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Abstract

In this thesis we look at two closely related families of categories: the discrete cluster
categories of Dynkin type A∞, and their completions in the sense of Paquette and
Yıldırım.

We compute the triangulated Grothendieck group of the discrete cluster categories
of Dynkin type A∞, as well as their Paquette-Yıldırım completions. Further, we provide
a counterexample to a theorem by Palu and provide a corrected statement of the result.

We also introduce the concept of homologically connected objects, and show that
any object in the Paquette-Yıldırım completion of a discrete cluster category of Dynkin
type A∞ can be decomposed into homologically connected direct summands, and that
the smallest thick subcategory containing an object is determined by its decomposition
into homologically connected direct summands. This allows us to classify the classical
generators of the Paquette-Yıldırım completions of the discrete cluster categories of
Dynkin type A∞, and associate an integer to each classical generator that is an upper
bound on their generation time. This allows us to compute an upper bound for the
Orlov spectrum, and to compute the Rouquier dimension of the Paquette-Yıldırım
completions.

Further, we compute the graded endomorphism ring of a chosen classical genera-
tor as a Z-graded, upper triangular matrix ring with polynomial rings and Laurent
polynomial rings as entries.
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Introduction

Discrete cluster categories of Dynkin type A∞ were introduced by Igusa and Todorov in
[39] as part of a larger family of cluster categories that are stable Frobenius categories
coming from cyclic posets. They are particularly well behaved triangulated categories
and provide a practical setting in which to study cluster categories with infinitely many
isomorphism classes of indecomposable objects.

We may model a discrete cluster category of Dynkin type A∞, labelled Cn for n ≥ 1,
using a disc with an infinite set of marked points M on the boundary, and a set of
n accumulation points. That is, points on the boundary of the disc satisfying some
limit condition of marked points from both clockwise and anticlockwise directions. The
isomorphism classes of indecomposable objects of Cn are in bijection with the isotopy
classes of arcs between marked points that are not isotopic to boundary segments of
the disc, and an Ext1-space between indecomposable objects is non-trivial if and only
if the corresponding arcs cross on the interior of the disc.

We also consider a second family of closely related categories in this thesis, the
Paquette-Yıldırım completion [58] of the discrete cluster category of Dynkin type A∞,
denoted Cn. The category Cn is constructed by Paquette and Yıldırım as a Verdier
localisation of C2n, and can be modelled in a similar fashion to Cn, by considering the
accumulation points to be contained within the set of marked points.

In the first part of this thesis we compute the triangulated Grothendieck groups
of Cn and Cn, and in the second part we look at classical generators in Cn. Our main
results in the second part includes classifying the classical generators and computing
bounds for the Orlov spectrum of Cn, as well as computing the graded endomorphism
ring of a particular classical generator of Cn with some desirable properties.

Cluster Algebras
Fomin and Zelevinsky introduced the concept of cluster algebras in the early 2000’s
as an algebraic framework for dual canonical bases and total positivity in semisimple
groups. They developed the foundational results and began the development of a rich
theory surrounding cluster algebras in a series of papers [30, 31, 32], as well as [14]
with Berenstein.



CONTENTS 2

We may think of a cluster algebra as a commutative, unital algebra A that has
no zero divisors and a distinguished family of generators, the cluster variables. These
cluster variables form overlapping subsets of n elements, known as clusters, which
follow an exchange relation, where a cluster variable may be removed from a cluster
and uniquely replaced by another cluster variable not already in the original cluster to
obtain a new cluster. The process of removing a cluster variable and replacing it with a
new one is known as mutation. Fomin and Zelevinsky provide a number of prototypical
examples of cluster algebras in the introduction to [30], including the rank 1 cluster
algebra C[SL2], and a cluster algebra of arbitrary rank m, the homogeneous coordinate
ring C[Gr2,m+3] of the Grassmannian of 2-dimensional subspaces of Cm+3.

An important early development in cluster algebras was the classification of finite
type cluster algebras, i.e. those with finitely many cluster variables. It was the main
focus of [31] where the authors provided a bijection between the set of strong isomor-
phism classes of finite type cluster algebras and Cartan matrices of finite type.

Cluster Categories
What followed [30] was a relative explosion in interest in cluster algebras, with con-
nections being found in topics such as: the representation theory of algebras and finite
dimensional algebras, combinatorics, Poisson geometry, and Teichmüller spaces. What
is particularly relevant to our interests was the attempt to categorify cluster algebras.
This is a loosely defined concept with the aim of being able to study cluster algebras via
methods in category theory, primarily achieved by constructing categories that have
properties resembling those of a cluster algebra, so-called cluster categories. To do
this, Buan-Marsh-Reineke-Reiten-Todorov [18] introduce the notion of a cluster tilting
subcategory (which they call an Ext-configuration), which resembles a cluster in a clus-
ter algebra, with the indecomposable objects in the cluster tilting subcategory being
analogous to its cluster variables.

A subcategory S of a triangulated category T is cluster tilting if it is functorially
finite and S = (S[− 1])⊥ = ⊥(S[1]), where [1] denotes the suspension functor of T ,
[ − 1] is the inverse suspension functor, and X⊥ (resp. ⊥X ) denotes the right (resp.
left) 0-perpendicular subcategory for some subcategory X ⊆ T , i.e.

X⊥ = {Y ∈ T Hom(X, Y ) = 0 for all X ∈ X},
⊥X = {Y ∈ T Hom(Y,X) = 0 for all X ∈ X}.

