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Power outage and environmental justice in Winter Storm Uri: an
analytical workflow based on nighttime light remote sensing
Jinwen Xu a,b, Yi Qiang b, Heng Cai c and Lei Zou c

aGIS Center, Florida International University, Miami, FL, USA; bSchool of Geosciences, University of South Florida,
Tampa, FL, USA; cDepartment of Geography, Texas A&M University, College Station, TX, USA

ABSTRACT
The intensity of extreme weather events has been increasing, posing a
unique threat to society and highlighting the importance of our
electrical power system, a key component in our infrastructure. In
severe weather events, quickly identifying power outage impact zones
and affected communities is crucial for informed disaster response.
However, a lack of household-level power outage data impedes timely
and precise assessments. To address these challenges, we introduced an
analytical workflow using NASA’s Black Marble daily nighttime light
(NTL) images to detect power outages from the 2021 Winter Storm Uri.
This workflow includes adjustments to mitigate viewing angle and snow
reflection effects. Power outage is detected by comparing storm-time
and baseline (normal condition) NTL images using an empirical
adjusted equation. The outcomes of the workflow are 500-meter
resolution power outage maps, which have the optimal correlation with
real outage tracking data when NTL intensity is reduced by 26%. With
the resultant power outage maps, we analyzed the relations between
power outages and disadvantaged populations in 126 Texas counties
and 4182 census tracts to evaluate environmental justice in the storm.
The results show that Latino/Hispanic communities tend to suffer more
from power outages at both the county and census tract levels.

ARTICLE HISTORY
Received 8 February 2023
Accepted 7 June 2023

KEYWORDS
Nighttime light; disaster
resilience; natural disaster;
spatial analysis;
environmental justice; power
outage

1. Introduction

With the changing climate, an increasing number and intensity of extreme weather events, such as
hurricanes, winter storms, thunderstorms, and tornadoes, pose an unprecedented threat to human
society. The serviceability of critical infrastructures (CIs) during extreme weather events is of criti-
cal importance to socio-economic activities (Deshmukh, Ho Oh, and Hastak 2011). Published evi-
dence shows that disinvestment and poor maintenance of CIs often lead to greater losses in human
communities (Chang 2003; Mastroianni et al. 2021). Additionally, disruptions of CIs in extreme
weather events may add extra burdens to disadvantaged communities (Hendricks and Van
Zandt 2021). Thus, the serviceability and resilience of CIs in extreme weather events are often
associated with social equality and environmental justice. As lifeline infrastructure systems, electri-
cal power systems are critical for socioeconomic activities but vulnerable to multiple types of
hazards. The failures of electric power systems may trigger a series of cascading effects (Kwasinski
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et al. 2019). Long-lasting blackouts affect food and water supplies, disrupting communication and
leaving people in discomforting conditions (e.g. heat, cold, and darkness) (Casey et al. 2020;
Klinger, Landeg, and Murray 2014). When combined with freezing temperatures, blackouts can
cause damage to building structures and pose threats to people’s lives and health (Dominianni
et al. 2018). Underserved and marginalized population groups often suffer greater impacts due
to the lack of adaptive capacities (Min, O’Keeffe, and Zhang 2017). Thus, timely and fine-resolution
assessments of power outages in extreme weather events are of critical importance for emergency
response, disaster relief, and policymaking to mitigate inequalities and injustice in disasters.

However, monitoring power outages in extreme weather events faces challenges. First, household-
level power outage data are not publicly available due to privacy concerns (Boroojeni, Amini, and
Iyengar 2017). According to reports from the U.S. Energy Information Administration (EIA) (Alex-
ander and Sara 2017; Tweed 2016), only a small proportion of the population agrees to share data
about electricity consumption and outage with a third party, let alone the public. To protect individ-
uals’ privacy, power outage data are usually aggregated at coarse spatial units (e.g. cities and counties),
which are not sufficient to guide emergency response and resilience assessment at the neighborhood
level. Second, multiple electric providers serving the same area create challenges to acquire complete
outage data. For example, Texas is served by more than 100 electric utility companies, some of which
have overlapped serving areas (Public Utility Commission of Texas 2022). Due to different tracking
standards and methods, different utility companies may provide inconsistent power outage data.
Additionally, the total number of blackouts in a disaster, which synthesizes household surveys and
outage tracking devices, can take a long time to conclude (Cole et al. 2017), impeding timely actions
for disaster response and relief. The data collected from surveys and power tracking devices only cover
a small population sample and may overlook certain disadvantaged population groups. To overcome
these issues, alternative data sources have been explored to detect power outages. For instance, Vol-
unteered Geographic Information (VGI) (e.g. social media) can provide a considerable amount of
data on the population impacted by power outages (Goodchild 2007; Guan and Chen 2014; Li,
Ma, and Cao 2020; Mao et al. 2018). A few studies have detected spatial and temporal distributions
of power outages by mining social media data (Mao et al. 2018; Sun et al. 2016), despite the concerns
of biased user demography and data uncertainty (Ribeiro et al. 2018; Ribeiro, Benevenuto, and
Zagheni 2020). Thus, there is a pressing need to leverage alternative data sources to develop timely
and reliable power outage assessments to support disaster response and resilience enhancement.

