional data without reducing its dimension, meaning without 

identifying important features [19]. Therefore, there is a definite need for developing a 

feature selection framework capable of discovering salient features or molecular 

biomarkers for cancer from such high-dimensional transcriptomic data and accurately 

predicting cancer types and subtypes. 

1.2 Significance and Research Purpose 

Identifying the salient features or molecular biomarkers from each transcriptomic data and 

early prediction of cancer types or subtypes will help develop the screening tools and 

targeted therapy for cancer. More specifically, this will contribute towards the development 

of precision medicine. 
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The number of molecular biomarkers for a cancer type should be as few as possible 

(preferably less than 100) [20][21] so that it is easy to develop a wet lab experiment to 

check the feasibility of the discovered biomarkers as a possible screening tool and targeted 

therapy. The purpose of this research is to develop and implement a feature selection 

framework that can identify molecular biomarkers, a set of molecules in the range of 10 to 

100 related to a cancer type or subtype, from the original feature space of 20K or 40K.  

1.3 Specific Aims 

The goals of the proposed study are to develop an intelligent feature selection framework 

for identifying molecular biomarkers for cancers and cancer subtypes. The goals were 

achieved through three specific aims as outlined below. 

1.3.1 Specific Aim 1: Feature Selection and Cancer Type Classification 

In this aim, a feature selection framework was developed to isolate a set of key features 

from a high-dimensional feature space [22]. The isolated features can differentiate multiple 

types of cancers, but the framework is not capable of providing information about which 

features contribute to which cancer.  

1.3.2 Specific Aim 2: Class-Specific Feature Selection and Cancer Subtype 

Classification 

In the second aim, we developed a feature selection framework to identify class-specific 

key features. For example, our proposed model can successfully discover molecular 

biomarkers associated with each breast cancer subtype. 

1.3.3 Specific Aim 3: Building Deep Learning-based Feature Selection Framework  

Traditional machine learning models are often linear, and these linear models may fail to 

capture the complex non-linear relationships of multivariate signals, resulting in an inferior 
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performance at the cost of its efficiency. Aim 3 integrated a deep learning-based feature 

selection algorithm called multi-run concrete autoencoder (mrCAE) to develop an 

enhanced framework for selecting the most meaningful features to predict cancer 

types/subtypes mentioned in Aim 1 and 2. 

1.4 Research Contributions 

The contributions of this dissertation include developing a feature selection framework that 

enables discovering molecular biomarkers and early cancer prediction. The following suite 

of feature selection methods was proposed  in developing the framework. 

1.4.1 Feature Selection and Cancer Type Classification  

This study developed a computational framework to identify cancer-specific key lncRNAs 

using the lncRNA expression of cancer patients only. The framework consists of two state-

of-the-art feature selection techniques – Recursive Feature Elimination (RFE) and Least 

Absolute Shrinkage and Selection Operator (LASSO); and five machine learning models 

– Naive Bayes, K-Nearest Neighbor, Random Forest, Support Vector Machine, and Deep 

Neural Network. For the experiment, expression values of lncRNAs for eight cancers – 

BLCA, CESC, COAD, HNSC, KIRP, LGG, LIHC, and LUAD – from TCGA were used. 

The combined dataset consists of 3,656 patients with expression values of 12,309 

lncRNAs. Important features or key lncRNAs were identified using feature selection 

algorithms RFE and LASSO. The capability of these key lncRNAs in classifying eight 

different cancers is checked by the performance of five classification models. This study 

identified 37 key lncRNAs that can classify eight different cancer types with an accuracy 

ranging from 94% to 97%. Finally, survival analysis supports that the discovered key 

lncRNAs can differentiate between high-risk and low-risk patients. 
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1.4.2 Class-Specific Feature Selection and Cancer Subtype Prediction 

Every cancer is stratified into multiple molecular subtypes such as Breast cancer has five 

subtypes: Basal, HER2, Luminal A, Luminal B, and Normal-like. Identifying subtype-

specific key lncRNAs with clinical outcomes might help develop appropriate cancer 

therapy. We proposed an approach for simultaneous feature selection and classification for 

a multiclass problem combining recursive feature elimination (RFE) and l1-norm 

multiclass Support Vector Machine (L1MSVM), thus calling it RL1MSVM. The newly 

proposed model RL1MSVM performs better than two state-of-the-art models, L1MSVM 

and Random Forest (RF), with respect to four evaluation metrics, including accuracy, 

precision, recall, and f1 score. A total of 196 lncRNAs, which are the optimum number of 

features based on RL1MSVM, were selected using all three methods for comparison. Using 

these sets of features, the subtype prediction accuracies were 84%, 90%, and 92% for RF, 

L1MSVM, and RL1MSVM, respectively. Finally, a stable set of 91 lncRNAs was obtained 

using the union of the intersections of the two sets of lncRNAs selected by two approaches, 

which are considered key lncRNAs. Out of 91 lncRNAs, 53 were previously identified, 

and the remaining 38 are novel. The subtype-specific distribution of novel lncRNAs is – 

Basal: 7, HER2: 8, Luminal A: 11, Luminal B: 7, and Normal-like: 5, respectively. One of 

the lncRNAs found in two subtypes. The combined list of this novel and known lncRNAs 

can further be studied for developing breast cancer subtype-specific targeted therapy. 

1.4.3 Multi-Run Concrete Autoencoder for Feature Selection 

To discover the critical lncRNAs that can identify the origin of different cancers, we 

proposed to use the state-of-the-art deep learning algorithm Concreate Autoencoder (CAE) 

in an unsupervised setting, which efficiently identifies a subset of the most informative 
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features [23]. However, CAE does not identify reproducible features in different runs due 

to its stochastic nature [24]. To address this issue, we proposed a multi-run CAE (mrCAE) 

to identify a stable set of features [25]. The assumption is that a feature appearing in 

multiple runs carries more meaningful information about the data under consideration. The 

genome-wide lncRNA expression profiles of 12 different types of cancers, a total of 4,768 

samples available in The Cancer Genome Atlas (TCGA), were analyzed to discover the 

key lncRNAs. To obtain a stable set of lncRNAs capable of identifying the origin of 12 

different cancers, a lncRNA identified by CAE in multiple runs was added to the final list 

of key lncRNAs.  

Our results showed that mrCAE performs better in feature selection compared to single-

run CAE and other state-of-the-art feature selection techniques, including Least Absolute 

Shrinkage and Selection Operator (LASSO), Random Forest (RF), Support Vector 

Machine with Recursive Feature Elimination (SVM-RFE), Multi-Cluster Feature Selection 

(MCFS), and Unsupervised Discriminative Feature Selection (UDFS). This study 

discovered a set of top-ranking 128 lncRNAs that could identify the origin of 12 different 

cancers with an accuracy of 94%. Survival analysis showed that 101 of 128 lncRNAs have 

the prognostic capability in differentiating high- and low-risk groups of patients in different 

cancers.  

The proposed computational framework can be used as a diagnostic tool by physicians to 

discover the origin of cancers using the expression profiles of lncRNAs. The discovered 

lncRNAs can be studied further by biologists or drug designers to identify possible targets 

for cancer therapy. 
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1.5 Roadmap for the Dissertation 

After setting up the stage for the drive-in this introductory chapter, the rest of the journey 

is organized as follows.  

Chapter 2 will introduce the reader to all notations, definitions, and necessary 

terminologies to understand different machine learning models used for feature selection, 

classification, and visualization tasks. It also discussed the different metrics used in 

measuring the model performance. Finally, it contains a literature survey on different 

machine learning techniques in biomarker discovery.  

Chapter 3 contains a detailed explanation of how feature selection is important for high 

dimensional transcriptomic data and its use in identifying important cancer biomarkers. 

This chapter also discussed the development of the whole feature selection pipeline. 

Chapter 4 provides the necessary information about running the same experiments on a 

large scale with a high volume of data. It contains necessary information regarding the 

extended experiment for 33 cancers using a high volume of transcriptomic data. It also 

contains a detailed explanation of the concrete autoencoder used for feature selection.   

Chapter 5 provides a detailed explanation of how glycome genes performed an important 

role in cancer progression. It also discussed how the proposed feature selection framework 

could identify important glycome biomarkers for different cancers.  

Chapter 6 describes a subtype-specific feature selection framework to identify biomarkers 

associated with each molecular subtype of breast cancer. It also provides the necessary 

information on classifying breast cancer subtypes using machine learning methods. In 

addition, it shows the prognostic evaluation and a detailed discussion on how novel 

biomarkers can be used in cancer prognosis and diagnosis. 
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Chapter 7 provides the limitations of concrete autoencoder in feature selection from high 

dimensional transcriptomic data. It also discussed how the multi-run approach could 

overcome its limitations. This chapter contains the necessary information on data 

preprocessing, model development, model training, hyperparameters tuning, and 

performance evaluation. It also contains the biological validations of identified biomarkers. 

We close the dissertation in Chapter 8 with a summary of the dissertation and conclusions 

and suggestions for future work. 
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CHAPTER 2 BACKGROUND AND REVIEW 

This chapter provides the necessary background to understand different machine learning 

models used for visualization, feature selection, and classification tasks. It also discussed 

the different metrics used to measure the model performance. Finally, it contains a 

literature survey on different machine learning techniques in biomarker discovery. 

2.1 Data visualization 

2.1.1 t-Distributed Stochastic Neighbor Embedding (t-SNE) 

t-Distributed Stochastic Neighbor Embedding (t-SNE) is an unsupervised, non-linear 

technique used to explore and visualize high-dimensional data [26]. In simpler terms, t-

SNE provides us a feel or intuition of how the data is arranged in a high-dimensional space. 

For example, the clustering of eight different cancer types is visualized by two t-SNE 

components derived from 12K dimensions of lncRNA expression profile data in Figure 

2.1. 

 

Figure 2.1: Visualization by t-SNE. The expression profile of 12K lncRNAs was 

reduced to 2 dimensions applying t-SNE. X-axis represents tSNE1, y-axis represents  

tSNE2, and each dot presents a patient of a particular cancer type. 
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2.2 Feature Selection Methods 

Three general classes or types of feature selection techniques, filter, wrapper, and 

embedded methods, are discussed in the following subsections. 

2.2.1 Filter Method 

The filter method works by ranking the features using a statistical score assigned to each 

of them depending on their relevance to the class type. In both univariate and multivariate 

filter methods, the interactions among features are disregarded in the selection process. 

Studies like the ones in Pearson correlation coefficient (PCC), t-statistics (TS) [27], F-Test 

[28], and ANOVA [29]  are examples where the filtering method is used. It is observed 

that these methods are effective for selecting features in high-dimensional data because of 

the reduced computation expenses. However, they fail to provide good accuracy, as 

discussed in [30]. 

2.2.2 Wrapper Method 

As an enhancement, the researcher developed the wrapper-based feature selection method 

with a learning algorithm and a classifier to find a suitable subset of features. Initially, a 

random solution is generated, following which an objective function is maximized using 

black-box type optimization methods [31] like simulated annealing [32], particle swarm 

optimization [33], genetic algorithm [34], and ant colony optimization [35]. The iterative 

evaluation of every candidate subset of the features by a wrapper method leads to 

identifying a strong relationship between features, however, with an increase in the 

computational expense. 
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2.2.3 Embedded Method 

Embedded feature selection methods, on the other hand, reduce computational costs 

because these are used as a part of the learning phase. Well-known embedded methods, 

which are considered as the state-of-the-art, are least absolute shrinkage and selection 

operator (LASSO) [36], recursive feature elimination with support vector machine 

estimator (SVM-RFE) [22], [37], [38], random forest [39], [40], Adaboost [41] , KNN [42] 

, and autoencoder [43]. 

2.3 Example Feature Selection Methods 

2.3.1 LASSO 

The Least Absolute Shrinkage and Selection Operator method applies a regularization 

(shrinking) process where it penalizes the coefficients of the regression variables and 

shrinks these to zero. The variables that still have a non-zero coefficient are selected as the 

top features. The tuning parameter 𝜆 controls the strength of the penalty. The larger the 

parameter 𝜆, the more the number of coefficients shrunk to zero, the fewer features are 

selected.   

2.3.2 Recursive Feature Elimination 

A Recursive Feature Elimination (RFE) algorithm constructs a ranking coefficient 

according to the weight vector w generated by an estimator, e.g., linear regression during 

training. It removes features with the smallest ranking coefficient in each iteration and 

finally, obtains an optimized number of significant features. Recursive feature elimination 

is a recursive method in which less important features are eliminated in every iteration.  
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2.3.3 Random Forest 

Random Forest (RF) works based on a tree structure that employs ensemble. RF consists 

of a number of decision trees. Every node in the decision trees is a condition on a single 

feature, designed to split the dataset into two branches, so similar response values end up 

in the same set. The optimal condition is chosen based on impurity [44]. For classification, 

it is either Gini impurity or information gain/entropy. Thus, when the tree is fully 

developed, it can compute how much each feature decreases the weighted impurity on the 

tree. For forest, the impurity decrease from each feature can be measured as a feature rank. 

The feature importance is calculated as the sum over the number of splits (across all trees) 

that include the feature, proportionally to the number of samples it splits [45]. 

2.3.4 Concrete Autoencoder (CAE) 

Concrete autoencoder (CAE) proposed by Abid et al. [46] is a variation of the original 

autoencoder (AE) [47],  which is used for dimension reduction. The motivation behind 

selecting CAE in the present study is that it takes advantage of both AE (which can achieve 

the highest classification accuracy) and concrete relaxation-based feature selection 

(capable of selecting actual features instead of latent features). An AE is a neural network 

that consists of two parts: (a) an encoder that selects latent features and (b) a decoder that 

uses selected latent features to reconstruct an output that matches the input with minimum 

error. In CAE, instead of using a sequence of fully connected layers in the encoder, a 

concrete relaxation-based feature selection layer is used where the user can define the 

number of nodes (features to be selected), k as shown in Figure 2.2. This layer selects a 

probabilistic linear arrangement of input features while training, which converges to a 
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discrete set of k features by the end of the training phase, which is subsequently used in the 

testing phase.  

Let's p(x) is a probability distribution over a d-dimensional vector. The objective is to 

identify a subset of features, S≡{1…k} of size |S|=k. Also, learning a reconstruction 

function 𝑓𝑟(. ): ℝk  
∆
→ ℝd, such that the loss between original sample x and reconstructed 

sample 𝑓𝑟(𝑥𝑆) is minimized as stated in Eq. 1,  

𝑎𝑟𝑔𝑚𝑖𝑛𝑆,𝑟 𝐸𝑝(𝑥)[‖𝑓𝑟 (𝑥𝑆  ) − 𝑥‖2]…………… (1) 

where 𝑥𝑠 ∈ ℝ𝑘 consists of only selected features 𝑥𝑖 s.t. 𝑖 ∈ 𝑆. Note that samples are 

represented in a 2D matrix, X∈ℝ𝑛×𝑑 ,  and aim is to pick k columns of X such that sub-

matrix 𝑋𝑠 ∈ ℝ𝑛×𝑘. 

 

Figure 2.2 Architecture of Concrete Autoencoder. CAE architecture consists of an 

encoder and a decoder. The layer after the input layer of the encoder is called concrete 

feature selection layer shown in yellow. This layer has k number of the node where each 

node is for each feature to be selected. During the training stage, the 𝒊𝒕𝒉 node 𝒗(𝒊) takes the 

value 𝑿𝑻 f(i), where f(i) is the corresponding weight vector of node i. During the testing 

stage, these weights are fixed and the element with the highest value is selected by the 

corresponding 𝒊𝒕𝒉 hidden node. The architecture of the decoder remains the same during 

training and testing.  
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Then, the selected feature set 𝑥𝑠 can be used to reconstruct the original matrix X and 

classify the cancer types. In the feature selection layer of CAE (Figure 2.2), the original 

features are selected based on the temperature of this layer which is tuned using an 

annealing schedule. More specifically, the concrete selector layer identifies k important 

features as the temperature decreases to zero. For reconstructing the input, a simple decoder 

similar to the ones associated with a standard AE is used. 

2.4 Classification Models 

2.4.1 Support Vector Machine (SVM) 

The objective of the support vector machine algorithm is to find a hyperplane in N-

dimensional space (N - the number of features) that distinctly classifies the data points [48]. 

Many possible hyperplanes could be chosen to separate the two classes of data points. 

SVM’s objective is to find a plane with the maximum margin, i.e., the maximum distance 

between data points of both classes. Maximizing the margin distance provides some 

reinforcement to classify future data points with more confidence. 

2.5 Performance Metrics 

2.5.1 Confusion matrix 

Confusion Matrix is the visual representation of the number of Actual vs. Predicted 

samples. It measures the performance of a supervised Machine Learning classification 

model on a set of test data for which the true values are known. It is useful for measuring 

Accuracy, Precision, Recall, and other important performance metrics. 
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Figure 2.3 Confusion matrix of a binary classification problem. (TP: True Positive; FP: 

False Positive; FN: False Negative; TN: True Negative). 

2.5.2 Accuracy 

Accuracy is the number of correct predictions made by the model over all kinds of 

predictions made. True positives (TP) and True Negatives (TN) are the correct predictions. 

Accuracy = 
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 

2.5.3 Precision 

The precision is the number of correct positive results divided by the number of positive 

results predicted by the model. It indicates the predicted positive portion of the samples.  

Precision = 
𝑇𝑃

𝑇𝑃+𝐹𝑃
 

2.5.4 Recall 

The recall is the number of correct positive results divided by the number of all relevant 

samples. 

Recall = 
𝑇𝑃

𝑇𝑃+𝐹𝑁
 

2.5.5 F1-score 

F1 score is the harmonic mean of precision and recall. 
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F1 Score = 2 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 .  𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

2.5.6 Mean squared error (MSE) 

Mean squared error (MSE) measures the amount of error in a regression problem. It 

assesses the average squared difference between the actual values (yi) and predicted values 

(y’i).  

MSE = 
∑(𝑦𝑖−𝑦′

𝑖)2 

𝑛
 

2.5.7 AUC - ROC Curve 

Area Under the Curve (AUC) – Receiver Operating Characteristics (ROC) curve is a 

performance measurement for the classification problems at various threshold settings. 

ROC is a probability curve, and AUC represents the degree or measure of separability. It 

tells how much the model is capable of distinguishing between classes. The higher the 

AUC, the better the model predicts Positive classes as Positive and Negative classes as 

Negative. For example, the higher the AUC, the better the model can distinguish between 

patients with the disease and no disease. 

 

Figure 2.4 AUC-ROC Curve. AUC: Area Under the Curve; ROC: Receiver Operating 

Characteristic Curve. AUC-ROC curve is used to measure the performance of a binary 

classification system. 
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2.6 Data Domain 

Data used in this experiment is transcriptomic cancer data. More specifically, we used the 

long non-coding part of RNA, which is more than 200 nucleotides long. The expression 

profiles of long non-coding RNA (lncRNA) of cancer and normal samples were used in 

this study. It should be noted that normal samples refer to healthy samples in entire 

dissertation. 

2.7 Literature Review 

Recent studies showed that long non-coding RNAs (lncRNAs) play key roles in 

tumorigenesis [49]–[51]. The lncRNAs also have key functions in transcriptional, post-

transcriptional, and epigenetic gene regulation [9]. Schmitt and Chang discussed the impact 

of lncRNA in cancer pathways [10]. Hanahan and Weinberg described the involvement of 

lncRNAs in six hallmarks of cancer such as proliferation, growth suppression, motility, 

immortality, angiogenesis, and viability [11].  

Hoadley et al. showed that cell of origin patterns dominate the molecular classification of 

tumors available in The Cancer Genome Atlas (TCGA) [52]. Their analysis used copy 

number, mutation, DNA methylation, RPPA protein, mRNA, and miRNA expression. 

However, they did not consider another important molecular signature of cancer, which is 

lncRNA expression. This work motivated us to investigate the importance of lncRNAs in 

identifying different types or subtypes of cancer.  

However, research on such classification is rarely found due to the high dimensionality of 

the data [53]. Though RNAseq data from TCGA contains a reasonable number of samples, 

even it poses challenges for classification tasks due to a large number of features (mRNA, 

miRNA, or lncRNA) with respect to the number of samples. Many computational methods 
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fail to identify a small number of important features, rather increasing learning costs and 

deteriorating performance [54]. To overcome this issue, researchers used a feature selection 

algorithm for dimension reduction such as RFE (Recursive Feature Elimination) is used in 

[55], [56] and LASSO is used in [57] as a feature selection method. More research is needed 

to identify cancer type and subtype-specific lncRNAs.  

In general, feature selection is worthwhile when the whole set of features is difficult to 

collect or expensive to generate [23]. For example, in TCGA, the lncRNA expression 

profile dataset contains more than 12,000 features (lncRNAs) for each of 33 different 

cancers, and it is expensive to generate this data.  

On the other hand, standard dimension reduction methods, such as principal component 

analysis (PCA) [58] and autoencoders [47], can generate a greatly reduced set of latent 

features. However, these latent features are not the original features but are combinations 

of the original features. Identifying original features increases the “explainability” of the 

results and allows us to perform biological interpretation in diagnosing various deadly 

diseases, such as cancers. Recently, few deep learning-based feature selection methods 

showed improvement in selecting original features in both supervised and unsupervised 

settings [23], [59]–[61]. 
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CHAPTER 3 FEATURE SELECTION AND CANCER CLASSIFICATION           

(8 CANCERS) 

This chapter contains a detailed explanation of how feature selection is important for high 

dimensional transcriptomic data and its use in identifying important cancer biomarkers. In 

this chapter, we also discussed the development of the whole pipeline of the initial feature 

selection framework from data preprocessing to classify the eight cancer types. 

3.1 Introduction 

Recent studies indicate that several cancer risk loci are transcribed into lncRNAs, and these 

transcripts play key roles in tumorigenesis [49], [50]. In their review paper, Cheetam et al. 

[49] enumerated that lncRNAs play key roles in cancer progression through a variety of 

mechanisms such as lncRNA ANRIL for remodeling of chromatin [62], H19 for 

transcriptional co-activation and co-repression [63], TERRA for protein inhibition [64], 

MALAT1 for post-transcriptional modifications [65] and PTENP1 for decoy [66]. LncRNA 

ANRIL, which causes PCR1-mediated repression of tumor suppressor locus INK4A-ARF-

INK4b, is up-regulated in prostate cancer [62]. Similarly, H19 plays a significant role in 

the proliferation of gastric cancer cells due to its up-regulation [63]. The lncRNA TERRA 

facilitates telomeric heterochromatin formation [64], MALAT1 induces migration and 

tumor growth in lung cancer [65],and PTENP1 controls the expression level of the tumor 

suppressor gene PTEN [66]. Also, lncRNAs have key functions in transcriptional, post-

transcriptional, and epigenetic gene regulation [9]. Schmitt et al. discussed the impact of 

lncRNA in the cancer pathway [10]. They described the involvement of lncRNAs in six 

hallmarks of cancer [67], such as proliferation, growth suppression, motility, immortality, 

angiogenesis, and viability. While some researchers detailed the role of lncRNAs in cancer 



 20 

progression, others discovered a number of lncRNA biomarkers in several cancers by 

creating lncRNA-miRNA co-expression networks [68]–[70]. Wang et al., on the other 

hand, identified six key lncRNAs for metastatic melanoma from a competing endogenous 

RNA (ceRNA) network analysis using mRNA, miRNA, and lncRNA expression [71]. By 

constructing a similar network,  Sui et al. found 41 lncRNAs biomarkers in human lung 

adenocarcinoma [72]. Also, Chen et al. identified 24 hub lncRNAs in smoking-associated 

lung cancer by forming protein-protein interaction (PPI) networks [73]. Similarly, Lanzos 

et al. identified cancer driver lncRNAs as new candidates and distinguishing features by 

analyzing the mutational patterns in tumor DNA [74]. Another model, CRlncRC, used 

machine learning algorithms including RF, NB, SVM, LR, and KNN to classify cancer-

related lncRNAs from cancer-unrelated lncRNAs [75]. For this classification, the authors 

used a combination of genomic, epigenetic, network, and expression features.  

In the present study, cancer-related key lncRNAs are identified using lncRNA expression 

values of cancer patients applying feature selection algorithms. Then the capability of 

identified lncRNAs in classifying eight different cancers is checked by the performance of 

five classification models. Finally, survival analysis is conducted to check whether the 

discovered lncRNAs can differentiate between high-risk and low-risk patients. Hoadley et 

al. showed that cell of origin patterns dominate the molecular classification of tumors 

available in TCGA [52]. They used copy number, mutation, DNA methylation, RPPA 

protein, mRNA, and miRNA expression for their analysis. But, they did not consider 

another important molecular signature of cancer, which is lncRNA expression. While their 

work motivates us to classify multiple cancers using lncRNA expression, the main 

objective of this study is to find the key lncRNAs related to specific cancer. However, 
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research on such classification is rarely found due to the high dimensionality of the data 

[53]. Though RNAseq data from TCGA contains a reasonable number of samples, even it 

poses challenges for classification tasks due to a large number of features (mRNA, miRNA, 

or lncRNA) with respect to the number of samples. Many computational methods fail to 

identify a small number of important features, rather increasing learning costs and 

deteriorating performance [54]. To overcome this issue, researchers used a feature selection 

algorithm for dimension reduction such as RFE (Recursive Feature Elimination) is used in 

[55], [56] and LASSO is used in [57] as a feature selection method. 

It is clear from the literature that lncRNAs play a key role in causing cancer and its 

development. More research is needed to identify cancer-specific lncRNAs. Existing 

methods used co-expression networks such as lncRNA-mRNA or lncRNA-miRNA-

mRNA. As per our knowledge, no study uses lncRNA expression only to find the cancer-

specific lncRNAs except our previous work [76], where we did not consider feature 

selection. Here, we proposed a computational framework using feature selection and 

classification methods to identify key lncRNAs and classify different cancers based on the 

expression value of those key lncRNAs. Important features or lncRNAs are selected in two 

steps: First, the number of features is reduced using a cutoff on expression values and then 

using a combination of two feature selection algorithms RFE and LASSO. This study 

discovered 37 key lncRNAs for eight different cancers. 

3.2 Data Preparation  

To validate the idea, RNAseq FPKM normalized expression data for eight cancers - 

Bladder Cancer (BLCA), Cervical Cancer (CESC), Colon Cancer (COAD), Head and Neck 

Cancer (HNSC), Kidney Papillary Cell Carcinoma  (KIRP), Lower Grade Glioma (LGG), 
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Liver Cancer (LIHC), and Lung Adenocarcinoma (LUAD) - are downloaded (April, 2019) 

from UCSC Xena [77]. These eight cancers are selected based on the number of samples 

(ranges from 309 to 585) to have a balanced dataset, as shown in Table 3.1.  The combined 

dataset consists of 3656 patients with 60483 RNA (mRNA, miRNA, lncRNA) expression 

profiles representing eight tumor types. The row and column headings represent the RNAs 

and sample IDs, respectively. The values of each cell represent the normalized read counts 

of an RNA for a specific sample. Since this study focuses on identifying key lncRNAs for 

a cancer type, expression values of lncRNAs are isolated from the combined dataset using 

lncRNA IDs available in the TANRIC (The Atlas of non-coding RNA in Cancer) 

repository [78]. This mapping resulted in 12,309 common lncRNAs with expression data 

for eight cancers. In the present study, we used a cutoff, mean lncRNA expression  0.3 as 

used in [57], to determine the expressed lncRNAs. The number of expressed lncRNAs for 

different cancer are shown in Table 3.1. 

Table 3.1: Summary of TCGA RNA-seq data sets used in this study. The combined 

number of expressed lncRNAs is 4786. The total number of cancer patients analyzed is 

3656. 

Tumor Types Short Name #Tumor samples 
#Expressed 

lncRNAs 

Bladder Cancer BLCA 430 2501 

Cervical Cancer CESC 309 2327 

Colon Cancer COAD 512 2178 

Head and Neck 

Cancer 
HNSC 546 1831 

Kidney 

Papillary Cell 

Carcinoma 

KIRP 321 2651 

Lower Grade 

Glioma 
LGG 529 2941 

Liver Cancer LIHC 424 1771 
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Lung 

Adenocarcinom

a 

LUAD 585 2854 

Total (Unique)  3656 4786 

 

3.3 Methodology 

Figure 3.1 shows the overall process for data preparation and methodology. After reducing 

features (lncRNA) using cutoff, mean expression  0.3, two feature selection methods, 

RFE and LASSO, were used to select the key features related to different cancers. To 

validate the capability of selected lncRNAs in classifying different cancers, five different 

learning algorithms - Naïve Bayes (NB), K-Nearest Neighbor (KNN), Random Forest 

(RF), Support Vector Machine (SVM), and Deep Neural Network (DNN) - were used. 

3.3.1 Feature selection 

The lncRNAs that have more contribution towards the classification of cancer types are 

more likely to be the key lncRNA for cancer diagnosis and prognosis. Feature selection 

methods can reduce the number of irrelevant and noisy lncRNAs and select the most related 

lncRNAs, thus, decreasing computational costs and improving cancer classification 

performance [54]. To achieve this goal, two widely applied wrapper-based feature selection 

methods: Least Absolute Shrinkage and Selection Operator (LASSO) [79] and Recursive 

Feature Elimination (RFE) [37], were used. These algorithms have better classification 

efficiency and do not have a limit on data types and can effectively deal with nominal or 

continuous features, missing data, and noisy tolerance [80]. 
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Figure 3.1 Overall Process for Data Preparation and Methodology. Initial dataset 

contains coding and noncoding genes, long non-coding part of data is extracted for 

further processing.  

LASSO 

The Least Absolute Shrinkage and Selection Operator method applies a regularization 

(shrinking) process where it penalizes the coefficients of the regression variables and 

shrinks these to zero. The variables that still have a non-zero coefficient are selected as the 

top features. The tuning parameter 𝜆 controls the strength of the penalty. The larger the 

parameter 𝜆, the more the number of coefficients are shrunk to zero, fewer features are 

selected. In this experiment, the optimized 𝜆 = 0.0036 was calculated by 5-fold cross-

validation, which was able to pick 765 important features in 62 secs with 96% accuracy.   
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RFE 

Similarly, the Recursive Feature Elimination (RFE) algorithm constructs a features ranking 

according to the weight vector w generated by an estimator, e.g., linear regression during 

training. It removes a set of features with the smallest ranking coefficient in each iteration 

and finally obtains an optimized number of significant features. 

Scikit-learn feature selection [81], a python package, was used for the feature selection 

procedures. Both LASSO and RFE can identify an optimum number of features from a 

given number of features. The numbers of features identified by LASSO and RFE were 

765 and 786 respectively, from 4786 features. 

3.3.2 Classification 

We used scikit-learn [82], a python library, for machine learning models. For the KNN 

model, k was set to 7. In SVM, a linear kernel was used. For the RF model, the number of 

estimators is 10 with entropy ensembling. Finally, the Gaussian NB algorithm was used 

for the Naive Bayes model. In DNN, the number of the hidden layer was one. The number 

of nodes in the input layer was equal to the number of features (4786 lncRNAs). 

The hidden layer consists of 20 nodes identified by parameter tuning. The output layer had 

eight nodes corresponding to eight different cancer types. After tuning hyperparameters 

and optimizing model parameters, a good convergence was found with a learning rate of 

0.1 and an epoch size of 100. These parameters adjust the network for appropriate weights 

to prevent over-fitting. XAVIER is used as a weight initializer in the model, which is a 

Gaussian distribution with mean 0, variance 2.0/(fanIn + fanOut). The function that learns 

the weight vector is called the optimizer function, which is stochastic gradient descent 

(SGD) in this experiment. In training a deep learning model, selecting the optimizer, the 
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number of epochs, and batch size is important for achieving good performance. The 

activation function allows the model to learn the complex data set. The activation function 

ReLU is used in all layers, and negative log-likelihood is used as the loss function.  

3.3.3 Parameter tuning 

The grid search method is used for ML to find the optimized parameter for machine 

learning algorithms. The hyperparameters for the deep neural networks, such as epoch, 

learning rate, number of hidden layers, etc., must also be tuned to achieve high accuracy 

or precision. First, tuning is started with the learning rate and epoch. One hyperparameter 

is fixed to a certain value and observed the performance by changing the other. For 

example, an epoch is fixed to 30, and the learning rate value is changed in a range of 0.001 

to 1.0. It is noticed that accuracy increases with the learning rate, then it stops increasing 

at a certain point and starts decreasing. The learning rate at which accuracy reached its 

highest value is selected for the experiment. Finally, the learning rate of 0.1 and an epoch 

of 100 produce a convergent result. Other hyperparameters such as the number of hidden 

layers and seed are tuned similarly. 

Deeplearning4J [83], a java machine learning package, is used for DNN model 

development. All models are executed on a CPU Intel Core i7 with 16GB RAM. For 

training, 75% of each cancer type is selected randomly using seed 123 for random number 

generation. The remaining 25% is used for testing in DNN. This training and testing 

procedure has been repeated 10 times. The average of these 10 results was used as the 

performance of the model. On the other hand, performance for the machine learning 

algorithms is measured by 10-fold cross-validation.  
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3.3.4 Evaluation of Model Performance 

This study used five classification models - NB, KNN, RF, SVM, and DNN - to classify 

eight cancers - BLCA, CESC, COAD, HNSC, KIRP LGG, LIHC, and LUAD. To compare 

the model performance, first, a confusion matrix was generated and then three different 

performance metrics - accuracy, precision, and recall - were evaluated. Accuracy is the 

number of correct predictions made by the model over all kinds of predictions made. True 

positives (TP) and True Negatives (TN) are the correct predictions. Precision is the number 

of correct positive results divided by the number of positive results predicted by the 

classifier. It indicates the predicted positive portion of the samples. The recall is the number 

of correct positive results divided by the number of all relevant samples. All scores are 

calculated from the test data. 