With the motivation of categorifying cluster algebras in mind, we need to ask for
more than just the existence of cluster tilting subcategories, we also wish to somehow
mimic the cluster combinatorics present in a cluster algebra. To do this, we ask that a
cluster category has what is called a (weak) cluster structure, which formalises an ana-
logue of the exchange relations between clusters in a cluster algebra. Cluster structures
were introduced by Buan, Iyama, Reiten and Scott [17], and under certain conditions



CONTENTS 3

cluster tilting subcategories always form a (weak) cluster structure.
The first cluster categories were introduced simultaneously by Caldero, Chapoton

and Schiffler in [19], for cluster algebras of Dynkin type An, and by Buan, Marsh,
Reineke, Reiten and Todorov in [18] for cluster categories associated to hereditary
algebras more generally. The approach for hereditary algebras in general involves
taking an orbit category of the bounded derived category of some finite dimensional
hereditary algebra H over a field k,

CH := Db(modH)/(τ−1 ◦ [1]),

where τ is the Auslander-Reiten translation and [1] is the suspension functor of
Db(modH). The category CH is a Hom-finite, k-linear, Krull-Schmidt, 2-Calabi-Yau
triangulated category. The cluster variables of the cluster algebra associated to H are
in a one-to-one correspondence with the indecomposable objects of the cluster category
associated to H, and the clusters correspond to the cluster-tilting subcategories [18].

Later, Amiot [1] defined a cluster category for any finite dimensional k-algebra A
of global dimension ≤ 2, over a field k. This was done by taking the triangulated
hull CA of the orbit category Db(modA)/(ν ◦ [ − 2]), where ν is a Serre functor, and
showing that under certain conditions A induces a cluster tilting subcategory. This
general approach also works in constructing a cluster category for Jacobi-finite quivers
with potential, and in the case that A is hereditary, this is an equivalent construction
to that found in [18].

An interesting phenomenon, noted already in the first work on cluster algebras by
Fomin and Zelevinsky [30], is the relationship between cluster algebras/cluster cat-
egories and triangulations of marked surfaces. As noted earlier, the homogeneous
coordinate ring C[Gr2,m+3] is a cluster algebra of rank m, however the clusters are also
in bijection with the triangulations of an (m+ 3)-gon, and the cluster variables are in
bijection with the diagonals between non-adjacent vertices. The mutation of a cluster
variable is equivalent to flipping the corresponding diagonal in a triangulation, that is
removing a diagonal and replacing it with the unique diagonal that makes the new set
of diagonals a different triangulation.

Further, these bijections can be seen in the world of cluster categories. Let Am be
a quiver with m vertices with the underlying graph of Dynkin type A, and let H be
isomorphic to the path algebra kAm. Then the indecomposable objects of CH are in
bijection with the set of diagonals between non-adjacent vertices on a (m+3)-gon, and
the cluster tilting subcategories are in bijection with triangulations of the (m+ 3)-gon
[19]. We call this category the cluster category of Dynkin type Am.

Much work has been done in understanding the relationship between cluster al-
gebras/cluster categories and marked surfaces: such as in [20, 21, 28, 29, 51, 52] for
cluster algebras, and in [16, 61, 69] for cluster categories.

For an arbitrary orientated Riemann surface with boundary and finitely many
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marked points on the boundary, an associated cluster algebra was introduced by Fomin,
Shapiro and Thurston [28], and later Fomin and Thurston [29]. An explicit descrip-
tion of a cluster category associated to a finitely marked, orientated Riemann surface
with boundary was given by Brüstle and Zhang [16] for unpunctured surfaces, whilst
a generalisation for punctured surfaces was given by Qiu and Zhou [61].

Interestingly, there is another way to recover cluster categories from a marked
surface, by using quivers with potential and the cluster categories introduced by Amiot
in [1]. This involves associating a quiver with potential to a triangulation of a marked
surface, via a process introduced by Labardini-Fragoso in [47] in an attempt to relate
the mutation of quivers with potential introduced by Derksen, Weyman and Zelevinsky
[23] and cluster algebras associated to triangulations of surfaces from [28]. It was shown
in [47] that the flipping of a diagonal in a triangulation of a surface is equivalent to the
Derksen-Weyman-Zelevinsky mutation of a quiver with potential.

The Category Cn
A cluster category of interest to us was introduced in [38] by Holm and Jørgensen,
where they consider a polynomial ring k[T] as a differential graded ring, with trivial
differential and T placed in homological degree 1. The category D is the finite derived
category

D := Df(moddg k[T]),

and D is a Hom-finite, k-linear, Krull-Schmidt, 2-Calabi-Yau triangulated category.
They show that there is a bijection between the indecomposable objects in D and pairs
of integers (a, b) ∈ Z such that b > a + 1. Further details for D are given in Section
2.3.

To model this bijection, a combinatorial model is associated to D. Consider a disc
with infinitely many marked points, all on the boundary, labelled by the integers. Then
the isotopy classes of arcs between marked points that are non-isotopic to boundary
segments are in bijection with the indecomposable objects of D, and an Ext1-space
between indecomposable objects is non-trivial if and only if the arcs corresponding to
the indecomposable objects cross.

Moreover, Holm and Jørgensen show that a subcategory S ⊂ D is a maximal 1-
orthogonal subcategory if and only if the indecomposable objects of S are in bijection
with a triangulation of the∞-gon [38]. This provides an intuitive understanding of this
category as an analogue of the cluster category of Dynkin type Am as m approaches
infinity, and thus we may consider it as a cluster category associated to the quiver of
Dynkin type A with infinitely many vertices, A∞.