With the ability to detect artificial lights on the earth’s surface, nighttime light (NTL) remote
sensing radiometers are a promising instrument to assess disaster impacts on human communities
and CIs. In previous studies, NTL images are primarily used to assess disaster impact and damage
(Xu and Qiang 2021; Zhao et al. 2018) and monitor the recovery of human activities (Qiang, Huang,
and Xu 2020). Pioneer work has been conducted to detect power outages from time series of NTL
images. For example, Wang et al. (2018) introduced the use of NTL radiance from NASA’s Black
Marble images to detect the spatial extent of outages during Hurricane Sandy in 2012 and Hurri-
cane Maria in 2017. A few studies (e.g. Román et al. (2019) and Azad and Ghandehari (2021)) used
the Black Marble images to monitor electricity restoration during Hurricane Maria and discovered
social and geographic disparities in electric restoration among Puerto Rican communities. A major
issue in the previous studies is the lack of empirical validation, which raises doubts about the accu-
racy of power outage detection. Additionally, the previous studies simply used original NTL radi-
ance in the remote sensing images to detect power outages, without addressing biases introduced by
extraneous factors, such as the viewing angle and snow reflection (Wang et al. 2021). These uncer-
tainties can be amplified by the changing atmospheric and ground conditions in extreme weather
events, which can further affect the validity of outage detection results.

In this study, we introduced an analytical workflow that applies NASA’s Black Marble NTL daily
images to detect power outages in 2021 Winter Storm Uri (Figure 1). This workflow includes radiance
adjustments to reduce the effects of viewing angle and snow reflection on theNTL radiance. Additionally,
novel approaches were introduced to determine the baseline radiance (radiance captured in the normal
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condition) and the radiance reduction threshold for power outage detection. The workflow generated
power outagemaps at a 15-arc-second resolution (approximately 500meters) covering the entire declared
disaster areas, enabling various analyzes from the neighborhood scale to the county or city scale. Finally,
weoverlaid the power outagemapswith socio-economic variables to evaluate environmental justice in the
storm. Our hypothesis is that disadvantaged populations are disproportionally exposed to power outages
and correlation analysis was used to assess the hypothesis. The developed workflow can be used as an
actionable tool to produce timely and scaled power outage detection from publicly available data. Mean-
while, the analysis will provide valuable information for developing sustainable, resilient, and equitable
communities in the face of increasing extreme weather events in the changing climate.

2. Datasets

2.1. Study area

Winter StormUri, also named Valentine’s week winter outbreak 2021 by National Oceanic and Atmos-
pheric Administration (NOAA), emerged on Feb 11th, and dissipated on Feb 20th. Due to this storm, a
winter stormwarning has been issued for the entire state of Texas andmultiple states in theU.S.Midwest
and SouthernPlains (Figure 2(a)). As one of themost affected states, Texaswas hit bymassive snow, sleet,
freezing rain, and low temperature. The storm resulted in a death toll of 246 people and an economic loss
of over 195 billion dollars in Texas, whichmakesUri the costliest winter stormon record (Ivanova 2021).
As a critical infrastructure, the electric power system in Texas was seriously disrupted and caused exten-
sive blackouts lasting for several days (Lee,Maron, andMostafavi 2021). The Texas Interconnection net-
work, the largest electric grid in Texas, generated rolling blackouts across the whole state of Texas, which
affected 4 million people (Rice and Aspegren 2021). Due to Uri’s devastating impacts, President Joseph

Figure 1. Workflow of outage detection using NASA’s Black Marble product suites.
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R. Biden approved three major disaster declaration orders for a total of 126 Texas counties (Federal
AgencyManagementAgency 2021a; 2021c; 2021b). Our study focused on the counties that had declared
Uri as amajor disaster.However, including all pixelswithin these selected counties in the radiance adjust-
mentmodel (intended tomitigate the angular effect and snow reflection of NTL) can introduce biases in
two significant ways. Primarily, given the extensive undeveloped lands in Texas where NTL emissions
mightnotoriginate fromhumanactivities, including these areas coulddistort the adjusted result, favoring
the multitude of non-urban pixels with minimal NTL radiance. This, in effect, may blur the impact on
NTL from outages. Secondly, surface oil wells located outside urban zones can yield high NTL radiance
(occasionally surpassing the brightest pixel in the city center), even though these areas do not represent
populations affectedbypoweroutages. Suchconspicuousbrightness in rural areas shall notbe included in
the study area. Thus, our study focuses on urban areas where the impervious surface area (ISA) ratio sur-
passes 0.5 and avoided areas near oil wells. The ISA ratio signifies the proportion of impervious surface
pixel (∼30 m) count to the total land-use pixel (∼30 m) count within each pixel (∼500 m) in the NTL
image, which is calculated based on the imperviousness product in the National Land Cover Database
2019 (https://www.mrlc.gov/data/nlcd-imperviousness-conus-all-years).