3.4 Results and discussion 

 It is clear from Table 3.2 that 37 lncRNAs produced better classification accuracies 

ranging between 95% to 98% compared to that of 12,309 lncRNAs (accuracies: 83% to 

97%) and 4,786 lncRNAs (accuracies: 89% to 97%). 

Table 3.2 shows the values of performance metrics for NB, KNN, RF, SVM, and DNN 

models using three different sets of lncRNAs - 12,309, 4,786, and 37, respectively. First, 

the expression profiles of all lncRNA (12,309) were used to classify eight cancer types. 

After initial reduction of feature size using cutoff, mean expression  0.3, 4,786 lncRNAs 

were left for classification. Then feature selection methods RFE and LASSO were used on 

4,786 lncRNAs to find the optimum number of features. RFE and LASSO produced 786 

and 765 features, respectively. The classification was performed separately using features 

derived from RFE and LASSO, and results showed that RFE features performed better for 
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most of the classifiers, with accuracy ranging from 97% to 99%.  Then common features, 

344 lncRNAs between these two optimum feature sets, were used to classify the tumor 

types, which resulted in accuracy ranging from 96% to 99%. Since the features derived 

from RFE performed better, further experiments were conducted to produce a reduced 

number of features using RFE, such as 200, 100, and 50. The intersection of these three 

feature sets with LASSO-derived features (765 lncRNAs) resulted in three sets of common 

features of 129, 68, and 37 lncRNAs, respectively. It is clear from Table 3.2 that 37 

lncRNAs produced better classification accuracies ranging between 95% to 98% compared 

to that of 12,309 lncRNAs (accuracies: 83% to 97%) and 4,786 lncRNAs (accuracies: 89% 

to 97%). 

Table 3.2: Performance comparison of different classifiers with three different sets of 

features consisting of 12,309, 4,786 and 37 lncRNAs, respectively. 

#Features Model Name Recall Precision accuracy cost (sec.) 

12,309 

NB 0.80 (+/- 0.02) 0.85 (+/- 0.02) 0.83 (+/- 0.02) 22.95 

KNN 0.90 (+/- 0.01) 0.91 (+/- 0.01) 0.91 (+/- 0.01) 676.23 

RF 0.89 (+/- 0.02) 0.89 (+/- 0.02) 0.89 (+/- 0.01) 28.38 

SVM 0.91 (+/- 0.00) 0.92 (+/- 0.00) 0.93 (+/- 0.00) 300.48 

DNN 0.97(+/- 0.01) 0.97(+/- 0.01) 0.97(+/- 0.01) 720.33 

4,786 

NB 0.89 (+/- 0.01) 0.89 (+/- 0.01) 0.90 (+/- 0.01) 7.41 

KNN 0.92 (+/- 0.01) 0.92 (+/- 0.01) 0.92 (+/- 0.01) 257.28 

RF 0.90 (+/- 0.01) 0.91 (+/- 0.01) 0.91 (+/- 0.01) 24.73 

SVM 0.95 (+/- 0.00) 0.95 (+/- 0.01) 0.95 (+/- 0.01) 42.78 
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DNN 0.97 (+/- 0.01) 0.97 (+/- 0.01) 0.97 (+/- 0.01) 139.16 

37 

NB 0.95 (+/- 0.02) 0.94 (+/- 0.02) 0.95 (+/- 0.01) 0.09 

KNN 0.94 (+/- 0.01) 0.95 (+/- 0.01) 0.95 (+/- 0.01) 1.44 

RF 0.97 (+/- 0.01) 0.97 (+/- 0.01) 0.97 (+/- 0.01) 2.28 

SVM 0.97 (+/- 0.01) 0.97 (+/- 0.01) 0.98 (+/- 0.01) 0.82 

DNN 0.95(+/- 0.01) 0.95(+/- 0.01) 0.95(+/- 0.01) 4.07 

 

Figure 3.2 shows one of the confusion matrices obtained from the SVM model with a test 

accuracy of 98% using 37 lncRNAs. Row labels represent the actual labels, and column 

labels represent the predicted labels. It is clear from the confusion matrix that very few 

samples were misclassified in each of eight cancer types, which resulted in a high accuracy 

of 98%. The Receiver Operating Characteristics (ROC) curve with Area Under the Curve 

(AUC) score for eight different cancers is shown in Figure 3.3, which also supports the 

high accuracy by producing AUC score close to unity for each cancer type. 
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Figure 3.2 Confusion Matrix of SVM Model (Test Accuracy = 98%, Number of 

Features = 37). X-axis represents the predicted level and y-axis represents the True level.  

 
Figure 3.3 ROC curve and AUC scores of different classes from SVM classifier.  

 

Further reduction of features deteriorates the performance considerably. Thus, 37 lncRNAs 

as shown in Table 3.3 can be considered as the key lncRNAs related to eight cancers 

considered for analysis in this study.  
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Table 3.3: 37 key lncRNAs identified in this study 

AC000111.6, AC005082.12, AC005355.2, AC009299.3, AL450992.2, AP001626.1, 

BBOX1-AS1, CTA-384D8.31, EMX2OS, FAM182A, FENDRR, GATA3-AS1, H19, 

HAGLR, HOXA10-AS, HOXA11-AS, HOXD-AS2, KIZ, LINC00857, LINC00958, 

LINC01082, LINC01158, MIR205HG, NKX2-1-AS1, RP11-157J24.2, RP11-30K9.5, 

RP11-373D23.2, RP11-435O5.6, RP11-445O3.2, RP11-535M15.1, RP11-76C10.5, 

SFTA1P, TBX5-AS1, TMEM51-AS1, TP53TG1, UCA1, XIST 

 

Validation Using t-SNE Plot: The results obtained, 37 key lncRNAs, are visually validated 

using a t-SNE plot. Figure 3.6 shows the t-SNE plot of eight cancer types derived using 

expression values of 37 lncRNAs identified in the present study. It is clear from this figure 

that 37 lncRNAs can differentiate eight different cancers. So, the t-SNE plot validated that 

37 lncRNAs can be considered the possible key features for the diagnosis and prognosis of 

eight different cancer types. In the following section, we shared the result of survival 

analyses. 

Validation Using Survival Analyses: Figure 3.7a shows the top 10 lncRNAs with 

importance scores (six positively correlated and four negatively correlated) selected by 

LASSO. Figure 3.7b shows the box plot of samples of eight different types of cancer using 

the expression profile of lncRNA HOXD-AS2, one of the top 10 lncRNAs. It is clear that 

HOXD-AS2 has distinctive characteristics in eight different cancer types, which makes it a 

potential biomarker for these cancer types. 
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Figure 3.4: t-SNE plot of the samples of eight different cancer types using expression 

profiles of 37 key lncRNAs.



 33 

Figure 3.5(c) shows the survival analysis using positively co-related lncRNA NKX2-1-

AS1, which means a patient with high expression (red line) would have a low probability 

of survival. In contrast, a patient with low expression (Blue line) would have a high 

probability of survival. Figure 3.5(d) shows survival analysis using negatively co-related 

lncRNA RP11-435O5.6, which means a patient with a low expression (Blue line) would 

have a low probability of survival. In contrast, a patient with a high expression (red line) 

would have a high probability of survival. These two survival analyses evidenced that the 

first lncRNA acts positively co-related, and the second lncRNA acts as a negatively co-

related lncRNA biomarker. Other lncRNAs also provided a similar correlation, which 

implies that the discovered 37 lncRNAs can be considered the key features in the diagnosis 

and prognosis of these eight cancers. 

 

Figure 3.5: Validation of discovered key lncRNAs. a) Top-10 lncRNAs with importance 

score by LASSO, b) Box plot of expression values of lncRNA HOXD-AS2 for different 

cancers, c) Survival analysis using positively co-related lncRNA NKX2-1-AS1 in BLCA, 

and d) Survival analysis using negatively co-related lncRNA RP11-435O5.6 in BLCA. 

Survival Analysis was done using TANRIC. 
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CHAPTER 4 FEATURE SELECTION AND CANCER CLASSIFICATION         

(33 CANCERS) 

This chapter contains detailed information regarding the extended experiment for 33 

cancers using a high volume of transcriptomic data. It also contains the necessary 

explanation of a deep learning-based feature selection technique, namely concrete 

autoencoder. In addition, the performance evaluation of feature selection and cancer 

prediction is shown in this chapter. 

4.1 Introduction 

Recent studies indicate that several cancer risk loci are transcribed into long non-coding 

RNAs (lncRNAs), and these transcripts play key roles in tumorigenesis [49], [50]. The 

lncRNAs also have key functions in transcriptional, post-transcriptional, and epigenetic 

gene regulation [9]. Schmitt et al. discussed the impact of lncRNA in cancer pathways [10]. 

They described the involvement of lncRNAs in six hallmarks of cancer such as 

proliferation, growth suppression, motility, immortality, angiogenesis, and viability [11].  

Hoadley et al. showed that cell of origin patterns dominate the molecular classification of 

tumors available in The Cancer Genome Atlas (TCGA) [52]. They used copy number 

variation, mutation, DNA methylation, RPPA protein, mRNA, and miRNA expression for 

their analysis. But they did not consider another important molecular signature of cancer, 

which is lncRNA expression. This work motivated us to investigate the importance of 

lncRNAs in identifying cancer origins.  

Though RNAseq data from TCGA contains a reasonable number of samples, even it poses 

challenges for classification tasks due to a large number of features (lncRNAs) with respect 

to the number of samples. Many computational methods fail to identify a small number of 
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relevant features, rather increasing learning costs and deteriorating performance [54]. It 

may be argued that the larger the feature set, the better the classification. However, not all 

of these features will be necessary for optimal classification in a general setting. Only a 

selected number of significant or relevant features can lead to optimal classification. A 

large part of the remaining features are not significant and could be either noise, irrelevant 

to the study, or even redundant [14]. The use of such insignificant features can lead to 

unwanted computational complexities and deteriorate the model's performance. This is 

more pronounced when working with high-dimensional data. Thus, it is essential to 

identify the significant features that can provide us with the optimal classification and 

clustering. To accomplish this objective, we need a robust method that can eliminate the 

redundant features and noise that do not carry any information about data labels, thus 

providing us with only relevant features [84].  

Any dataset with an N-number of features has 2𝑁-possible subset of features [14]. In the 

presence of such a large number of possible combinations, finding the best subset of N 

features is computationally challenging and expensive [15]. An optimally selected set of 

features optimizes the performance of classification models and helps alleviate the effect 

of overfitting and high-dimensionality. Along with these benefits, selecting the appropriate 

features helps in the easier interpretation of the model and its predictions. On the other 

hand, the use of gratuitous features can significantly impact the training speeds and the 

accuracy of the learning models. 

Filter, wrapper, embedded methods are the three general classes or types of feature 

selection techniques. The filter method works by ranking the features using a statistical 

score assigned to each of them depending on their relevance to the class type. In both 
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univariate and multivariate filter methods, the interactions among features are disregarded 

in the selection process. Studies like the ones in Pearson correlation coefficient(PCC), t-

statistics(TS) [27], F-Test [28], and ANOVA [29]  are examples where the filter method is 

used. It is observed that these methods are effective for selecting features in high-

dimensional data because of the reduced computation expenses. However, they fail to 

provide good accuracy, as discussed in [30]. 

As an enhancement, the researcher developed the wrapper-based feature selection method 

with a learning algorithm and a classifier to find a suitable subset of features. Initially, a 

random solution is generated, following which an objective function is maximized using 

black-box type optimization methods [31] like simulated annealing [32], particle swarm 

optimization [33], genetic algorithm [34], and ant colony optimization [35]. The iterative 

evaluation of every candidate subset of the features by a wrapper method leads to the 

identification of a strong relationship between features, however, with an increase in the 

computational expense. 

Embedded feature selection methods, on the other hand, reduce computational costs 

because these are used as a part of the learning phase. Well-known embedded methods, 

which are considered as the state-of-the-art, are least absolute shrinkage and selection 

operator (LASSO) [36], recursive feature elimination with support vector machine 

estimator (SVM-RFE) [22], [37], [38], random forest [39], [40], Adaboost [41] , KNN [42] 

, and autoencoder [43]. 

In general, the use of feature selection is worthwhile when  the whole set of features is 

difficult to collect or expensive to generate [46]. For example, in TCGA, the lncRNA 

expression profile dataset contains more than 12 thousand features (lncRNAs) for each of 
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33 different cancers, and it is expensive to generate this data. Consequently, it is important 

to answer the question: Is there a set of salient features (lncRNAs) capable of identifying 

the origin of 33 cancers? 

The distribution of the number of samples for 33 cancers in TCGA is highly imbalanced, 

ranging from 36 for CHOL cancer to 1089 for BRCA. Any supervised feature selection 

approach will be biased to heavy groups. To solve this problem, we need a robust 

unsupervised feature selection approach to find appropriate features related to 33 different 

cancers.  

Feature selection works differently compared to the standard dimension reduction 

techniques such as principal component analysis (PCA) [58] and autoencoders [47]. The 

standard dimension reduction methods can preserve maximum variance with a highly 

reduced number of latent features. This means that PCA and standard autoencoder do not 

provide the original features in the reduced dimension, or these work as a black-box. For 

the real application of diagnosing the origin of cancer, a tool should tell what actual or 

measurable features are relevant. Recently, few deep learning-based feature selection 

methods showed little improvement in selecting original features in both settings, 

supervised and unsupervised [59]–[61]. 

In this research, we proposed to use concrete autoencoder (CAE) [46], a deep learning-

based unsupervised feature selection algorithm,  to discover the relevant lncRNAs capable 

of identifying the origin of different cancers. The CAE takes advantage of both (a) AE, 

which can achieve the highest classification accuracy, and (b) concrete relaxation-based 

feature selection [85], [86], which is capable of selecting actual features instead of latent 

features. The proposed model filtered the key lncRNAs from 12,309 lncRNAs related to 
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33 different cancers. The key lncRNAs discovered using the proposed CAE method 

produced higher classification accuracy and better diagnosis of cancer origin than the state-

of-the-art embedded feature selection approaches – LASSO, RF, and SVM-RFE - while 

using a small number of lncRNAs. 

4.1 Materials and Methods 

The overall process flow diagram is illustrated in Figure 4.1. The following subsections 

describe the different aspects of the process flow diagram: (a) Data Preparation, (b) Feature 

Selection, (c) Reconstruction and Classification, and (d) Evaluation and Validation. 

 

Figure 4.1: Process flow diagram. Data Preparation, Feature Selection, Classification, 

and Validation. 

4.2 Data Preparation 

We downloaded the expression profiles and clinical data for 33 different cancers from the 

UCSC Xena database [87] to identify the cancer-associated lncRNAs. This dataset contains 
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expression profiles of about 60 thousand RNAs, including coding genes (mRNAs) and 

non-coding genes (lncRNAs and miRNAs). In this study, only the expression profiles of 

lncRNA (n = 12,309) were considered for analysis and model evaluation. It should be noted 

that this study was based on cancer patients only. So, the normal samples available in the 

same cancer were removed. The final dataset contains 9,566 cancer patients. The cancer-

specific distributions based on the 75/25 (training/testing) split are shown in Figure 4.2. To 

achieve good training performance, each lncRNA expression was processed using a min-

max normalization method.  

 

Figure 4.2: Sample distribution for 33 cancers along with 75-25 split for training and 

testing. 

4.3 Feature Selection 

For selecting important features (lncRNAs), a state-of-the-art deep learning-based 

unsupervised algorithm, Concrete Autoencoder (CAE), was used. To compare the results 

of CAE, three frequently used embedded feature selection models, including LASSO, 
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Random Forest (RF), and Support Vector Machine with Recursive Feature Elimination 

(SVM-RFE), were used. The following subsections briefly describe the implementation of 

feature selection algorithms. 

4.3.1 Concrete Autoencoder (CAE) 

Concrete autoencoder (CAE) proposed by Abid et al. [46] is a variation of the original 

autoencoder (AE) [47],  which is used for dimension reduction. The motivation behind 

selecting CAE in the present study is that it takes advantage of both AE (which can achieve 

the highest classification accuracy) and concrete relaxation-based feature selection 

(capable of selecting actual features instead of latent features). An AE is a neural network 

that consists of two parts: (a) an encoder that selects latent features and (b) a decoder that 

uses selected latent features to reconstruct an output that matches the input with minimum 

error. In CAE, instead of using a sequence of fully connected layers in the encoder, a 

concrete relaxation-based feature selection layer is used where the user can define the 

number of nodes (features to be selected), k as shown in Figure 4.3. This layer selects a 

probabilistic linear arrangement of input features while training, which converges to a 

discrete set of k features by the end of the training phase, which is subsequently used in the 

testing phase.  

Let's p(x) is a probability distribution over a d-dimensional vector. The objective is 

to identify a subset of features, S≡{1…k} of size |S|=k. Also, learning a reconstruction 

function 𝑓𝑟(. ): ℝk  
∆
→ ℝd, such that the loss between original sample x and reconstructed 

sample 𝑓𝑟(𝑥𝑆) is minimized as stated in Eq. 1,  

𝑎𝑟𝑔𝑚𝑖𝑛𝑆,𝑟 𝐸𝑝(𝑥)[‖𝑓𝑟 (𝑥𝑆  ) − 𝑥‖2]…………… (1) 
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where 𝑥𝑠 ∈ ℝ𝑘 consists of only selected features 𝑥𝑖 s.t. 𝑖 ∈ 𝑆. Note that samples are 

represented in a 2D matrix, X∈ℝ𝑛×𝑑 ,  and aim is to pick k columns of X such that sub-

matrix 𝑋𝑠 ∈ ℝ𝑛×𝑘. 

 

Figure 4.3: Architecture of Concrete Autoencoder. CAE architecture consists of an 

encoder and a decoder. The layer after input layer of encoder is called concrete feature 

selection layer shown in yellow. This layer has k number of node where each node is for 

each feature to be selected. During the training stage, the 𝒊𝒕𝒉 node 𝒗(𝒊) takes the value 𝑿𝑻 

f(i), where f(i) is the corresponding weight vector of node i. During testing stage, these 

weights are fixed and the element with the highest value is selected by the corresponding 

𝒊𝒕𝒉 hidden node. The architecture of the decoder remains the same during training and 

testing. 

Then, the selected feature set 𝑥𝑠 can be used to reconstruct the original matrix X and 

classify the cancer types. In the feature selection layer of CAE (Figure 4.3), the original 

features are selected based on the temperature of this layer which is tuned using an 

annealing schedule. More specifically, the concrete selector layer identifies k important 

features as the temperature decreases to zero. For reconstructing the input, a simple decoder 

similar to the ones associated with a standard AE is used. The temperature 𝜏 of the random 

variable in the selector layer has a significant impact on forming the output of each node. 

Initially, when 𝜏 is high, search space is large since it considers a linear combination of all 
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features, as shown in Figure 4.4(a). In contrast, the selector layer will not be able to search 

all possible combinations of features at low 𝜏, and thus, the model converges to a poor local 

minimum. This means that as temperature goes down, a small number of features are 

necessary for stable convergence. Annealing or gradual decrease in temperature avoids the 

model convergence to a poor local minimum. The effect of annealing in feature selection 

is shown in Figure 4.4(a). For example, at starting temperature, 𝜏𝑠, the number of input 

features is 10, and the number of features to be selected, k, is 3. At the next epoch, when 

the temperature is 𝜏𝑠+1, the number of possible features reduces to 6. After some epochs, 

when the temperature reaches its lower bound  𝜏𝑠𝑡𝑜𝑝, the number of features further reduces 

to 3, equal to k, the user-specified number of features to be selected. Instead of using a 

fixed temperature, a simple annealing scheduling scheme is used for every concrete 

variable. It starts with a user-defined high temperature (𝜏𝑠) and steadily lowers the 

temperature, until it touches the end bound (𝜏𝑒), by every epoch as follows:  

𝜏(𝑒) = 𝜏𝑠 (𝜏𝑁 𝜏𝑠⁄ )𝑒 𝑛⁄ ………………..(2) 

where  𝜏𝑒 is the temperature at epoch e, N refers to the total number of epochs. Adam 

optimizer with a learning rate of 0.001 is used for all the experiments for CAE. Figure 

4.4(b) shows an example of the effect of temperature in reducing the loss while training 

the CAE to select a reduced set of 100 features from the original feature space of 12,309 

lncRNAs. The starting temperature of CAE was set to 10, and it ends at 0.01. The model 

was trained for the same number of epochs (n = 100) to control the performance. 
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Figure 4.4: Effect of annealing in reducing search space. (a) An example: at starting 

temperature 𝝉𝒔, the number of input features is 10, and the number of features to be selected 

is k = 3; at the next epoch when the temperature is 𝝉𝒔+𝟏, the number of possible features 

reduces to 6; after some epochs, when the temperature reaches to its lower bound 𝝉𝒔𝒕𝒐𝒑, the 

number of features further reduces to 3, equal to k. (b) Effect of temperature change in 

reducing the loss while training the concrete autoencoder on lncRNA expression data with 

k = 100 features to be selected from original feature space of 12,309 lncRNAs. 

4.3.2 Implementation of LASSO 

To select the important features, LASSO applies a regularization (shrinking) process where 

it penalizes the coefficients of the regression variables and shrinks these to zero. The 

variables that still have a non-zero coefficient are selected as the top features. The tuning 

parameter 𝜆 controls the strength of the penalty. The larger the parameter 𝜆, the larger 

number of coefficients are shrunk to zero, and a smaller number of features are selected. 

In this experiment, the optimized 𝜆 was set in a range of 0.005 to 0.01 to select a different 

number of features ranging from 10 to 500. 

4.3.3 Implementation of RF 

Random Forest works based on a tree structure that employs ensemble. RF consists of a 

number of decision trees. Every node in the decision trees is a condition on a single feature, 

designed to split the dataset into two branches, so similar response values end up in the 

same set. The optimal condition is chosen based on impurity. For classification, it is either 

Gini impurity or information gain/entropy. Thus, when the tree is fully developed, it can 

compute how much each feature decreases the weighted impurity on the tree. For forest, 
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the impurity decrease from each feature can be measured as a feature rank. The feature 

importance is calculated as the sum over the number of splits (across all trees) that include 

the feature, proportionally to the number of samples it splits [45]. RF needs three 

parameters to be tuned: (i) n_estimator: number of estimators, also known as the number 

of trees in the forest, (ii) min_sample_split: minimum number of nodes required to split, 

and (iii) criterion: impurity to measure the quality of a split. In GridSearch, the ranges of 

values assigned to tune n_estimator and min_sample_split were from 2 to 300 and 1 to 150, 

respectively. Two options, Gini and entropy, were used to optimize the impurity parameter 

criterion. The optimum values or options for n_estimator, min_sample_split, and criterion 

found by the GridSearch method are 100, 120, and Gini, respectively. 

4.3.4 Implementation of SVM-RFE 

Recursive feature elimination is a recursive method in which less important features are 

eliminated in every iteration. In the RFE technique, SVM was used as the estimator in the 

present study. A linear kernel with a regularization parameter C = 0.05 was used. C controls 

the tradeoff between the error and norm of the learning weights. The GridSearch algorithm 

was used to estimate the best set of parameters for SVM. In every iteration of RFE, the 

number of dropped features was set to 100. 

LASSO, RF, and SVM-RFE were implemented using the scikit-learn framework [81], 

whereas CAE was implemented using TensorFlow [88]  based deep learning framework, 

Keras [89]. Experiments are parallelized on NVIDIA Quadro K620 GPU with 384 cores 

and 2GB memory devices. To avoid overfitting, the dataset was split into the train and test 

set according to the 75/25 ratio, as shown in Figure 4.2. The training set was used to 

estimate the learning parameters, and the test set was used for performance evaluation. 
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4.4 Reconstruction and Classification 

The feature selection capability of CAE is compared with standard autoencoder (AE), 

LASSO, RF, and SVM-RFE in two different ways: (a) reconstruction of all input features 

using the selected features and (b) classification performance in classifying 33 different 

cancer types using the selected features. A subset of features by varying k from 10 to 500 

was extracted using CAE. For the comparison to be fair and along the same grounds with 

CAE, the same number of lncRNAs were selected using all other models. The SVM was 

used for classifying 33 cancer types using the selected features. We trained a linear 

regressor with no regularization to reconstruct all the input features from the selected 

features. 

4.5 Evaluation and Validation 

Five evaluation metrics have been used to record the classification and reconstruction 

performance, such as accuracy, precision, recall, f1 score, and mean squared error (MSE). 

Accuracy is the number of correct predictions made by the model over all kinds of 

predictions made. Precision is the number of correct positive results divided by the number 

of positive results predicted by the model. It indicates the predicted positive portion of the 

samples. The recall is the number of correct positive results divided by the number of all 

relevant samples. F1 score is the harmonic mean of precision and recall. Reconstruction 

performance measure, MSE, was calculated using linear regression on the test set. 

All classification performance metrics were measured by comparing the predicted labels 

with the true labels of independent test samples. The optimal set of features was selected 

based on two criteria: (a) the number of features should be as few as possible, and (b) 

classification accuracy using the selected features should be > 90%. The final list of key 
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lncRNAs is selected from the union of features derived from the binary intersection of four 

approaches,  

(𝐶𝐴𝐸 ∩ 𝐿𝐴𝑆𝑆𝑂) ∪ (𝐶𝐴𝐸 ∩ 𝑅𝐹) ∪ (𝐶𝐴𝐸 ∩ 𝑆𝑉𝑀𝑅𝐹𝐸) ∪ (𝐿𝐴𝑆𝑆𝑂 ∩ 𝑅𝐹) ∪ (𝐿𝐴𝑆𝑆𝑂 ∩

𝑆𝑉𝑀𝑅𝐹𝐸) ∪ (𝑅𝐹 ∩ 𝑆𝑉𝑀𝑅𝐹𝐸)……………………………………………..…..(3)  

Then each lncRNA discovered in this study was cross-checked with existing literature 

whether it is already a known biomarker or not. The capability of selected lncRNAs in pan-

cancer classification was visually validated using the unsupervised visualization technique 

t-SNE [26]. To validate the prognostic performance of discovered lncRNAs, survival 

analysis of cancer patients using the Kaplan-Meier [90] method was performed [91]. 

4.6 Results 

A series of experiments were conducted to compare the performance of CAE with other 

state-of-the-art feature selection methods such as standard autoencoder, LASSO, RF, and 

SVM-RFE. Each of these methods was used to select features in the range of 10 to 500 

lncRNAs. The expression profiles of these lncRNAs were then used to train a linear 

classifier SVM to classify 33 cancer types.   

4.6.1 Classification Performance Using Selected Sets of Features 

Figure 4.5 shows classification performance using different sets of selected features. The 

initial stages of the experiments were performed with a smaller subset of the selected 

features as we wanted to understand the performance of the models being compared. The 

optimal classification performance with CAE (accuracy > 90% with the smallest number 

of features) was observed with about 100 features. Beyond this point, the increase in 

performance was not significant.  
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It is clear from Figure 4.5 that, for all sets of selected features, CAE performed better than 

LASSO, RF, and SVM-RFE in terms of four evaluation matrices, including accuracy, 

precision, recall, and f1 score. Of course, it could not beat the standard AE, as expected. It 

is noticeable that even with a smaller number of features (say 10), the accuracy of CAE 

was close to 70%, whereas LASSO (55% accuracy), RF (38% accuracy), and SVM-RFE 

(50% accuracy) showed poor results for the same number of features. The trend remains 

the same with the increase in the number of features. 

 

Figure 4.5: Classification performances of the proposed method using selected 

features. Comparison of CAE with other feature selection methods. Throughout all values 

of k tested on both (a) Accuracy, (b) Precision, c) Recall, and d) f1 score; CAE has the 

highest classification performance after AE. 

4.6.2 Reconstruction Performance of Feature Selection Algorithms 

Figure 4.6 shows the comparison of reconstruction performance among five feature 

selection algorithms. Note that AE selects latent features, whereas the other four algorithms 

select actual features. The CAE starts with an MSE of 60 and quickly reduces to a value of 
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less than 10 within the top 100 features, as shown in Figure 4.6. It is also clear from this 

figure that CAE has a lower reconstruction error compared to LASSO, RF, and SVM-RFE 

for any set of selected features. Again, CAE cannot beat AE, as expected, since AE uses 

latent features. 

 

Figure 4.6: Reconstruction mean squared error for different number of features 

selected by different models.  

4.6.3 Combined Set of Features 

Based on the performance of CAE, a set of 100 lncRNAs (features) produced an optimal 

classification. So, to produce a stable set of features for this problem, each of the four 

feature selection algorithms was run to extract 100 features. The final list of 69 key 

lncRNAs resulted from the union of features derived from the binary intersection of four 

approaches as mentioned in eq. 3. Figure 4.7 shows the Venn diagram of the common 

features extracted by four algorithms. It is clear from the Venn diagram that 67 (100 – 23) 

out of 69 lncRNAs came from CAE, which dictates the superiority of CAE. 
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Figure 4.7: Common features selected by different methods. 

Table 4.1 shows the comparison of classification and reconstruction performance among 

the four approaches. Selected features from each method were passed to a linear regressor 

for reconstructing the input features. It is clear from this table and Figure 4.6 that CAE is 

more resilient to errors. In comparison, this error is more pronounced in the other 

competing methods.  

Table 4.1: Classification and reconstruction performances using combined lncRNAs 

and selected lncRNAs using different models. 

Model  Accuracy Precision Recall F1 MSE 

Combined 0.93 0.02 0.910.01 0.910.02 0.90.03 13.460.10 

LASSO 0.920.01 0.870.02 0.880.02 0.870.01 13.840.08 

SVM-RFE 0.850.03 0.850.02 0.820.03 0.830.02 25.980.08 

RF 0.890.02 0.860.03 0.810.03 0.810.03 22.910.12 

CAE 0.930.01 0.890.01 0.90.02 0.90.02 12.230.09 
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Combined features are also used for classification and showed the highest classification 

performance as compared to other methods, Table 4.1. 

4.6.4 Visual Validation of Selected Features 

Figure 4.8 shows the clustering capability of discovered 69 lncRNAs expression profiles 

using the t-SNE plot [26]. It is clear from the t-SNE plot that the selected lncRNAs can 

discover the heterogeneity among 33 different cancers. So, the newly identified lncRNAs 

can be considered essential features for diagnosis, prognosis, and therapeutic target for 

different cancers. Then each lncRNA was cross-checked with the existing literature 

whether it is already a known biomarker. Of the 69 lncRNAs, 38 were found in existing 

literature as known biomarkers for different cancers, as shown in Table 4.2. The remaining 

31 lncRNAs were novel discoveries based on the lncRNA disease database v2.0.   

 

Figure 4.8: t-SNE using top 69 lncRNAs where each dot represents a cancer sample 

and each color represents a cancer type. 
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4.7 Discussion 

It is clear from the literature that lncRNAs play a key role in  cancer development. More 

research is needed to identify cancer-specific lncRNAs. Existing methods used co-

expression networks such as lncRNA-mRNA or lncRNA-miRNA-mRNA. As per our 

knowledge, no study used only lncRNA expression to classify cancer types except our 

previous work [92], where feature extraction was not considered.  

In this study, we identified 69 key lncRNAs that can identify the origins of 33 different 

cancers. When compared against the existing literature, 38 (55%) lncRNAs have been 

reported as important prognostic biomarkers for various cancers. Since the proposed 

method can identify already known lncRNA biomarkers, it can be concluded that the newly 

discovered 31 lncRNAs can be considered novel biomarkers for cancers. Survival analysis 

suggests that some of 31 lncRNAs are novel biomarkers, as shown in Figure 4.9. Many 

studies have been conducted using mRNA expression for predicting cancer types and 

developing screening tools. No such tools are available that used expression profiles of 

lncRNAs. Hence, the identified 69 lncRNAs can be used as a screening tool for cancer 

diagnosis and as therapeutic targets for different cancers, for which further studies are 

required. 

Table 4.2: 69 key lncRNAs identified in this study. 

Known lncRNAs (n=38) 

AC005083.1, AC008268.1, AC093850.2, AC133528.2, AFAP1-AS1, CASC9, CRNDE, 

DNM3OS, EMX2OS, FAM83H-AS1, FENDRR, GATA2-AS1, GATA6-AS1, H19, 

HAGLR, HAND2-AS1, HCG11, HNF1A-AS1, LHFPL3-AS1, LINC00261, LINC00511, 

LINC01116, LINC01133, LINC01139, LINC01158, MALAT1, MEG3, MNX1-AS1, 
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NR2F1-AS1, PIK3CD-AS2, PTCSC2, SATB2-AS1, SFTA1P, TRPM2-AS, UCA1, 

VPS9D1-AS1, XIST, ZNF667-AS1 

Novel lncRNAs (n=31) Based on lncRNA disease v2.0 

(http://www.rnanut.net/lncrnadisease/) dated: July 2020 

AC005082.12, AC079630.4, AP001626.1, CECR7, CTA-384D8.31, CTD-2377D24.4, 

CTD-3032H12.2, GATA3-AS1, HOXA10-AS, HOXA11-AS, HOXD-AS2, LINC00958, 

LINC01082, LINC01272, MIR205HG, NKX2-1-AS1, RP1-288H2.2, RP1-60O19.1, 

RP11-1017G21.5, RP11-1055B8.3, RP11-264B14.2, RP11-3P17.5, RP11-465B22.8, 

RP11-47A8.5, RP11-807H17.1, RP3-416H24.1, SLCO4A1-AS1, TBX5-AS1, 

U47924.27, U91324.1, ZFPM2-AS1 

 

 

Figure 4.9: Kaplan-Meier survival analysis curve of high-risk and low-risk patients 

evaluated on novel lncRNA (AC005082.12, CECR7, GATA3-AS1, and HOXA11-AS). 
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CHAPTER 5  FEATURE SELECTION AND CANCER CLASSIFICATION 

(GLYCOME GENES) 

This chapter provides a detailed explanation of how glycome genes performed an important 

role in cancer progression. It also discussed how the proposed feature selection framework 

could identify important glycome biomarkers for different cancers. 