This interpretation is further supported by Keller and Reiten, who looked at a
category equivalent to D in [44],

D ≃ Db(mod kQ)/(τ ◦ [− 1]),
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where Q is the linearly orientated A∞
∞-quiver, · · · → · → · → · → · · · . In [44], the

authors find a cluster tilting subcategory of D.

ℓA

x

y

z

Figure 1: A combinatorial model for the category D, with x < y < z for x, y, z ∈ Z.
The arc ℓA corresponds to the indecomposable object A ∈ D. The circle on the

boundary is an accumulation point, that is a point that is a limit of marked points
from both a clockwise and anti-clockwise direction.

In fact, D is equivalent as a triangulated category to a category in a larger family,
the discrete cluster categories of Dynkin type A∞, labelled here by Cn for all n ≥
1, introduced by Igusa and Todorov in [39]. Namely D is equivalent to C1. These
categories are introduced as stable categories of Frobenius categories that are built
from cyclic posets; in fact this process introduces a much larger class of categories
than the ones discussed here, however the main topic of study in this thesis will be the
discrete cluster categories of Dynkin type A∞.

With the combinatorial model of D ≃ C1 in mind, we can consider a combinatorial
model for the category Cn in general as an∞-gon having n accumulation points. Again
we have a bijection between the diagonals of an ∞-gon with n accumulation points
and the indecomposable objects of Cn, with a maximal 1-orthogonal subcategory corre-
sponding to a maximal set of non-crossing diagonals, i.e. a triangulation of the ∞-gon
with n accumulation points.

These categories have been the subject of a lot of interest in recent years: Gratz-
Holm-Jørgensen classified their cluster tilting subcategories and torsion pairs [36],
Gratz-Zvonareva classified their thick subcategories and t-structures [37], cotorsion
pairs of C2 were classified by Chang-Zhou-Zhu [22], and a correspondence between c-
vectors of the discrete cluster categories of Dynkin type A∞ and roots of the Borel
subalgebras of sl∞ was found by Jørgensen and Yakimov [40].

We also consider a completion of the category Cn, introduced by Paquette and
Yıldırım in [58]. The Paquette-Yıldırım completion of Cn, denoted Cn, is a Hom-finite,
Krull-Schmidt, k-linear, triangulated category, constructed by taking a localisation of
the category C2n by a specified thick subcategory. The category C1 is equivalent to
the stable category of Z-graded maximal Cohen-Macauley modules over an A∞ curve
singularity by a result of August-Cheung-Faber-Gratz-Schroll [3].

A combinatorial model for Cn can be thought of as an adaptation of the combina-
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torial model used for Cn, with the adaptation that the accumulation points now act as
marked points as well. This means that there is an added class of limit arcs that have
at least one of their endpoints at an accumulation point. These arcs are not present in
the combinatorial model for Cn.

Main results
Our first main result is a computation of the triangulated Grothendieck group of Cn for
all n ≥ 1. The Grothendieck group of a triangulated category T , denoted K0(T ), is the
free abelian group on isomorphism classes of objects, G0(T ), modulo the Euler relations
coming from distinguished triangles in T . The Grothendieck group of a triangulated
category contains interesting information about the category, including a correspon-
dence between subgroups of the Grothendieck group and the dense subcategories of
the triangulated category, shown by Thomason [66].

To compute the Grothendieck group of Cn, we apply a slightly altered version of
a result due to Palu [57] (Theorem 3.1.5), that provides an isomorphism between the
triangulated Grothendieck group of a 2-Calabi-Yau triangulated category equipped
with a cluster-tilting subcategory and the split Grothendieck group of a cluster-tilting
subcategory satisfying a certain property, modulo relations coming from the exchange
relations of the cluster-tilting subcategory. We use this result to show the following.

Theorem 0.0.1 (3.2.5). The triangulated Grothendieck group of Cn is

K0(Cn) ∼= Zn.

In Remark 3.2.6, we provide a counterexample to the original statement of the
theorem due to Palu, and give an updated statement of the result that is consistent
with the proof given in [57]. We show that we may still apply the updated version of
Palu’s result in our situation.

Next we compute the triangulated Grothendieck group of Cn, the Paquette-Yıldırım
completion of Cn. It was shown in [58] that Cn is not 2-Calabi-Yau for any n ≥ 1, and
moreover there is no Serre functor for Cn. Therefore the same approach to computing
the Grothendieck group using Theorem 3.1.5 is not viable. Instead we consider Cn as
a localisation of C2n, and show that there is a short exact sequence of categories (or
localisation sequence),

0→
n⊔
i=1
C1 → C2n → Cn → 0.

By applying the functor K0(−) to the above sequence, we obtain the following result.

Theorem 0.0.2 (3.2.9). The triangulated Grothendieck group of Cn is

K0(Cn) ∼= Zn ⊕ (Z/2Z)n−1.

The second half of this thesis is a study of the classical generators of the categories
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Cn. In particular we obtain a classification of the classical generators of Cn and provide
an upper bound on their generation time.

A classical generator of a triangulated category T is an object G (or, more generally,
a subcategory) such that the smallest thick subcategory of T that contains G is the
category T itself. Classical generators of triangulated categories can be very useful
in understanding the category as a whole, and can be used to induce equivalences of
algebraic triangulated categories, as shown by Keller [41].

We classify the classical generators of Cn, and provide an upper bound on the
generation time for each classical generator, thereby providing an upper bound for the
Orlov spectrum of C. To do this we introduce two conditions on objects in Cn.