2.2. Data

2.2.1. Nighttime light images
NASA’s Black Marble daily images (VNP46) were utilized to detect power outages. Black Marble
images were collected from the Visible Infrared Imaging Radiometer Suite (VIIRS) day/night
band (DNB) sensor of the Suomi National Polar-Orbiting Partnership (SNPP) satellite. The Black
Marble product suite includes two products: VNP46A1 and VNP46A2. VNP46A1 offers a consistent
temporal scale at the daily level with a spatial resolution at 15-arc-second (around 500 meters in the
study area) and overcomes the saturation effect and onboard calibration issue in the preceding NTL
product. TheVNP46A2 product includes 6 layers that were processed from theVNP46A1 product by
removing biases from irrelevant NTL sources (e.g. moonlight, atmospheric effect) using the bidirec-
tional reflectance distribution function (BRDF) model inversion (Román et al. 2018; Román et al.
2019). In this study, theNTL radiance (DNB_BRDF-Corrected_NTL layer) in theVNP46A2 product
was used to detect blackouts in Texas during the winter storm. Meanwhile, the viewing zenith and

Figure 2. (a) National Weather Services (NWS) winter weather forecast near Texas, (b) counties that declared Winter Storm Uri as
a major disaster.
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azimuth angles inVNP46A1were used to adjust the angular effect. Images from Jan 1, 2020, toMar 2,
2021, were downloaded from the Level-1 and Atmosphere Archive & Distribution System (LAADS)
Distributed Active Archive Center (DAAC) Portal (https://ladsweb.modaps.eosdis.nasa.gov/search/
). Figure 2(b) shows the four tiles (dashed line) of BlackMarble images used in this study, which were
mosaicked to cover the whole study area. The parameters of layers extracted from BlackMarble pro-
ducts are summarized in Table 1.

2.2.2. Auxiliary data
In addition to the NTL images, four types of auxiliary datasets were used in this study. First, hourly
power outage data at the county level from Feb 10, 2021 to Feb 25, 2021 were acquired from BlueFire
Studios LLC (http://poweroutage.us) to calculate the power outage detectionmodel. This dataset sum-
marized power outage tracking data from61 electricity providers duringUri inTexas. Second, themost
recent land use and land cover (LULC) data from the National LandCover Database 2019were used to
calculate the ISA ratios in NTL image pixels (Dewitz 2021; Homer et al. 2020; Jin et al. 2019;Wickham
et al. 2021; Yang et al. 2018). Pixels with a ratio of ISA > 0.5 and not near surface oil wells were con-
sidered urban areas and selected as the study area. Locations of surface oil wells were retrieved from
the Railroad Commission of Texas (https://www.rrc.texas.gov/resource-center/research/data-sets-
available-for-download/). Third, socio-economic variables at the census-tract and county level were
acquired from the 2019 American Community Survey (Table 2). These socio-economic variables are
common indicators in community resilience assessment (Cutter, Boruff, and Shirley 2003; Lam et al.
2016) and are available in the American Community Survey data. These variables were used to analyze
the relations between the detected power outages and socio-economic conditions of communities.
Fourth, snow accumulation data were collected from NOAA National Gridded Snowfall Analysis
(https://www.nohrsc.noaa.gov/snowfall/). Due to the heavy cloud cover during and after the winter
storm, snow accumulation data from NOAA is the only data source that covers the whole research
area and has a fine temporal granularity (updated every 12 h).

2.2.3. NTL date selection
Next, we determined the dates of NTL images for power outage detection. This selection was made
with two criteria: (1) the images should be captured when extensive power outages occurred, and
(2) the study area should have a cloudless sky (less cloud coverage). For the first criterion, the hourly
ratio of power outages was calculated from the power outage tracking data from Bluefire Studios
LLC. The ratio is the quotient of total outage hours and total tracked hours. The hourly outage
ratio and its 24-hour moving average are displayed in Figure 3, which shows that the extensive
power outage lasted from Feb 15 to Feb 18 with a peak on Feb 16. For the second criterion, we cal-
culated the number of counties that have > 80% high-quality NTL pixels (cloudless sky) each day,
which is represented as gray bars in Figure 3. Pixels in the VNP46A2 images where the value of the
Mandatory Quality Flag (QF) is 00 are defined as high-quality pixels and selected for the analyzes in
this study. QF 01 pixels include ephemeral radiance, such as wildfire and lightning, which cannot
represent a persistent human settlement. Meanwhile, QF 01 pixels are very few in the selected

Table 1. Descriptions of layers extracted from NASA’s Black Marble product.

Layer Value Range Product

Sensor Viewing Zenith Ranging from −90° to 90° VNP46A1
Sensor Viewing
Azimuth

Ranging from −180° to 180°, 0° represents the north direction, negative values represent
the east, and positive values represent the west

VNP46A1

UTC Time Ranging from −12 to 12, represent time in the UTC VNP46A1
BRDF-corrected
Radiance

Ranging from 0 to 6553.4 VNP46A2

Mandatory Quality
Flag (QF)

00 (high-quality & persistent), 01 (high-quality & ephemeral), 02 (poor-quality), 255 (no
retrieval)

VNP46A2
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images (e.g. no QF 01 pixels on Feb 16). Thus, we decided to exclude QF 01 pixels in the analyzes.
Figure 3 shows that the highest number of counties with a cloudless sky during the power outage
period occurred on Feb 16, when 197 of the 254 counties have >80% coverage of high-quality pixels
(QF 00). Thus, NTL images on Feb 16 meet both criteria and are selected to detect power outages in
the following analysis.