5.1 Introduction 

One of the most ubiquitous pathways in nature is cell glycosylation. Post-translational 

glycosylation of proteins is a common cellular activity, wherein most if not all proteins are 

glycosylated [93]. While adding structure and stability, protein glycosylations also provide 

binding motifs for other molecular partners (e.g., Lectins). They often offer physical 

subtleties that impact protein complexing, membrane/cytosolic dynamics, and functional 

activity. In cancer, these biological characteristics imparted by cellular glycosylation are 

fundamentally aberrant due to variances in the 'glycome' gene [94]–[96]. Altered protein 

glycans and their glycan-modifying enzymes are now considered key features of cancer. 

Intensive efforts are underway to understand better how aberrant glycosylation can 

facilitate tumorigenicity, tumor progression, and metastatic behavior [93]. Considering the 

breadth and mounting evidence for the key role of aberrant glycosylations in cancer 

progression, we speculate that distinct glycome gene signatures align with a particular 

cancer glycosylation pattern originating from a particular cell lineage. 

Many computational methods fail to identify a small number of relevant features, rather 

increasing learning costs and deteriorating performance [54]. It may be argued that the 

larger the feature set, the better the classification. However, not all of these features will 

be necessary for optimal classification [22], [76]. Only a selected number of significant or 
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relevant features can lead to optimal classification. Many of the remaining features are not 

significant and could be either noise, irrelevant to the study, or even redundant [14]. Such 

insignificant features can lead to unwanted computational complexities and deteriorate the 

model's performance. This is more pronounced when working with high-dimensional data. 

Thus, it is essential to identify the set of significant features that can provide us with the 

optimal classification and clustering. To accomplish this objective, we need a robust 

method that can eliminate the redundant features and noise that do not carry any 

information about the data labels, thus providing only relevant features [84].  

The problem comes with highly imbalanced distribution of data ranging from 36 for CHOL 

cancer to 1089 for BRCA. Any supervised feature selection approaches such as LASSO, 

RF, and RFE will be biased to heavy groups. We need a robust unsupervised feature 

selection approach to find appropriate features that can differentiate 33 different cancers.  

Over the past decade, many unsupervised feature selection algorithms have been 

developed. The popular algorithms using regularization as the means for selecting discrete 

features are Multi-Cluster Feature Selection (MCFS) [97], Unsupervised Discriminative 

Feature Selection (UDFS) [98], and Autoencoder Feature Selector (AEFS) [99]. Recently, 

Abid et al. [23] developed Concrete Autoencoder (CAE) without resorting to 

regularization. Rather, they used a continuous relaxation of the discrete random variables, 

the Concrete distribution [85]. MCFS [97] uses regularization to isolate the features 

preserving the clustering structure in the data. UDFS [98] incorporates discriminative 

analysis and 𝑙2,1-norm minimization on a set of weights applied to the input to select 

features most useful for local discriminative analysis. AEFS [99] uses 𝑙2,1 regularization 
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on the weights of the encoder that maps the input data to a latent space and optimizes these 

weights for their ability to reconstruct the original input.   

The CAE [23] is an end-to-end differentiable method for global feature selection and 

efficiently identifies a subset of the most informative features. It takes advantage of both 

(a) autoencoder (AE), which can achieve the highest classification accuracy, and (b) 

relaxation of the discrete random variables, the Concrete distribution [8], which is capable 

of selecting actual features instead of latent features. It has also been shown that CAE 

performs better than MCFS, UDFS, and AEFS in selecting discrete features [23], which 

motivated us to use CAE for feature selection in this study. The CAE filtered a shorter list 

of glycome genes related to 33 different cancers from the original larger list. 

5.2 Materials and Methods 

5.2.1 Data Preparation 

The expression profiles and clinical data for 33 different cancers were downloaded from 

the UCSC Xena database [100]. This dataset contains expression profiles of about 60 

thousand RNAs, including coding genes (mRNAs) and non-coding genes (lncRNAs and 

miRNAs). This study considered the expression profiles of glycome-related genes (n = 

498) for analysis and model evaluation.  The glycome genes were procured from the study 

by Sweeney et al. [93]. Table 5.1 shows the distribution of glycome genes in 12 different 

categories at different levels of analysis. The original list consists of 696 genes with some 

duplicates. After removing duplicates, the unique list consists of 529 glycome genes. Of 

529, 498 genes have expression profiles for all the samples for 33 cancers, which were 

used to select a reduced list of features. It should be noted that this study was based on 

cancer patients only. So, normal samples available in the same cancer were removed. The 
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final dataset contains 9,566 cancer patients. The cancer-specific distributions based on the 

75/25 (training/testing) split are shown in Figure 5.1. Each mRNA expression was 

processed using a min-max normalization method to achieve good training performance. 

 

 

Figure 5.1: Sample distribution for 33 cancers along with 75-25 split for training and 

testing.  

5.2.2 Feature Selection 

It is clear from Figure 5.1 that the distribution of cancer samples is highly imbalanced, 

ranging from 36 for Cholangiocarcinoma (CHOL) to 1089 for Breast Cancer (BRCA). 

Since the data is highly imbalanced, a choice of supervised feature selection will result in 

highly biased results toward heavy groups. So, for selecting important features (glycome 

genes), a state-of-the-art deep learning-based unsupervised algorithm, Concrete 

Autoencoder (CAE), was used. The CAE takes advantage of both Autoencoder (AE) [47], 
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capable of producing the highest accuracy, and Concrete Relaxation [85], capable of 

selecting actual features instead of latent features.  

Table 5.1: Distribution of glycome genes among 12 different categories. Original 

dataset: 696 glycome genes with some duplicates. Unique list: 529 genes.  Feature selection 

experiment: 498 genes used. 

Category Original Unique Experiment 

Adhesion Molecule 9 7 7 

CBP:C-Type Lectin 105 80 74 

CBP:I-Type lectin 27 21 20 

Galectin 14 13 12 

Glycan Degradation 87 61 59 

Glycosyltransferases 256 199 187 

Glycoproteins 53 38 31 

Intracellular protein transport 13 8 8 

Miscellaneous 8 6 6 

Nucleotide Sugar Transporters 72 57 57 

Proteoglycans 41 31 29 

Sulfotransferases 11 8 8 

Total 696 529 498 
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Figure 5.2: Architecture of Concrete Autoencoder. CAE architecture consists of an 

encoder and a decoder. The layer after the encoder's input layer is called the concrete 

feature selection layer, as shown in yellow. This layer has k number of nodes where each 

node is for each feature to be selected. During the training stage, the 𝒊𝒕𝒉 node 𝒗(𝒊) takes the 

value 𝑿𝑻 f(i), where f(i) is the corresponding weight vector of node i. During the testing 

stage, these weights are fixed, and the element with the highest value is selected by the 

corresponding 𝒊𝒕𝒉 hidden node. The architecture of the decoder remains the same during 

training and testing. 

The concrete autoencoder (CAE) proposed by [23] is a variation of the original autoencoder 

(AE) [47],  which is used for dimension reduction. An AE is a neural network that consists 

of two parts: (a) an encoder that selects latent features and (b) a decoder that uses selected 

latent features to reconstruct an output that matches the input with minimum error. In CAE, 

instead of using a sequence of fully connected layers in the encoder, a concrete relaxation-

based feature selection layer is used where the user can define the number of nodes 

(features), k, as shown in Figure 5.2. This layer selects a probabilistic linear arrangement 

of input features while training, which converges to a discrete set of k features by the end 

of the training phase, subsequently used in the testing phase.  

Let's p(x) is a probability distribution over a d-dimensional vector. The objective is to 

identify a subset of features, S≡{1…k} of size |S|=k. Also, learning a reconstruction 
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function 𝑓𝑟(. ): ℝk  
∆
→ ℝd, such that the loss between original sample x and reconstructed 

sample 𝑓𝑟(𝑥𝑆) is minimized as stated in Eq. 1,  

𝑎𝑟𝑔𝑚𝑖𝑛𝑆,𝑟 𝐸𝑝(𝑥)[‖𝑓𝑟 (𝑥𝑆 ) − 𝑥‖2]…………… (1) 

where 𝑥𝑠 ∈ ℝ𝑘 consists of only selected features 𝑥𝑖 s.t. 𝑖 ∈ 𝑆. Note that samples are 

represented in a 2D matrix, X∈ℝ𝑛×𝑑, and the aim is to pick k columns of X such that sub-

matrix 𝑋𝑠 ∈ ℝ𝑛×𝑘. Later, selected feature set 𝑥𝑠 can be used to reconstruct the original 

matrix X and classify the cancer types. 

In the feature selection layer of CAE in Figure 5.2, the original features are selected based 

on this layer's temperature, which is tuned using an annealing schedule, as shown in Figure 

5.3. More specifically, the concrete selector layer identifies k important features as the 

temperature decreases to zero, Figure 5.3(b). For reconstructing the input, a simple decoder 

similar to the ones associated with a standard AE is used. The temperature 𝜏, of the random 

variable in the selector layer, has a significant impact on forming each node's output. 

Initially, when 𝜏 is high, search space is large since it considers a linear combination of all 

features, as shown in Figure 5.3(a). In contrast, the selector layer will not be able to search 

all possible combinations of features at low 𝜏, and thus, the model converges to a poor local 

minimum. This means that as temperature goes down, a small number of features are 

necessary for stable convergence. Annealing or gradual decrease in temperature avoids the 

model convergence to a poor local minimum. The effect of annealing in feature selection 

is shown in Figure 5.3(a). For example, at the starting temperature, 𝜏𝑠, the number of input 

features is 10, and the number of features to be selected is k = 3. At the next epoch, when 

the temperature is 𝜏𝑠+1, the number of possible features reduces to 6. After some epochs, 

when the temperature reaches its lower bound  𝜏𝑠𝑡𝑜𝑝, the number of features further reduces 



 60 

to 3, equal to k, the user-specified number of features to be selected. Instead of using a 

fixed temperature, a simple annealing scheduling scheme is used for feature selection. It 

starts with a user-defined high temperature (𝜏𝑠) and steadily lowers the temperature until it 

touches the end bound (𝜏𝑒), by every epoch as follows:  

𝜏(𝑒) = 𝜏𝑠 (𝜏𝑁 𝜏𝑠⁄ )𝑒 𝑛⁄ ………………..(2) 

Where,  𝜏𝑒 is the temperature at epoch e, N refers to the total number of epochs. Adam 

optimizer, with a learning rate of 0.001, was used for all the experiments for CAE. The 

starting temperature of CAE was set to 10, and it ends at 0.01. 

 
Figure 5.3: Effect of annealing in reducing search space. (a) An example: at starting 

temperature 𝝉𝒔, the number of input features is 10 and the number of features to be selected 

is k = 3; at the next epoch when the temperature is 𝝉𝒔+𝟏, the number of possible features 

reduces to 6; after some epochs, when the temperature reaches to its lower bound 𝝉𝒔𝒕𝒐𝒑, the 

number of features further reduces to 3, which is equal to k. (b) Effect of temperature 

change in reducing the loss while training the concrete autoencoder on mRNA expression 

data to select the desired number of features, k. If the temperature is exponentially decayed 

(the annealing schedule), the feature selection layer converges to informative features with 

minimum loss. 

5.2.3 Classification 

To check the relevance of the selected features (glycome genes) to the origin of 33 different 

cancers, five classification algorithms, including Gaussian Naïve Bayes (GNB), K-nearest 

Neighbor (KNN), Random Forest (RF), Support Vector Machine (SVM), and Logistic 

Regression (LR) were used. The dataset was split into the train and test set according to a 

75/25 ratio to avoid overfitting. The numbers of training and testing samples of 33 cancers 

are shown in Figure 5.1. The training set was used to estimate the learning parameters, and 
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the test set was used for performance evaluation. The mean accuracy of 10 different runs 

was reported in results where the dataset has been shuffled and split (75/25) for every run.  

Four different evaluation metrics have been used to record the classification performance, 

such as accuracy, precision, recall, and f1 score. Accuracy is the number of correct 

predictions made by the model over all kinds of predictions made. Precision is the number 

of correct positive results divided by the number of positive results predicted by the model. 

It indicates the predicted positive portion of the samples. The recall is the number of correct 

positive results divided by the number of all relevant samples. F1 score is the harmonic 

mean of precision and recall.  

All performance metrics are measured on the predicted labels and true labels of 

independent test samples. The optimal number of features is selected based on two criteria: 

(a) the number of features should be as few as possible, and (b) the classification accuracy 

using the selected features should be > 90%. 

5.2.4 Comparison 

The feature selection capability of concrete autoencoder (CAE) was compared with the 

standard autoencoder (AE). Both AE and CAE are unsupervised approaches, but the former 

produces latent features, and the latter produces actual features. It is also known that AE 

performs better, maybe at the highest level, since it comes up with a reduced number of 

latent features with maximum variance. The objective of comparing CAE with AE is to 

check how close CAE's performance is to that of AE.  



 62 

5.3 Results 

5.3.1 Feature Selection and Classification Results 

Finding Optimal k-value: The conditions for optimal feature set are (a) the number of 

features should be as few as possible, and (b) classification accuracy using the optimal 

feature set should be > 90%. As shown in Figure 5.4(a), a series of experiments were 

conducted to find the optimal number of features using CAE to classify 33 different 

cancers.  

 
Figure 5.4: Optimal k-value and stable feature set. (a) Optimum k-value: Mean 

accuracy at a different number of features selected by CAE. The initial increase in the 

number of selected features from 25 to 100 showed a sharp increase in accuracy from 80% 

to 92%. Beyond this point, the increase in performance was not significant. From 100 to 

200 features, accuracy increased only by 1%, which is not worthwhile. So, 100 features 

producing 92% accuracy meet the criteria of optimal k-value (number of features as few as 

possible and accuracy > 90%). (b) Stable feature set: Mean accuracy at a different number 

of features selected based on the frequency of a feature appearing in 10 runs with optimal 

k = 100. 132 genes appearing in ≥ 3 runs produced an accuracy of 92%. To increase the 

accuracy from 92% to 94% (only by 2%), one needs twice as many features (269 genes 

instead of 132 genes). 132 genes with 92% accuracy meet the optimal criteria ((number of 

features as few as possible and accuracy > 90%). Thus, the stable feature set consists of 

132 genes.  

It is clear from this figure that the initial increase in the number of selected features from 

25 to 100 showed a sharp increase. Beyond this point, the increase in performance was not 

significant. For example, to increase the performance from 92% to 93%, one needs to 

increase the number of features from 100 to 200, which is not worthwhile. The optimal 
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classification performance for the present problem with CAE (accuracy > 90% with the 

smallest number of features) was observed with about 100 features. In other words, the 

optimal k-value for this problem is 100. 

Finding a Stable Set of Features: With the same value of k = 100, the CAE produces a 

different optimal subset of 100 features in different runs. To get a stable set of features, the 

model was run 10 times with k = 100. Without loss of generality, it can be assumed that a 

gene that appears in more than one run can be considered an important feature. In 10 runs, 

it was observed that 269, 132, 50, and 15 genes appeared in ≥ 2, ≥ 3, ≥ 4, and ≥ 5 runs, 

respectively. The classification performance using these four subsets of features is shown 

in Figure 5.4( (b). The feature sets 269 (≥ 2) and 132 (≥ 3) produced accuracy > 90%. It 

is noticeable that to increase the accuracy from 92% to 94%, one needs to increase the 

number of features from 132 to 269.  In other words, to increase the accuracy by 2%, we 

need twice as many features, which is not worthwhile. So, the set of 132 genes that 

appeared in 3 or more runs were considered the stable feature set (the gene names are 

shown in Appendix A.1).   

Comparing CAE with AE: To compare CAE performance with AE, 132 latent features were 

generated using AE. For completeness, the original feature set of 498 genes was also used 

for classification. Table 5.2 shows the performance of five classifiers – GNB, KNN, RF, 

SVM, and LR – in classifying 33 different cancers. Block A, Block B, and Block C of 

Table 5.2 show the performance of five classifiers using the original feature set (498 

genes), reduced and stable feature set (132 genes), and 132 latent features produced by AE.  

It is clear from this table that SVM performed better with each set of features in terms of 

four evaluation matrices, including accuracy, precision, recall, and f1 score.  It is noticeable 
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that the accuracy using the original feature set of 498 genes was 95%, which indicates that 

glycome genes carry the signature of cancers. But to conduct the wet lab experiment to 

identify the roles of each of these 498 genes is difficult and expensive. A reduced and stable 

set of features are desired to design a wet lab experiment. The stable set of 132 genes 

isolated in this study produces an accuracy of 92%, which satisfies the conditions for 

optimal feature set (number of features should be as few as possible and accuracy should 

be > 90%). The 132 latent features derived from AE show the upper bound of performance, 

94%, for the present problem. The performance of CAE (92% accuracy) is pretty close to 

AE (94% accuracy), which provides confidence in explaining the role of glycome genes in 

cancer initiation and progression.  

Table 5.2: Classification performance. Block A: Using original features of 498 glycome 

genes. Block B: Using 132 glycome genes selected by CAE. Block C: Using 132 latent 

features produced by AE. 

#Features Classifier 
Mean 

Accuracy 

Mean 

Precision 
Mean Recall 

Mean f1 

Score 

Block A 

498 

GNB 0.86 (+/- 0.01) 0.84 (+/- 0.01) 0.84 (+/- 0.01) 
0.83 (+/- 

0.01) 

KNN 0.91 (+/- 0.01) 0.88 (+/- 0.01) 0.88 (+/- 0.01) 
0.87 (+/- 

0.01) 

RF 0.91 (+/- 0.01) 0.89 (+/- 0.01) 0.85 (+/- 0.01) 
0.85 (+/- 

0.01) 

SVM 0.95 (+/- 0.01) 0.93 (+/- 0.01) 0.92 (+/- 0.01) 
0.92 (+/- 

0.01) 

LR 0.94 (+/- 0.01) 0.92 (+/- 0.01) 0.92 (+/- 0.01) 
0.92 (+/- 

0.01) 

Block B 

CAE 132 

(≥ 3) 

GNB 0.84 (+/- 0.01) 0.80 (+/- 0.01) 0.83 (+/- 0.01) 
0.80 (+/- 

0.01) 

KNN 0.89 (+/- 0.01) 0.85 (+/- 0.01) 0.85 (+/- 0.01) 
0.85 (+/- 

0.01) 

RF 0.90 (+/- 0.01) 0.88 (+/- 0.02) 0.83 (+/- 0.01) 
0.83 (+/- 

0.01) 

SVM 0.92 (+/- 0.01) 0.88 (+/- 0.01) 0.89 (+/- 0.01) 
0.88 (+/- 

0.01) 

LR 0.92 (+/- 0.01) 0.89 (+/- 0.01) 0.88 (+/- 0.01) 
0.88 (+/- 

0.01) 
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Block C 

AE 132 

GNB 0.83 (+/- 0.01) 0.82 (+/- 0.01) 0.85 (+/- 0.01) 
0.83 (+/- 

0.01) 

KNN 0.91 (+/- 0.01) 0.86 (+/- 0.01) 0.86 (+/- 0.01) 
0.86 (+/- 

0.01) 

RF 0.92 (+/- 0.01) 0.89 (+/- 0.01) 0.84 (+/- 0.01) 
0.85 (+/- 

0.01) 

SVM 0.94 (+/- 0.01) 0.91 (+/- 0.01) 0.90 (+/- 0.01) 
0.90 (+/- 

0.01) 

LR 0.91 (+/- 0.01) 0.89 (+/- 0.01) 0.84 (+/- 0.01) 
0.85 (+/- 

0.01) 

 

5.3.2 Capability of Selected Features 

Figure 5.5 shows the capability of selected 132 glycome genes in identifying the origin of 

33 cancers with the t-SNE plot and confusion matrix. It is clear from the t-SNE plot that 

132 glycome genes can distinguish 33 different types of cancer by forming distinct clusters. 

It is also clear from the confusion matrix that most cancers were identified with high 

accuracy except CHOL, ESCA, and READ. The number of CHOL samples was very low 

(36 only) compared to other cancers, which might play some role in poor performance. 

Though the number of samples (161 patients) for ESCA is not low, poor performance could 

be due to its complexity. The rectal adenocarcinoma (READ) was confused with colon 

adenocarcinoma (COAD). Similarly, some of the COAD samples were also confused with 

the READ samples. The reason is that both COAD and READ share many common 

features since the colon and rectum are two parts of one large organ. 
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Figure 5.5: Capability of selected 132 glycome genes in identifying the origin of 33 

cancers. (a) Confusion matrix generated using 132 glycome genes from SVM. (b) t-SNE 

using 132 glycome genes where each dot represents a cancer sample, and each color 

represents a cancer type. 

5.3.3 Importance of Selected Features 

Table 5.3 shows the distribution of glycome genes before and after feature selection by 

CAE. There were 498 and 132 genes before and after the selection process, respectively. 

The classification accuracies using 498 and 132 genes were 95% and 92%, respectively 

(last row of the table). The objective of this study was to find as few features (glycome 

genes) as possible with an accuracy > 90%, which helps design a wet lab experiment to 

investigate further the role of glycome genes in the process of cancer initiation and 

progression. It is clear from Table 5.3 that the number of genes in each category has been 

significantly reduced after the feature selection process. This means that glycosylation can 

be explained with fewer genes in each category. For example, to explain glycosylation in 

terms of Adhesion Molecule, one can use only two genes instead of seven genes. Similarly, 

to explain Glycan degradation, one can use 17 genes instead of 59 genes. 
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Table 5.3: Distribution of glycome genes before and after selection using CAE. Total 

genes: 498 (before) and 132 (after). Accuracy: 95% (before) and 92% (after). Remarks: 

Provide a smaller list of 132 glycome genes capable of identifying the origin of 33 cancers 

with an accuracy > 90%. This list of 132 genes could be used to design a wet lab experiment 

to investigate their role in tumorigenesis further. 

Category Before After 

Adhesion Molecule 7 2 

CBP:C-Type Lectin 74 20 

CBP:I-Type lectin 20 7 

Galectin 12 3 

Glycan Degradation 59 17 

Glycosyltransferases 187 54 

Glycoproteins 31 4 

Intracellular protein transport 8 1 

Miscellaneous 6 0 

Nucleotide Sugar Transporters 57 15 

Proteoglycans 29 7 

Sulfotransferases 8 2 

Total 498 132 

Classification Accuracy 95% 92% 
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CHAPTER 6 CLASS-SPECIFIC FEATURE SELECTION AND CANCER 

SUBTYPE CLASSIFICATION 

This chapter contains a class-specific feature selection framework to identify biomarkers 

associated with each molecular subtype of breast cancer. It also provides the necessary 

information on predicting breast cancer subtypes using different machine learning 

methods. In addition, it shows the prognostic evaluation of identified biomarkers. A 

detailed discussion on how novel biomarkers can be used for cancer diagnosis and 

prognosis is also provided. 

6.1 Introduction 

Breast cancer (BRCA) is heterogeneous with multiple subtypes, and treatment varies based 

on the subtype, even their prognostic consequences might be partially identical [101]. 

Using mRNA expression pattern with a hierarchical clustering method, Sorlie et al. [102] 

and Perou et al. [103] identified five subtypes as basal-like, HER2, Luminal A, Luminal 

B, and Normal-like. These subtypes are based on the presence or absence of estrogen, 

progesterone, and HER2 receptor (ER/PR/HER2). For example, if a patient’s receptor 

statuses are ER-, PR-, and HER2+, the patient is diagnosed with HER2 subtype, while 

status with ER-, PR-, and HER2- represent basal or triple negative breast cancer (TNBC) 

(Table 6.1). These five subtypes have become the gold standard for breast cancer treatment. 

Identifying clinically relevant molecules of each subtype is essential for disease 

management and therapeutic decision-making. Existing methods for breast cancer 

subtyping are highly restricted to protein-coding genes and ignore the non-coding genes, 

which occupies close to 98% of the whole genome. The non-coding RNAs (ncRNAs) also 

play vital regulatory roles in breast cancer development [104], [105]. High-throughput 
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transcriptome data of breast cancer patients support the fact that in addition to mRNAs, 

ncRNAs also show a differential expression profile when tumor samples are compared with 

normal samples [106]. Non-coding RNAs can be categorized into two sets: (a) small 

ncRNAs (<200 nucleotides) and (b) long non-coding RNAs (lncRNAs) (>200 nucleotides). 

LncRNAs are classified according to the nearest protein-coding genes as intergenic, 

intronic, sense, or antisense [107]. LncRNA can be expressed either ubiquitous or tissue-

specific. Later, they might be released in an unchanging form into the blood circulation 

during the disease progression [108]. The diverse regulatory roles for these lncRNAs as 

diagnostic and prognostic biomarkers for breast cancer have been implicated [24], [25], 

[92], [108]–[112].  For example, overexpression of EPIC1 is associated with poor 

prognosis in Luminal B breast cancer patients [113]. This lncRNA is epigenetically 

activated in up to 90% of tumor samples across ten cancer types, including breast cancer. 

It has been shown that if some lncRNAs are recurrently targeted by DNA methylation 

alterations in tumors, they may play an important role in tumor initiation and progression 

[113].  

Table 6.1: Molecular subtypes based on the presence or absence of estrogen, 

progesterone, and HER2 receptor (ER/PR/HER2) expression. 

Subtypes  
Estrogen 

Receptor 
 Progesterone 

Receptor 
 HER2 

Receptor 

% 

Cancers 

Luminal A + and/or +  - 30-40 

Luminal B + and/or +/- or +/- 20-30 

HER2 -  -  + 12-20 

Basal/Triple 

Negative 
-  -  - 15-20 

Normal-like + and/or +  - N/A 
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The “intrinsic” subtypes Basal, HER2, Luminal A, Luminal B, and Normal-like, have been 

extensively studied by hierarchical clustering of microarray data using different sets of 

“intrinsic” genes [21], [102], [103], [114]–[116]. Intrinsic genes are genes with 

significantly greater variation in expression between different tumors than between paired 

samples from the same tumor [103]. Starting with an expanded set of 1,906 “intrinsic” 

genes comprised of genes found in studies [102], [114]–[116], Parker et al. [20] developed 

a 50-gene supervised subtype predictor using Prediction Analysis of Microarray (PAM) 

[117], thus calling it PAM50. The limitation of PAM50 is that it has been developed 

ignoring normal-like subtype of breast tumor, which has distinct characteristics for ER, 

PR, and HER2 receptors. Recently, Zhang et al. identified a shortlist of genes and lncRNAs 

as the signatures for four types of breast tumors and did not consider normal-like subtype, 

a major limitation of this study [101]. The second limitation is that the hazard ratio values 

of the shortlist of genes in terms of survival analysis are close to 1, which raises a concern 

about the prognostic capability of those genes. To understand the biology concerning 

lncRNA expression, one needs to consider all five subtypes of breast tumors. In the present 

study, we considered five subtypes to have a comprehensive understanding of the role of 

lncRNAs in the clinical outcome of each subtype. We proposed a Recursive Feature 

Elimination (RFE) approach with L1-norm Multiclass Support Vector Machine 

(L1MSVM) as the estimator by taking advantage of both RFE [37]   and L1MSVM [118], 

thus calling it Recursive L1-norm Multiclass Support Vector Machine (RL1MSVM). 

6.2 Materials and Methods 

The genome-wide lncRNA expression profiles of breast cancer patients are publicly 

available in The Cancer Genome Atlas (TCGA) and were used to discover the subtype-
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specific key lncRNAs. To discover the subtype-specific key lncRNAs, we used the newly 

proposed RL1MSVM method along with two frequently used wrapper-based methods, 

L1MSVM and RF. First, an optimal number of features were isolated using the newly 

proposed RL1MSVM model. Then the same number of features were identified using the 

other two models, L1MSVM and RF. Finally, a feature isolated by at least two techniques 

is added to the final list of key lncRNAs. Figure 6.1 represents the flowchart of data 

preparation, feature selection using three algorithms (L1MSVM, RF, and RL1MSVM), 

classification of five subtypes using the selected sets of features, and corresponding 

performance evaluation. The details of the materials and methods are described in the 

following subsections. 

 

Figure 6.1: Process flow diagram: data preparation, feature selection, classification, 

and performance evaluation. 

6.2.1 Acquisition of Breast Cancer Data 

The breast cancer RNAseq FPKM normalized expression profiles and clinical data were 

downloaded (July 2019) from the UCSC Xena database [77] for analysis and validating 
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the idea. Out of 1,218 available patients, 1,207 were labeled with molecular subtypes, and 

the remaining 11 without subtypes information were excluded from the analysis. Each 

sample consists of 60,483 RNA (coding and non-coding combined) expression values. The 

row and column headings of the dataset represent the RNA Ensemble IDs and sample IDs, 

respectively. The value of each cell represents the normalized read counts of an RNA for 

a specific sample. Each RNA expression was further processed using a min-max 

normalization method to achieve proper training performance.  

Since this study focuses on identifying key lncRNAs for breast cancer, expression values 

of lncRNAs are isolated from the combined dataset using lncRNA IDs available in The 

Atlas of non-coding RNA in Cancer (TANRIC) [78]. This mapping resulted in 12,309 

common lncRNAs with expression values of 1105 breast cancer patients with five different 

subtypes, which were used for analysis in the present study. Table 6.2 summarizes the 

processed data: the number of samples ranges from 40 for Normal-like to 577 for Luminal 

A, and an average survival ranges from 1090 days for HER2 to 1410 days for Normal-like 

patients.  

Table 6.2: Number of samples and average survival of breast cancer patients in each 

subtype. 

Subtype No. of Samples Average Survival, Days 

Luminal A 577 1,293 

Luminal B 216 1,112 

HER2 81 1,090 

Basal 191 1,311 

Normal-like 40 1,410 
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6.2.2 The Proposed Recursive 𝑙1-norm Multiclass SVM 

Not all feature selection techniques can select class-specific features, such as (a) Analysis 

of Variance (ANOVA), a filter-based method, (b) Least Absolute Shrinkage and Selection 

Operator (LASSO) [36], a wrapper-based method, and (c) Recursive Feature Elimination 

(RFE) [37], an embedded method.  However, the embedded feature selection approach, 

L1MSVM, can discover class-specific essential features [118].  Although RFE cannot 

identify class-specific features but has a role in reducing the number of irrelevant and noisy 

features in each iteration and selecting the top-ranking features to improve the 

classification performance [118].  The L1MSVM generates a sparse weight matrix with 

many zeros, which provides the first level of reduction from a large number of features. 

Applying RFE to it further reduces the number of features with smaller weights. Thus, the 

proposed RL1MSVM approach, a combination of L1MSVM and RFE, is appropriate for 

the present problem of discovering subtype-specific lncRNAs for breast cancer due to the 

high dimensionality (12,309 lncRNAs) of the data compared to the number of samples 

(1,105 samples). The formulation of RL1MSVM starts from a standard linear SVM 

classifier with 𝑙2-norm. The general setup of a supervised classification problem consists of 

sample: 𝑖 ∈ { 1 ⋯ 𝑛}, feature: 𝑗 ∈ {1 ⋯ 𝑑}, and class: 𝑘 ∈ {1 ⋯ 𝑐}. The training set is 

represented by {𝒙𝑖 , 𝒚𝑖 }1≤𝑖≤𝑛, where 𝒙𝑖 = (𝑥𝑖1 ⋯ 𝑥𝑖𝑑 )𝑇represents the ith sample over a d-

dimensional feature vector and 𝒚𝑖 = (𝑦𝑖1 ⋯ 𝑦𝑖𝑐)𝑇represents its label vector. 𝑦𝑖𝑘 = 1, if the 

sample belongs to the kth class, otherwise𝑦𝑖𝑘 = −1. For any class 𝑘, a linear classifier uses a 

d-dimensional weight vector, 𝒘𝑘 = (𝑤𝑘1 ⋯ 𝑤𝑘𝑑 )𝑇 . To find appropriate 𝒘𝑘 , SVM minimizes 

the following objective function.  
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Where 𝑙2-norm = √∑ 𝑤𝑘𝑗
2𝑑

𝑗=1 , and 𝐽 refers to the loss function. The regularization parameter 

𝐶 controls the trade-off between achieving a low error on the training data and minimizing the 

norm of the weights. It has been shown that replacing l2-norm with l1-norm (∑ |𝑤𝑘𝑗|𝑗 ) 

performs better for multiclass feature selection problems [119]. The final form of 

L1MSVM that solves the simultaneous feature selection for the multiclass problem is as 

follows. 
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                (2) 

However, the above objective function is not differentiable, and we cannot employ linear 

programming techniques for optimization [120]. One can do something similar using the 

RFE technique, which tells that the significance of selecting a feature j for the class k should 

be related to the magnitude of its weight 𝑤𝑘𝑗 . In other words, feature j should be eliminated 

if its weight is the smallest; thus, it selects top-ranking features for class k. A feature with 

the lowest weight is determined using the equation given below. 