For an object G ∈ Cn, let ⟨G⟩1 be the smallest full subcategory of Cn containing G
that is closed under direct sums, direct summands, suspension, and desuspension. We
say that an object G is homologically connected if for any two indecomposable objects
X, Y ∈ ⟨G⟩1 there is a sequence of morphisms of degree 1 between indecomposable
objects in ⟨G⟩1 starting and ending at X and Y . Such a sequence is called a zig-zag,
and we say that the number of morphisms of degree 1 in a zig-zag is the length of the
zig-zag. A zig-zag between indecomposable objects X and Y is minimal if there exists
no zig-zag between X and Y with a smaller length. Moreover, the supremum of lengths
of minimal zig-zags in ⟨G⟩1 is known as the homological length of G.

We show that any object in Cn may be decomposed into homologically connected
direct summands. Such a decomposition of an object is called a hc (= homologically
connected) decomposition of G.

For an object G ∈ Cn, let MG denoted the subset of M , consisting of endpoints of
arcs corresponding to indecomposable objects in ⟨G⟩1. We say MG is the orbit of G
in M and moreover, that G has a complete orbit in M if M = MG.

We also show that for any object G, the hc decomposition determines ⟨G⟩, the thick
closure of G, i.e. the smallest thick subcategory of Cn containing G. To do this, we
incorporate a classification of thick subcategories of Cn by Gratz and Zvonareva [37],
who prove that there is an isomorphism of lattices between the thick subcategories of Cn
and non-exhaustive non-crossing partitions of [n] = {1, . . . , n}. We prove that the orbit
of objects in the hc decomposition of an object in Cn corresponds to a non-exhaustive
non-crossing partition of [n], and so determines the thick closure of the object.

Further, we show that a thick subcategory in Cn is the essential image of a thick
subcategory in C2n under the localisation functor π : C2n → Cn. Therefore, the thick
closure of an object G in Cn is determined by the orbits in M of the objects in the hc
decomposition of G.

Subsequently, we show that a classical generator of Cn must be homologically con-
nected, and combine this with the previous result to classify the classical generators of
Cn.

Theorem 0.0.3 (4.2.11). Let G = ⊕m
i=1 Gi be an object in Cn, with Gi all indecompos-
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able. Then G is a classical generator of Cn if and only if G is homologically connected
and G has a complete orbit in M .

An important thing we wish to consider with classical generators is how quickly
they can generate a category, that is, how many times we need to close under cones
to go from the additive hull add(G) of G to the triangulated category T . We call this
the generation time of G, and the set of generation times for all classical generators
of T is called the Orlov spectrum of T , denoted O(T ) [56]. The infimum of the Orlov
spectrum is known as the Rouquier dimension of T [62].

It is in general a difficult task to compute the Orlov spectrum of a triangulated
category, and it is still an open question under what conditions the Orlov spectrum of
a triangulated category forms an integer interval. There is also interest in finding the
upper and lower bounds of the Orlov spectrum of a triangulated category, with work
by Elagin-Lunts and Rouquier [24, 62].

We show that the homological length of a classical generator G is an upper limit
on the generation time of G. We do this by showing that an indecomposable object
M in Cn is in ⟨G⟩l+1 if there exists a minimal zig-zag of length l in ⟨G⟩1 between
X and Y , such that the arc corresponding to M shares an endpoint with the arc
corresponding to X, and the other endpoint with the arc corresponding to Y . Therefore
the homological length, the supremum of lengths of minimal zig-zags, is an upper bound
on the generation time of G.

We then show that in Cn there is a classical generator with homological length l for
all l ∈ {1, . . . , 2n− 2}. Moreover, we show that no classical generator has homological
length ≥ 2n − 1, and so the generation time of any classical generator in Cn has an
upper bound of 2n− 2.

Theorem 0.0.4 (4.4.11). The Orlov spectrum of Cn for n ≥ 2 is bounded above by
2n− 2. That is

O(Cn) ⊆ {1, . . . , 2n− 2}.

Moreover, the Rouquier dimension of Cn is 1.

We also take a closer look at a particular classical generator E of Cn and compute
its generation time and graded endomorphism ring. In particular, E has a generation
time 1, which implies the second part of Theorem 0.0.4.

We show that the graded endomorphism ring, End∗(E), is isomorphic to an upper
triangular (2n− 1)× (2n− 1) matrix ring R∗

n = {bij}1≤i,j≤2n−1 where,

bij ∼=


k[x] if i = j and i is odd,
k[x±1] if i < j, or i = j and i is even,
0 if j < i,

and we have imposed a grading on R∗
n such that x is concentrated in degree −1.
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Theorem 0.0.5 (4.3.10). Let E ∈ Cn be the classical generator in Figure 4.5. Then
there is an isomorphism of graded rings

End∗
Cn

(E) ∼= R∗
n.

We construct a basis for the graded endomorphism ring End∗
Cn

(E) and for the ring
R∗
n, and show that there is a bijection between these bases. Further, we show that

this bijection preserves the multiplication of basis elements, and so is an isomorphism
between End∗

Cn
(E) and R∗

n.



Chapter 1

Preliminaries

Throughout we let k be an algebraically closed field, and we consider modules as left
modules.

§ 1.1 | Triangulated Categories
Triangulated categories were developed in the early 1960’s independently by Puppe
[59] and by Verdier in his PhD thesis, which was published much later in 1996 [67].
Puppe’s approach involved primarily using homotopy categories as the main example,
and defines what we today would call a pre-triangulated category (Definition 1.1.2).
Verdier used as his main example the derived categories that had also been defined in
[67], alongside his supervisor, Grothendieck.