The NTL images on Feb 16 were captured between 2:45 AM to 2:50 AM in Central Standard Time
(CST) as shown in Figure 4(a). Thus, power outage tracking data between 2:00 AM and 3:00 AM on
Feb 16 (highlighted in Figure 3, red dashed lines) were selected to adjust the NTL radiance in the fol-
lowing steps. Figure 4(b) shows the county-level outage ratios between 2–3 AM CST on Feb 16.

3. NTL radiance adjustment

Power outages can be detected by comparing the NTL radiance during outages and the radiance in
the normal condition (baseline). However, the various viewing angles and snow reflection may

Table 2. The list of tables and socio-economic variables extracted from the 2019 American Community Survey.

Variable Name Description

Ratio of White Ratio of White American population (one race) to total population
Ratio of African American Ratio of African American population (one race) to total population
Ratio of American Indian and Alaska Native Ratio of American Indian and Alaska Native population (one race) to total

population
Ratio of Asian Ratio of Asian American (one race) to total population
Ratio of Latino/Hispanic Ratio of Latino/Hispanic population to total population
Ratio of 25 years old + and hold a degree less than
college degree

Ratio of population over 25 years old and with a degree lower than a
college degree to total population

Ratio of commute time less than 30 min Ratio of population living in areas with less than 30 min commuting time
Ratio of income lower than poverty level Ratio of population with income lower than the poverty level to total

population
Median household income Median household income in the past 12 months (in 2019 inflation-

adjusted dollars)
Unemployment ratio Ratio of unemployed population to total population in labor forces
Renter-occupied housing ratio Ratio of renter-occupied housing units to total housing units
Ratio of constructions built after 2000 Ratio of constructions built before 2000 to total housing units
Median housing value Median value of owner-occupied housing units in dollars
Median gross rent Median gross rent of renter-occupied housing units paying cash rent

Figure 3. Hourly ratio of power outage from Feb 11 to Feb 24 (lines, left axis) and the number of counties where > 80% area is
covered by high-quality NTL pixels (bars, right axis). The red dashed line indicates the general NTL acquisition time (close to 2:45
AM Central Standard Time) of NTL images on Feb 16, 2021.
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affect the NTL radiance captured in the images and introduce biases to the comparison (Wang et al.
2021). Thus, a radiance adjustment is needed to eliminate the biases and make the images compar-
able. This section introduces the adjustment process that removes the angular effect and snow
reflection in the NTL images.

3.1. Angular effect

The viewing angle of the satellite sensor may affect the NTL radiance captured in images. Previous
studies show that the relation between the viewing zenith angle and NTL radiance can be fitted into
a quadratic equation (Li et al. 2019; Tan et al. 2022). This equation is known as the Zenith-Radiance
Quadratic (ZRQ) model and can be expressed as Eq. (1):

Rsimulated = a∗ VZA2 + b∗VZA+ c (1)

where R stands for the nighttime light radiance,VZAmeans the viewing zenith angle, and a, b, and c
are the coefficients.

The actual effects of the zenith angle may vary in the geographic space due to different land cover
types and radiance levels. Figure 5 shows the variation of zenith-radiance relations at four randomly
selected pixels in the study area, where shapes of the quadratic fitting curve between NTL radiance
and viewing zenith angle are different, meaning that the coefficients a, b, and c in Eq. (1) vary at
different pixels. Thus, instead of using a global model to adjust the entire study area, we fit the
ZRQ model locally at each pixel using NTL values from Jan 1, 2020, to Jan 31, 2021. To minimize
the impact of the azimuth viewing angle, we selected data points on dates that have the same view-
ing direction (east or west) on Feb 16 to fit in the ZRQ model. According to the Interquartile Rule
(Upton and Cook 1996), NTL values that fall outside the +/− 1.5 interquartile range from the
median value were considered outliers and excluded in the model fitting (red dots in Figure 5).
R programs are developed to automate this local fitting process. Using the locally-fitted ZRQ
models, the expected NTL radiance in the viewing zenith angle on Feb 16 was simulated (orange
dots in Figure 5).

Figure 4. (a) Acquisition time in Central Standard Time (CST) and VIIRS satellite orbit from VNP46A2 on Feb 16, 2021, (b) power
outage ratios (tracking data) between 2–3 AM in Texas counties, areas that did not experience extensive power outages are high-
lighted in blue dashed boundaries.
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Figure 6(a) shows the ratio of differences between the Rsimulated and Ractual at the pixel level
(denoted as D), which is calculated using Eq. (2):

D = Ractual − Rsimulated

Rsimulated
(2)

where Ractual is the actual radiance on Feb 16, and Rsimulated is the simulated NTL radiance on Feb 16,
2021, using the ZRQ model (Eq. (1)).