𝑗 =  𝑎𝑟𝑔𝑚𝑖𝑛 ∑ 𝑤𝑘𝑗
2

𝑘

                (3) 

Combining the idea of l1-norm SVM for multiclass and backward elimination technique 

RFE provides the complete solution of class-specific feature selection for a multiclass 

problem. 
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6.2.3 Implementation of Feature Selection Approaches 

In the present study, we used two state-of-the-art feature selection approaches, L1MSVM 

and RF, to compare the performance with the newly proposed simultaneous feature 

selection and classification approach RL1MSVM. To select the optimized features, tuning 

of hyperparameters is a must. The GridSearch cross-validation technique was used to find 

the optimum values or options for hyperparameters for all feature selection approaches. 

Implementation of LIMSVM 

Three kernels used in L1MSVM are linear, polynomial, and radial basis function (RBF). 

The hyperparameters are different for each kernel: (i) C for the linear kernel, (ii) C and 

degree for the polynomial kernel, and (iii) C, degree, and gamma for RBF kernel. The 

regularization parameter C controls the trade-off between the number of selected features 

and the model’s accuracy. For example, if C is small, the model will select a low number 

of features for classification, resulting in poor prediction accuracy. The degree of the 

polynomial is used to find the hyperplane to split the data. Using degree equal to 1 is the 

same as using a ‘linear’ kernel. Also, increasing the degree leads to higher training times. 

The gamma is a parameter for non-linear hyperplanes. The higher value of gamma leads to 

overfitting as the classifier tries to perfectly fit the training data. The GridSearch found a 

linear kernel with C equal to 0.07 as the global optimum hyperparameters. The details of 

identifying the optimal value of C, are provided in section 6.3.1 Selecting Optimum 

Features. 

Implementation of RF 

RF needs three hyperparameters to be tuned: (i) n_estimator: number of estimators, or 

number of trees in the forest, (ii) min_sample_split: minimum number of nodes required 
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to split, and (iii) criterion: impurity to measure the quality of a split. In GridSearch, the 

ranges of values assigned to tune n_estimator and min_sample_split were from 2 to 300 

and 1 to 150, respectively. Two options, Gini and entropy, were used to optimize the 

impurity parameter criterion. The optimum values or options for n_estimator, 

min_sample_split, and criterion found by the GridSearch method are 100, 120, and Gini, 

respectively. 

Implementation of RL1MSVM 

The newly proposed feature selection approach, RL1MSVM, is an RFE feature selection 

approach, where L1MSVM is the estimator. Three steps to implement RL1MSVM are: 

Step-1: Train L1MSVM on the active features. Step-2: Remove the feature with the 

smallest weight (RFE). Step-3: Go back to step 1 or stop if the algorithm finds the desired 

number of features. In every iteration of RFE, the number of dropped features was set to 

100.  

A python machine learning package, Scikit-learn [81], was used for model deployment. 

All models are executed on a CPU Intel Core i7 with 16GB RAM. 

6.2.4 Classification and Performance Evaluation 

To compare the performance in classifying the five subtypes of breast cancer using the sets 

of features selected by L1MSVM, RF, and RL1MSVM, four different performance 

metrics, including accuracy, precision, recall, and f1 score, were evaluated. For a fair 

comparison, the same number of features were selected using all three approaches. In our 

previous study, it was shown that Support Vector Machine (SVM) outperformed in 

classifying multiple cancer types using lncRNA expression [121]. Therefore, the same 

classifier, a linear SVM without regularization was employed to classify the breast cancer 
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samples into five subtypes. The dataset was split into training and test set according to a 

75/25 ratio to avoid overfitting (Figure 6.1). The training set was used to estimate the 

learning parameters, and the independent test set was used for performance evaluation. 

6.2.5 Final Set of Key lncRNAs 

The final set of key lncRNAs was derived from the union of the intersections of two sets 

of features selected by two approaches. More specifically, lncRNAs found in at least two 

methods were considered key lncRNA, as stated in Eq. 4. 

𝐾𝑒𝑦 𝑙𝑛𝑐𝑅𝑁𝐴𝑠

= (𝐿1𝑀𝑆𝑉𝑀 ∩ 𝑅𝐹) ∪ (𝑅𝐹 ∩  𝑅𝐿1𝑀𝑆𝑉𝑀)

∪ (𝑅𝐿1𝑀𝑆𝑉𝑀 ∩ 𝐿1𝑀𝑆𝑉𝑀 )                     (4) 

6.3 Results 

Here, we report the performance of the proposed simultaneous feature selection and 

classification approach, RL1MSVM, compared to the similar state-of-the-art methods 

L1MSVM and RF. For a fair comparison, we need to select the same number of lncRNAs 

using three approaches. Since the L1MSVM is the estimator in RFE approach RL1MSVM, 

the optimum number of features selected by L1MSVM would provide the basis for 

comparison and subsequent analysis. 

6.3.1 Selecting Optimum Features  

Before selecting optimum features by L1MSVM model, we need to find the optimal 

parameters for it. Figure 6.2 shows the results of GridSearch cross-validation technique in 

finding the optimal parameters for L1MSVM. In GridSearch, the ranges of values assigned 

to tune the parameters C, degree, and gamma were from 0.0001 to 1000, 1 to 5, and 0.001 

to 100, respectively. The GridSearch found a linear kernel with C equal to 0.1 as the local 
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optimum hyperparameter, as shown in Figure 6.2(a). Then, we ran the same experiment 

with C ranging between 0.01 and 0.1 and found C = 0.07 as optimal (Figure 6.2b). We 

selected the optimal value of C based on the mean test score of 5-fold cross-validation. 

After training with the optimized parameters, the L1MSVM model identified 239 

important lncRNAs (Appendix A Table S1) as the feature set for classification and 

prediction. Of 239 lncRNAs, the number of subtype-specific lncRNAs for Basal, HER2, 

Luminal A, Luminal B, and Normal-like were 27, 43, 82, 72, and 15, respectively. The 

combined number of unique lncRNAs was 196, as some lncRNAs contributed to multiple 

subtypes. Thus, the optimum number of features selected by L1MSVM was 196, as shown 

in Figure 6.2(b). The same number of features (196 lncRNAs) were selected using 

RL1MSVM and RF for comparison and subsequent analysis. 

 

Figure 6.2: 5-fold cross-validation test score of L1MSVM at different values of 

regularization parameter C. (a) C ranges from 0.0001 to 1000 and found C = 0.1 as local 

optimum. (b) C ranges from 0.01 to 0.1 and found C = 0.07 as global optimum where the 

number of features is 196. The optimal C is based on the mean test score of 5-fold cross-

validation. 
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Figure 6.3: Venn diagram: Number of common features among three methods. 

The Venn diagram, Figure 6.3, shows the number of common features among different 

methods. It is clear from the Venn diagram that there is a considerable variation among the 

features selected by three different approaches, even the numbers of selected features are 

the same. Of 196 lncRNAs selected by each model, only 21 lncRNAs were common 

between three models, 55 (34 + 21) between L1MSVM and RL1MSVM, 29 (21 + 8) 

between L1MSVM and RF, and 49 (21 + 28) between RL1MSVM and RF. 

6.3.2 Discovering Final Set of LncRNAs 

Due to heterogeneous nature of breast cancers, classifying them into five molecular 

subtypes using the genome-wide expression profiles of lncRNAs is complex, and thus, 

different feature selection algorithms select different sets 196 lncRNAs. We argued that a 

feature discovered by two models would be regarded as key feature. Using this criterion, 

91 key lncRNAs were found and distributed over the subtypes as 20, 14, 27, 20, and 13 for 

Basal, HER2, Luminal A, Luminal B, and Normal-like, respectively (Appendix A Table 

S2). A few lncRNAs appeared in more than one subtype (highlighted in blue color), such 

as HOTAIR and STK4-AS1 belong to Luminal A and Luminal B, and MEG3 belong to 

Luminal A and Basal subtypes. 
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6.3.3 Performance of Selected Features in Classifying Breast Cancer Subtypes 

Table 6.3 shows the performance of three sets of 196 lncRNAs selected by L1MSVM, RF, 

and RL1MSVM, in classifying five subtypes of breast cancer. Support vector machine 

(SVM) was used for subtype classification. It is clear that the features selected by 

RL1MSVM performed better than that of L1MSVM and RF, in four evaluation metrics, 

including accuracy, precision, recall, and f1 score, which is also supported by the confusion 

matrix derived from classification (Appendix A Figure S1). For example, accuracies in 

classifying breast cancer subtypes are 0.90, 0.84, and 0.92 using three sets of 196 lncRNAs 

selected by L1MSVM, RF, and RL1MSVM, respectively. We also checked the 

classification performance using the 91 key lncRNAs. It is clear that the 91 key lncRNAs 

(accuracy 0.83) are as good as 196 lncRNAs (accuracy 0.84) discovered by RF in 

classifying subtypes, which is significant. 

Table 6.3: Comparison of feature selection performance of L1MSVM, RF, and 

RL1MSVM. Three sets of 196 lncRNAs were selected by three approaches. SVM was 

used to classify the breast cancer samples into five subtypes using the selected features. 

Values of four performance metrics, including Accuracy, Precision, Recall, and f1 Score, 

are evaluated. The last row shows the classification performance using the 91 key 

lncRNAs. 

Model Name 
# of 

features 
Accuracy Precision Recall f1 Score 

L1MSVM 196 0.90 (+/- 0.02) 0.83 (+/- 0.04) 0.82 (+/- 0.04) 0.82 (+/- 0.03) 

RF 196 0.84 (+/- 0.02) 0.78 (+/- 0.05) 0.76 (+/- 0.03) 0.76 (+/- 0.03) 

RL1MSVM 196 0.92 (+/- 0.02) 0.87 (+/- 0.03) 0.85 (+/- 0.03) 0.85 (+/- 0.02) 

Key lncRNA 91 0.83 (+/- 0.03) 0.78 (+/- 0.03) 0.75 (+/- 0.03) 0.75 (+/- 0.04) 

 

6.3.4 Clusters of Subtype-Specific Patients  

To check the clustering capability using expression profiles of 196 lncRNAs discovered by 

three feature selection techniques along with the 91 key lncRNAs, we applied hierarchical 
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clustering and unsupervised visualization technique t-SNE [26]. It is clear from the 

heatmap of hierarchical clustering, Figure 6.4, that the 91 key lncRNAs performed better 

than the three sets of 196 lncRNAs, specially in clustering normal-like samples. The t-SNE 

plots, Figure 6.5, shows that the 91 key lncRNAs perform at the same level as 196 

lncRNAs. Thus, the newly identified 91 key lncRNAs can be considered as possible 

features for diagnosis, prognosis, and therapeutic target for breast cancer. 

 
Figure 6.4: Heatmap of breast cancer subtypes clustering using the expression 

profiles of 196 lncRNAs discovered by (a) L1MSVM, (b) RF, and (c) RL1MSVM, and 

d) 91 key lncRNAs. 
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Figure 6.5: t-SNE plots to cluster breast cancer subtypes using the expression profiles 

of 196 lncRNAs discovered by (a) L1MSVM (b) RF (c) RL1MSVM, and d) 91 key 

lncRNAs. 

6.3.5 Literature Validation of Discovered lncRNAs 

Table 6.4 summarizes the literature validation of the final set of 91 lncRNAs. Fifty-three 

of these lncRNAs are known for any kind of disease (Appendix A Table S3) and 38 are 

novel discoveries. Of 53 lncRNAs, 25 are known for breast cancer and other diseases 

(Appendix A Table S4) and 6 are known for breast cancer only (Appendix A Table S5). It 

should be noted that 6 of the novel lncRNAs (Appendix A Table S6) are discovered by all 

three approaches, which could be further studied for potential therapeutic targets. 

 

 

 



 83 

Table 6.4: Summary of literature validation of discovered lncRNAs. 

lncRNA Type # lncRNAs Tables 

Discovered key lncRNAs 91 Table S2 

Known for any kind of diseases 53 Table S3 

Known for breast cancer and other diseases 25 Table S4 

Known for breast cancer only 6 Table S5 

Novel  38 Table 6.5 

Common lncRNAs between novel (n=38) and 

overlapping in all three methods (n=21) (Figure 6.3. 

Venn diagram) 

6 

Table S6 

 

6.3.6 Prognostic Evaluation of Novel lncRNAs 

To evaluate the prognostic capabilities of novel lncRNAs, survival analyses were 

performed on the whole cohort as well as on subtype-specific cohort. The patients with 

values less than or equal to the median were labeled group A (low-expression group) and 

greater than the median group B (high-expression group). After dividing into two groups, 

a log-rank test was conducted. Then the hazard ratio was calculated as the hazard rate of 

group A divided by the hazard rate of group B to check the prognostic capability of an 

individual lncRNA. The criteria for a lncRNA to be prognostic are log-rank test P-value ≤ 

0.05 and Hazard Ratio (HR) ≠ 1.0. Table 6.5 shows the list of 38 novel lncRNAs with 

associated subtype, genomic coordinates, and prognostic significance. Of 38 novel 

lncRNAs, 23 are found prognostically significant. 
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Table 6.5: List of 38 novel lncRNAs and corresponding breast cancer subtype along 

with their genomic coordinate. LncRNAs highlighted in blue color belong to more than 

one subtype or pleiotropic. Of 38 Novel lncRNAs, 23 lncRNAs were found prognostically 

significant. 

LncRNA Sub-type Chrom Start End Prognostically 

Significant? 

AC005152.3 Basal chr17 72021851 72034092 Yes 

AC087491.2 Basal chr17 39619613 39622513 Yes 

CTD-3032H12.1 Basal chr16 54937786 54938671  

LINC00152 Basal chr2 87455368 87606805 Yes 

RP11-279F6.1 Basal chr15 69463026 69571440  

RP11-281O15.4 Basal chr5 178969390 178990116 Yes 

TTC39A-AS1 Basal chr1 51329654 51335324 Yes 

CTB-33O18.1 HER2 chr5 173562478 173573199 Yes 

CTD-2284J15.1 HER2 chr8 86333274 86343314 Yes 

ELOVL2-AS1 HER2 chr6 11043524 11078226 Yes 

KIRREL3-AS1 HER2 chr11 126543947 126610948  

LINC00839 HER2 chr10 42475543 42495336  

RP1-232P20.1 HER2 chr6 5451683 5458075 Yes 

RP11-20F24.2 HER2 chr10 37240887 37242049  

RP11-28F1.2 HER2 chr18 63313802 63314376 Yes 

STK4-AS1 LumA, B chr20 44963794 44966402 Yes 

CTD-2015G9.2 LumA chr16 86722091 86741059 Yes 

CTD-2081C10.7 LumA chr5 53880293 53881051  

LINC00324 LumA chr17 8220642 8224043  

LINC00922 LumA chr16 65284499 65576300  

LINC01272 LumA chr20 50267486 50279795 Yes 

PARD3-AS1 LumA chr10 34815767 34816386  

PRKAG2-AS1 LumA chr7 151877042 151879223 Yes 

RERG-IT1 LumA chr12 15112363 15114698  

RP11-21L23.2 LumA chr11 76800364 76804555 Yes 

SEMA3B-AS1 LumA chr3 50266641 50267371 Yes 

AC016735.2 LumB chr2 43027853 43039547 Yes 

AP000439.3 LumB chr11 69477133 69479940  

DOCK9-AS2 LumB chr13 99087819 99088625 Yes 

LINC00992 LumB chr5 117415509 117546298 Yes 

RARA-AS1 LumB chr17 40340867 40343136  

SYN2 LumB chr3 12004402 12191400 Yes 

TPTEP1 LumB chr22 16601887 16698742  

CTB-51J22.1 Normal-like chr7 74059576 74062284 Yes 
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DYNLL1-AS1 Normal-like chr12 120490328 120495940  

LINC00087 Normal-like chrX 135095028 135098634  

LINC00504 Normal-like chr4 14470465 14888169 Yes 

MIR205HG Normal-like chr1 209428820 209432838 Yes 

 

6.4 Discussion 

We hypothesize that there should be a shortlist of salient features or important lncRNAs 

with prognostic capability that could differentiate cancer subtypes. Our investigation 

showed that the lncRNAs discovered in this study carry significant information on having 

the prognostic capability of differentiating high- and low-risk groups of patients of a 

particular breast cancer subtype, as explained in the section 6.3.6. We also discussed the 

biological relevance of the selected lncRNAs comparing with the existing literature in 

section 6.3.5. 

6.4.1 Novel lncRNAs Associated with Breast Cancer Subtypes 

This research identified 91 key lncRNA associated with breast cancer (Appendix A Table 

S2). When compared against the existing literature, 53 (58%) have been reported as known 

important prognostic biomarkers for various diseases, including breast cancer. The 

remaining 38 lncRNAs are novel discovery. Of 53 known lncRNAs, 25 are related to breast 

cancer and other diseases, and six have been previously associated only with breast cancer, 

including, AC008268.1, FGF14-AS2, LINC00993, LINC01016, PTPRG-AS1, ST8SIA6-

AS1 (Appendix A Table S5). Classification and clustering capabilities of 91 key lncRNAs 

are shown in Table 6.3 and Figure 6.5. 

Since the proposed method can identify already known lncRNA biomarkers, we can 

conclude that the newly discovered 38 lncRNAs (Table 6.5) have the potential to be 

considered as novel biomarkers associated with Basal (7), HER2 (8), Luminal A + Luminal 
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B (18), and Normal-like (5) breast cancer subtypes. However, some well-known critical 

lncRNAs are still missing in our results, such as ANRIL, ATAB, NEAT1, and TP53TG1 

[106]. Reason 1: the list of lncRNAs used for this analysis was obtained from the TANRIC 

repository annotated by GENCODE v2.0, which is not a complete list; for 

example, ANRIL and ATAB are missing in the list. Reason 2: the model produced the 

optimum accuracy with 196 lncRNAs, and it remained at the optimum level with the 

increase of the number of features up to 400 (Figure 6.2). Thus, selecting the minimum 

number of optimal features (196 lncRNAs) for analysis might miss some key lncRNAs.  

6.4.2 LncRNAs as Screening Tool and Therapeutic Target 

Many studies have been conducted using mRNA expression for predicting breast cancer 

molecular subtypes as well as developing screening tools such as PAM50 [20] and 70-

genes [21]. However, none of these tools used lncRNAs for predicting breast cancer 

molecular subtypes. As per our knowledge, this study is the first attempt to discover 

subtype-specific lncRNAs while predicting breast cancer molecular subtypes. Intra-tumor 

heterogeneity is likely to have implications for cancer therapeutics [122]. Hence, the 

identified 91 lncRNAs, which are subtype-specific, can be used not only as a screening 

tool for breast cancer diagnosis but also as therapeutic targets. 
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CHAPTER 7 MULTI-RUN CONCRETE AUTOENCODER FOR FEATURE 

SELECTION 

This chapter provides the limitations of concrete autoencoder in feature selection from high 

dimensional transcriptomic data. It also discussed how the multi-run approach could 

overcome its limitations. This chapter contains the necessary information on data 

preprocessing, model development, model training, hyper-parameter tuning, and 

performance evaluation. It also contains the biological validations of identified biomarkers. 

7.1 Introduction 

Recent studies showed that long non-coding RNAs (lncRNAs), which are longer than 200 

nucleotides, play key roles in tumorigenesis [49]–[51]. The lncRNAs also have key 

functions in transcriptional, post-transcriptional, and epigenetic gene regulation [9]. 

Schmitt and Chang discussed the impact of lncRNA in cancer pathways [10]. Hanahan and 

Weinberg described the involvement of lncRNAs in six hallmarks of cancer such as 

proliferation, growth suppression, motility, immortality, angiogenesis, and viability [11].  

Hoadley et al. showed that cell of origin patterns dominate the molecular classification of 

tumors available in The Cancer Genome Atlas (TCGA) [52]. Their analysis used copy 

number, mutation, DNA methylation, RPPA protein, mRNA, and miRNA expression. 

However, they did not consider another important molecular signature of cancer, lncRNA 

expression. This work motivated us to investigate the importance of lncRNAs in 

identifying different types of cancer. We hypothesize that there should be a shortlist of 

salient features or important lncRNAs with prognostic capability that could dictate the 

origin of multiple cancers.  
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In general, feature selection is worthwhile when the whole set of features is difficult to 

collect or expensive to generate [23]. For example, in TCGA, the lncRNA expression 

profile dataset contains more than 12,000 features (lncRNAs) for each of 33 different 

cancers, and it is expensive to generate this data. Consequently, it is important to answer 

the question: Is there a set of salient features (lncRNAs) capable of identifying the origin 

of 33 cancers or a subset of 33 cancers? 

Standard dimension reduction methods, such as principal component analysis (PCA) [58] 

and autoencoders [47], can generate a greatly reduced set of latent features. However, 

these latent features are not the original features but are functional combinations of the 

original features. Identifying original features increases the “explainability” of the results 

and allows us to perform biological interpretation in diagnosing various deadly diseases, 

such as cancers. Recently, few deep learning-based feature selection methods showed 

improvement in selecting original features in both supervised and unsupervised settings 

[23], [59]–[61]. 

In our previous study [24], we showed that a deep learning-based unsupervised feature 

selection algorithm CAE [23], performs better in feature selection, especially, in selecting 

a small number of features, compared to the state-of-the-art supervised feature selection 

methods such as LASSO, RF, and SVM-RFE. However, the study was based on the 

expression profiles of cancer patients only. The questions that remained unanswered are: 

(a) Were the identified lncRNAs cancer-specific or organ-specific? (b) CAE produces 

different sets of features in different runs, which raises questions about which set to use as 

the final feature set. (c) Do the identified lncRNAs have prognostic capability? (d) How to 

validate the identified lncRNAs?  
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In this research, to address question (a), we analyzed data from 12 cancers having a healthy 

to cancer sample ratio of at least 1:10. To address question (b), we proposed running CAE 

multiple times with a fixed number of features selected in each run and taking the most 

frequently appearing features in multiple runs as the final set of features. To address 

question (c), survival analysis was performed to show that the identified features have the 

prognostic capability. To address question (d), we checked the existence of identified 

lncRNAs in experimental works of literature, drug-lncRNA network, and cancer 

hallmarks.  

The distribution of the number of samples for 12 cancers in TCGA is highly imbalanced, 

ranging from 36 for CHOL cancer to 1089 for BRCA cancer. Any supervised feature 

selection approach will be biased to heavy groups. So, the unsupervised nature of CAE can 

handle this issue in identifying appropriate features related to 12 different cancers. The 

proposed multi-run CAE approach filtered the key lncRNAs from 12,309 lncRNAs that are 

related to 12 different cancers with higher classification accuracy and better diagnosis of 

cancer origin compared to the state-of-the-art embedded feature selection approaches, 

including LASSO [123], RF [45], and SVM-RFE [37], and unsupervised feature selection 

approaches such as MCFS and UDFS. 

Contributions of this study are as follows: 1) development of an optimal and stable feature 

selection framework, mrCAE. 2) Discovery of an optimal and stable set of 128 lncRNAs 

capable of identifying the origin of organs for 12 different cancers with an accuracy of 

95%. 3) It has been shown that the lncRNAs identified using mrCAE from the expression 

profiles of cancer patients are truly cancer-specific, not organ-specific. 4) Survival or 
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prognostic analysis of discovered lncRNAs. 5) Identified features, lncRNAs, are validated 

with existing literature, drug-lncRNA networks, and hallmark lncRNAs. 

7.2 Materials and Methods 

7.2.1 Data Preparation 

To characterize the cancer-associated lncRNA, expression profiles and clinical data for 33 

different cancers were downloaded from the UCSC Xena database [77]. Each lncRNA 

expression was processed using a min-max normalization method to achieve good training 

performance. For this study, we considered the cancer types for which the number of 

normal samples is at least 10% of cancer samples, and 12 cancer types met this criterion. 

The distributions of cancer and normal samples for 12 cancers are shown in Table 7.1. 

Table 7.1: Sample distributions of 12 cancers were considered in this experiment. 

 BRCA CHOL COAD KICH KIRC KIRP LIHC LUAD LUSC PRAD READ THCA 

Normal 113 9 41 23 72 32 50 57 49 52 9 58 

Cancer 1088 36 301 65 527 286 369 510 498 493 94 501 

 

This dataset contains about 60 thousand RNAs expression profiles, including coding genes 

(mRNAs) and non-coding genes (lncRNAs and miRNAs). In this study, only the 

expression profiles of lncRNA (n=12,309) were considered for analysis and model 

evaluation. The final dataset contains 4,768 cancer patients and 565 normal patients. 

7.2.2 Features Selection Using Multi-Run Concrete Autoencoder 

For selecting important features (lncRNAs), a state-of-the-art deep learning-based 

unsupervised algorithm, Concrete Autoencoder (CAE) [23], was run multiple times 

iteratively. We name this approach multi-run CAE (mrCAE). The reason for using mrCAE 

is that CAE selects the most informative features in a stochastic manner, meaning different 
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sets of informative features are selected in different runs. We made the assumption while 

running CAE multiple times that if a feature appears in more than one run, that can be 

considered a stable feature. 

Architecture and Working Principle of CAE 

The architecture of a CAE (Figure 7.1) consists of a single encoding layer, also known as 

the "Feature selection layer" shown in yellow, and arbitrary decoding layers (e.g., a deep 

feedforward neural network), shown in the box on the right. The detailed algorithm is 

available in [23]. The function of the encoder is to select a given number of k actual features 

(not latent features in the case of a traditional Autoencoder) in a stochastic manner from 

the original large input feature space, 𝐗 of size n. The function of the decoder is to 

reconstruct the original features (𝐗′ is the reconstructed feature vector) using the k features 

selected by the encoder.   

 

Figure 7.1: Architecture of Concrete Autoencoder. CAE architecture consists of an 

encoder and a decoder. The layer after input layer of encoder is called concrete feature 

selection layer shown in yellow. This layer has k number of node where each node is for 

each feature to be selected. Decoder is to check how well the input features can be 

reconstructed using the selected k features. Output layer has the same number of nodes as 

input layer. X = [x0, x1, …. , xn-1] = Input features. X’ =   [x’0, x’1, …. , x’n-1] = Reconstructed 

features. 
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How input features are selected depends on the temperature of the selection layer, which 

is modulated from a high value to a small value using a simple annealing schedule [23]. As 

the temperature of the selection layer approaches zero, the layer selects k individual input 

features. The decoder of a concrete autoencoder serves as the reconstruction function. It is 

the same as that of a standard autoencoder. Thus, the concrete autoencoder is a method for 

selecting a discrete set of k features optimized for an arbitrarily complex reconstruction 

function. 

Training and Testing/Validation of CAE: The samples in a cohort are divided into 80/20 

split for training and testing. In the training phase, 80% of samples are used to select the k 

informative features. In the testing/validation phase, 20% of samples are used to 

reconstruct their original features using the selected k features. 

Hyperparameter Tuning for CAE 

The hyperparameters of CAE were tuned for lncRNA expression data of 12 TCGA cancer 

types. We kept two of the parameters the same as used in the original CAE, developed by 

Abid et al. [23]. These two parameters are leaky ReLU with a threshold value of 0.1 and a 

10% dropout rate. To tune the number of nodes in two hidden layers of the decoder, the 

model was tested by varying the number of nodes from 240 to 340, with a step size of 10. 

It was found that a decoder with 300 nodes in both layers yields the highest accuracy. So, 

the number of nodes in two hidden layers of the decoder was selected as 300. 

To tune the number of epochs and learning rate, the random search [124] approach was 

used. The values used for the number of epochs were 200, 300, 500, 1000, 1500, 2000, 

2500, and 3000. Similarly, for learning rate, the values were 0.001, 0.002, 0.005, 0.0005, 

0.01, and 0.05.  In every run of CAE, the values of the two hyperparameters were randomly 
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selected. With 300 epochs and a 0.002 learning rate, the 100 features selected by the CAE 

produced the highest accuracy in classifying 12 cancer types using SVM. So, these 

parameter values were chosen for further analysis. Details of hyperparameter tuning are 

available in Appendix B.1. 

For every iteration of a single run in the hyperparameter tuning phase, temperature, mean-

max probability (mean of maximum probabilities of the selected features), training loss, 

and validation loss were observed and plotted. The plot paints a clear picture of the learning 

process in CAE at every epoch, thereby naming it as the characteristic plot of CAE, as 

shown in Figure 7.2. 

 

Figure 7.2: Characteristic Plot of Concrete Autoencoder. Temperature (green), Mean-

max probability (yellow), training loss (blue), and validation loss (red) are plotted at 

different scales.  

One of the main objectives of this plot is to see if the model is converging in terms of loss, 

which is evident in Figure 7.2, as the training loss and validation loss converge to a lower 

value. Each node in the concrete selection layer learns a probability value for every feature, 

and the node selects the one with the highest probability. The higher the mean-max 
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probability is, the more each node in the concrete selector is confident of one of the 

features. So, it is one of the goals to have the mean-max probability as high as possible. 

7.2.3 Comparing mrCAE with Other Feature Selection Approaches 

The feature selection capability of mrCAE was compared with the standard autoencoder 

(AE), three frequently used embedded feature selection models, including LASSO [123], 

Random Forest (RF) [45], and Support Vector Machine with Recursive Feature 

Elimination (SVM-RFE) [37], and two unsupervised feature selection models, MCFS [97] 

and UDFS [98]. The same number of features were selected using each approach, and those 

features were used to evaluate the classification performance in classifying 12 different 

cancer types. A stratified 5-fold cross-validation using SVM with linear kernel was 

conducted to evaluate the classification performance. Four different evaluation metrics - 

accuracy, precision, recall, f1 score - have been used to record the classification 

performance. 

7.2.4 Implementation of Feature Selection Algorithms 

All feature selection algorithms except mrCAE were implemented using the scikit-learn 

framework (https://scikit-learn.org/), whereas mrCAE was implemented using a deep 

learning framework named Keras (https://keras.io/). Experiments are parallelized on 

NVIDIA Quadro K620 GPU with 384 cores and 2GB memory devices. The dataset was 

split into the train and test set according to the 80/20 ratio to avoid overfitting. The training 

set was used to estimate the learning parameters, and the test set was used for performance 

evaluation. 
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7.3 Results 

We analyzed the lncRNA expression profiles of 12 cancers with the goal of identifying the 

key lncRNAs using mrCAE. First, we showed that the features selected by CAE are truly 

cancer-specific, not organ-specific. Second, we showed the stochastic nature of CAE in 

selecting equally significant different sets of features in different runs. Third, we showed 

that mrCAE performed better than the single-run CAE and other state-of-the-art feature 

selection methods, including LASSO, RF, SVM-RFE, MCFS, and UDFS. Fourth, we 

determined a stable set of lncRNAs that not only can stratify 12 different cancer types but 

also have the highest number of lncRNAs with prognostic behavior. Fifth, we identified 

the optimal number of runs for mrCAE. 

7.3.1 Features Selected from Tumor Tissues are Cancer-Specific, not Organ-Specific   

To check that the features selected by CAE from the lncRNA expression profiles of cancer 

samples are truly cancer-specific, not organ-specific, we ran CAE separately on tumor and 

normal samples to identify two sets of 80 features (lncRNAs). Figure 7.3(a) shows only 

five commons between 80 tumor and 80 normal features, which evidenced that 75 out of 

80 features are unique to both tumor and normal tissues. It is clear from the t-SNE plots of 

Figure 7.3b and 3c that tumor and normal features can distinctively cluster 12 tumor tissues 

and corresponding normal tissues, respectively. However, when we do the cross, meaning 

the t-SNE plot of tumor tissues using normal features (Figure 7.3d) and t-SNE plot of 

normal tissues using tumor features (Figure 7.3e), there are no distinct clusters for 12 tumor 

and corresponding normal tissues. Appendix B.2 shows similar results for 40-feature 

(Figure S8) and 60-feature scenarios (Figure S9). These experiments proved that the 

features derived from tumor samples are truly cancer-specific, not organ-specific. 
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Figure 7.3: Comparing Tumor Features with Normal Features. a) Venn diagram of 80 

tumor features and 80 normal features derived from CAE; b) t-SNE plot of tumor samples 

using tumor features; c) t-SNE plot of normal samples using normal features; d) t-SNE plot 

of tumor samples using normal features; e) t-SNE plot of normal samples using tumor 

features. 

7.3.2 CAE Produces Different Sets of Significant Features in Different Runs 

Though CAE selects a subset of the most significant features from a given dataset, it 

produces different sets of significant features in different runs due to its stochastic nature 

[23]. To show the stochastic nature of CAE, three sets of 60 features were selected for the 

experiment. Figure 7.4 shows (a) the Venn diagram, (b) classification accuracy of 12 

cancer types, (c) mean squared error (MSE) of reconstructing original features, and (d) t-

SNE plots of visualizing 12 different types of cancer samples, respectively, using three sets 

of features.  
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Figure 7.4: CAE Property of Selecting Different Sets of Features in Different Runs. 

a) Venn Diagram, b) accuracy of classifying 12 cancer types, (c) reconstruction mean 

squared error (MSE), and (d) t-SNE plots for 12 cancer samples using three sets of 60 

features selected in three runs. 