Since then triangulated categories have become ubiquitous across many areas of
mathematics. They feature prominently in areas such as representation theory, alge-
braic topology and algebraic geometry, but also have far reaching applications to areas
like analysis and C∗-algebras.

In this section we go over some definitions, building up from candidate triangles
and pre-triangulated categories, through to triangulated categories and the octahedral
axiom. We then look at functors between triangulated categories and some basic
properties of these functors. Throughout we follow the first two chapters of Neeman’s
book on the subject [55].

§ 1.1.1 | Definitions

We begin with one of the fundamental building blocks of triangulated categories, the
candidate triangles.

Definition 1.1.1. [55] Let S be an additive category and [1]: S → S be an additive
endofunctor of S. We assume that [1] has an inverse, denoted by [− 1]. A candidate
triangle in S (with respect to [1]) is a diagram of the form:

X
u−→ Y

v−→ Z
w−→ X[1]

such that the composites v ◦u, w◦v and u[1]◦w are the zero morphisms. A morphism
of candidate triangles is a set of morphisms f = (f1, f2, f3) such that the following
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diagram with candidate triangles in each row commutes:

X Y Z X[1]

X ′ Y ′ Z ′ X ′[1].

u

f1

v

f2

w

f3 f1[1]

u′ v′ w′

Definition 1.1.2. [55] A pre-triangulated category is an additive category, together
with an additive automorphism [1], and a class of candidate triangles (with respect to
[1]) called distinguished triangles. The following definitions must hold:

TR0 Any candidate triangle which is isomorphic to a distinguished triangle is a dis-
tinguished triangle. The candidate triangle

X
1−→ X → 0→ X[1]

is a distinguished triangle.

TR1 For any morphism f : X → Y there exists a distinguished triangle of the form

X
f−→ Y → Z → X[1].

TR2 Consider the two candidate triangles

X
u−→ Y

v−→ Z
w−→ X[1]

and
Y

−v−→ Z
−w−−→ X[1] −u[1]−−−→ Y [1].

If one is a distinguished triangle, then so is the other one.

TR3 For any commutative diagram of the form

X Y Z X[1]

X ′ Y ′ Z ′ X ′[1]

u

f

v

g

w

u′ v′ w′

where the rows are distinguished triangles, there is a morphism h : Z → Z ′, not
necessarily unique, which makes the diagram

X Y Z X[1]

X ′ Y ′ Z ′ X ′[1]

u

f

v

g

w

h f[1]

u′ v′ w′

commutative.

When we are discussing triangles in a (pre-)triangulated category, we shall be refer-
ring to the class of distinguished triangles in said category. Not all candidate triangles



CHAPTER 1. PRELIMINARIES 12

are distinguished triangles, as shown by the following proposition.

Proposition 1.1.3. [55, Proposition 1.1.20] Suppose there exists a morphism of tri-
angles

X Y Z X[1]

X ′ Y ′ Z ′ X ′[1]

u

f

v

g h

w

f[1]

u′ v′ w′

if f and g are isomorphisms, then so is h.

If we consider two candidate triangles

X
u−→ Y

v−→ Z
w−→ X[1] (1.1)

X
u−→ Y

v′
−→ Z ⊕W w′

−→ X[1] (1.2)

where (1.1) is a distinguished triangle, then by Proposition 1.1.3 (1.2) is a distinguished
triangle if and only if W = 0.

Given two candidate triangles and a morphism of triangles f between them we
would like to be able to construct a new candidate triangle from this data. We call
this new candidate triangle the mapping cone of f . A pre-triangulated category T
is a triangulated category if, given a two of the three morphisms in a morphism of
triangles, there is a suitable choice of the third morphism such that the mapping cone
is a distinguished triangle.

Definition 1.1.4. [55] Let T be a pre-triangulated category. Suppose we are given a
morphism of candidate triangles

X Y Z X[1]

X ′ Y ′ Z ′ X ′[1]

u

f

v

g

w

h f[1]

u′ v′ w′

There is a way to form a new candidate triangle out of this data

Y ⊕X ′ g′
−→ Z ⊕ Y ′ h′

−→ X[1]⊕ Z ′ f ′[1]−−−→ Y [1]⊕X ′[1]

where

g′ =
−v 0
g u′

 , h′ =
−w 0
h v′

 , f ′[1] =
−u[1] 0
f[1] w′

 .
This new candidate triangle is called the mapping cone on a map of candidate triangles.

Definition 1.1.5. [55] Let T be a pre-triangulated category. Then T is a triangulated
category if it satisfies the following condition.
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TR4’ Given a diagram

X Y Z X[1]

X ′ Y ′ Z ′ X ′[1]

u

f

v

g

w

f[1]

u′ v′ w′

where the rows are triangles, there is, by TR3, a way to choose h : Z → Z ′ to
make the diagram commutative. This h may be chosen so that the mapping cone

Y ⊕X ′ g′
−→ Z ⊕ Y ′ h′

−→ X[1]⊕ Z ′ f ′[1]−−−→ Y [1]⊕X ′[1]

is a triangle.

In a triangulated category, the endofunctor [1] is called the suspension functor,
and its inverse [ − 1], is the desuspension functor. When we consider objects up to
suspension, we mean that we consider objects up to both suspension and desuspension.