The red pixels in Figure 6(a) have a larger radiance value than the simulated (expected) value
(D . 0) on Feb 16. Most of the red pixels are located at higher latitudes (north). These larger-
than-expected radiance values contradict our expectation that power outages and reduced human
activities would dim NTL radiance in the storm. This phenomenon is possibly due to the snow-
covered land surface that can enhance NTL radiance (Levin and Zhang 2017; Wang et al. 2021).
Thus, we conducted the following analysis to evaluate the effect of snow reflection on the NTL
radiance.

Figure 5. Scatterplots of radiance by zenith angle from Jan 1, 2020, to Mar 2, 2021, in random four pixels in the study area. The
red box indicates the radiance values on dates that have a similar viewing zenith angle as Feb 16, 2021.
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3.2. Snow reflection

We developed an additional adjustment process to reduce the snow effect on NTL radiance. After
evaluating multiple sources for snow data, including MODIS Snow Cover (MOD10), VIIRS/NPP
Snow Cover (VNP10), and ground images from Sentinel-2 and Landsat-8, we found these products
are heavily impacted by cloud coverage in the study area (Texas) during the storm. Previous studies
show that snow accumulation is highly correlated with snow cover (Jonas, Marty, and Magnusson
2009). Thus, we chose to use the snow accumulation data from NOAA (https://www.nohrsc.noaa.
gov/snowfall/), which provides complete coverage in the study area, to represent snow coverage.
Figure 6(b) shows the 72-hour snow accumulation measured at 12:00 AM on Feb 16. Compared
with Figure 6(a), we found that areas with increased NTL radiance (positive D) generally have
higher snow accumulation. To eliminate the influence of outliers, we applied the bin-fitting method
to quantify the relation between snow accumulation and NTL radiance change (Currit 2002; San-
chez de Miguel et al. 2020). Specifically, we aggregate data points in the scatter plot into bins, each of
which represents an interval of 0.5 in. snow accumulation (x-axis) and 0.1 NTL change ratio (y-
axis). Then, we selected the bin with the highest point density in each interval in the x-axis
(shown as orange dots in Figure 7(a)) to derive a linear regression model. The positive coefficient
of the regression (β = 0.03) indicates that the NTL difference ratio (D) is positively correlated with
snowfall accumulation (Figure 7(b)). This result confirms that snow coverage may enhance NTL
radiance and justify the need for the snow effect adjustment.

The radiance adjustment includes the following steps. First, the adjustment models were devel-
oped in areas that did not experience extensive power outages (i.e. outage ratio < 10%, see Figure 4
(b)), assuming that the difference between the actual NTL radiance and simulated radiance was pri-
marily caused by snow reflection. The outage ratio is the ratio of detected power outage time to total
tracking time in the county, described in Section 2.2.3. The adjustment is expressed in Eq. (3),
which is a linear equation of logarithmically transformed Ractual and Rsimulated. We acknowledge
that the correlation between Ractual and Rsimulated varies in different snow accumulation categories,
and thus calculated the model parameters in seven snow accumulation categories (Table 3). In each
category, we apply the bin-fitting method to derive a regression model between NTL radiance
change (D) and snow accumulation. Details of models in each snow accumulation category can

Figure 6. Comparison between NTL radiance change and snow accumulation: (a) spatial distribution of NTL radiance change (D), (b)
snowfall accumulation from NOAA National Gridded Snowfall Analysis (72-hour snowfall accumulation) at 12:00 AM, Feb 16, 2021.
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be found in Figure SI 1 to Figure SI 7. Then, we use the derived models to adjust the actual NTL
radiance of pixels in different snow accumulation categories (Eq. (4)).

ln (Ractual) = f ∗ ln (Rsimulated)+ g (3)

RAdjusted = e

ln(Ractual)− g
f (4)

where e is the base of natural logarithms, f and g were calculated from pixels in each snow
accumulation category.

The actual radiance and adjusted radiance values were compared with simulated radiance
using the bin fit linear model in Figure 8(a)&(c). The snow effect adjustment pulls the regression
line (blue, where slope changed from 0.92589–0.99704 and intercept changed from 0.82176
to −0.27409) closer to the central line (black, where slope = 1 & intercept = 0), indicating a higher
consistency between the adjusted radiance with the simulated radiance. The enhanced NTL
values on Feb 16 that are potentially impacted by snow were adjusted and corrected to a normal
level (based on the simulated NTL radiance on Feb 16). Comparing Figure 8(a) with Figure 8(c)
and (b) with Figure 8(d), we can see that the adjustment has alleviated the radiance biases caused
by the snow effect.

4. Blackout detection

Power outage is detected by comparing the adjusted NTL radiance on Feb 16 and the radiance in
the normal condition (baseline radiance). The baseline radiance is a sample of radiance values on
dates from Jan 1, 2020, to Jan 31, 2021, when the viewing angle and acquisition time is similar to
that on Feb 16. We assume that blackout occurs in pixels where the radiance on Feb 16 reduces
below a certain level (threshold) in comparison with the baseline radiance. The comparison was
conducted only in high-quality pixels (Mandatory QF is 00) with similar viewing zenith angles
(+/− 0.3°). Various thresholds are used in previous studies to detect power outages (Kar et al.
2021; Min, O’Keeffe, and Zhang 2017; Shah et al. 2020), but some can be arbitrary and lack

Figure 7. (a) Bin-fit scatterplot between 72-hour snowfall and NTL difference ratio (D) of pixels in the Feb 16 NTL image,
(b) density plots between 72-hour snowfall and NTL difference ratio (D) of pixels in the Feb 16 NTL image. The white horizontal
line (D = 0) represents no change in NTL. The blue dashed line in (a) and white dashed line in (b) indicate the actual bin fit to the
target (equation and R2 listed at the bottom of each graph).
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empirical validation. In this study, we evaluated three different thresholds to detect power outages
using Eqs. (5)–(7), respectively. The detected power outage by the three thresholds was validated
against the county-level power outage tracking data. The threshold that generates the best corre-
lation with the county-level power outage data was considered optimal and was used for the analysis

Table 3. Coefficients in NTL radiance adjustment function by snow accumulation category.