It is clear from the Venn diagram that few lncRNAs are common between any two runs 

(10, 10, and 13 of 60 lncRNAs). Though the three sets of 60 lncRNAs are different, they 

are equally good in classifying 12 different cancer types (Figure 7.4b) and reconstructing 

original features (Figure 7.4c). The t-SNE plots, Figure 7.4d, also support that the three 

sets of 60 lncRNAs are equally good in differentiating 12 cancer types. Thus, it is clear 

from Figure 7.4  that CAE selects different sets of most informative features in different 

runs. This observation motivated us to hypothesize that a feature appearing in multiple 

runs of CAE (mrCAE) carries the most meaningful information for a given dataset. In the 

next section, we showed that mrCAE performed better than the single-run CAE and other 
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state-of-the-art feature selection methods, including LASSO, RF, SVM-RFE, MCFS, and 

UDFS. 

7.3.3 Comparison of mrCAE with Existing Feature Selection Approaches 

Before comparing mrCAE with the existing feature selection approaches, we evaluated the 

performance of single-run CAE with a different number of selected features, which will 

guide us on how many features we should select for comparison. In Figure 7.5(a), it is 

noticeable that even with a smaller number of features, only with ten features, the average 

accuracy of CAE was close to 85%. There is a sharp increase in average accuracy (91%) 

with 20 features, followed by a slight increase (92% accuracy) up to 60 features. Then the 

curve reaches a plateau. From this figure, it seems like 40 features (before starting plateau) 

selected using different algorithms would be a good choice for comparison. 

Selection of 40 Features from mrCAE: CAE was run 100 times to select 100 features in 

each run. In 100 runs, it selected a total of 534 unique features. The frequency of appearing 

these features in 100 runs ranges between 1 and 98. The 40 most frequent features, the top 

40 features from the sorted list in descending order based on frequency, were used to 

measure the performance of mrCAE. 

Figure 7.5(b) shows the classification performance using the sets of 40 lncRNAs selected 

from different feature selection algorithms, including LASSO, RF, SVM-RFE, MCFS, 

UDFS, AE, CAE, and mrCAE. It is clear that mrCAE performed better than any other 

feature selection approaches regarding the accuracy, recall, precision, and F1 score. 
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Figure 7.5: Comparing mrCAE with other feature selection approaches. (a) Behavior 

of single-run CAE to decide the number of features to be selected for comparison. CAE 

was run three times to select six sets of 10, 20, 40, 60, 80, and 100 features. “single avg” 

represents the average accuracy of three runs. (b) Classification performance using 40 

features selected by LASSO, RF, SVM-RFE, MCFS, UDFS, AE, CAE, and mrCAE. Note 

that, each approach selects 40 actual features except AE, which selects 40 latent features. 

7.3.4 mrCAE to Select a Stable Set of Features 

mrCAE Systems: To identify a unique and stable set of lncRNAs that not only can 

distinguish between 12 different cancer types but also have the highest number of features 

with prognostic behavior, we designed mrCAE systems with 10, 20, 40, 60, 80, 100, and 

120 runs. In each of the single runs of a mrCAE system, 100 lncRNAs were selected. Table 

7.2 shows the summary statistics of mrCAE systems, including the total number of unique 

lncRNAs selected and the maximum frequency of a lncRNA appearing in each mrCAE 

system. The minimum frequency was 1 for all the different mrCAE systems. As shown in  

Table 7.2, a total of 223 unique lncRNAs (combined list of 10 sets of 100 lncRNAs) were 

selected by the 10-run mrCAE system, and the frequency of a lncRNA appearing in 

multiple runs ranged between 1 and 10. Similarly, a total of 575 unique lncRNAs were 

selected by the 120-run mrCAE system, and the frequency of a lncRNA appearing in 

multiple runs ranged between 1 and 117. 

Table 7.2: Summary statistics of mrCAE systems in selecting lncRNAs. 100 lncRNAs 

were selected in each run of mrCAE. 

mrCAE Total LncRNAs Min Frequency Max Frequency 

10-run mrCAE 223 1 10 
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20-run mrCAE 313 1 20 

40-run mrCAE 400 1 40 

60-run mrCAE 464 1 60 

80-run mrCAE 499 1 80 

100-run mrCAE 534 1 98 

120-run mrCAE 575 1 117 

Frequent and Stable Features: Features appearing more than once in mrCAE system were 

considered frequent features. Features with higher frequencies were considered stable 

features. 

Table 7.3: Ranges of frequency for the top features in six categories. 

 

Top Frequent Features: The top frequent features, for example, Top-10 features in any 

mrCAE system, were the first ten features from the combined list sorted in descending 

order based on frequency. To identify a stable set of lncRNAs, we selected the top features 

from each of the seven mrCAE systems in six different categories: Top-10, Top-20, Top-

40, Top-60, Top-80, and Top-100. Table 7.3 shows the ranges of frequency for the top 

features in six different categories. It is noticeable from both Tables 7.2 and 7.3 that the 

most frequent feature appeared in 10, 20, 40, 60, and 80 runs in the cases of 10-, 20-, 40-

, 60- and 80-run mrCAE systems, respectively, but the trend was not maintained for 100-

run (appeared in 98 runs) and 120-run (appeared in 117 runs) systems. In other words, the 

 Ranges of Frequency 

mrCAE Top-10 Top-20 Top-40 Top-60 Top-80 Top-100 

10-run mrCAE (10–10) (9–10) (6–10) (4–10) (3–10) (2–10) 

20-run mrCAE (19–20) (15–20) (11–20) (8–20) (5–20) (4–20) 

40-run mrCAE (36–40) (29–40) (22–40) (15–40) (11–40) (8—40) 

60-run mrCAE (53–60) (44–60) (31–60) (21–60) (16–60) (13–60) 

80-run mrCAE (69–80) (60–80) (42–80) (28–80) (22—80) (17–80) 

100-run mrCAE (84–98) (74–98) (53–98) (35–98) (27–98) (21–98) 

120-run mrCAE (99–117) (85–117) (62–117) (44–117) (34–117) (25–117) 
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most frequent feature appeared in each run of each mrCAE system except for the 100-run 

and 120-run systems, for which it (most frequent feature) appeared in 98 and 117 runs, 

respectively. It can be concluded that for the given lncRNA expression profile dataset of 

12 cancers, the mrCAE system with 100 or more runs could not produce the most frequent 

features in each run. Thus, a 100-run mrCAE can be considered the optimal configuration 

for this dataset, and the results from 120-run mrCAE were not considered for subsequent 

analyses. 

Finally, this experiment resulted in six unique sets of features corresponding to Top-10, 

Top-20, Top-40, Top-60, Top-80, and Top-100 features, as shown in the Venn diagram of 

Figure 7.6. For example, combining six sets of top-10 features from 10-, 20-, 40-, 60-, 80-

, and 100-run mrCAE systems produced a unique list of 14 lncRNAs. 

 

Figure 7.6: Venn diagram of six sets of unique features identified from six mrCAE 

systems. The mrCAE consisted of 10, 20, 40, 60, 80, and 100 runs. Each of these runs was 

conducted to select 100 features. The smallest set (light blue), containing 14 features, 

represents the unique features coming from six sets of 10 most frequent features from 10-, 

20-, 40-, 60-, 80-, and 100-run mrCAE systems. Similarly, the 2nd smallest set contains 27 

(14 + 13) unique features from six sets of Top-20 features selected. 
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The Venn diagram shows that each set of unique features was a subset of the following 

more extensive unique feature set. Finally, we can conclude that the 128 unique features 

(Appendix B.3 Table S9)—produced from the union of six sets of Top-100 features coming 

from 10-, 20-, 40-, 60-, 80-, and 100-run mrCAE systems—represented the stable and 

optimal feature set. We used this set of lncRNAs to conduct the downstream study, 

including survival and prognostic analyses and validation. 

7.3.5 Prognostic Capability of Significant lncRNAs  

To evaluate the prognostic capabilities of the selected 128 stable lncRNAs, survival 

analyses of patients with different cancer types were performed. Any lncRNAs with zero 

expression values for most cancer samples were excluded from the survival analysis of that 

cancer. The patients with values less than or equal to the median were labeled group A. 

Those with values greater than the median were labeled group B. After dividing into two 

groups, a log-rank test was conducted, and the hazard ratio was calculated as the hazard 

rate of group A vs. hazard rate of group B to check the prognostic capability of a lncRNA. 

The criteria for a lncRNA to be prognostic are log-rank test p-value ≤ 0.05 and Hazard 

Ratio (HR) ≠ 1.0. Kaplan–Meier curves were plotted to show the prognostic behavior of 

lncRNAs. 

Figure 7.7(a) shows the Kaplan–Meier plot for GATA3-AS1, one of the 11 prognostic 

lncRNAs for breast cancer, and Figure 7.7(b) shows the forest plot of survival analyses for 

11 prognostic lncRNAs. It can be observed from Figure 7.7a that group B (red) had a higher 

rate of survival than group A (blue), meaning that lncRNA GATA3-AS1 could successfully 

distinguish the high-risk group (Group A) of BRCA patients from the low-risk group 

(Group B). In other words, the cohort with a low expression (blue) of GATA3-AS1 had a 
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1.53-times higher rate of death than the high-expression cohort (red). Thus, the cohorts 

with low-expression values for seven lncRNAs (HR > 1.0) showed higher chances of death 

compared to the high-expression cohorts (Figure 7.7b). On the other hand, the cohorts with 

low-expression values for four lncRNAs (HR < 1.0) showed lower chances of death 

compared to the high-expression cohorts (Figure 7.7b). Appendix B.4 shows the forest plots 

for other cancer types. 

 

Figure 7.7: Survival Analysis of TCGA-BRCA. (a) Kaplan–Meier Curve for the 

GATA3-AS1 lncRNA on the TCGA-BRCA cohort. Group A (blue) is the group with an 

expression less than or equal to the median, and Group B (red) is the group with an 

expression greater than the median. (b) Forest plot of survival analysis for 11 prognostic 

lncRNAs on the BRCA cohort. The asterisks represent the log-rank p-values (*—p ≤ 0.05, 

**—p ≤ 0.01, ***—p ≤ 0.001, ****—p ≤ 0.0001). 

The number of prognostically significant lncRNAs for each type of cancer is given in Table 

7.4. The highest number of prognostic lncRNAs were discovered for KIRC (31 lncRNAs), 

followed by LUAD (22 lncRNAs) and LUSC (18 lncRNAs). The proposed approach failed 

to discover any prognostic lncRNA for CHOL, potentially because the cohort consisted of 

only 36 patients (Table 7.1). Some of the lncRNAs were found to be prognostic for more 

than one cancer. Of the stable set of 128 lncRNAs, 76 were prognostic. 

Table 7.4: Summary of survival analysis regarding the number of prognostic 

lncRNAs for each of the 12 TCGA cancer types. 

BRCA CHOL COAD KICH KIRC KIRP LIHC LUAD LUSC PRAD READ THCA Total 

11 0 3 3 31 15 1 22 18 4 4 10 76 
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7.3.6 Validations 

The stable set of 128 lncRNAs derived from mrCAE was validated with the existing 

literature [125]. Of 128 lncRNAs, 103 were found to be known lncRNAs associated with 

different cancer types, as shown in Figure 7.8(a). For example, 98 lncRNAs are associated 

with BRCA, 52 lncRNAs are related to LUAD, and 37 lncRNAs are related to KIRP. Some 

lncRNAs were also found in four different cancer hallmarks, Figure 7.8(b); for example, 

six lncRNAs were found to be related to cancer prognosis. We also validated the top 128 

lncRNAs with existing drug–lncRNA networks. A drug–lncRNA network was formed 

based on the Spearman correlation coefficient between lncRNA expression levels and the 

IC50 values of the drug [126]. We found that 113 out of 128 lncRNAs are associated with 

24 different drugs primarily used in cancer-related treatments, as shown in Figure 7.8(c&d). 

For example, the drug nilotinib is mainly used to treat a specific type of blood cancer 

associated with 18 different lncRNAs, Figure 7.8(e).  

 

Figure 7.8: Validation of Identified lncRNAs. (a) Number of known lncRNAs derived 

by mrCAE related to different cancer types found in [127]–[130]; (b) mrCAE derived 

lncRNAs related to different cancer hallmarks [131]. (c) number of lncRNAs related to 

different cancer drugs [126]; (d) drug–lncRNA networks for all 24 drugs; (e) an example 

lncRNA–drug network for nilotinib, which is used to treat certain blood cancers associated 

with 18 different lncRNAs. 
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7.4 Discussion 

The objective of the present study was to identify significant lncRNAs that carry 

meaningful information on (a) identifying the origins of multiple cancers, (b) evaluating 

the prognostic capability of differentiating high-risk and low-risk groups of patients of 

particular cancers, and (c) having potential for targeted therapy. The original CAE 

algorithm is capable of identifying subsets of important features. However, due to the 

stochastic nature of the algorithm, it produces different subsets in different runs [23], 

prohibiting its application in precision medicine. Thus, we hypothesized that the most 

frequently appearing lncRNAs in multiple runs of CAE (mrCAE) would produce a 

biologically meaningful and stable set of features. 

Our investigation showed that the lncRNAs selected by the proposed mrCAE outperformed 

both the single-run CAE and the standard autoencoder, along with other feature selection 

approaches, in identifying the origins of multiple cancers, as shown in Figure 7.5. Thus, the 

current results confirmed that the proposed mrCAE could be utilized as a tool for 

identifying a stable set of meaningful features. It should be noted that the proposed mrCAE 

approach is very similar to a common bioinformatic approach of bootstrapping analysis 

used to evaluate the stability of results. The bootstrapping effect could be the reason that 

mrCAE performs better than the CAE and standard AE.  

Our results showed that the lncRNAs selected by the proposed mrCAE carry meaningful 

information on the prognostic capability of differentiating high- and low-risk groups of 

patients of particular cancer, as explained in Section 7.3.5. We also showed the biological 

relevance of the selected lncRNAs by comparing them with existing literature, hallmark 
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lncRNAs, and drug–lncRNA networks, Figure 7.8. Thus, the lncRNAs selected by mrCAE 

can be used as possible targets for therapy. 
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CHAPTER 8 CONCLUSIONS AND FUTURE DIRECTIONS 

8.1 Feature Selection and Cancer Type Classification (8 Cancers) 

We developed a computational framework to identify key lncRNAs for multiple cancer 

types, employing two feature selection and five classification methods only using lncRNA 

expression of cancer samples. This study identified 37 key lncRNAs that can classify eight 

cancer types with an accuracy ranging from 95% to 98%. The t-SNE plot showing eight 

distinct clusters for eight cancer types supports that the discovered 37 lncRNAs can 

differentiate eight different cancer types. The survival analyses of individual lncRNA 

support that the discovered lncRNAs also have the prognostic capability of differentiating 

between high-risk and low-risk patients. Thus, the discovered lncRNAs can be used as 

diagnostic and prognostic features for eight different cancer types considered in this study. 

8.2 Feature Selection and Cancer Type Classification (33 Cancers) 

This research extended our feature selection framework by integrating a deep learning-

based unsupervised feature selection algorithm, concrete autoencoder, to identify the key 

features. The proposed method was evaluated in identifying the origin of 33 different 

cancer types using the expression profiles of selected features (69 lncRNAs) from the 

original feature space of 12 thousand lncRNAs. Validation with the existing literature and 

survival analyses supports that the selected lncRNAs could be potential biomarkers for the 

diagnosis and prognosis of 33 different cancers. This research accounts for feature selection 

and identifying the origin of different cancers. 

8.3 Feature Selection and Cancer Type Classification (Glycome genes) 

We also developed an in-silico framework to identify significant glycome genes related to 

the origins of 33 different cancers. The same deep learning-based unsupervised feature 
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selection algorithm, concrete autoencoder, was used to develop the framework. The 

developed framework identified an optimal set of glycome genes related to 33 cancer types. 

This optimal set of glycome genes can differentiate 33 cancers using expression profiles 

with an accuracy of 92%. This part of the research accounts for feature selection and 

identifying the origin of different cancer types using a subset of glycome genes. These 

findings highlight the importance of cell-type-specific glycosylation in cancer 

development and offer subsets of glycome genes in several molecular categories that can 

be investigated for their respective role in cancer-specific malignancy. 

8.4 Class-Specific Feature Selection 

An embedded feature selection method, recursive l1-norm multiclass SVM, was proposed 

to identify class-specific features for a multiclass problem while classifying. Using 

lncRNA expression profiles, the proposed method experimented with five molecular 

subtypes of breast cancer patients. The proposed method effectively identified small 

subsets of subtype-specific important lncRNAs, while classifying the breast cancer patients 

into five subtypes. Experimental results and validation support that the selected lncRNAs 

could be potential biomarkers for breast cancer diagnosis and prognosis. 

8.5 Multi-Run Concrete Autoencoder for Feature Selection 

Finally, we proposed a multi-run concrete autoencoder (mrCAE) to identify prognostic 

lncRNAs for multiple cancers. We tested the extended model in analyzing the lncRNA 

expression profiles of 12 cancers. The model selected a stable set of lncRNAs that could 

differentiate 12 cancers with high accuracy and provide subsets of prognostic lncRNAs for 

12 cancers. The lncRNAs selected by the proposed mrCAE outperformed the lncRNAs 

selected by the single-run CAE and other feature selection approaches. Additionally, the 
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proposed mrCAE outperformed the standard autoencoder, which selected the latent 

features and was thought to be the upper limit in dimension reduction. Since the proposed 

mrCAE outperformed AE and can select actual features in contrast to latent features by 

AE, it can provide meaningful information that can be used for precision medicine, such 

as identifying prognostic lncRNAs for different cancers.  

8.6 Future Directions 

This work can be extended to the simultaneous discovery of three types of relevant RNAs, 

considering the expression profiles of 60K RNAs, including mRNA, lncRNA, and miRNA, 

which will provide a comprehensive list of RNA biomarkers related to each type or subtype 

of cancer. It can also be used to integrate multi-omics data such as DNA methylation and 

histone modification. 

This study considers only cancer patients to identify cancer-related glycome genes. In the 

future, we will use the same framework for normal samples corresponding to different 

cancers to find the glycome genes related to normal tissues. Comparing these two sets will 

help pinpoint the glycome gene signatures for cancers.  

Though the proposed mrCAE model was applied to multiple cancer types, we can also use 

it on a single cancer type to identify the cancer-specific informative features, as used in 

identifying the informative features for single-digit MNIST data by the developer of CAE. 
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APPENDIX 

8.7 Appendix A 

8.7.1 Appendix A.1: 132 Glycome genes in 11 molecular categories 

1. Adhesion Molecule: EMCN, PODXL2 

2. CBP:C-Type Lectin: ASGR2, CD207, CD209, CLEC10A, CLEC11A, CLEC12A, CLEC14A, 

CLEC1A, CLEC1B, CLEC2L, CLEC3A, CLEC4C, CLEC4G, CLEC4M, CLEC5A, MBL2, MRC2, 

PKD1L2, SFTPA1, THBD 

3. CBP:I-Type Lectin: CD22, ICAM1, MAG, PECAM1, SIGLEC1, SIGLEC6, VCAM1 

4. Galectin: LGALS13, LGALS3, LGALS3BP 

5. Glycan Degradation: ARSD, ARSE, ARSF, ASAH2, GALC, GALNS, GLA, GNS, HEXA, HYAL3, 

MAN1C1, MAN2A1, MAN2B1, NAGA, NEU1, NEU2, SULF1 

6. Glycosyltransferases: ABO, ALG10B, ALG5, ALG6, ALG9, B3GALT1, B3GALT4, B3GNT2, B3GNT3, 

B3GNT4, B3GNT8, B4GALT1, B4GALT3, B4GALT5, CHST12, CHST14, CHST3, CHSY3, 

CSGALNACT2, DPAGT1, DPM3, DSEL, EXT1, EXTL1, EXTL2, FUT11, FUT2, FUT5, FUT8, 

GALNT12, GALNT14, GALNT2, GALNT3, GALNT7, GALNT8, GALNTL5, GCNT4, GLCE, 

HS3ST3B1, HS3ST6, HS6ST2, LARGE, LFNG, MGAT2, NDST3, PIGH, PIGQ, ST3GAL1, 

ST6GALNAC5, ST8SIA1, ST8SIA3, ST8SIA6, WBSCR17, XYLT1 

7. Glycoproteins: CD164, EMR1, MUC6, UMOD 

8. Intracellular protein transport: COG1 

9. Nucleotide Sugar Transporters: CMAS, GALT, HK1, MPI, PAPSS1, PGM1, PMM1, SLC35B1, 

SLC35B3, SLC35B4, SLC35D2, SLC35D3, SLC35E4, SLC35F3, UGP2 

10. Proteoglycans: CD44, GPC3, PTPRZ1, SDC4, SMC3, SPOCK3, SRGN 

11. Sulfotransferases: SULT1A2, SULT1A3 
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8.7.2 Appendix A.2 

 
Figure S1: Confusion matrix derived from classification using the expression profiles of 

196 lncRNAs discovered by (a) L1MSVM, (b) RF (c), and RL1MSVM, and (d) 91 key 

lncRNAs.  

 

 

 

 
Figure S2: Forest plot of survival analysis for 3 prognostic lncRNAs on BRCA - Basal 

cohort. The asterisks represent the Log-rank P-values (*p ≤ 0.05, **p ≤ 0.01). 
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Figure S3: Forest plot of survival analysis for 11 prognostic lncRNAs on BRCA – HER2 

cohort. The asterisks represent the Log-rank P-values (*p ≤ 0.05, **p ≤ 0.01). 

 

 
Figure S4: Forest plot of survival analysis for 13 prognostic lncRNAs on BRCA – 

Luminal A cohort. The asterisks represent the Log-rank P-values (*p ≤ 0.05, **p ≤ 0.01). 
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Figure S5: Forest plot of survival analysis for 10 prognostic lncRNAs on BRCA – 

Luminal B cohort. The asterisks represent the Log-rank P-values (*p ≤ 0.05, **p ≤ 0.01). 

 

 
Figure S6: Forest plot of survival analysis for 2 prognostic lncRNAs on BRCA – 

Normal-like cohort. The asterisks represent the Log-rank P-values (*p ≤ 0.05, **p ≤ 

0.01). 
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Table S1: List of subtype-specific lncRNAs (n = 239). 

lncRNA Chrom Start End Strand Subtype 

AC008268.1 chr2 95666084 95668715 + Basal 

AC016735.2 chr2 43027853 43039547 - Basal 

AC144450.1 chr2 1546665 1620113 - Basal 

AFAP1-AS1 chr4 7754090 7778928 + Basal 

CTD-2015G9.2 chr16 86722091 86741059 + Basal 

KB-1991G8.1 chr8 100337595 100350707 + Basal 

KIRREL3-AS1 chr11 126543947 126610948 + Basal 

LINC00504 chr4 14470465 14888169 - Basal 

LINC00511 chr17 72323123 72640472 - Basal 

LINC00839 chr10 42475543 42495336 + Basal 

LINC00993 chr10 37309185 37347031 + Basal 

NFE4 chr7 102973522 102988856 + Basal 

RP11-10A14.5 chr8 9189011 9202854 + Basal 

RP11-19E11.1 chr2 118833700 118835110 - Basal 

RP11-206M11.7 chr3 149284782 149333653 + Basal 

RP11-226L15.5 chr1 160024953 160026794 - Basal 

RP11-281O15.4 chr5 178969390 178990116 + Basal 

RP11-321G12.1 chr15 63390136 63438320 + Basal 

RP11-363E7.4 chr9 19453209 19455173 + Basal 

RP11-378A13.1 chr2 218255319 218257366 + Basal 

RP11-395G23.3 chr8 106270144 106272899 + Basal 

RP11-597D13.9 chr4 158170752 158202877 + Basal 

RP11-616M22.7 chr16 1294551 1299166 - Basal 

RP11-672A2.4 chr11 76654169 76656712 - Basal 

RP11-834C11.4 chr12 54126098 54132843 + Basal 

TTC39A-AS1 chr1 51329654 51335324 + Basal 

WDFY3-AS2 chr4 84965682 85011277 + Basal 

AC005152.3 chr17 72021851 72034092 - HER2 

AC009948.5 chr2 178413939 178440243 + HER2 

AC010729.1 chr2 5696220 5708095 + HER2 

AC025016.1 chr11 5938751 5944984 + HER2 

AC087491.2 chr17 39619613 39622513 + HER2 

AC114730.3 chr2 241808312 241812016 - HER2 

AF127936.9 chr21 14818843 15014430 - HER2 

ASB16-AS1 chr17 44175973 44186717 - HER2 

BDNF-AS chr11 27506838 27698174 + HER2 

CRNDE chr16 54918863 54929189 - HER2 
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CTB-33O18.1 chr5 173562478 173573199 + HER2 

CTC-537E7.2 chr5 68531690 68533530 - HER2 

CTD-2081C10.7 chr5 53880293 53881051 - HER2 

CTD-3157E16.1 chr17 15787787 15788205 - HER2 

GATA3-AS1 chr10 8050450 8053484 - HER2 

KRTAP5-AS1 chr11 1571353 1599184 + HER2 

LINC00883 chr3 107240692 107326964 + HER2 

LINC01105 chr2 5932687 6001275 + HER2 

PVT1 chr8 127794533 128101253 + HER2 

RP11-10L12.4 chr4 102828055 102844075 + HER2 

RP11-157J24.2 chr6 1528364 1528911 - HER2 

RP11-17M16.2 chr18 76491652 76493918 + HER2 

RP11-206M11.7 chr3 149284782 149333653 + HER2 

RP11-20F24.2 chr10 37240887 37242049 + HER2 

RP11-218M22.1 chr12 630891 663706 + HER2 

RP11-321G12.1 chr15 63390136 63438320 + HER2 

RP11-356O9.2 chr14 37556158 37567095 - HER2 

RP11-369C8.1 chr14 45706250 45715952 - HER2 

RP11-431J24.2 chrX 16152941 16170869 - HER2 

RP11-44N21.1 chr14 105093609 105099004 + HER2 

RP11-490M8.1 chr2 36354749 36355114 - HER2 

RP11-510J16.5 chr16 82044336 82139631 - HER2 

RP11-61L19.3 chr18 9519449 9520199 + HER2 

RP11-635N19.1 chr18 63367328 63381629 + HER2 

RP11-999E24.3 chr14 57993545 57994525 - HER2 

RP3-443C4.2 chr6 151813276 151814179 - HER2 

RP5-1121A15.3 chr7 156944721 156945645 + HER2 

SMG7-AS1 chr1 183460874 183472265 - HER2 

ST8SIA6-AS1 chr10 17386936 17413503 + HER2 

TRIM52-AS1 chr5 181261212 181272307 + HER2 

VPS9D1-AS1 chr16 89711856 89718165 + HER2 

XXyac-YX65C7_A.2 chr6 169213254 169239565 + HER2 

ZNF667-AS1 chr19 56477250 56500666 + HER2 

AC005624.2 chr19 2458935 2462185 - Luminal A 

AC006273.5 chr19 782755 785080 + Luminal A 

AC008268.1 chr2 95666084 95668715 + Luminal A 

AC010729.1 chr2 5696220 5708095 + Luminal A 

AC114730.3 chr2 241808312 241812016 - Luminal A 

AP000251.3 chr21 31559245 31560487 + Luminal A 
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CTA-126B4.7 chr22 42438023 42446195 + Luminal A 

CTA-984G1.5 chr22 29260889 29262037 + Luminal A 

CTB-51J22.1 chr7 74059576 74062284 - Luminal A 

CTC-548K16.1 chr19 14333743 14343916 + Luminal A 

CTC-558O2.1 chr5 168706567 168720884 + Luminal A 

CTD-2081C10.7 chr5 53880293 53881051 - Luminal A 

CTD-2263F21.1 chr5 38460925 38468339 - Luminal A 

CTD-2291D10.4 chr19 23075201 23100361 + Luminal A 

CTD-2319I12.4 chr17 60126535 60135644 - Luminal A 

CTD-2514K5.4 chr17 74256896 74262020 - Luminal A 

CTD-2523D13.2 chr11 119729583 119739623 + Luminal A 

CTD-3032H12.1 chr16 54937786 54938671 - Luminal A 

ELOVL2-AS1 chr6 11043524 11078226 + Luminal A 

HOTAIR chr12 53962308 53974956 - Luminal A 

KRTAP5-AS1 chr11 1571353 1599184 + Luminal A 

LINC00337 chr1 6236240 6239444 + Luminal A 

LINC00471 chr2 231508426 231514339 - Luminal A 

LINC00885 chr3 196142636 196160890 + Luminal A 

LINC00922 chr16 65284499 65576300 - Luminal A 

LINC00993 chr10 37309185 37347031 + Luminal A 

LINC01272 chr20 50267486 50279795 + Luminal A 

MAPT-AS1 chr17 45843651 45895600 - Luminal A 

NCK1-AS1 chr3 136841726 136862054 - Luminal A 

PARD3-AS1 chr10 34815767 34816386 + Luminal A 

PRKAG2-AS1 chr7 151877042 151879223 + Luminal A 

RAMP2-AS1 chr17 42753914 42761257 - Luminal A 

RERG-IT1 chr12 15112363 15114698 - Luminal A 

RP1-102D24.5 chr22 45435864 45448743 - Luminal A 

RP11-100E13.1 chr1 224615296 224616220 - Luminal A 

RP11-105N14.1 chr2 213152970 213153659 + Luminal A 

RP11-108L7.15 chr10 101060029 101061005 - Luminal A 

RP11-108M9.4 chr1 16888538 16889649 - Luminal A 

RP11-120K24.3 chr13 112964835 112966131 - Luminal A 

RP11-180M15.3 chr12 12668982 12685075 + Luminal A 

RP11-206M11.7 chr3 149284782 149333653 + Luminal A 

RP11-21L23.2 chr11 76800364 76804555 + Luminal A 

RP11-22C11.2 chr8 94637285 94639467 - Luminal A 

RP11-244M2.1 chr18 39206924 39800318 - Luminal A 

RP11-251M1.1 chr9 136648610 136660421 - Luminal A 
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RP11-28F1.2 chr18 63313802 63314376 - Luminal A 

RP11-299G20.2 chr15 101295419 101305737 + Luminal A 

RP11-303E16.5 chr16 81055301 81056426 + Luminal A 

RP11-314C16.1 chr6 8784178 8785445 + Luminal A 

RP11-321G12.1 chr15 63390136 63438320 + Luminal A 

RP11-349I1.2 chr14 94430633 94464730 + Luminal A 

RP11-356O9.1 chr14 37564047 37579125 + Luminal A 

RP11-431J24.2 chrX 16152941 16170869 - Luminal A 

RP11-473M20.11 chr16 3106764 3109576 + Luminal A 

RP11-506M12.1 chr7 100115214 100127139 - Luminal A 

RP11-527H14.4 chr18 14903580 14915628 + Luminal A 

RP11-53O19.1 chr5 44744900 44808777 - Luminal A 

RP11-585P4.5 chr12 75483454 75489820 - Luminal A 

RP11-672A2.4 chr11 76654169 76656712 - Luminal A 

RP11-680B3.2 chr3 148850933 148960112 - Luminal A 

RP11-733C7.1 chr4 138277115 138281784 - Luminal A 

RP11-758P17.3 chr7 100436204 100438504 + Luminal A 

RP11-773H22.4 chr18 12984694 12991173 - Luminal A 

RP11-774O3.3 chr4 8355090 8358338 - Luminal A 

RP11-800A3.7 chr11 73307235 73309361 - Luminal A 

RP11-80H18.4 chr3 58329965 58330118 + Luminal A 

RP11-932O9.10 chr15 30648797 30649529 + Luminal A 

RP13-638C3.3 chr17 82587313 82588411 - Luminal A 

RP13-977J11.2 chr12 132186735 132189695 - Luminal A 

RP3-337H4.8 chr6 43588230 43591362 - Luminal A 

RP3-395M20.8 chr1 2549920 2557031 - Luminal A 

RP4-533D7.5 chr1 46134531 46139081 + Luminal A 

RP4-564M11.2 chr1 77067920 77078482 + Luminal A 

RP5-1061H20.4 chr1 229258281 229271028 - Luminal A 

RP5-821D11.7 chr22 41831215 41834665 - Luminal A 

RP5-965F6.2 chr1 112177234 112360528 - Luminal A 

SEMA3B-AS1 chr3 50266641 50267371 - Luminal A 

SNHG3 chr1 28505980 28510892 + Luminal A 

SYNPR-AS1 chr3 63423596 63550051 - Luminal A 

TMPO-AS1 chr12 98512973 98516422 - Luminal A 

TUG1 chr22 30970677 30979395 + Luminal A 

XXbac-BPG13B8.10 chr6 29497509 29510556 + Luminal A 

AC005152.3 chr17 72021851 72034092 - Luminal B 

AC006126.4 chr19 45238632 45245370 - Luminal B 
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AC006273.5 chr19 782755 785080 + Luminal B 