The following proposition may be regarded as a replacement for TR4’ in the axioms
of a triangulated category, as they have been shown to be equivalent as axioms by
Proposition 1.1.6 and Theorem 1.8 of [54].

Proposition 1.1.6. [55, Proposition 1.4.6] Let T be a triangulated category. Let
f : X → Y and g : Y → Y ′ be composable morphisms, with the triangles:

X
f−→ Y → Z → X[1]

X
gf−→ Y ′ → Z ′ → X[1]

Y
g−→ Y ′ → Y ′′ → Y [1]

Then we can complete this to the commutative diagram

X Y Z X[1]

X Y ′ Z ′ X[1]

0 Y ′′ Y ′′ 0

X[1] Y [1] Z[1] X[2]

f

∼ g ∼

gf

∼

f[1]

where the first and second rows and the second column are the given three triangles,
and every row and column is a distinguished triangle.

Proposition 1.1.6 is known as TR4 or as the Octahedral Axiom, or occasionally as
Verdier’s axiom in homotopy theory.

There is an abundance of examples of triangulated categories throughout math-
ematics; for instance the stable homotopy category of spectra, the derived category
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of a ring, and more generally the stable category of a Frobenius category, are all tri-
angulated categories. If there is an equivalence of triangulated categories between a
triangulated category T and the stable category of a Frobenius category, then we say
that T is an algebraic triangulated category. The derived category of a ring will be
discussed later in Section 1.4.

There are often times when we may not wish to look at a triangulated category as a
whole, but only look at a subcategory whilst still retaining the triangulated structure,
for that we need to look to triangulated subcategories.

Definition 1.1.7. Let T be a triangulated category. A full additive subcategory S of
T is called a triangulated subcategory if every object isomorphic to an object in S is in
S, if S[1] = S, and if for any distinguished triangle

X → Y → Z → X[1]

with X and Y in S, then Z is in S too.

It follows from TR2 that it is sufficient for any two of X, Y or Z to be in a
triangulated subcategory S for the third object to also be in S.

A particular type of triangulated subcategories that we wish to consider are thick
subcategories. We say that a triangulated subcategory S of T is a thick subcategory if
it is closed under direct summands.

§ 1.1.2 | Triangulated Functors

There is a notion of a functor between two triangulated categories such that a triangle in
one category is sent to a triangle in the other category. These are known as triangulated
functors.

Definition 1.1.8. Let T1, T2 be triangulated categories. A triangulated functor is an
additive functor F : T1 → T2 together with natural isomorphisms

ϕX : F (X[1])→ (F (X))[1]

such that for any distinguished triangle

X
u−→ Y

v−→ Z
w−→ X[1]

in T1, the candidate triangle

F (X) F (u)−−→ F (Y ) F (v)−−→ F (Z) ϕX◦F (w)−−−−−→ (F (X))[1]

is a distinguished triangle in T2.

When we talk about the Grothendieck group of the Paquette-Yıldırım completion
of the discrete cluster cluster category of Dynkin type A∞, we will need to consider
the kernel of a triangulated functor. This is a well defined concept that we give the
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definition of, as well as presenting a few elementary results concerning the kernel of a
triangulated functor.

Definition 1.1.9. Let F : T → D be a triangulated functor. The kernel of F is defined
to be the full subcategory of S of T whose objects map to objects in D isomorphic to
0. That is,

S = {X ∈ T | F (X) is isomorphic to 0}.

Notably, the kernel of a triangulated functor is again triangulated and closed under
direct summands, i.e. the kernel is a thick subcategory.

Lemma 1.1.10 ([55]). Let F : T → D be a triangulated functor. Then the kernel S of
F is a triangulated subcategory of T and closed under direct summands.

Proof. Let X ∈ T be in the kernel of F , then so is X[1], as F (X) ∼= 0 if and only if
F (X[1]) = (F (X))[1] ∼= 0. If

X → Y → Z → X[1]

is a distinguished triangle in T , then

F (X)→ F (Y )→ F (Z)→ (F (X))[1]

is in D. If F (X) and F (Y ) are isomorphic to 0, then by TR3 in Definition 1.1.2, the
above triangle is isomorphic to

0→ 0→ 0→ 0,

in particular F (Z) ∼= 0. Thus, if X, Y ∈ S, then so is Z, and so S is a triangulated
subcategory.

To show that S is closed under direct summands, consider that F is an additive
functor, then F (X ⊕ Y ) = F (X)⊕F (Y ). But if F (X ⊕ Y ) is isomorphic to 0, then so
are F (X) and F (Y ) since they are direct summands of 0.

The next theorem is due essentially to Verdier (he proves it for thick subcategories)
and forms the basis of Verdier localisation, which we will later see is analogous to the
localisation of a category by a given subcategory. This version of the theorem is found
in [55] as Theorem 2.1.8.

Theorem 1.1.11. Let T be a triangulated category with S a triangulated subcategory.
Then there is a triangulated category T /S, and a triangulated functor F : T → T /S
such that S is the kernel of F , and F is universal with this property. If G : T → D is
a triangulated functor whose kernel contains S, then it factors uniquely as

T F−→ T /S → D.
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Given an autoequivalence F : T → T , we may construct the orbit category of T
with respect to F [42]. That is, the category T /F with the same objects as T , and
morphisms from X to Y are in bijection with

HomT /F (X, Y ) :=
⊕
n∈Z

HomT (X,F nY ).