Snow accumulation (inches) Slope (f ) Intercept (g) Coefficients of determination (R2) Number of points

0–1 0.9464 1.0543 0.9671 36796
1–2 0.9707 0.7268 0.9483 50420
2–3 0.7815 1.4018 0.9681 36365
3–4 0.9780 1.2139 0.9738 43730
4–6 0.9278 1.3944 0.8896 67490
6–8 1.1255 0.7386 0.9849 20701
8–12 1.0645 0.9900 0.9867 10677

Figure 8. (a) Bin-fit scatterplot between the actual NTL radiance and simulated NTL radiance on Feb 16 (bin width = 0.25 unit),
(b) density plots between the actual NTL radiance and simulated NTL radiance on Feb 16, (c) bin-fit scatterplot between the
actual NTL radiance and simulated NTL radiance on Feb 16 (bin width = 0.25 unit), (d) density plots between the adjusted
NTL radiance and simulated NTL radiance on Feb 16. Black lines in (a)&(c) and white lines in (b)&(d) indicate the adjustment
target (f(x) = x). The blue dashed lines in (a)&(c) and white dashed lines in (b)&(d) indicate the actual bin fit to the target in
all figures (equation and R2 listed at the bottom of each graph).
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in the next step. The parallel computing package (doSnow) in R developed by Microsoft Corpor-
ationand Weston (2022) was applied to accelerate the pixel-wise computation.

Rthreshold1 = mean(Rbaseline)− b1∗stdev(Rbaseline) (5)

Rthreshold2 = b2∗ mean(Rbaseline) (6)

Rthreshold3 = min (Rbaseline) (7)

where Rbaseline is the radiance values from Jan 1, 2020, to Jan 31, 2021 when the viewing angle is
similar to that on Feb 16, 2021. These radiance values are considered the baseline that represents
radiance values at the normal time. As an example, the red bounding boxes in Figure 5 highlight
the baseline radiance values in the four pixels. Rthreshold1−3 are the thresholds below which power
outages are determined. Stdev, mean, and min are functions to calculate standard deviation,
mean, and minimum from the baseline radiance values.

Using the three thresholds, pixels in the Feb 16 images are classified into outage pixels (radiance
< threshold) and non-outage pixels (radiance≥ threshold). The ratio of power outages is calculated
as the division of outage pixels by total pixels in counties and census tracts. Instead of using arbi-
trary values, the coefficient b1 and b2 in Rthreshold1 and Rthreshold2 are derived from an iterative pro-
gram. The program uses all possible values of b1 in [0, 1] and b2 in [0, 2] with an increment of 0.01
to calculate power outage ratios in counties and conducts regression analysis between the power
outage ratios detected from NTL and the outage ratios calculated from the outage tracking data.
The optimal values of b1 and b2 are selected when the coefficient of determination (R2) of the
regression analysis is the highest, indicating the highest consistency between the two datasets.
Figure 9 shows the changing pattern of R2 with increasing values of b1 and b2 in the iterative pro-
gram. The values of b1 and b2 at the peaks of the curves are considered optimal and applied in Eqs.
(5) & (6) to calculate Rthreshold1 and Rthreshold2, respectively. The higher R

2 in the blue line shows that
adjusted radiance achieved a higher consistency with the outage tracking data than the original
radiance.

To evaluate the effect of the adjustment in Section 3, changing patterns of R2 calculated from the
original NTL images (red lines) and adjusted NTL images (blue lines) are illustrated in Table 4,
indicating that the adjustment process has improved the ability of the NTL images for power outage
detection. Regression analysis was used to validate the power outage ratios calculated from NTL
images against the ratios calculated from outage tracking data at the county level. A higher coeffi-
cient of determination (R2) implies a better match of power outages detected in the two data
sources. Comparing the three thresholds, the power outage ratio calculated using Rthreshold2

(Eq. (6)) has the highest correlation (R2 = 0.4157) with the ratios from the outage tracking data, fol-
lowed by the ratios calculated by Rthreshold1 (Eq. (5)) & Rthreshold3 (Eq. (7)). In other words, our study
found that NTL data have the highest correlation with real outage tracking data when NTL intensity
was reduced by 26% (b2 = 0.26). Thus, the power outage pixels and ratios of the outage pixels cal-
culated with Rthreshold2 (Eq. (6)) are used in the following analysis.