AC016735.2 chr2 43027853 43039547 - Luminal B 

AC061961.2 chr2 154696462 154697817 - Luminal B 

AC087491.2 chr17 39619613 39622513 + Luminal B 

AC093620.5 chr7 5419827 5420767 + Luminal B 

AC093673.5 chr7 143379692 143380495 - Luminal B 

AF015262.2 chr21 35136638 35139222 + Luminal B 

AF131215.9 chr8 11104691 11106704 - Luminal B 

AP000473.5 chr21 16630827 16640683 + Luminal B 

CTA-221G9.12 chr22 25102433 25112692 - Luminal B 

CTD-2081C10.7 chr5 53880293 53881051 - Luminal B 

CTD-2134A5.3 chr14 103875055 103877478 + Luminal B 

CTD-2201E18.3 chr5 43014414 43067419 - Luminal B 

CTD-2231H16.1 chr5 92151 139863 + Luminal B 

CTD-2291D10.4 chr19 23075201 23100361 + Luminal B 

CTD-2336O2.1 chr8 1761990 1764502 - Luminal B 

CTD-2639E6.9 chr19 48963975 48965158 + Luminal B 

DLEU2 chr13 49982552 50125720 - Luminal B 

DOCK9-AS2 chr13 99087819 99088625 + Luminal B 

DSCAM-AS1 chr21 40383083 40385358 + Luminal B 

HOTAIR chr12 53962308 53974956 - Luminal B 

KB-1440D3.13 chr22 21661934 21662363 + Luminal B 

KCNK15-AS1 chr20 44694892 44746021 - Luminal B 

LINC00467 chr1 211382803 211435333 + Luminal B 

LINC00992 chr5 117415509 117546298 + Luminal B 

MIR205HG chr1 209428820 209432838 + Luminal B 

MIR99AHG chr21 16070522 16627397 + Luminal B 

PIK3CD-AS2 chr1 9672426 9687555 - Luminal B 

PVT1 chr8 127794533 128101253 + Luminal B 

RARA-AS1 chr17 40340867 40343136 - Luminal B 

RP1-102D24.5 chr22 45435864 45448743 - Luminal B 

RP1-232P20.1 chr6 5451683 5458075 - Luminal B 

RP11-108M9.4 chr1 16888538 16889649 - Luminal B 

RP11-120K24.3 chr13 112964835 112966131 - Luminal B 

RP11-127O4.3 chr10 104474939 104480274 - Luminal B 

RP11-181G12.2 chr1 2181794 2184389 - Luminal B 

RP11-21L23.2 chr11 76800364 76804555 + Luminal B 

RP11-22C11.2 chr8 94637285 94639467 - Luminal B 

RP11-244M2.1 chr18 39206924 39800318 - Luminal B 
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RP11-251M1.1 chr9 136648610 136660421 - Luminal B 

RP11-279F6.1 chr15 69463026 69571440 + Luminal B 

RP11-283G6.4 chr12 26211164 26335856 - Luminal B 

RP11-314C16.1 chr6 8784178 8785445 + Luminal B 

RP11-356O9.1 chr14 37564047 37579125 + Luminal B 

RP11-356O9.2 chr14 37556158 37567095 - Luminal B 

RP11-395N3.2 chr2 226800146 226811029 + Luminal B 

RP11-401P9.4 chr16 50645809 50649249 + Luminal B 

RP11-429J17.7 chr8 143758153 143771822 - Luminal B 

RP11-459E5.1 chr8 22690150 22798616 + Luminal B 

RP11-47A8.5 chr10 102642792 102644140 - Luminal B 

RP11-485G7.5 chr16 11341809 11345211 - Luminal B 

RP11-506M12.1 chr7 100115214 100127139 - Luminal B 

RP11-507K2.3 chr14 88551597 88552493 + Luminal B 

RP11-53O19.1 chr5 44744900 44808777 - Luminal B 

RP11-613M10.6 chr9 37509150 37510299 + Luminal B 

RP11-629O1.2 chr8 133573183 133573861 + Luminal B 

RP11-635N19.1 chr18 63367328 63381629 + Luminal B 

RP11-680B3.2 chr3 148850933 148960112 - Luminal B 

RP11-773H22.4 chr18 12984694 12991173 - Luminal B 

RP11-774O3.3 chr4 8355090 8358338 - Luminal B 

RP11-92K15.3 chr8 80032724 80033300 - Luminal B 

RP3-416H24.1 chr12 52245048 52247448 - Luminal B 

RP3-443C4.2 chr6 151813276 151814179 - Luminal B 

RP5-1061H20.4 chr1 229258281 229271028 - Luminal B 

SYN2 chr3 12004402 12191400 + Luminal B 

TINCR chr19 5558167 5568034 - Luminal B 

TMPO-AS1 chr12 98512973 98516422 - Luminal B 

TPTEP1 chr22 16601887 16698742 + Luminal B 

TUSC8 chr13 44400250 44405984 - Luminal B 

ZNF667-AS1 chr19 56477250 56500666 + Luminal B 

AC093850.2 chr2 215718043 215719424 + Normal-like 

DYNLL1-AS1 chr12 120490328 120495940 - Normal-like 

FAM83H-AS1 chr8 143734140 143746337 + Normal-like 

FOXD3-AS1 chr1 63320884 63324441 - Normal-like 

LHX4-AS1 chr1 180269653 180502954 - Normal-like 

LINC00086 chrX 135421943 135428074 + Normal-like 

LINC00467 chr1 211382803 211435333 + Normal-like 

LINC01087 chr2 131637025 131649615 + Normal-like 
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MIR205HG chr1 209428820 209432838 + Normal-like 

NNT-AS1 chr5 43571594 43603230 - Normal-like 

RP11-218M22.1 chr12 630891 663706 + Normal-like 

RP11-394O4.5 chr5 149430286 149432834 + Normal-like 

RP11-428L9.2 chr10 8970125 8973468 + Normal-like 

RP11-65J21.3 chr16 14302288 14326353 + Normal-like 

RP11-738B7.1 chr7 129783370 129785185 - Normal-like 

 

 

Table S2: List of subtype-specific key lncRNAs (n = 91) 

LncRNA Sub-type Chrom Start End 

AC005152.3 Basal chr17 72021851 72034092 

AC087491.2 Basal chr17 39619613 39622513 

AC144450.1 Basal chr2 1546665 1620113 

CCAT1 Basal chr8 127207866 127219088 

CTD-3032H12.1 Basal chr16 54937786 54938671 

DANCR Basal chr4 52712404 52720351 

HIF1A-AS2 Basal chr14 61715558 61751097 

HOTAIRM1 Basal chr7 27095647 27100265 

KCNK15-AS1 Basal chr20 44694892 44746021 

LINC00152 Basal chr2 87455368 87606805 

LINC00993 Basal chr10 37309185 37347031 

MALAT1 Basal chr11 65497762 65506516 

RMST Basal chr12 97431653 97565035 

RP11-279F6.1 Basal chr15 69463026 69571440 

RP11-281O15.4 Basal chr5 178969390 178990116 

SNHG14 Basal chr15 24978583 25419462 

TTC39A-AS1 Basal chr1 51329654 51335324 

XIST Basal chrX 73820651 73852753 

ZNF667-AS1 Basal chr19 56477250 56500666 

CTB-33O18.1 Her2 chr5 173562478 173573199 

CTD-2284J15.1 Her2 chr8 86333274 86343314 

ELOVL2-AS1 Her2 chr6 11043524 11078226 

FGF14-AS2 Her2 chr13 102394630 102395703 

GATA3-AS1 Her2 chr10 8050450 8053484 

KIRREL3-AS1 Her2 chr11 126543947 126610948 

LINC00839 Her2 chr10 42475543 42495336 

LINC01016 Her2 chr6 33867506 33896914 

MIR31HG Her2 chr9 21455642 21559669 

RP1-232P20.1 Her2 chr6 5451683 5458075 

RP11-20F24.2 Her2 chr10 37240887 37242049 

RP11-28F1.2 Her2 chr18 63313802 63314376 

TINCR Her2 chr19 5558167 5568034 

VPS9D1-AS1 Her2 chr16 89711856 89718165 
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BCAR4 Luminal A chr16 11819829 11828845 

BCYRN1 Luminal A chr2 47331060 47344517 

CTD-2015G9.2 Luminal A chr16 86722091 86741059 

CTD-2081C10.7 Luminal A chr5 53880293 53881051 

H19 Luminal A chr11 1995163 2001470 

HOXA-AS2 Luminal A chr7 27107777 27134302 

LINC00324 Luminal A chr17 8220642 8224043 

LINC00472 Luminal A chr6 71344344 71420769 

LINC00511 Luminal A chr17 72323123 72640472 

LINC00922 Luminal A chr16 65284499 65576300 

LINC01272 Luminal A chr20 50267486 50279795 

MAPT-AS1 Luminal A chr17 45843651 45895600 

PTPRG-AS1 Luminal A chr3 62260865 62369330 

RP11-21L23.2 Luminal A chr11 76800364 76804555 

ST8SIA6-AS1 Luminal A chr10 17386936 17413503 

TMPO-AS1 Luminal A chr12 98512973 98516422 

KRTAP5-AS1 Luminal A chr11 1571353 1599184 

NCK1-AS1 Luminal A chr3 136841726 136862054 

PARD3-AS1 Luminal A chr10 34815767 34816386 

PRKAG2-AS1 Luminal A chr7 151877042 151879223 

RAMP2-AS1 Luminal A chr17 42753914 42761257 

RERG-IT1 Luminal A chr12 15112363 15114698 

SEMA3B-AS1 Luminal A chr3 50266641 50267371 

SNHG3 Luminal A chr1 28505980 28510892 

HOTAIR Luminal A, B chr12 53962308 53974956 

STK4-AS1 Luminal A, B chr20 44963794 44966402 

MEG3 Luminal A, Basal chr14 100779410 100861031 

AC008268.1 Luminal B chr2 95666084 95668715 

AC016735.2 Luminal B chr2 43027853 43039547 

AP000439.3 Luminal B chr11 69477133 69479940 

DLEU7-AS1 Luminal B chr13 50807856 50849905 

DSCAM-AS1 Luminal B chr21 40383083 40385358 

GAS5 Luminal B chr1 173863900 173868882 

HAGLR Luminal B chr2 176173195 176188958 

LINC00992 Luminal B chr5 117415509 117546298 

MIR99AHG Luminal B chr21 16070522 16627397 

PVT1 Luminal B chr8 127794533 128101253 

SNHG17 Luminal B chr20 38420588 38435353 

SYN2 Luminal B chr3 12004402 12191400 

ZFAS1 Luminal B chr20 49278178 49295738 

DOCK9-AS2 Luminal B chr13 99087819 99088625 

PIK3CD-AS2 Luminal B chr1 9672426 9687555 

RARA-AS1 Luminal B chr17 40340867 40343136 

TPTEP1 Luminal B chr22 16601887 16698742 

TUSC8 Luminal B chr13 44400250 44405984 
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AFAP1-AS1 Normal-like chr4 7754090 7778928 

CTB-51J22.1 Normal-like chr7 74059576 74062284 

DLEU2 Normal-like chr13 49982552 50125720 

LINC00087 Normal-like chrX 135095028 135098634 

LINC00504 Normal-like chr4 14470465 14888169 

MCM3AP-AS1 Normal-like chr21 46229217 46259390 

MIR205HG Normal-like chr1 209428820 209432838 

PCAT6 Normal-like chr1 202810954 202812156 

RHPN1-AS1 Normal-like chr8 143366631 143368548 

UCA1 Normal-like chr19 15828961 15836320 

LHX4-AS1 Normal-like chr1 180269653 180502954 

DYNLL1-AS1 Normal-like chr12 120490328 120495940 

NNT-AS1 Normal-like chr5 43571594 43603230 

 

 

Table S3: List of known lncRNAs associated with any kind of diseases (n = 53) 

lncRNA Disease Name PubMed ID 

AC008268.1 breast cancer 26910840 

AC144450.1 astrocytoma 26252651 

AC144450.1 Nasopharyngeal carcinoma 24379026 

AFAP1-AS1 cancer 27471399 

AFAP1-AS1 cholangiocarcinoma 28535506 

AFAP1-AS1 colorectal cancer 27261589 

AFAP1-AS1 esophagus adenocarcinoma 23333711 

AFAP1-AS1 esophagus squamous cell carcinoma 26756568 

AFAP1-AS1 gallbladder cancer 27810781 

AFAP1-AS1 hepatocellular carcinoma 26803513 

AFAP1-AS1 lung adenocarcinoma 27797003 

AFAP1-AS1 lung cancer 26245991 

AFAP1-AS1 Nasopharyngeal carcinoma 26246469 

AFAP1-AS1 non-small cell lung carcinoma 26463625 

AFAP1-AS1 ovarian cancer 28051261 

AFAP1-AS1 pancreatic cancer 25910082 

AFAP1-AS1 pancreatic ductal adenocarcinoma 25925763 

AFAP1-AS1 stomach cancer 28451917 

AFAP1-AS1 thyroid cancer 29331858 

AFAP1-AS1 tongue squamous cell carcinoma 29310682 

BCAR4 breast cancer 16778085 

BCAR4 cervical cancer 28112728 

BCAR4 chondrosarcoma 28399646 

BCAR4 colon cancer 29190958 
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BCAR4 colorectal cancer 27197301 

BCAR4 non-small cell lung carcinoma 28077810 

BCAR4 osteosarcoma 27460090 

BCAR4 stomach cancer 29028095 

BCYRN1 breast cancer 9422992 

BCYRN1 Aging 17553964 

BCYRN1 Alzheimer's disease 1603265 

BCYRN1 astrocytoma 25561975 

BCYRN1 cancer 28651607 

BCYRN1 cervical cancer 9422992 

BCYRN1 colon cancer 29625226 

BCYRN1 esophageal cancer 9422992 

BCYRN1 Glioblastoma 25561975 

BCYRN1 lung cancer 9422992 

BCYRN1 malignant glioma 25561975 

BCYRN1 microinvasive gastric cancer 29039538 

BCYRN1 non-small cell lung carcinoma 25866480 

BCYRN1 ovarian cancer 9422992 

BCYRN1 parotid gland cancer 9422992 

BCYRN1 squamous cell carcinoma 27143917 

BCYRN1 tongue cancer 9422992 

BCYRN1 asthma 28960519 

CCAT1 breast cancer 26464701 

CCAT1 acute myeloid leukemia 26923190 

CCAT1 cancer 24594601 

CCAT1 cervical cancer 28849215 

CCAT1 colon cancer 29190961 

CCAT1 colorectal cancer 23416875 

CCAT1 endometrial cancer 27432114 

CCAT1 esophageal squamous cell carcinoma 27956498 

CCAT1 gallbladder cancer 25569100 

CCAT1 Glioma 28475287 

CCAT1 hepatocellular carcinoma 25884472 

CCAT1 intrahepatic cholangiocarcinoma 28921383 

CCAT1 laryngeal squamous cell carcinoma 28631575 

CCAT1 lung adenocarcinoma 27566568 

CCAT1 lung cancer 27212446 

CCAT1 lung squamous cell carcinoma 28076325 

CCAT1 malignant glioma 27765628 
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CCAT1 medulloblastoma 28777430 

CCAT1 multiple myeloma 29228867 

CCAT1 Nasopharyngeal carcinoma 28358263 

CCAT1 non-small cell lung carcinoma 25129441 

CCAT1 oral squamous cell carcinoma 28413645 

CCAT1 osteosarcoma 28549102 

CCAT1 ovarian cancer 24379988 

CCAT1 Ovarian epithelial cancer 28754469 

CCAT1 pancreatic cancer 28078015 

CCAT1 renal cell carcinoma 28470345 

CCAT1 retinoblastoma 28088735 

CCAT1 stomach cancer 28535628 

CCAT1 Neuralgia 29163801 

DANCR breast cancer 27716745 

DANCR astrocytoma 26252651 

DANCR bone disease 23438432 

DANCR brain cancer 29476310 

DANCR colorectal cancer 26617879 

DANCR hepatocellular carcinoma 25964079 

DANCR non-small cell lung carcinoma 29635134 

DANCR Osteoporosis, Postmenopausal 25660720 

DANCR osteosarcoma 26986815 

DANCR prostate cancer 23728290 

DANCR renal cell carcinoma 28765964 

DANCR stomach cancer 28618943 

DANCR Triple Negative Breast Neoplasms 28760736 

DLEU2 astrocytoma 26252651 

DLEU2 chronic lymphocytic leukemia 9395242 

DLEU2 Laryngeal Neoplasms 29687850 

DLEU2 Leukemia, Lymphoid 18562676 

DLEU2 lymphoma 11072235 

DLEU2 myeloid neoplasm 19591824 

DLEU2 pancreatic cancer 26045769 

DLEU7-AS1 colorectal cancer 29364477 

DSCAM-AS1 breast cancer 12177779 

DSCAM-AS1 idiopathic scoliosis 21216876 

FGF14-AS2 breast cancer 26820525 

GAS5 breast cancer 18836484 

GAS5 astrocytoma 26252651 



 136 

GAS5 B-cell lymphoma 24583225 

GAS5 bladder carcinoma 29445179 

GAS5 bladder transitional cell carcinomas 27878359 

GAS5 bladder urothelial carcinoma 28060759 

GAS5 cancer 22996375 

GAS5 cervical cancer 22487937 

GAS5 colorectal cancer 24926850 

GAS5 coronary artery disease 29267258 

GAS5 endometrial carcinoma 26511107 

GAS5 esophageal cancer 29386089 

GAS5 esophageal squamous cell carcinoma 29170131 

GAS5 Glioblastoma 23726844 

GAS5 Glioma 28666797 

GAS5 head and neck cancer 26482616 

GAS5 hepatocellular carcinoma 25120813 

GAS5 hypersensitivity reaction type II disease 20124551 

GAS5 hypertension 27432865 

GAS5 inflammatory bowel disease 28722800 

GAS5 kidney cancer 24373479 

GAS5 leukemia 20421347 

GAS5 liver cirrhosis 26446789 

GAS5 LPS-induced inflammatory injury 29448248 

GAS5 lung adenocarcinoma 25925741 

GAS5 lung cancer 26634743 

GAS5 lymphoma 18406879 

GAS5 malignant glioma 26370254 

GAS5 malignant pleural mesothelioma 24885398 

GAS5 mantle cell lymphoma 24703244 

GAS5 melanoma 18836484 

GAS5 multiple myeloma 24583225 

GAS5 Nasopharyngeal carcinoma 28977945 

GAS5 neuroblastoma 28035057 

GAS5 non-small cell lung carcinoma 24357161 

GAS5 osteoarthritis 25196583 

GAS5 osteosarcoma 28519068 

GAS5 ovarian cancer 26503132 

GAS5 pancreatic cancer 24026436 

GAS5 polycystic ovary syndrome 29648472 

GAS5 Prostate 24373479 
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GAS5 prostate cancer 18836484 

GAS5 renal cell carcinoma 23621190 

GAS5 stomach cancer 24884417 

GAS5 T-cell leukemia 18354083 

GAS5 thyroid cancer 28506768 

GAS5 Thyroid cancer, papillary 29423063 

GAS5 type 2 diabetes mellitus 26675493 

GAS5 urinary bladder cancer 24069260 

GATA3-AS1 renal cell carcinoma 24905231 

H19 breast adenocarcinoma 9811352 

H19 abdominal aortic aneurysm 29669788 

H19 adenocarcinoma 8785513 

H19 adrenocortical carcinoma 22019903 

H19 aortic valve disease 27789555 

H19 astrocytoma 25561975 

H19 atherosclerosis 21954592 

H19 Beckwith-Wiedemann syndrome 7987305 

H19 bladder carcinoma 7589512 

H19 breast cancer 12419837 

H19 cancer 15618002 

H19 cardiac fibroblast proliferation and fibrosis 27318893 

H19 cardiomyocyte hypertrophy 27084844 

H19 central nervous system disease 20380817 

H19 cervical cancer 8570220 

H19 cholangiocarcinoma 27809873 

H19 cholestatic liver injury 29425397 

H19 choriocarcinoma 8564957 

H19 chronic myeloid leukemia 24685695 

H19 colon cancer 15521051 

H19 colon carcinoma 21489289 

H19 colorectal cancer 8564957 

H19 Congenital Hyperinsulinism 11395395 

H19 coronary artery disease 25772106 

H19 Diabetic Cardiomyopathies 27796346 

H19 embryonal carcinoma 26415227 

H19 endometrial cancer 27775072 

H19 endometriosis 26089099 

H19 esophageal cancer 8564957 

H19 gallbladder cancer 27073719 
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H19 gastric adenocarcinoma 29479897 

H19 gastric cardia adenocarcinoma 24414129 

H19 gastrointestinal system cancer 27738631 

H19 germ cell cancer 16001432 

H19 gestational choriocarcinoma 8188082 

H19 gestational trophoblastic neoplasm 12648595 

H19 Glioblastoma 16707459 

H19 Glioma 27981546 

H19 growth restriction 20104244 

H19 head and neck squamous cell carcinoma 27994496 

H19 Heart Defects, Congenital 27035723 

H19 heart disease 27895893 

H19 Hematopoiesis 15645136 

H19 hepatocellular carcinoma 15736456 

H19 Hydatidiform Mole 12783848 

H19 hyperhomocysteinemia 15899898 

H19 hyperprolactinemia 15525575 

H19 infertility 20042264 

H19 intestinal epithelial barrier function 26884465 

H19 Keloid 27698867 

H19 kidney cancer 24373479 

H19 laryngeal squamous cell carcinoma 26872375 

H19 liver cancer 11175353 

H19 lung adenocarcinoma 25758555 

H19 lung cancer 8564957 

H19 malignant glioma 20380817 

H19 Marek Disease 10696440 

H19 medulloblastoma 8957451 

H19 melanoma 11437411 

H19 meningioma 10738131 

H19 Mullerian aplasia 21458801 

H19 multiple myeloma 29273733 

H19 myeloproliferative neoplasm 12682647 

H19 Nasopharyngeal carcinoma 27040767 

H19 nephroblastoma 16179496 

H19 Neural Tube Defects 22234160 

H19 neuroblastoma 23791884 

H19 non-small cell lung carcinoma 26482621 

H19 obesity 22341586 
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H19 oral squamous cell carcinoma 28975993 

H19 osteoarthritis 25430712 

H19 osteosarcoma 24141783 

H19 ovarian cancer 19656414 

H19 Ovarian epithelial cancer 10428315 

H19 pancreatic cancer 24920070 

H19 pancreatic ductal adenocarcinoma 24920070 

H19 papillary thyroid carcinoma 29287713 

H19 Parkinson's disease 27021022 

H19 Pheochromocytoma 21937622 

H19 pituitary adenoma 23791884 

H19 pneumoconiosis 27626436 

H19 polycythemia vera 10640993 

H19 Prader-Willi syndrome 23791884 

H19 pre-eclampsia 19570415 

H19 Prostate 24373479 

H19 prostate cancer 24063685 

H19 renal cell carcinoma 25866221 

H19 rheumatoid arthritis 12937131 

H19 Silver-Russell syndrome 19066168 

H19 squamous cell carcinoma 22996375 

H19 stomach cancer 9570380 

H19 thyroid cancer 27093644 

H19 trophoblastic neoplasm 8188082 

H19 ulcerative colitis 27661667 

H19 urinary bladder cancer 10413100 

HAGLR castration-resistant prostate cancer 28487115 

HAGLR cervical cancer 29228418 

HAGLR Glioma 29341117 

HAGLR hepatocellular carcinoma 28724429 

HAGLR neuroblastoma 24555823 

HAGLR non-small cell lung carcinoma 28443464 

HAGLR ovarian cancer 29416930 

HAGLR Ovarian epithelial cancer 29239819 

HAGLR stomach cancer 28475004 

HAGLR Thyroid cancer, papillary 28817151 

HAGLR urinary bladder cancer 27328915 

HAGLR stomach cancer 28475004 

HIF1A-AS2 breast cancer 22664915 
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HIF1A-AS2 breast carcinoma 14580258 

HIF1A-AS2 Glioblastoma 27264189 

HIF1A-AS2 kidney cancer 9923855 

HIF1A-AS2 osteosarcoma 23466354 

HIF1A-AS2 stomach cancer 25686741 

HIF1A-AS2 urinary bladder cancer 27018306 

HOTAIR breast cancer 19182780 

HOTAIR Abortion, Habitual 28750739 

HOTAIR acute myeloid leukemia 25979172 

HOTAIR Asthenozoospermia 26823733 

HOTAIR astrocytoma 25085602 

HOTAIR atypical teratoid rhabdoid tumor 25085602 

HOTAIR B-cell lymphoma 24583225 

HOTAIR bladder carcinoma 29673865 

HOTAIR bladder urothelial carcinoma 26781446 

HOTAIR cancer 29463216 

HOTAIR cerebrovascular disease 27613094 

HOTAIR cervical cancer 22487937 

HOTAIR chronic myeloid leukemia 27875938 

HOTAIR colon cancer 24667321 

HOTAIR colorectal cancer 21862635 

HOTAIR congestive heart failure 27317124 

HOTAIR cutaneous squamous cell carcinoma 27067026 

HOTAIR diffuse large B-cell lymphoma 27550047 

HOTAIR embryonal cancer 25085602 

HOTAIR endometrial cancer 24285342 

HOTAIR endometrial carcinoma 29466670 

HOTAIR Ependymoma 25085602 

HOTAIR esophageal cancer 28441714 

HOTAIR esophageal squamous cell carcinoma 27810266 

HOTAIR esophagus squamous cell carcinoma 24022190 

HOTAIR functionless pituitary adenoma 24469926 

HOTAIR gallbladder cancer 24953832 

HOTAIR gastric adenocarcinoma 23888369 

HOTAIR gastric cardia adenocarcinoma 25476857 

HOTAIR gastrointestinal stromal tumor 27659532 

HOTAIR gastrointestinal system cancer 24667321 

HOTAIR Glioblastoma 24203894 

HOTAIR Glioma 28083786 



 141 

HOTAIR head and neck squamous cell carcinoma 26592246 

HOTAIR heart disease 24788418 

HOTAIR hepatitis C 27129296 

HOTAIR hepatocellular carcinoma 21327457 

HOTAIR kidney cancer 24616104 

HOTAIR laryngeal squamous cell carcinoma 23141928 

HOTAIR Lemierre's syndrome 26806307 

HOTAIR leukemia 27748863 

HOTAIR Leukemia, Lymphoid 29513085 

HOTAIR liver cancer 24667321 

HOTAIR liver cirrhosis 27979710 

HOTAIR lung adenocarcinoma 24155936 

HOTAIR lung cancer 23668363 

HOTAIR lung small cell carcinoma 24591352 

HOTAIR malignant glioma 24203894 

HOTAIR medulloblastoma 25085602 

HOTAIR melanoma 23862139 

HOTAIR multiple myeloma 24583225 

HOTAIR Nasopharyngeal carcinoma 23281836 

HOTAIR neuroblastoma 29603181 

HOTAIR non-small cell lung carcinoma 23743197 

HOTAIR osteoarthritis 25430712 

HOTAIR osteosarcoma 25728753 

HOTAIR ovarian cancer 23600210 

HOTAIR Ovarian epithelial cancer 24662839 

HOTAIR pancreatic cancer 22614017 

HOTAIR pancreatic carcinoma 24667321 

HOTAIR pancreatic ductal adenocarcinoma 26482614 

HOTAIR papillary thyroid carcinoma 25997963 

HOTAIR Parkinson's disease 26979073 

HOTAIR pituitary adenoma 24469926 

HOTAIR pre-eclampsia 25807808 

HOTAIR prostate cancer 20864820 

HOTAIR renal carcinoma 25149152 

HOTAIR renal cell carcinoma 24935377 

HOTAIR retinoblastoma 27966488 

HOTAIR rheumatoid arthritis 24722995 

HOTAIR sarcoma 23543869 

HOTAIR solid tumors 27333150 
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HOTAIR sporadic thoracic aortic aneurysm 28757056 

HOTAIR squamous cell carcinoma 23717443 

HOTAIR stomach cancer 23847441 

HOTAIR thyroid cancer 28565838 

HOTAIR triple-receptor negative breast cancer 25996380 

HOTAIR urinary bladder cancer 25030736 

HOTAIRM1 acute myeloid leukemia 26436590 

HOTAIRM1 acute promyelocytic leukemia 24824789 

HOTAIRM1 astrocytoma 25561975 

HOTAIRM1 colorectal cancer 27307307 

HOTAIRM1 Glioblastoma 26111795 

HOTAIRM1 leukemia 28180285 

HOTAIRM1 malignant glioma 22709987 

HOTAIRM1 melanoma 27016304 

HOTAIRM1 pancreatic ductal adenocarcinoma 26676849 

HOXA-AS2 breast cancer 28545023 

HOXA-AS2 acute promyelocytic leukemia 23649634 

HOXA-AS2 colorectal cancer 28112720 

HOXA-AS2 gallbladder carcinoma 28388535 

HOXA-AS2 hepatocellular carcinoma 27855366 

HOXA-AS2 malignant glioma 29310118 

HOXA-AS2 melanoma 27016304 

HOXA-AS2 stomach cancer 26384350 

KCNK15-AS1 breast cancer 25929808 

KCNK15-AS1 osteoarthritis 25430712 

KRTAP5-AS1 astrocytoma 26252651 

KRTAP5-AS1 hepatocellular carcinoma 26492393 

LHX4-AS1 astrocytoma 26252651 

LINC00472 breast cancer 25865225 

LINC00472 colorectal cancer 29488624 

LINC00472 lung adenocarcinoma 27826625 

LINC00472 ovarian cancer 27667152 

LINC00511 breast cancer 26929647 

LINC00511 lung adenocarcinoma 27797003 

LINC00511 non-small cell lung carcinoma 27845772 

LINC00993 breast cancer 25996380 

LINC01016 breast cancer 26426411 

MALAT1 breast cancer 18006640 

MALAT1 acute monocytic leukemia 28713913 
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MALAT1 acute myeloid leukemia 28713913 

MALAT1 amyotrophic lateral sclerosis 27338628 

MALAT1 astrocytoma 26252651 

MALAT1 B-cell lymphoma 21489289 

MALAT1 bladder carcinoma 28648755 

MALAT1 bladder urothelial carcinoma 23153939 

MALAT1 calcific aortic valve disease 28522163 

MALAT1 cancer 20711585 

MALAT1 cervical cancer 20213048 

MALAT1 cholangiocarcinoma 28592124 

MALAT1 choriocarcinoma 29096355 

MALAT1 colon cancer 21489289 

MALAT1 colorectal cancer 21503572 

MALAT1 Congenital Microtia 26282502 

MALAT1 decreased myogenesis 23485710 

MALAT1 diabetes mellitus 24436191 

MALAT1 diabetes mellitus 26512840 

MALAT1 Diabetic Cardiomyopathies 26476026 

MALAT1 Diabetic Nephropathies 27964927 

MALAT1 endometrial adenocarcinoma 25085246 

MALAT1 endometrial stromal sarcoma 16441420 

MALAT1 esophageal cancer 27470544 

MALAT1 esophageal squamous cell carcinoma 27935117 

MALAT1 fatty liver disease 26935028 

MALAT1 Fibroma 27101025 

MALAT1 fibrosarcoma 22491206 

MALAT1 Flavivirus Infections 26634309 

MALAT1 Follicular and H¬ürthle Cell Thyroid Neoplasm 28660408 

MALAT1 gallbladder cancer 24658096 

MALAT1 gastrointestinal system cancer 27313790 

MALAT1 Glioblastoma 25772239 

MALAT1 Glioma 27313790 

MALAT1 hepatocellular carcinoma 16878148 

MALAT1 high glucose-induced podocyte injury 28444861 

MALAT1 histiocytoid hemangioma 27709553 

MALAT1 HIV 26139386 

MALAT1 Hyperglycemia 25787249 

MALAT1 ischemic stroke 28093478 

MALAT1 kidney cancer 24373479 
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MALAT1 Klatskin's tumor 28059437 

MALAT1 laryngeal squamous cell carcinoma 24817925 

MALAT1 liver cancer 21489289 

MALAT1 liver cirrhosis 26697839 

MALAT1 lung adenocarcinoma 19690017 

MALAT1 lung cancer 17270048 

MALAT1 lung small cell carcinoma 22928560 

MALAT1 lymph node metastasis 26989678 

MALAT1 malignant glioma 24926466 

MALAT1 mantle cell lymphoma 27998273 

MALAT1 melanoma 19625619 

MALAT1 multiple myeloma 24583225 

MALAT1 Nasopharyngeal carcinoma 23688988 

MALAT1 neuroblastoma 20149803 

MALAT1 non-small cell lung carcinoma 12970751 

MALAT1 oral squamous cell carcinoma 26522444 

MALAT1 osteosarcoma 17660802 

MALAT1 ovarian cancer 18006640 

MALAT1 ovarian endometrial cancer 27446438 

MALAT1 Ovarian epithelial cancer 28770968 

MALAT1 pancreatic cancer 25269958 

MALAT1 pancreatic carcinoma 22996375 

MALAT1 pancreatic ductal adenocarcinoma 24815433 

MALAT1 papillary thyroid carcinoma 25997963 

MALAT1 Parkinson's disease 27021022 

MALAT1 pituitary adenoma 24469926 

MALAT1 pre-eclampsia 26722461 

MALAT1 primary pulmonary hypertension 27362960 

MALAT1 proliferative vitreoretinopathy 26241674 

MALAT1 Prostate 22996375 

MALAT1 prostate cancer 21489289 

MALAT1 renal cell carcinoma 25600645 

MALAT1 renal clear cell carcinoma 25480417 

MALAT1 retinal degeneration 24436191 

MALAT1 retinoblastoma 28550678 

MALAT1 rheumatoid arthritis 28026003 

MALAT1 Seizures 22960213 

MALAT1 squamous cell carcinoma 25538231 

MALAT1 stomach cancer 24857172 
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MALAT1 systemic lupus erythematosus 29100395 