Let H be an hereditary, abelian category, and let T ≃ Db(H) with an autoequiv-
alence G. Suppose that for each indecomposable object X in H, then only finitely
many objects GnX, i ∈ Z, are in H. Further, suppose there exists an N ≥ 0 such that
each G-orbit of an indecomposable object in T contains some object X[n] for X ∈ H
and 0 ≤ n ≤ N . Then it was shown by Keller in [42] that the orbit category T /G is
canonically triangulated.

§ 1.1.3 | The Serre Functor

Let T be a k-linear, Hom-finite triangulated category with suspension functor [1].
A right Serre functor for T [42] is a triangulated functor ϕ : T → T , together with
bifunctor isomorphisms

DHomT (X,−) ∼−→ HomT (−, ϕX), X ∈ T ,

where D = Homk(−, k). The functor ϕ is unique up to isomorphism of triangles,
if it exists. A left Serre functor for T is a triangulated functor ϕ′ : T → T , and
isomorphisms

DHomT (−, X) ∼−→ HomT (ϕ′X,−), X ∈ T .

If a triangulated category T has both a left and right Serre functor, we say it has
Serre duality. Equivalently, if ϕ or ϕ′ is an equivalence of categories, then T has Serre
duality [42].

Let T be a k-linear, Hom-finite triangulated category with suspension functor [1],
and Serre duality with right Serre functor ϕ. Then we say that T is Calabi-Yau of
dimension d (or, d-Calabi-Yau) [42], if there exists an isomorphism of triangulated
functors,

ϕ
∼−→ [d].

That is, there is an isomorphism HomT (X, Y ) ∼= DHomT (Y,X[d]), for all objects
X, Y ∈ T .

§ 1.2 | Localisation of Triangulated Categories
In this section we discuss some of the various localisations of triangulated categories
and how they compare to one another. We will see an example of a localisation of a tri-
angulated category in Section 2.4 when we talk about the Paquette-Yıldırım completion
of the discrete cluster category of Dynkin type A∞.

We primarily follow the work of Krause in [45].
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Verdier Localisation

One way of localising a subcategory is by taking a set of morphisms and formally
inverting them.

Let F : D → C be a functor. We say that F makes a morphism σ in D invertible if
F (σ) is invertible. The set of morphisms made invertible by F is denoted Ω(F ).

Given a category D and a set Ω of morphisms in D, we consider the localisation of
D with respect to Ω, D[Ω−1] together with a canonical localisation functor QΩ,

QΩ : D −→ D[Ω−1]

which has the following properties;

• QΩ makes the morphisms in Ω invertible,

• if a functor F : D → C makes the morphisms in Ω invertible, then there is a
unique functor F : D[Ω−1]→ C such that F = F ◦ QΩ.

Both D[Ω−1] and QΩ are essentially unique if they exist. The category D[Ω−1] has
the same objects as D. Morphisms in D[Ω−1] can be defined by taking the quiver Q
with the set of vertices ObD, and the set of arrows the disjoint union MorD ⊔ Ω−1,
where Ω−1 = {σ−1 : Y → X | σ : X → Y ∈ Ω}. Let P be the set of paths in Q,
together with concatenation denoted by ◦P . Then MorD[Ω−1] is defined as the set of
equivalence relations generated by the relations:

• α ◦P β = α ◦ β for all composable morphisms α, β ∈ MorD,

• idP X = idD X for all X ∈ ObD,

• σ−1 ◦P σ = idP X and σ ◦P σ
−1 = idP Y for all σ : X → Y in Ω.

Composition of morphisms in D[Ω−1] is induced by composition in P .
The functor QΩ is the identity on objects and on morphisms is the composition

MorD inc.−−→ MorD ⊔ Ω−1 inc.−−→ P can.−−→ D[Ω−1].

Let C be a triangulated subcategory of a triangulated category D, and denote by
Ω(C) the set of morphisms in T such that f ∈ Ω(C) if Z in the triangle

X
f−→ Y → Z → X[1]

is in C [45, Lemma 4.6.1]. Then the Verdier localisation of D by C is defined as the
localisation of D by Ω(C),

D/C := D[Ω(C)−1].

Here D/C is the same category as in Theorem 1.1.11.
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Calculus of Fractions

Another way to localise a category by a set of morphisms satisfying certain properties,
is to define a new category with the same objects as the original category, but where
morphisms are replaced by equivalence classes of left fractions.

Definition 1.2.1. Let D be a category, and let Ω be a collection of maps in D. We
say Ω admits a calculus of left fractions if it satisfies:

• if τ, σ are composable morphisms in Ω, then τ ◦ σ is in Ω, and the identity
morphism is in Ω for all objects in D,

• each pair of morphisms X ′ σ←− X
α−→ Y , with σ in Ω can be completed to a

commutative diagram
X Y

X ′ Y ′

α

σ σ′

α′

such that σ′ is in Ω,

• let α, β : X → Y be morphisms in D. If there is a morphism σ : X ′ → X in Ω
such that α ◦ σ = β ◦ σ, then there exists a morphism τ : Y → Y ′ in Ω such that
τ ◦ α = τ ◦ β.

For Ω to admit a calculus of right fractions is defined dually, and we say that Ω
admits a multiplicative system if it admits both a calculus of right fractions and a
calculus of left fractions.