The outage pixels derived from the threshold with the best performance (Rthreshold2) were visu-
alized in Figure 10(a). A zoom-in view for three metropolitan areas, Houston, Dallas-Fort
Worth, and Austin-San Antonio, was shown in Figure 10(b)–(d). The outage occurred around sub-
urban areas or the edges of the urban areas in Dallas, Austin, and San Antonio, whereas large areas
in the center of Houston suffered from blackouts. At the pixel level (Figure 10(c)), areas surround-
ing Houston were heavily impacted by the outage. The western area of Texas did not experience
widespread outages.

Figure 11(a)&(b) show outage ratios in counties and each census tract, where coastal counties
near the Gulf of Mexico experienced large outage ratios. The patterns of NTL power outage ratios
generally agree with the outage ratios calculated in Figure 4(b). However, within Harris County, the
outage tracking data show a low outage ratio (Figure 4(b)) whereas the outage ratio detected from
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NTL (Figure 11(a)) shows the opposite. Considering the large industrial areas in Houston and
differences in electricity consumption between residential clients and industrial clients, the
power outage tracking data in residential areas can be diluted by the large regularly supplied indus-
trial electricity consumption. Overall, regardless of a few places that show discrepancies between
outage tracking data and NTL outage ratio, the spatial patterns of county-level power outage ratios
derived from the two datasets are similar, plus the NTL images can provide timely power outage
detection at a higher resolution (∼500 m).

5. Correlation analysis

Pearson correlation analyzes were then used to analyze the relations between outage ratios
detected in NTL images and socio-economic variables listed in Table 2 at both the county
level and the census tract level. Table 5 lists the p values and Pearson correlation coefficients
between the power outage ratio and each socio-economic variable. Socio-economic variables
that have significant correlations (p-value < 0.05) with power outage ratios are highlighted in
bold font. At the county level, the blackouts tend to occur in Hispanic/Latino communities
and communities with newer buildings. At the census tract level, power outages are more likely
to happen in Latino/Hispanic communities, communities with fewer white populations, a longer
commuting time, lower unemployment ratios, and higher median housing value. The results
show that the relations between disadvantaged population groups and power outages vary at
the two spatial scales, except that Ratios of the Hispanic/Latino population show strong corre-
lations at both scales.

Figure 9. Changes of R2 with increasing b1 (left) and b2 (right) in the iterative program. Blue and red curves are calculated with
adjusted and original radiance, respectively.

Table 4. Highest coefficient of determination (R2) in each NTL threshold and the optimal coefficient b (if applicable) that
generates the highest R2.

Rthreshold1 (Eq. (5)) Rthreshold2 (Eq. (6)) Rthreshold3 (Eq. (7))

Original NTL radiance 0.2938
(b1 = 0.96)

0.3035
(b2 = 0.71)

0.2882

Adjusted NTL radiance 0.3939
(b1 = 1.44)

0.4157
(b2 = 0.26)

0.3827
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6. Discussion

This study presents an analytical workflow to detect power outages from daily Black Marble NTL
images and the application of this approach in 2021 Winter Storm Uri. Compared to other data
sources (e.g. the county-level power outage tracking data), the NTL-based approach can detect
power outages at a finer spatial resolution (∼500 m), providing important support for emergency
response and assessment of infrastructure damage and recovery. Through exploratory data analysis,
we discovered the effects of the viewing angle and ground snow reflection on the NTL radiance,
which prohibits a direct comparison between the images captured in the storm with the images
in normal times (baseline condition). Additionally, the snow and angular effects show strong spatial
variation, and thus cannot be corrected using a global model. To this end, we developed radiance
adjustment models to reduce the biases introduced by various viewing angles and snow reflection
over the study area. The model training at each pixel creates a substantial computational load,

Figure 10. (a) Outage pixels from NTL images in the declared disaster counties in Texas, (b) zoom-in view of Austin (Travis
County) and San Antonio (Bexar County), (c) zoom-in view of Houston (Harris County), (d) zoom-in view of Dallas (Dallas County)
and Fort Worth (Tarrant County).
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which was effectively addressed by parallel algorithms. In the validation against the outage tracking
data, the adjusted NTL radiance shows an improved ability in power outage detection than the non-
adjusted images.

The power outage detection was conducted by comparing the adjusted NTL radiance on Feb 16 with
the radiance in the normal condition (baseline condition). Due to the instability of NTL radiance, choos-
ing images on a specific date as the baseline may introduce uncertainties caused by radiance fluctuations
on that day. Instead, we used a sample of dates in 2020 and 2021 when the viewing angle was similar to
that on Feb 16 to represent the baseline radiance. Another challenge we faced in this study is choosing an
appropriate threshold to detect power outages. The choice of the threshold determines the extent of radi-
ance reduction that shouldbe classified as power outages.Various thresholds are used inprevious studies,

Figure 11. (a) Power outage ratios aggregated in counties, (b) power outage ratios aggregated in census tracts.

Table 5. The statistics (p-value and Pearson correlation coefficient) of the correlation models between socio-economic variables
and the NTL power outage ratio.