MALAT1 TDP-43 protein, human 23791884 

MALAT1 thyroid cancer 27470543 

MALAT1 thyroid medullary carcinoma 29107050 

MALAT1 tongue cancer 28260102 

MALAT1 tongue squamous cell carcinoma 27353727 

MALAT1 Triple Negative Breast Neoplasms 28915533 

MALAT1 triple-receptor negative breast cancer 25996380 

MALAT1 urinary bladder cancer 22722759 

MALAT1 uterine cancer 21489289 

MALAT1 uterine corpus endometrial stromal sarcoma 19379481 

MALAT1 uveal melanoma 27725873 

MALAT1 vulva squamous cell carcinoma 27633334 

MAPT-AS1 Triple Negative Breast Neoplasms 29441192 

MAPT-AS1 Parkinson's disease 27336847 

MCM3AP-AS1 Glioblastoma 27229531 

MEG3 breast cancer 14602737 

MEG3 acute myeloid leukemia 19595458 

MEG3 bladder urothelial carcinoma 28060759 

MEG3 cancer 21400503 

MEG3 cerebrovascular disease 27651151 

MEG3 cervical cancer 14602737 

MEG3 chronic myeloid leukemia 14602737 

MEG3 chronic obstructive pulmonary disease 27932875 

MEG3 colon cancer 14602737 

MEG3 colorectal cancer 25636452 

MEG3 diabetes mellitus 26603935 

MEG3 endometrial cancer 27470401 

MEG3 endometrial carcinoma 29094270 

MEG3 esophageal cancer 28539329 

MEG3 esophageal squamous cell carcinoma 28405686 

MEG3 esophagus squamous cell carcinoma 27778235 

MEG3 functionless pituitary adenoma 15644399 

MEG3 gallbladder cancer 26812694 

MEG3 gastric cardia adenocarcinoma 28345805 

MEG3 Glioblastoma 22234798 

MEG3 Glioma 28276316 

MEG3 hepatocellular carcinoma 21625215 

MEG3 Heroin Dependence 21128942 
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MEG3 Hirschsprung's disease 29050236 

MEG3 Huntington's disease 22202438 

MEG3 kidney cancer 24373479 

MEG3 liver cancer 29449541 

MEG3 liver cirrhosis 25201080 

MEG3 liver disease 27770549 

MEG3 lung adenocarcinoma 25992654 

MEG3 lung cancer 14602737 

MEG3 lung squamous cell carcinoma 28076325 

MEG3 malignant glioma 14602737 

MEG3 melanoma 27016304 

MEG3 meningioma 20179190 

MEG3 metabolic syndrome X 26898430 

MEG3 multiple myeloma 25753650 

MEG3 myelodysplastic syndrome 19595458 

MEG3 myelofibrosis 24707949 

MEG3 Nasopharyngeal carcinoma 27597634 

MEG3 nephroblastoma 15798773 

MEG3 neuroblastoma 15798773 

MEG3 non-small cell lung carcinoma 24098911 

MEG3 oral squamous cell carcinoma 23292713 

MEG3 osteoarthritis 26090403 

MEG3 ovarian cancer 28175963 

MEG3 Ovarian epithelial cancer 24859196 

MEG3 pancreatic cancer 26850851 

MEG3 pancreatic endocrine carcinoma 25565142 

MEG3 papillary thyroid carcinoma 25997963 

MEG3 phaeochromocytoma 15798773 

MEG3 pituitary adenoma 14602737 

MEG3 pituitary cancer 18628527 

MEG3 Prostate 14602737 

MEG3 prostate cancer 14602737 

MEG3 Purpura, Thrombocytopenic 27522004 

MEG3 renal clear cell carcinoma 26223924 

MEG3 retinoblastoma 26662307 

MEG3 stomach cancer 24006224 

MEG3 testicular germ cell cancer 27158395 

MEG3 tongue squamous cell carcinoma 24343426 

MEG3 type 1 diabetes mellitus 19966805 
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MEG3 urinary bladder cancer 14602737 

MEG3 vulva squamous cell carcinoma 27633334 

MIR31HG Hirschsprung's disease 29626357 

MIR31HG lung adenocarcinoma 27903974 

MIR31HG non-small cell lung carcinoma 28529576 

MIR31HG pancreatic ductal adenocarcinoma 26549028 

MIR31HG stomach cancer 26692098 

MIR31HG urinary bladder cancer 27434291 

MIR99AHG megakaryoblastic leukemia 25027842 

MIR99AHG myeloid leukemia 25027842 

NCK1-AS1 astrocytoma 26252651 

NNT-AS1 breast cancer 29710510 

NNT-AS1 cervical cancer 28628975 

NNT-AS1 colorectal cancer 27966450 

NNT-AS1 hepatocellular carcinoma 29179477 

NNT-AS1 osteosarcoma 29518771 

NNT-AS1 ovarian cancer 28969062 

PCAT6 triple-receptor negative breast cancer 25996380 

PCAT6 lung cancer 27458097 

PCAT6 non-small cell lung carcinoma 27322209 

PCAT6 prostate cancer 23728290 

PIK3CD-AS2 astrocytoma 26252651 

PTPRG-AS1 breast cancer 26409453 

PVT1 breast cancer 17908964 

PVT1 stomach cancer 27986464 

PVT1 acute promyelocytic leukemia 26545364 

PVT1 asthma 27484035 

PVT1 astrocytoma 26252651 

PVT1 B-cell lymphoma 23547836 

PVT1 bladder urothelial carcinoma 28969069 

PVT1 Burkitt lymphoma 17503467 

PVT1 cancer 2725491 

PVT1 Cardiomegaly 26045764 

PVT1 cervical cancer 27232880 

PVT1 clear cell renal cell carcinoma 29081406 

PVT1 cleft lip 19270707 

PVT1 colon cancer 25043044 

PVT1 colorectal cancer 24196785 

PVT1 diabetes mellitus 26971628 
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PVT1 Diabetic Nephropathies 21526116 

PVT1 esophageal cancer 27698800 

PVT1 esophageal squamous cell carcinoma 28404954 

PVT1 Glioma 28351322 

PVT1 hematologic cancer 26458445 

PVT1 hepatocellular carcinoma 25624916 

PVT1 Hodgkin's lymphoma 21037568 

PVT1 kidney cancer 17881614 

PVT1 lung squamous cell carcinoma 26928440 

PVT1 lymph node metastasis 26882847 

PVT1 lymphoma 2470097 

PVT1 malignant glioma 27282637 

PVT1 malignant pleural mesothelioma 24926545 

PVT1 melanoma 28265576 

PVT1 multiple myeloma 22869583 

PVT1 Nasopharyngeal carcinoma 29445147 

PVT1 non-small cell lung carcinoma 25400777 

PVT1 osteosarcoma 28602700 

PVT1 ovarian cancer 17908964 

PVT1 pancreatic cancer 21316338 

PVT1 pancreatic ductal adenocarcinoma 25668599 

PVT1 papillary thyroid carcinoma 29280051 

PVT1 plasmacytoma 17503467 

PVT1 prostate cancer 21814516 

PVT1 renal carcinoma 27366943 

PVT1 renal cell carcinoma 26878386 

PVT1 renal cell carcinoma 29152119 

PVT1 stomach cancer 25258543 

PVT1 thyroid cancer 26427660 

PVT1 type 1 diabetes mellitus 21526116 

PVT1 type 2 diabetes mellitus 17395743 

PVT1 urinary bladder cancer 26517688 

RAMP2-AS1 astrocytoma 26252651 

RAMP2-AS1 Glioblastoma 27784795 

RHPN1-AS1 uveal melanoma 28124977 

RMST breast cancer 27380926 

RMST melanoma 27016304 

RMST rhabdomyosarcoma 12082533 

RMST Triple Negative Breast Neoplasms 29215701 
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SNHG14 Angelman syndrome 23781896 

SNHG14 Prader-Willi syndrome 23781896 

SNHG14 stomach cancer 29667771 

SNHG17 colorectal cancer 28933484 

SNHG3 Alzheimer's disease 21961160 

SNHG3 colorectal cancer 28731158 

SNHG3 hepatocellular carcinoma 26373735 

ST8SIA6-AS1 breast cancer 26929647 

TINCR astrocytoma 26252651 

TINCR chronic obstructive pulmonary disease 27932875 

TINCR colorectal cancer 27009809 

TINCR esophagus squamous cell carcinoma 26833746 

TINCR lung cancer 29324317 

TINCR non-small cell lung carcinoma 29427662 

TINCR squamous cell carcinoma 24115003 

TINCR stomach cancer 25728677 

TINCR urinary bladder cancer 27586866 

TMPO-AS1 astrocytoma 26252651 

TUSC8 cervical cancer 24667250 

UCA1 breast cancer 16914571 

UCA1 acute myeloid leukemia 26053097 

UCA1 acute myocardial infarction 26949706 

UCA1 astrocytoma 26252651 

UCA1 bladder adenocarcinoma 25123267 

UCA1 bladder carcinoma 29113184 

UCA1 cancer 24457952 

UCA1 cervical cancer 16914571 

UCA1 cholangiocarcinoma 29221199 

UCA1 chronic myeloid leukemia 27854515 

UCA1 colon cancer 26885155 

UCA1 colon carcinoma 16914571 

UCA1 endometrial cancer 27540975 

UCA1 esophageal cancer 16914571 

UCA1 gallbladder cancer 28624787 

UCA1 glandular cystitis 16914571 

UCA1 Glioma 28105536 

UCA1 hepatocellular carcinoma 25760077 

UCA1 hypopharyngeal squamous cell carcinoma 28327194 

UCA1 Lithiasis 16914571 
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UCA1 liver cancer 16914571 

UCA1 lung cancer 26380024 

UCA1 melanoma 24892958 

UCA1 multiple myeloma 28543758 

UCA1 muscle-invasive bladder cancer 27863388 

UCA1 non-small cell lung carcinoma 26160838 

UCA1 non-small cell lung carcinoma 27329842 

UCA1 oral squamous cell carcinoma 23292713 

UCA1 osteosarcoma 27335776 

UCA1 osteosarcoma 28239821 

UCA1 ovarian cancer 24379988 

UCA1 pancreatic cancer 21593646 

UCA1 pancreatic ductal adenocarcinoma 27628540 

UCA1 prostate cancer 23728290 

UCA1 Prostatic Hyperplasia 16914571 

UCA1 renal cell carcinoma 16914571 

UCA1 rheumatoid arthritis 29509238 

UCA1 squamous cell carcinoma 17416635 

UCA1 stomach cancer 16914571 

UCA1 temporal lobe epilepsy 25552301 

UCA1 thyroid cancer 16914571 

UCA1 tongue squamous cell carcinoma 24332332 

UCA1 urinary bladder cancer 16914571 

VPS9D1-AS1 stomach cancer 29036784 

XIST breast cancer 17545591 

XIST acute lymphocytic leukemia 27535859 

XIST bladder carcinoma 29212249 

XIST cancer 23660942 

XIST cervical squamous cell carcinoma 27899965 

XIST collecting duct carcinoma 19154479 

XIST colon cancer 29679755 

XIST colorectal cancer 17143621 

XIST denatured dermis 28771809 

XIST esophageal squamous cell carcinoma 29100288 

XIST Glioblastoma 25578780 

XIST hematologic cancer 23415223 

XIST hepatocellular carcinoma 27100897 

XIST Klinefelter's syndrome 18854511 

XIST malignant glioma 25578780 
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XIST melanoma 27016304 

XIST microinvasive gastric cancer 29039538 

XIST Nasopharyngeal carcinoma 27461945 

XIST neurodegenerative disease 22312272 

XIST non-small cell lung carcinoma 26339353 

XIST osteosarcoma 28409547 

XIST ovarian cancer 12492109 

XIST pancreatic cancer 28295543 

XIST prostate cancer 16261845 

XIST stomach cancer 27620004 

XIST testicular germ cell cancer 12629412 

XIST urinary bladder cancer 24373479 

ZFAS1 breast cancer 21460236 

ZFAS1 bladder carcinoma 29653362 

ZFAS1 cancer 29137442 

ZFAS1 Carcinoma, Ductal 21460236 

ZFAS1 Colonic Neoplasms 27862275 

ZFAS1 colorectal cancer 26506418 

ZFAS1 Glioma 28081466 

ZFAS1 hepatocellular carcinoma 26069248 

ZFAS1 non-small cell lung carcinoma 28051258 

ZFAS1 ovarian cancer 28099946 

ZFAS1 Ovarian epithelial cancer 28099946 

ZFAS1 prostate cancer 29416676 

ZFAS1 rheumatoid arthritis 28721682 

ZFAS1 stomach cancer 27246976 

ZNF667-AS1 breast cancer 28690657 

ZNF667-AS1 cervical cancer 29243775 

 

 

Table S4: List of known lncRNAs associated with breast cancer and other diseases (n = 

25). 

lncRNA Disease Name PubMed ID 

BCAR4 breast cancer 16778085 

BCAR4 cervical cancer 28112728 

BCAR4 chondrosarcoma 28399646 

BCAR4 colon cancer 29190958 

BCAR4 colorectal cancer 27197301 

BCAR4 non-small cell lung carcinoma 28077810 
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BCAR4 osteosarcoma 27460090 

BCAR4 stomach cancer 29028095 

BCYRN1 breast cancer 9422992 

BCYRN1 Aging 17553964 

BCYRN1 Alzheimer's disease 1603265 

BCYRN1 astrocytoma 25561975 

BCYRN1 cancer 28651607 

BCYRN1 cervical cancer 9422992 

BCYRN1 colon cancer 29625226 

BCYRN1 esophageal cancer 9422992 

BCYRN1 Glioblastoma 25561975 

BCYRN1 lung cancer 9422992 

BCYRN1 malignant glioma 25561975 

BCYRN1 microinvasive gastric cancer 29039538 

BCYRN1 non-small cell lung carcinoma 25866480 

BCYRN1 ovarian cancer 9422992 

BCYRN1 parotid gland cancer 9422992 

BCYRN1 squamous cell carcinoma 27143917 

BCYRN1 tongue cancer 9422992 

BCYRN1 asthma 28960519 

CCAT1 breast cancer 26464701 

CCAT1 acute myeloid leukemia 26923190 

CCAT1 cancer 24594601 

CCAT1 cervical cancer 28849215 

CCAT1 colon cancer 29190961 

CCAT1 colorectal cancer 23416875 

CCAT1 endometrial cancer 27432114 

CCAT1 esophageal squamous cell carcinoma 27956498 

CCAT1 gallbladder cancer 25569100 

CCAT1 Glioma 28475287 

CCAT1 hepatocellular carcinoma 25884472 

CCAT1 intrahepatic cholangiocarcinoma 28921383 

CCAT1 laryngeal squamous cell carcinoma 28631575 

CCAT1 lung adenocarcinoma 27566568 

CCAT1 lung cancer 27212446 

CCAT1 lung squamous cell carcinoma 28076325 

CCAT1 malignant glioma 27765628 

CCAT1 medulloblastoma 28777430 

CCAT1 multiple myeloma 29228867 
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CCAT1 Nasopharyngeal carcinoma 28358263 

CCAT1 non-small cell lung carcinoma 25129441 

CCAT1 oral squamous cell carcinoma 28413645 

CCAT1 osteosarcoma 28549102 

CCAT1 ovarian cancer 24379988 

CCAT1 Ovarian epithelial cancer 28754469 

CCAT1 pancreatic cancer 28078015 

CCAT1 renal cell carcinoma 28470345 

CCAT1 retinoblastoma 28088735 

CCAT1 stomach cancer 28535628 

CCAT1 Neuralgia 29163801 

DANCR breast cancer 27716745 

DANCR astrocytoma 26252651 

DANCR bone disease 23438432 

DANCR brain cancer 29476310 

DANCR colorectal cancer 26617879 

DANCR hepatocellular carcinoma 25964079 

DANCR non-small cell lung carcinoma 29635134 

DANCR Osteoporosis, Postmenopausal 25660720 

DANCR osteosarcoma 26986815 

DANCR prostate cancer 23728290 

DANCR renal cell carcinoma 28765964 

DANCR stomach cancer 28618943 

DANCR Triple Negative Breast Neoplasms 28760736 

DSCAM-AS1 breast cancer 12177779 

DSCAM-AS1 idiopathic scoliosis 21216876 

GAS5 breast cancer 18836484 

GAS5 astrocytoma 26252651 

GAS5 B-cell lymphoma 24583225 

GAS5 bladder carcinoma 29445179 

GAS5 bladder transitional cell carcinomas 27878359 

GAS5 bladder urothelial carcinoma 28060759 

GAS5 cancer 22996375 

GAS5 cervical cancer 22487937 

GAS5 colorectal cancer 24926850 

GAS5 coronary artery disease 29267258 

GAS5 endometrial carcinoma 26511107 

GAS5 esophageal cancer 29386089 

GAS5 esophageal squamous cell carcinoma 29170131 
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GAS5 Glioblastoma 23726844 

GAS5 Glioma 28666797 

GAS5 head and neck cancer 26482616 

GAS5 hepatocellular carcinoma 25120813 

GAS5 hypersensitivity reaction type II disease 20124551 

GAS5 hypertension 27432865 

GAS5 inflammatory bowel disease 28722800 

GAS5 kidney cancer 24373479 

GAS5 leukemia 20421347 

GAS5 liver cirrhosis 26446789 

GAS5 LPS-induced inflammatory injury 29448248 

GAS5 lung adenocarcinoma 25925741 

GAS5 lung cancer 26634743 

GAS5 lymphoma 18406879 

GAS5 malignant glioma 26370254 

GAS5 malignant pleural mesothelioma 24885398 

GAS5 mantle cell lymphoma 24703244 

GAS5 melanoma 18836484 

GAS5 multiple myeloma 24583225 

GAS5 Nasopharyngeal carcinoma 28977945 

GAS5 neuroblastoma 28035057 

GAS5 non-small cell lung carcinoma 24357161 

GAS5 osteoarthritis 25196583 

GAS5 osteosarcoma 28519068 

GAS5 ovarian cancer 26503132 

GAS5 pancreatic cancer 24026436 

GAS5 polycystic ovary syndrome 29648472 

GAS5 Prostate 24373479 

GAS5 prostate cancer 18836484 

GAS5 renal cell carcinoma 23621190 

GAS5 stomach cancer 24884417 

GAS5 T-cell leukemia 18354083 

GAS5 thyroid cancer 28506768 

GAS5 Thyroid cancer, papillary 29423063 

GAS5 type 2 diabetes mellitus 26675493 

GAS5 urinary bladder cancer 24069260 

H19 breast adenocarcinoma 9811352 

H19 abdominal aortic aneurysm 29669788 

H19 adenocarcinoma 8785513 
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H19 adrenocortical carcinoma 22019903 

H19 aortic valve disease 27789555 

H19 astrocytoma 25561975 

H19 atherosclerosis 21954592 

H19 Beckwith-Wiedemann syndrome 7987305 

H19 bladder carcinoma 7589512 

H19 breast cancer 12419837 

H19 cancer 15618002 

H19 cardiac fibroblast proliferation and fibrosis 27318893 

H19 cardiomyocyte hypertrophy 27084844 

H19 central nervous system disease 20380817 

H19 cervical cancer 8570220 

H19 cholangiocarcinoma 27809873 

H19 cholestatic liver injury 29425397 

H19 choriocarcinoma 8564957 

H19 chronic myeloid leukemia 24685695 

H19 colon cancer 15521051 

H19 colon carcinoma 21489289 

H19 colorectal cancer 8564957 

H19 Congenital Hyperinsulinism 11395395 

H19 coronary artery disease 25772106 

H19 Diabetic Cardiomyopathies 27796346 

H19 embryonal carcinoma 26415227 

H19 endometrial cancer 27775072 

H19 endometriosis 26089099 

H19 esophageal cancer 8564957 

H19 gallbladder cancer 27073719 

H19 gastric adenocarcinoma 29479897 

H19 gastric cardia adenocarcinoma 24414129 

H19 gastrointestinal system cancer 27738631 

H19 germ cell cancer 16001432 

H19 gestational choriocarcinoma 8188082 

H19 gestational trophoblastic neoplasm 12648595 

H19 Glioblastoma 16707459 

H19 Glioma 27981546 

H19 growth restriction 20104244 

H19 head and neck squamous cell carcinoma 27994496 

H19 Heart Defects, Congenital 27035723 

H19 heart disease 27895893 
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H19 Hematopoiesis 15645136 

H19 hepatocellular carcinoma 15736456 

H19 Hydatidiform Mole 12783848 

H19 hyperhomocysteinemia 15899898 

H19 hyperprolactinemia 15525575 

H19 infertility 20042264 

H19 intestinal epithelial barrier function 26884465 

H19 Keloid 27698867 

H19 kidney cancer 24373479 

H19 laryngeal squamous cell carcinoma 26872375 

H19 liver cancer 11175353 

H19 lung adenocarcinoma 25758555 

H19 lung cancer 8564957 

H19 malignant glioma 20380817 

H19 Marek Disease 10696440 

H19 medulloblastoma 8957451 

H19 melanoma 11437411 

H19 meningioma 10738131 

H19 Mullerian aplasia 21458801 

H19 multiple myeloma 29273733 

H19 myeloproliferative neoplasm 12682647 

H19 Nasopharyngeal carcinoma 27040767 

H19 nephroblastoma 16179496 

H19 Neural Tube Defects 22234160 

H19 neuroblastoma 23791884 

H19 non-small cell lung carcinoma 26482621 

H19 obesity 22341586 

H19 oral squamous cell carcinoma 28975993 

H19 osteoarthritis 25430712 

H19 osteosarcoma 24141783 

H19 ovarian cancer 19656414 

H19 Ovarian epithelial cancer 10428315 

H19 pancreatic cancer 24920070 

H19 pancreatic ductal adenocarcinoma 24920070 

H19 papillary thyroid carcinoma 29287713 

H19 Parkinson's disease 27021022 

H19 Pheochromocytoma 21937622 

H19 pituitary adenoma 23791884 

H19 pneumoconiosis 27626436 



 157 

H19 polycythemia vera 10640993 

H19 Prader-Willi syndrome 23791884 

H19 pre-eclampsia 19570415 

H19 Prostate 24373479 

H19 prostate cancer 24063685 

H19 renal cell carcinoma 25866221 

H19 rheumatoid arthritis 12937131 

H19 Silver-Russell syndrome 19066168 

H19 squamous cell carcinoma 22996375 

H19 stomach cancer 9570380 

H19 thyroid cancer 27093644 

H19 trophoblastic neoplasm 8188082 

H19 ulcerative colitis 27661667 

H19 urinary bladder cancer 10413100 

HIF1A-AS2 breast cancer 22664915 

HIF1A-AS2 breast carcinoma 14580258 

HIF1A-AS2 Glioblastoma 27264189 

HIF1A-AS2 kidney cancer 9923855 

HIF1A-AS2 osteosarcoma 23466354 

HIF1A-AS2 stomach cancer 25686741 

HIF1A-AS2 urinary bladder cancer 27018306 

HOTAIR breast cancer 19182780 

HOTAIR Abortion, Habitual 28750739 

HOTAIR acute myeloid leukemia 25979172 

HOTAIR Asthenozoospermia 26823733 

HOTAIR astrocytoma 25085602 

HOTAIR atypical teratoid rhabdoid tumor 25085602 

HOTAIR B-cell lymphoma 24583225 

HOTAIR bladder carcinoma 29673865 

HOTAIR bladder urothelial carcinoma 26781446 

HOTAIR cancer 29463216 

HOTAIR cerebrovascular disease 27613094 

HOTAIR cervical cancer 22487937 

HOTAIR chronic myeloid leukemia 27875938 

HOTAIR colon cancer 24667321 

HOTAIR colorectal cancer 21862635 

HOTAIR congestive heart failure 27317124 

HOTAIR cutaneous squamous cell carcinoma 27067026 

HOTAIR diffuse large B-cell lymphoma 27550047 
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HOTAIR embryonal cancer 25085602 

HOTAIR endometrial cancer 24285342 

HOTAIR endometrial carcinoma 29466670 

HOTAIR Ependymoma 25085602 

HOTAIR esophageal cancer 28441714 

HOTAIR esophageal squamous cell carcinoma 27810266 

HOTAIR esophagus squamous cell carcinoma 24022190 

HOTAIR functionless pituitary adenoma 24469926 

HOTAIR gallbladder cancer 24953832 

HOTAIR gastric adenocarcinoma 23888369 

HOTAIR gastric cardia adenocarcinoma 25476857 

HOTAIR gastrointestinal stromal tumor 27659532 

HOTAIR gastrointestinal system cancer 24667321 

HOTAIR Glioblastoma 24203894 

HOTAIR Glioma 28083786 

HOTAIR head and neck squamous cell carcinoma 26592246 

HOTAIR heart disease 24788418 

HOTAIR hepatitis C 27129296 

HOTAIR hepatocellular carcinoma 21327457 

HOTAIR kidney cancer 24616104 

HOTAIR laryngeal squamous cell carcinoma 23141928 

HOTAIR Lemierre's syndrome 26806307 

HOTAIR leukemia 27748863 

HOTAIR Leukemia, Lymphoid 29513085 

HOTAIR liver cancer 24667321 

HOTAIR liver cirrhosis 27979710 

HOTAIR lung adenocarcinoma 24155936 

HOTAIR lung cancer 23668363 

HOTAIR lung small cell carcinoma 24591352 

HOTAIR malignant glioma 24203894 

HOTAIR medulloblastoma 25085602 

HOTAIR melanoma 23862139 

HOTAIR multiple myeloma 24583225 

HOTAIR Nasopharyngeal carcinoma 23281836 

HOTAIR neuroblastoma 29603181 

HOTAIR non-small cell lung carcinoma 23743197 

HOTAIR osteoarthritis 25430712 

HOTAIR osteosarcoma 25728753 

HOTAIR ovarian cancer 23600210 



 159 

HOTAIR Ovarian epithelial cancer 24662839 

HOTAIR pancreatic cancer 22614017 

HOTAIR pancreatic carcinoma 24667321 

HOTAIR pancreatic ductal adenocarcinoma 26482614 

HOTAIR papillary thyroid carcinoma 25997963 

HOTAIR Parkinson's disease 26979073 

HOTAIR pituitary adenoma 24469926 

HOTAIR pre-eclampsia 25807808 

HOTAIR prostate cancer 20864820 

HOTAIR renal carcinoma 25149152 

HOTAIR renal cell carcinoma 24935377 

HOTAIR retinoblastoma 27966488 

HOTAIR rheumatoid arthritis 24722995 

HOTAIR sarcoma 23543869 

HOTAIR solid tumors 27333150 

HOTAIR sporadic thoracic aortic aneurysm 28757056 

HOTAIR squamous cell carcinoma 23717443 

HOTAIR stomach cancer 23847441 

HOTAIR thyroid cancer 28565838 

HOTAIR triple-receptor negative breast cancer 25996380 

HOTAIR urinary bladder cancer 25030736 

HOXA-AS2 breast cancer 28545023 

HOXA-AS2 acute promyelocytic leukemia 23649634 

HOXA-AS2 colorectal cancer 28112720 

HOXA-AS2 gallbladder carcinoma 28388535 

HOXA-AS2 hepatocellular carcinoma 27855366 

HOXA-AS2 malignant glioma 29310118 

HOXA-AS2 melanoma 27016304 

HOXA-AS2 stomach cancer 26384350 

KCNK15-AS1 breast cancer 25929808 

KCNK15-AS1 osteoarthritis 25430712 

LINC00472 breast cancer 25865225 

LINC00472 colorectal cancer 29488624 

LINC00472 lung adenocarcinoma 27826625 

LINC00472 ovarian cancer 27667152 

LINC00511 breast cancer 26929647 

LINC00511 lung adenocarcinoma 27797003 

LINC00511 non-small cell lung carcinoma 27845772 

MALAT1 breast cancer 18006640 
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MALAT1 acute monocytic leukemia 28713913 

MALAT1 acute myeloid leukemia 28713913 

MALAT1 amyotrophic lateral sclerosis 27338628 

MALAT1 astrocytoma 26252651 

MALAT1 B-cell lymphoma 21489289 

MALAT1 bladder carcinoma 28648755 

MALAT1 bladder urothelial carcinoma 23153939 

MALAT1 calcific aortic valve disease 28522163 

MALAT1 cancer 20711585 

MALAT1 cervical cancer 20213048 

MALAT1 cholangiocarcinoma 28592124 

MALAT1 choriocarcinoma 29096355 

MALAT1 colon cancer 21489289 

MALAT1 colorectal cancer 21503572 

MALAT1 Congenital Microtia 26282502 

MALAT1 decreased myogenesis 23485710 

MALAT1 diabetes mellitus 24436191 

MALAT1 diabetes mellitus 26512840 

MALAT1 Diabetic Cardiomyopathies 26476026 

MALAT1 Diabetic Nephropathies 27964927 

MALAT1 endometrial adenocarcinoma 25085246 

MALAT1 endometrial stromal sarcoma 16441420 

MALAT1 esophageal cancer 27470544 

MALAT1 esophageal squamous cell carcinoma 27935117 

MALAT1 fatty liver disease 26935028 

MALAT1 Fibroma 27101025 

MALAT1 fibrosarcoma 22491206 

MALAT1 Flavivirus Infections 26634309 

MALAT1 Follicular and H¬ürthle Cell Thyroid Neoplasm 28660408 

MALAT1 gallbladder cancer 24658096 

MALAT1 gastrointestinal system cancer 27313790 

MALAT1 Glioblastoma 25772239 

MALAT1 Glioma 27313790 

MALAT1 hepatocellular carcinoma 16878148 

MALAT1 high glucose-induced podocyte injury 28444861 

MALAT1 histiocytoid hemangioma 27709553 

MALAT1 HIV 26139386 

MALAT1 Hyperglycemia 25787249 

MALAT1 ischemic stroke 28093478 
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MALAT1 kidney cancer 24373479 

MALAT1 Klatskin's tumor 28059437 

MALAT1 laryngeal squamous cell carcinoma 24817925 

MALAT1 liver cancer 21489289 

MALAT1 liver cirrhosis 26697839 

MALAT1 lung adenocarcinoma 19690017 

MALAT1 lung cancer 17270048 

MALAT1 lung small cell carcinoma 22928560 

MALAT1 lymph node metastasis 26989678 

MALAT1 malignant glioma 24926466 

MALAT1 mantle cell lymphoma 27998273 

MALAT1 melanoma 19625619 

MALAT1 multiple myeloma 24583225 

MALAT1 Nasopharyngeal carcinoma 23688988 

MALAT1 neuroblastoma 20149803 

MALAT1 non-small cell lung carcinoma 12970751 

MALAT1 oral squamous cell carcinoma 26522444 

MALAT1 osteosarcoma 17660802 

MALAT1 ovarian cancer 18006640 

MALAT1 ovarian endometrial cancer 27446438 

MALAT1 Ovarian epithelial cancer 28770968 

MALAT1 pancreatic cancer 25269958 

MALAT1 pancreatic carcinoma 22996375 

MALAT1 pancreatic ductal adenocarcinoma 24815433 

MALAT1 papillary thyroid carcinoma 25997963 

MALAT1 Parkinson's disease 27021022 

MALAT1 pituitary adenoma 24469926 

MALAT1 pre-eclampsia 26722461 

MALAT1 primary pulmonary hypertension 27362960 

MALAT1 proliferative vitreoretinopathy 26241674 

MALAT1 Prostate 22996375 

MALAT1 prostate cancer 21489289 

MALAT1 renal cell carcinoma 25600645 

MALAT1 renal clear cell carcinoma 25480417 

MALAT1 retinal degeneration 24436191 

MALAT1 retinoblastoma 28550678 

MALAT1 rheumatoid arthritis 28026003 

MALAT1 Seizures 22960213 

MALAT1 squamous cell carcinoma 25538231 
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MALAT1 stomach cancer 24857172 

MALAT1 systemic lupus erythematosus 29100395 

MALAT1 TDP-43 protein, human 23791884 

MALAT1 thyroid cancer 27470543 

MALAT1 thyroid medullary carcinoma 29107050 

MALAT1 tongue cancer 28260102 

MALAT1 tongue squamous cell carcinoma 27353727 

MALAT1 Triple Negative Breast Neoplasms 28915533 

MALAT1 triple-receptor negative breast cancer 25996380 

MALAT1 urinary bladder cancer 22722759 

MALAT1 uterine cancer 21489289 

MALAT1 uterine corpus endometrial stromal sarcoma 19379481 

MALAT1 uveal melanoma 27725873 

MALAT1 vulva squamous cell carcinoma 27633334 

MAPT-AS1 Triple Negative Breast Neoplasms 29441192 

MAPT-AS1 Parkinson's disease 27336847 

MEG3 breast cancer 14602737 

MEG3 acute myeloid leukemia 19595458 

MEG3 bladder urothelial carcinoma 28060759 

MEG3 cancer 21400503 

MEG3 cerebrovascular disease 27651151 

MEG3 cervical cancer 14602737 

MEG3 chronic myeloid leukemia 14602737 

MEG3 chronic obstructive pulmonary disease 27932875 

MEG3 colon cancer 14602737 

MEG3 colorectal cancer 25636452 

MEG3 diabetes mellitus 26603935 

MEG3 endometrial cancer 27470401 

MEG3 endometrial carcinoma 29094270 

MEG3 esophageal cancer 28539329 

MEG3 esophageal squamous cell carcinoma 28405686 

MEG3 esophagus squamous cell carcinoma 27778235 

MEG3 functionless pituitary adenoma 15644399 

MEG3 gallbladder cancer 26812694 

MEG3 gastric cardia adenocarcinoma 28345805 

MEG3 Glioblastoma 22234798 

MEG3 Glioma 28276316 

MEG3 hepatocellular carcinoma 21625215 

MEG3 Heroin Dependence 21128942 
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MEG3 Hirschsprung's disease 29050236 