Population group

NTL outage (county) NTL outage (census tract)

p-value
Pearson’s

r
Degree of
freedom p-value

Pearson’s
r

Degree of
freedom

Ratio of White only 0.764 0.027 123 0.013* −0.038 4180
Ratio of African American only 0.184 −0.120 123 0.194 0.020 4180
Ratio of American Indian and Alaska Native
alone

0.097 −0.149 123 0.135 −0.023 4180

Ratio of Asian 0.097 0.149 123 0.139 0.023 4180
Ratio of Latino/Hispanic 0.000*** 0.334 123 0.000*** 0.083 4180
Ratio of 25 years old + and hold a degree
less than college degree

0.356 −0.083 123 0.546 0.009 4180

Ratio of Commute time less than 30 min 0.109 −0.144 123 0.000*** −0.171 4180
Ratio of income lower than poverty level 0.484 0.063 123 0.360 −0.014 4180
Median household income 0.331 0.088 123 0.266 0.017 4180
Unemployment ratio 0.281 −0.097 123 0.000*** −0.069 4180
Renter-occupied housing ratio 0.889 0.013 123 0.120 −0.024 4180
Ratio of constructions built after 2000 0.022* 0.205 123 0.559 −0.009 4180
Median value 0.266 0.100 123 0.018* 0.037 4180
Median gross rent 0.299 0.094 123 0.803 0.004 4180

***p < 0.001.
**p < 0.01.
*p < 0.05.
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which are somehow arbitrary and lack empirical validation. To address this issue, we developed an itera-
tive algorithm to search for the optimal threshold that can generate the highest correlation between the
outagedetected fromNTLand theoutage trackingdata.This approach fuzes the outage trackingdata and
NTL images to find the threshold to obtain a finer-resolution (∼500 m) power outage detection.

With the developed power outage detection approach, the second objective is to evaluate
environmental justice issues inWinter Storm Uri. Our hypothesis is that disadvantaged populations
are disproportionally exposed to power outages in the storm. The resultant power outage map at a
finer resolution (∼500 m) enables the evaluation of the hypothesis at the census tract level. The stat-
istical analyzes show that the ratio of the Latino/Hispanic population has a significant correlation
with power outage ratios at both the county and census-tract level. This result confirms the finding
in the previous studies by Lee, Maron, and Mostafavi (2021) and Flores et al. (2023). As Texas is the
state with the second largest Hispanic population (Nielsen-Gammon 2011), this result signals an
alarming trend that the Hispanic population may be disproportionally exposed to vulnerable elec-
tric power systems in natural disasters. Despite the statistical significance, the correlations between
power outages and other disadvantaged population groups are not extraordinarily strong (relatively
low Pearson’s r values). This result is possibly due to the limited data sample in one specific event.
To fully understand the environmental justice issues, further research with improved outage detec-
tion techniques should be conducted in more and other hazard events to confirm the findings from
this study.

The proposed method can be improved in the following aspects. First, the NTL should be further
decomposed into several types of human activities. The captured NTL radiance can be generated
from road traffic, industrial sites (e.g. oil refineries), and critical facilities that have an emergency
power supply (e.g. hospitals). The illumination from these facilities may influence the detection
of power outages that hit residential households. A future improvement is to classify the NTL radi-
ance into different land use and land cover types, from which the power outage occurred in resi-
dential areas can be differentiated. The differentiated power outage detection will provide more
reliable data to study environmental justice issues in the storm. Second, the NTL radiance captured
in the Black Marble images is highly dependent on weather conditions. The introduced approach
requires a cloudless sky to detect changes in NTL radiance, which may not occur in some disaster
events. In this study, Feb 16 is the only date during the storm when there are sufficient high-quality
pixels (cloudless sky) to observe NTL in the study area. On other dates, most urban areas are fully or
partially covered by clouds, preventing the observation of NTL on the ground. Additionally, the
NTL variation is affected by complex factors other than snow cover, which lead to only a moderate
fit between outage tracking data and outages detected by NTL. Such factors can include but are not
limited to the ground condition (e.g. snow cover, flood inundation) and atmospheric conditions
(e.g. moisture). In future research, we would further improve the method to reduce biases and
uncertainties introduced by these factors.

7. Conclusion

This study utilizes NASA’s daily Black Marble images to detect power outages in Winter Storm
Uri that hit Texas in 2021. The study introduces a complete workflow from image selection,
processing, and radiance adjustment to power outage detection. The analysis uncovers the
effects of viewing angle and snow cover on NTL radiance and introduces adjustment methods
to mitigate the effects. The validation against an additional data source (the outage tracking
data) indicates an improved NTL quality after the adjustment. The derived power outage
maps at a finer resolution (∼500 m) provide important support for emergency response, disaster
relief, and recovery. Using publicly available data sources, the developed methodology is widely
applicable to other hazardous events in other regions, which provide important support for
enhancing community and infrastructure resilience. Furthermore, we analyzed the relations
between the ratios of detected power outages and ratios of over 10 disadvantaged population
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groups, aiming to discover environmental injustice and social disparities in this disaster. The
results show that the Hispanic/Latino population tends to reside in communities that are
impacted by power outages, which echoes findings in peer studies about this storm. This
finding raises concerns about potential environmental justice issues in natural disasters, warrant-
ing further investigation with improved data and techniques.
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