MEG3 Huntington's disease 22202438 

MEG3 kidney cancer 24373479 

MEG3 liver cancer 29449541 

MEG3 liver cirrhosis 25201080 

MEG3 liver disease 27770549 

MEG3 lung adenocarcinoma 25992654 

MEG3 lung cancer 14602737 

MEG3 lung squamous cell carcinoma 28076325 

MEG3 malignant glioma 14602737 

MEG3 melanoma 27016304 

MEG3 meningioma 20179190 

MEG3 metabolic syndrome X 26898430 

MEG3 multiple myeloma 25753650 

MEG3 myelodysplastic syndrome 19595458 

MEG3 myelofibrosis 24707949 

MEG3 Nasopharyngeal carcinoma 27597634 

MEG3 nephroblastoma 15798773 

MEG3 neuroblastoma 15798773 

MEG3 non-small cell lung carcinoma 24098911 

MEG3 oral squamous cell carcinoma 23292713 

MEG3 osteoarthritis 26090403 

MEG3 ovarian cancer 28175963 

MEG3 Ovarian epithelial cancer 24859196 

MEG3 pancreatic cancer 26850851 

MEG3 pancreatic endocrine carcinoma 25565142 

MEG3 papillary thyroid carcinoma 25997963 

MEG3 phaeochromocytoma 15798773 

MEG3 pituitary adenoma 14602737 

MEG3 pituitary cancer 18628527 

MEG3 Prostate 14602737 

MEG3 prostate cancer 14602737 

MEG3 Purpura, Thrombocytopenic 27522004 

MEG3 renal clear cell carcinoma 26223924 

MEG3 retinoblastoma 26662307 

MEG3 stomach cancer 24006224 

MEG3 testicular germ cell cancer 27158395 

MEG3 tongue squamous cell carcinoma 24343426 

MEG3 type 1 diabetes mellitus 19966805 
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MEG3 urinary bladder cancer 14602737 

MEG3 vulva squamous cell carcinoma 27633334 

NNT-AS1 breast cancer 29710510 

NNT-AS1 cervical cancer 28628975 

NNT-AS1 colorectal cancer 27966450 

NNT-AS1 hepatocellular carcinoma 29179477 

NNT-AS1 osteosarcoma 29518771 

NNT-AS1 ovarian cancer 28969062 

PCAT6 triple-receptor negative breast cancer 25996380 

PCAT6 lung cancer 27458097 

PCAT6 non-small cell lung carcinoma 27322209 

PCAT6 prostate cancer 23728290 

PIK3CD-AS2 astrocytoma 26252651 

PVT1 breast cancer 17908964 

PVT1 stomach cancer 27986464 

PVT1 acute promyelocytic leukemia 26545364 

PVT1 asthma 27484035 

PVT1 astrocytoma 26252651 

PVT1 B-cell lymphoma 23547836 

PVT1 bladder urothelial carcinoma 28969069 

PVT1 Burkitt lymphoma 17503467 

PVT1 cancer 2725491 

PVT1 Cardiomegaly 26045764 

PVT1 cervical cancer 27232880 

PVT1 clear cell renal cell carcinoma 29081406 

PVT1 cleft lip 19270707 

PVT1 colon cancer 25043044 

PVT1 colorectal cancer 24196785 

PVT1 diabetes mellitus 26971628 

PVT1 Diabetic Nephropathies 21526116 

PVT1 esophageal cancer 27698800 

PVT1 esophageal squamous cell carcinoma 28404954 

PVT1 Glioma 28351322 

PVT1 hematologic cancer 26458445 

PVT1 hepatocellular carcinoma 25624916 

PVT1 Hodgkin's lymphoma 21037568 

PVT1 kidney cancer 17881614 

PVT1 lung squamous cell carcinoma 26928440 

PVT1 lymph node metastasis 26882847 
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PVT1 lymphoma 2470097 

PVT1 malignant glioma 27282637 

PVT1 malignant pleural mesothelioma 24926545 

PVT1 melanoma 28265576 

PVT1 multiple myeloma 22869583 

PVT1 Nasopharyngeal carcinoma 29445147 

PVT1 non-small cell lung carcinoma 25400777 

PVT1 osteosarcoma 28602700 

PVT1 ovarian cancer 17908964 

PVT1 pancreatic cancer 21316338 

PVT1 pancreatic ductal adenocarcinoma 25668599 

PVT1 papillary thyroid carcinoma 29280051 

PVT1 plasmacytoma 17503467 

PVT1 prostate cancer 21814516 

PVT1 renal carcinoma 27366943 

PVT1 renal cell carcinoma 26878386 

PVT1 renal cell carcinoma 29152119 

PVT1 stomach cancer 25258543 

PVT1 thyroid cancer 26427660 

PVT1 type 1 diabetes mellitus 21526116 

PVT1 type 2 diabetes mellitus 17395743 

PVT1 urinary bladder cancer 26517688 

RMST breast cancer 27380926 

RMST melanoma 27016304 

RMST rhabdomyosarcoma 12082533 

RMST Triple Negative Breast Neoplasms 29215701 

UCA1 breast cancer 16914571 

UCA1 acute myeloid leukemia 26053097 

UCA1 acute myocardial infarction 26949706 

UCA1 astrocytoma 26252651 

UCA1 bladder adenocarcinoma 25123267 

UCA1 bladder carcinoma 29113184 

UCA1 cancer 24457952 

UCA1 cervical cancer 16914571 

UCA1 cholangiocarcinoma 29221199 

UCA1 chronic myeloid leukemia 27854515 

UCA1 colon cancer 26885155 

UCA1 colon carcinoma 16914571 

UCA1 endometrial cancer 27540975 
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UCA1 esophageal cancer 16914571 

UCA1 gallbladder cancer 28624787 

UCA1 glandular cystitis 16914571 

UCA1 Glioma 28105536 

UCA1 hepatocellular carcinoma 25760077 

UCA1 hypopharyngeal squamous cell carcinoma 28327194 

UCA1 Lithiasis 16914571 

UCA1 liver cancer 16914571 

UCA1 lung cancer 26380024 

UCA1 melanoma 24892958 

UCA1 multiple myeloma 28543758 

UCA1 muscle-invasive bladder cancer 27863388 

UCA1 non-small cell lung carcinoma 26160838 

UCA1 non-small cell lung carcinoma 27329842 

UCA1 oral squamous cell carcinoma 23292713 

UCA1 osteosarcoma 27335776 

UCA1 osteosarcoma 28239821 

UCA1 ovarian cancer 24379988 

UCA1 pancreatic cancer 21593646 

UCA1 pancreatic ductal adenocarcinoma 27628540 

UCA1 prostate cancer 23728290 

UCA1 Prostatic Hyperplasia 16914571 

UCA1 renal cell carcinoma 16914571 

UCA1 rheumatoid arthritis 29509238 

UCA1 squamous cell carcinoma 17416635 

UCA1 stomach cancer 16914571 

UCA1 temporal lobe epilepsy 25552301 

UCA1 thyroid cancer 16914571 

UCA1 tongue squamous cell carcinoma 24332332 

UCA1 urinary bladder cancer 16914571 

XIST breast cancer 17545591 

XIST acute lymphocytic leukemia 27535859 

XIST bladder carcinoma 29212249 

XIST cancer 23660942 

XIST cervical squamous cell carcinoma 27899965 

XIST collecting duct carcinoma 19154479 

XIST colon cancer 29679755 

XIST colorectal cancer 17143621 

XIST denatured dermis 28771809 
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XIST esophageal squamous cell carcinoma 29100288 

XIST Glioblastoma 25578780 

XIST hematologic cancer 23415223 

XIST hepatocellular carcinoma 27100897 

XIST Klinefelter's syndrome 18854511 

XIST malignant glioma 25578780 

XIST melanoma 27016304 

XIST microinvasive gastric cancer 29039538 

XIST Nasopharyngeal carcinoma 27461945 

XIST neurodegenerative disease 22312272 

XIST non-small cell lung carcinoma 26339353 

XIST osteosarcoma 28409547 

XIST ovarian cancer 12492109 

XIST pancreatic cancer 28295543 

XIST prostate cancer 16261845 

XIST stomach cancer 27620004 

XIST testicular germ cell cancer 12629412 

XIST urinary bladder cancer 24373479 

ZFAS1 breast cancer 21460236 

ZFAS1 bladder carcinoma 29653362 

ZFAS1 cancer 29137442 

ZFAS1 Carcinoma, Ductal 21460236 

ZFAS1 Colonic Neoplasms 27862275 

ZFAS1 colorectal cancer 26506418 

ZFAS1 Glioma 28081466 

ZFAS1 hepatocellular carcinoma 26069248 

ZFAS1 non-small cell lung carcinoma 28051258 

ZFAS1 ovarian cancer 28099946 

ZFAS1 Ovarian epithelial cancer 28099946 

ZFAS1 prostate cancer 29416676 

ZFAS1 rheumatoid arthritis 28721682 

ZFAS1 stomach cancer 27246976 

ZNF667-AS1 breast cancer 28690657 

ZNF667-AS1 cervical cancer 29243775 
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Table S5: List of known lncRNAs associated with only breast cancer (n = 6). 

lncRNA Disease Name PubMed ID 

AC008268.1 breast cancer 26910840 

FGF14-AS2 breast cancer 26820525 

LINC00993 breast cancer 25996380 

LINC01016 breast cancer 26426411 

PTPRG-AS1 breast cancer 26409453 

ST8SIA6-AS1 breast cancer 26929647 

 

 

Table S6: List of common lncRNAs between novel (n = 38) and overlapping in all three 

methods (n = 21) (see Figure 3. Venn diagram) (n = 6) 

LncRNA Sub-type Chrom Start End 

AC005152.3 Basal chr17 72021851 72034092 

TTC39A-AS1 Basal chr1 51329654 51335324 

SEMA3B-AS1 LumA chr3 50266641 50267371 

RARA-AS1 LumB chr17 40340867 40343136 

TPTEP1 LumB chr22 16601887 16698742 

CTB-51J22.1 Normal-like chr7 74059576 74062284 

 

 

Table S7: Survival analysis for 91 key lncRNAs with respect to whole cohort as well as 

subtype-specific cohort. There are unique 44 unique lncRNAs found prognostically 

significant.  

lncRNA P-value 
Hazard 

Ratio 

95% CI 

Low 

95% CI 

High 
Cohort 

LINC00152 0.0071 0.354 0.168 0.748 Basal 

PTPRG-AS1 0.0240 2.425 1.138 5.166 Basal 

TTC39A-AS1 0.0046 0.313 0.149 0.655 Basal 

AC016735.2 0.0453 0.359 0.134 0.962 HER2 

AC087491.2 0.0431 3.027 1.138 8.048 HER2 

DLEU2 0.0051 0.229 0.085 0.621 HER2 

ELOVL2-AS1 0.0272 0.338 0.122 0.936 HER2 

GATA3-AS1 0.0387 0.323 0.122 0.860 HER2 

HOTAIRM1 0.0172 3.321 1.223 9.016 HER2 

KRTAP5-AS1 0.0497 2.747 1.027 7.349 HER2 

LINC00504 0.0336 0.314 0.118 0.835 HER2 

PRKAG2-

AS1 
0.0128 3.739 1.398 10.003 

HER2 
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RP11-

281O15.4 
0.0113 3.539 1.295 9.676 

HER2 

SEMA3B-AS1 0.0149 3.697 1.383 9.884 HER2 

CTD-

2015G9.2 
0.0280 1.719 1.073 2.753 

Luminal A 

HOTAIRM1 0.0480 1.611 1.009 2.572 Luminal A 

LINC00992 0.0258 0.583 0.365 0.932 Luminal A 

LINC01016 0.0263 1.689 1.055 2.705 Luminal A 

MALAT1 0.0026 0.485 0.303 0.775 Luminal A 

MAPT-AS1 0.0131 1.820 1.139 2.908 Luminal A 

MCM3AP-

AS1 
0.0131 0.550 0.344 0.879 

Luminal A 

NNT-AS1 0.0441 0.615 0.385 0.981 Luminal A 

RHPN1-AS1 0.0381 0.605 0.379 0.966 Luminal A 

STK4-AS1 0.0095 0.538 0.336 0.861 Luminal A 

UCA1 0.0264 1.704 1.067 2.723 Luminal A 

XIST 0.0096 0.537 0.336 0.858 Luminal A 

ZFAS1 0.0285 1.683 1.051 2.696 Luminal A 

AC005152.3 0.0066 2.599 1.324 5.104 Luminal B 

BCAR4 0.0149 0.430 0.219 0.846 Luminal B 

CTD-

2015G9.2 
0.0034 2.856 1.457 5.601 

Luminal B 

CTD-

2284J15.1 
0.0262 2.252 1.151 4.407 

Luminal B 

DOCK9-AS2 0.0248 2.157 1.095 4.248 Luminal B 

ELOVL2-AS1 0.0013 3.350 1.713 6.554 Luminal B 

LINC01016 0.0117 2.349 1.187 4.649 Luminal B 

MCM3AP-

AS1 
0.0484 1.959 0.980 3.916 

Luminal B 

RP11-28F1.2 0.0361 2.073 1.059 4.060 Luminal B 

XIST 0.0378 2.026 1.031 3.980 Luminal B 

LINC00152 0.0349 0.143 0.032 0.628 
Normal-

Like 

LINC01272 0.0071 0.099 0.021 0.457 
Normal-

Like 

AC005152.3 0.0414 1.385 1.013 1.893 Whole 

BCAR4 0.0109 0.665 0.486 0.909 Whole 

CTB-33O18.1 0.0284 1.424 1.041 1.948 Whole 

CTB-51J22.1 0.0329 1.414 1.034 1.933 Whole 

CTD-

2015G9.2 
0.0077 1.530 1.119 2.093 

Whole 

ELOVL2-AS1 0.0014 1.679 1.229 2.295 Whole 

FGF14-AS2 0.0172 1.460 1.067 1.997 Whole 
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LINC00472 0.0105 1.503 1.100 2.055 Whole 

LINC01016 0.0258 1.426 1.043 1.951 Whole 

MAPT-AS1 0.0019 1.646 1.204 2.251 Whole 

MIR205HG 0.0041 1.571 1.147 2.153 Whole 

MIR31HG 0.0425 1.384 1.013 1.892 Whole 

PIK3CD-AS2 0.0215 1.440 1.052 1.969 Whole 

RHPN1-AS1 0.0075 0.650 0.475 0.888 Whole 

RMST 0.0010 1.692 1.238 2.314 Whole 

RP11-

21L23.2 
0.0160 0.679 0.497 0.927 

Whole 

RP11-28F1.2 0.0006 1.744 1.276 2.384 Whole 

RP1-

232P20.1 
0.0324 1.403 1.025 1.919 

Whole 

SYN2 0.0365 1.397 1.022 1.910 Whole 

VPS9D1-AS1 0.0263 1.426 1.042 1.952 Whole 
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8.8 Appendix B 

8.8.1 Appendix B.1: Hyperparameter Tuning 

In the decoder part of the CAE, different node values from 240 to 340, with a step size of 

10 was tested to tune the number of nodes in the decoder layer. It was found the 300 nodes 

would yield the highest accuracy, as evident in Figure 1. So the number of nodes was 

selected as 300. 

 

Figure S7: Tuning number of nodes in the decoder. For 300 nodes, it yields the highest 

accuracy. 

We did a random search of parameters from a range of values to tune the number of epochs 

and learning rate. For the number of epochs, the used values are - 200, 300, 500, 1000, 

1500, 2000, 2500, 3000. Similarly, for learning rate, the values are - 0.001, 0.002, 0.005, 

0.0005, 0.01 and 0.05.  Table 1 contains the accuracy of all different combinations of epoch 

and learning rate. The highest value of accuracy was 0.9507, which is found for the epoch 

of 300 and learning rate of 0.002. 
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Table S8: Summary of hyperparameter tuning for epoch and learning rates. For different 

values of epoch and learning rate, there are different accuracies for the SVM model and 

by the features selected by CAE. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Epoch Learning Rate Accuracy Epoch Learning Rate Accuracy 

200 0.0005 0.9256 500 0.005 0.9371 

300 0.0005 0.9203 1000 0.005 0.9403 

1000 0.0005 0.9340 1500 0.005 0.9266 

1500 0.0005 0.9308 2000 0.005 0.9224 

2000 0.0005 0.9277 2500 0.005 0.9308 

2500 0.0005 0.9340 2500 0.005 0.9235 

3000 0.0005 0.9434 3000 0.005 0.9224 

200 0.001 0.9256 200 0.01 0.2296 

300 0.001 0.9382 300 0.01 0.2180 

500 0.001 0.9361 500 0.01 0.2317 

1000 0.001 0.9444 1000 0.01 0.3071 

1500 0.001 0.9476 1500 0.01 0.2453 

2000 0.001 0.9340 2000 0.01 0.4130 

2500 0.001 0.9497 2500 0.01 0.2233 

3000 0.001 0.9413 3000 0.01 0.2914 

200 0.002 0.9266 200 0.05 0.2421 

300 0.002 0.9507 300 0.05 0.2411 

500 0.002 0.9444 500 0.05 0.2254 

1000 0.002 0.9486 1000 0.05 0.2222 

1500 0.002 0.9392 1500 0.05 0.2379 

2000 0.002 0.9434 2000 0.05 0.2254 

2500 0.002 0.9319 2500 0.05 0.2285 

3000 0.002 0.9403 2500 0.05 0.2159 

200 0.005 0.9361 3000 0.05 0.2170 
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8.8.2 Appendix B.2: Comparing tumor features with normal features 

 

 
Figure S8: Comparing tumor features with normal features. a) Venn diagram of top 

40 tumor features and top 40 normal features derived from CAE; b) t-SNE plot of tumor 

samples using tumor features; c) t-SNE plot of normal samples using normal features; d) 

t-SNE plot of tumor samples using normal features; e) t-SNE plot of normal samples using 

tumor features. 
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Figure S9: Comparing tumor features with normal features. a) Venn diagram of top 

60 tumor features and top 60 normal features derived from CAE; b) t-SNE plot of tumor 

samples using tumor features; c) t-SNE plot of normal samples using normal features; d) 

t-SNE plot of tumor samples using normal features; e) t-SNE plot of normal samples using 

tumor features. 
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Figure S10: Comparing tumor features with normal features. a) Venn diagram of top 

80 tumor features and top 80 normal features derived from CAE; b) t-SNE plot of tumor 

samples using tumor features; c) t-SNE plot of normal samples using normal features; d) 

t-SNE plot of tumor samples using normal features; e) t-SNE plot of normal samples using 

tumor features. 
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8.8.3 Appendix B.3: Top 128 lncRNAs 

Table S9: Top 128 lncRNAs 

id gene chrom chromStart chromEnd strand 

ENSG00000250522.1 AC004066.3 chr4 1.06E+08 1.06E+08 - 

ENSG00000230918.1 AC008063.2 chr2 1.62E+08 1.62E+08 + 

ENSG00000235584.2 AC008268.1 chr2 95666084 95668715 + 

ENSG00000267968.1 AC011523.2 chr19 50830530 50851089 + 

ENSG00000231013.1 AC013275.2 chr2 1.19E+08 1.19E+08 + 

ENSG00000232153.2 AC073218.3 chr2 34734975 34737118 - 

ENSG00000223914.1 AC079630.2 chr12 40156239 40167707 + 

ENSG00000225342.2 AC079630.4 chr12 40186009 40224915 - 

ENSG00000233850.1 AC103563.8 chr2 95025193 95026709 - 

ENSG00000232555.1 AC104088.1 chr2 1.72E+08 1.72E+08 + 

ENSG00000235688.1 AC116614.1 chr2 949634 950274 - 

ENSG00000229380.1 AC147651.5 chr7 561958 565619 + 

ENSG00000241158.4 

ADAMTS9-

AS1 chr3 64561322 64592757 + 

ENSG00000178803.9 

ADORA2A-

AS1 chr22 24429206 24495074 - 

ENSG00000237609.1 AF064858.10 chr21 39028536 39029128 - 

ENSG00000235888.1 AF064858.8 chr21 38988707 39006153 - 

ENSG00000255020.1 AF131216.5 chr8 11345748 11347502 - 

ENSG00000232855.5 AF131217.1 chr21 28439346 28674848 - 

ENSG00000228923.1 AP000355.2 chr22 24516508 24518386 + 

ENSG00000257002.1 AP000438.2 chr11 62909546 62918361 + 

ENSG00000255774.1 AP000439.3 chr11 69477133 69479940 - 

ENSG00000229719.3 AP001187.9 chr11 64889560 64893449 - 

ENSG00000236304.1 AP001189.4 chr11 76657056 76663866 + 

ENSG00000236935.1 AP003774.1 chr11 64325050 64329504 - 

ENSG00000223400.1 AP006748.1 chr21 41576135 41581319 - 

ENSG00000249599.1 BMPR1B-AS1 chr4 94743800 94757533 - 

ENSG00000203709.8 C1orf132 chr1 2.08E+08 2.08E+08 - 

ENSG00000260581.1 CTB-113P19.4 chr5 1.52E+08 1.52E+08 + 

ENSG00000253315.1 CTB-11I22.2 chr5 1.59E+08 1.59E+08 + 

ENSG00000253768.1 CTB-33O18.1 chr5 1.74E+08 1.74E+08 + 

ENSG00000269486.2 CTC-360G5.9 chr19 38935297 38938632 - 

ENSG00000248268.1 CTC-499J9.1 chr5 1.11E+08 1.11E+08 - 

ENSG00000251532.1 

CTD-

2245E15.3 chr5 1544107 1551710 - 

ENSG00000268416.1 

CTD-

2626G11.2 chr19 20746923 20755250 - 
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ENSG00000259725.1 

CTD-

3032H12.1 chr16 54937786 54938671 - 

ENSG00000273032.1 DGCR9 chr22 19017834 19020248 + 

ENSG00000231651.1 DLG3-AS1 chrX 70452958 70455994 - 

ENSG00000230316.5 FEZF1-AS1 chr7 1.22E+08 1.22E+08 + 

ENSG00000197308.7 GATA3-AS1 chr10 8050450 8053484 - 

ENSG00000266010.1 GATA6-AS1 chr18 22166898 22168968 - 

ENSG00000258667.1 HIF1A-AS2 chr14 61715558 61751097 - 

ENSG00000241388.4 HNF1A-AS1 chr12 1.21E+08 1.21E+08 - 

ENSG00000272733.1 KB-208E9.1 chr22 23580880 23583859 - 

ENSG00000135253.12 KCP chr7 1.29E+08 1.29E+08 - 

ENSG00000261399.1 LA16c-329F2.1 chr16 1713527 1714208 - 

ENSG00000259840.1 

LA16c-

380A1.1 chr16 710746 711277 - 

ENSG00000167117.7 LINC00483 chr17 50761029 50767557 - 

ENSG00000248360.6 LINC00504 chr4 14470465 14888169 - 

ENSG00000258955.1 LINC00519 chr14 51304416 51328386 - 

ENSG00000213373.6 LINC00671 chr17 42874670 42898704 - 

ENSG00000177133.9 LINC00982 chr1 3059615 3068437 - 

ENSG00000224559.2 LINC01087 chr2 1.32E+08 1.32E+08 + 

ENSG00000249601.2 LINC01187 chr5 1.7E+08 1.7E+08 - 

ENSG00000244541.4 LINC01213 chr3 1.5E+08 1.5E+08 + 

ENSG00000231210.2 LINC01510 chr7 1.17E+08 1.17E+08 - 

ENSG00000253563.2 NKX2-1-AS1 chr14 36519278 36523016 + 

ENSG00000152931.7 PART1 chr5 60487713 60547657 + 

ENSG00000225937.1 PCA3 chr9 76764436 76787569 + 

ENSG00000265369.3 PCAT18 chr18 26687621 26703638 - 

ENSG00000255794.5 RMST chr12 97431653 97565035 + 

ENSG00000253508.1 RP1-170O19.14 chr7 27186573 27193448 - 

ENSG00000224961.1 RP1-278O22.1 chr20 10753090 10753966 + 

ENSG00000232412.1 RP1-315G1.3 chrX 1.24E+08 1.24E+08 - 

ENSG00000269894.1 

RP11-

1020A11.1 chr3 9935706 9936258 + 

ENSG00000258919.1 

RP11-

1029J19.4 chr14 1.02E+08 1.02E+08 - 

ENSG00000214797.3 

RP11-

1036E20.9 chr11 59268876 59284033 - 

ENSG00000273209.1 RP11-107N15.1 chr2 2.02E+08 2.02E+08 - 

ENSG00000246640.1 

RP11-

1094H24.4 chr17 50050349 50055739 - 

ENSG00000273001.1 RP11-118K6.3 chr10 3065424 3066001 - 

ENSG00000251637.5 RP11-119D9.1 chr11 67886477 67906350 + 

ENSG00000225472.1 RP11-120J1.1 chr9 14317085 14357908 + 

ENSG00000224842.2 RP11-123K19.1 chr9 1.27E+08 1.27E+08 - 
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ENSG00000269707.1 RP11-13J10.1 chr2 1.05E+08 1.05E+08 + 

ENSG00000232110.6 RP11-149I23.3 chr10 89283765 89292125 + 

ENSG00000248554.1 RP11-159F24.6 chr5 43511058 43521811 + 

ENSG00000255847.4 RP11-167N4.2 chr11 73963657 73970287 - 

ENSG00000271850.1 RP11-16D22.2 chr13 34348043 34614170 + 

ENSG00000234396.3 RP11-181G12.4 chr1 2212523 2220738 + 

ENSG00000238102.1 RP11-19D2.1 chr20 7256580 7258214 - 

ENSG00000271830.1 RP11-1C8.7 chr8 1.03E+08 1.03E+08 - 

ENSG00000273066.4 

RP11-

216L13.19 chr9 1.37E+08 1.37E+08 + 

ENSG00000255474.1 RP11-234B24.2 chr12 4700417 4720102 - 

ENSG00000260618.1 RP11-23N2.4 chr15 52577842 52598709 + 

ENSG00000174171.5 RP11-23P13.6 chr15 41892793 41898575 + 

ENSG00000272205.1 RP11-277B15.3 chr1 1.67E+08 1.67E+08 - 

ENSG00000255746.1 RP11-283I3.4 chr12 253442 257299 - 

ENSG00000271996.1 RP11-337N6.1 chr2 1.77E+08 1.77E+08 + 

ENSG00000258414.1 RP11-356O9.1 chr14 37564047 37579125 + 

ENSG00000265408.1 RP11-361L15.4 chr16 66942712 66963256 + 

ENSG00000271387.1 RP11-382D12.2 chr1 1.84E+08 1.84E+08 - 

ENSG00000236066.4 RP11-389O22.1 chr1 1.13E+08 1.13E+08 + 

ENSG00000267284.1 RP11-397A16.1 chr18 55721063 55788761 + 

ENSG00000273248.1 

RP11-

399K21.13 chr10 75408973 75409326 - 

ENSG00000259793.1 RP11-400N9.1 chr2 2.33E+08 2.33E+08 - 

ENSG00000273388.1 RP11-401O9.4 chr17 10291820 10317926 + 

ENSG00000273153.1 RP11-406H21.2 chr10 17137336 17137585 - 

ENSG00000271631.1 RP11-408O19.5 chr9 1.13E+08 1.13E+08 + 

ENSG00000214733.7 RP11-429J17.8 chr8 1.44E+08 1.44E+08 + 

ENSG00000224251.5 RP11-499O7.7 chr10 4995488 4997380 + 

ENSG00000251141.4 RP11-53O19.1 chr5 44744900 44808777 - 

ENSG00000248779.1 RP11-53O19.2 chr5 44752949 44765744 + 

ENSG00000227947.1 RP11-543D5.1 chr1 47688463 47703383 + 

ENSG00000248429.4 RP11-597D13.9 chr4 1.58E+08 1.58E+08 + 

ENSG00000263427.1 RP11-599B13.3 chr17 8056225 8057621 - 

ENSG00000250740.1 RP11-710F7.2 chr4 1.06E+08 1.06E+08 - 

ENSG00000254528.6 RP11-728F11.4 chr11 1.18E+08 1.18E+08 + 

ENSG00000259367.1 RP11-815J21.4 chr15 85619623 85670948 - 

ENSG00000266441.1 RP11-91I8.3 chr18 6728821 6729862 - 

ENSG00000259887.1 RP11-923I11.5 chr12 51848223 51852729 + 

ENSG00000250643.1 RP11-93K22.6 chr3 1.3E+08 1.3E+08 - 

ENSG00000269489.1 RP11-98D18.17 chr1 1.52E+08 1.52E+08 + 

ENSG00000254872.3 RP13-870H17.3 chr11 1049880 1055749 + 
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ENSG00000227066.1 RP3-340N1.2 chr1 20154338 20160568 + 

ENSG00000231628.1 RP3-355L5.4 chr6 1.05E+08 1.05E+08 + 

ENSG00000255202.1 RP4-541C22.5 chr11 33665220 33696701 - 

ENSG00000261786.1 RP4-555D20.2 chr3 44117299 44122365 + 

ENSG00000258586.1 RP5-1021I20.2 chr14 73822559 73830135 - 

ENSG00000231566.1 RP5-1158E12.3 chrX 45848074 45851490 - 

ENSG00000236772.1 RP5-1184F4.5 chr20 32449755 32453607 + 

ENSG00000226812.2 RP5-881L22.5 chr20 44347552 44355185 - 

ENSG00000234184.4 RP5-887A10.1 chr1 80535755 80646788 + 

ENSG00000229591.1 RP5-981O7.2 chr7 1.52E+08 1.52E+08 - 

ENSG00000233705.5 SLC26A4-AS1 chr7 1.08E+08 1.08E+08 - 

ENSG00000232803.1 SLCO4A1-AS1 chr20 62663019 62666724 - 

ENSG00000242808.6 SOX2-OT chr3 1.81E+08 1.82E+08 + 

ENSG00000227640.2 SOX21-AS1 chr13 94712716 94716246 + 

ENSG00000232504.4 ST3GAL5-AS1 chr2 85889280 85890980 + 

ENSG00000224490.4 TTC21B-AS1 chr2 1.66E+08 1.66E+08 + 
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8.8.4 Appendix B.4: Survival Analysis (Forest Plots) 

 
Figure S11: Forest plot of survival analysis with significant lncRNAs on TCGA-COAD 

cohort. The asterisks represent the Log-rank P-values: (* - P ≤ 0.05, ** - P ≤ 0.01, *** - P 

≤ 0.001, **** - P ≤ 0.0001) 

 
Figure S12: Forest plot of survival analysis with significant lncRNAs on TCGA-KICH 

cohort. The asterisks represent the Log-rank P-values: (* - P ≤ 0.05, ** - P ≤ 0.01, *** - P 

≤ 0.001, **** - P ≤ 0.0001) 

 

 

 

 
Figure S13: Forest plot of survival analysis with significant lncRNAs on TCGA-LIHC 

cohort. The asterisks represent the Log-rank P-values: (* - P ≤ 0.05, ** - P ≤ 0.01, *** - P 

≤ 0.001, **** - P ≤ 0.0001) 
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Figure S14: Forest plot of survival analysis with significant lncRNAs on TCGA-PRAD 

cohort. The asterisks represent the Log-rank P-values: (* - P ≤ 0.05, ** - P ≤ 0.01, *** - P 

≤ 0.001, **** - P ≤ 0.0001) 

 
Figure S15: Forest plot of survival analysis with significant lncRNAs on TCGA-READ 

cohort. The asterisks represent the Log-rank P-values: (* - P ≤ 0.05, ** - P ≤ 0.01, *** - P 

≤ 0.001, **** - P ≤ 0.0001) 
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Figure S16: Forest plot of survival analysis with significant lncRNAs on TCGA-KIRC 

cohort. The asterisks represent the Log-rank P-values: (* - P ≤ 0.05, ** - P ≤ 0.01, *** - P 

≤ 0.001, **** - P ≤ 0.0001) 

 

 

 
Figure S17: Forest plot of survival analysis with significant lncRNAs on TCGA-KIRP 

cohort. The asterisks represent the Log-rank P-values: (* - P ≤ 0.05, ** - P ≤ 0.01, *** - P 

≤ 0.001, **** - P ≤ 0.0001) 



 183 

 
Figure S18: Forest plot of survival analysis with significant lncRNAs on TCGA-THCA 

cohort. The asterisks represent the Log-rank P-values: (* - P ≤ 0.05, ** - P ≤ 0.01, *** - P 

≤ 0.001, **** - P ≤ 0.0001) 
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Figure S19: Forest plot of survival analysis with significant lncRNAs on TCGA-LUAD 

cohort. The asterisks represent the Log-rank P-values: (* - P ≤ 0.05, ** - P ≤ 0.01, *** - P 

≤ 0.001, **** - P ≤ 0.0001) 

 
Figure S20: Forest plot of survival analysis with significant lncRNAs on TCGA-LUSC 

cohort. The asterisks represent the Log-rank P-values: (* - P ≤ 0.05, ** - P ≤ 0.01, *** - P 

≤ 0.001, **** - P ≤ 0.0001) 
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