Given a collection of maps Ω that admits a calculus of left fraction, we follow [45]
in defining a new category Ω−1D as follows. The objects are those of D. Given two
objects X and Y in Ω−1D, we call a pair (τ, σ) of morphisms

X
τ−→ Y ′ σ←− Y

in D with σ ∈ Ω a left fraction. The morphisms in Ω−1D are equivalence classes [τ, σ]
of left fractions, where (τ1, σ1) and (τ2, σ2) are equivalent if there is a third left fraction
(τ3, σ3) such that there is a commutative diagram,

Y1

X Y3 Y

Y2

τ1

τ3

τ2

σ3

σ1

σ2

with σ3 ∈ Ω.
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The composition of equivalence classes [τ, σ] and [α, β] is by definition the equiva-
lence class [α′ ◦ τ, σ′ ◦ β], forming the following commutative diagram.

Z ′′

Y ′ Z ′

X Y Z

β′
σ′

τ σ α β

The morphisms σ′ and β′ are those obtained from the second condition of Definition
1.2.1. There exists a canonical functor

RΩ : D → Ω−1D

that is the identity on objects, and takes a morphism α : X → Y to the equivalence
class [α, idY ].

Both of the above constructions of a localisation of a triangulated category are in
fact equivalent.

Proposition 1.2.2 ([45]). The functor F : Ω−1D → D[Ω−1], which is the identity on
objects and takes a morphism [α, σ] to (QΩσ)−1 ◦QΩα is an isomorphism.

Now let T be a triangulated category and let Ω be a multiplicative system. Then
Ω is compatible with the triangulated structure of T if

• given ω ∈ Ω, then ω[n] ∈ Ω for all n ∈ Z,

• given a morphism of triangles ϕ = (ϕ1, ϕ2, ϕ3) with ϕ1 and ϕ2 in Ω, then there
exists a morphism (ϕ1, ϕ2, ϕ

′
3) with ϕ′

3 in Ω.

The next lemma is Lemma 4.3.1 in [45].

Lemma 1.2.3. Let T be a triangulated category and let Ω be a multiplicative system
that is compatible with the triangulation of T . Then the localisation T [Ω−1] carries a
unique triangulated structure such that the localisation functor T → T [Ω−1] is exact.

That is, the localisation of a triangulated category is canonically a triangulated
category, and the localisation functor a triangulated functor. Moreover, let S be a thick
subcategory of T , and let Ω(S) be the collection of morphisms such that f ∈ Ω(S)
if conef ∈ S. Then Ω(S) admits a multiplicative system [67], and so the localisation
T /S is well defined for any thick subcategory S.

§ 1.3 | Differential Graded Algebras
§ 1.3.1 | Chain Complexes

Definition 1.3.1. Let A be an additive category. A chain complex in A is a collection
of objects (Ai)i∈Z ∈ A, along with differentials dAn : An → An−1 such that dAn ◦dAn+1 = 0
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for all n ∈ Z.
Given two chain complexes, A and B, a morphism between them is a collection of

maps fn : An → Bn for all n ∈ Z such that the diagram

An An−1

Bn Bn−1

dA
n

fn fn−1

dB
n

commutes. We denote the category of chain complexes over A by Ch(A).

We say that a chain complex A is bounded below if Ai = 0 for all i ≤ n for some
n ∈ Z. Similarly, we say that a chain complex B is bounded above if Bi = 0 for all
i ≥ m for some m ∈ Z. If a chain complex is both bounded above and bounded below,
then we simply say it is bounded. The subcategory of Ch(A) made up of bounded
(resp. bounded above, resp. bounded below) chain complexes is denoted Chb(A) (resp.
Ch−(A), resp. Ch+(A)).

There exists a dual notion of a chain complex in A, called a cochain complex, which
is a collection of objects (Ci)i∈Z ∈ A with a differential dnC : Cn → Cn+1.

Example 1.3.2. Let A be the category of modules over the polynomial ring in one
variable, mod(k[x]). Then we can consider the chain of modules

· · · → k[x]/(x2) x−→ k[x]/(x2) x−→ k[x]/(x2) x−→ k[x]/(x2) x−→ k[x]/(x2)→ · · · .

The map d = x is a differential as x2 = 0, and so this is a chain complex in A.
Additionally, we could also look at the chain complex

· · · → k[x]/(x2) 0−→ k[x]/(x2) x−→ k[x]/(x2) 0−→ k[x]/(x2) x−→ k[x]/(x2)→ · · · ,

which is isomorphic in each degree to the first chain complex, but has a different differ-
ential. This different differentials mean that these chain complexes are non-isomorphic
as chain complexes, even if they are isomorphic in each degree.

If we endow the category of chain complexes over an abelian category A with a
class of pairs (i, p) such that (in, pn) is a split short exact sequence for all n ∈ Z, then
Ch(A) is an exact category. Moreover, for some A ∈ Ch(A), we may define the object
IA ∈ Ch(A) such that

(IA)n := An ⊕ An+1, dIAn =
0 1

0 0

 .
The object IA is both projective and injective for all A ∈ Ch(A), and Ch(A) has enough
projectives and enough injectives. Such a category, one that is exact, has enough
projectives, has enough injectives, and where the class of projective and injective objects
coincide is called a Frobenius category.



CHAPTER 1. PRELIMINARIES 21

§ 1.3.2 | Graded Rings and Algebras

Before talking about differential graded algebras it makes sense to discuss graded rings
and algebras.

Definition 1.3.3. Let R be a ring and let (I, ·) be a monoid. Then R is an I-graded
ring if R has a decomposition of additive groups

R =
⊕
i∈I

Ri,

such that for all i, j ∈ I
RiRj ⊆ Rl,

where i · j = l ∈ I. We say that a non-zero element r ∈ Ri is homogeneous of degree i.

Generally, graded rings are considered with an N-grading or a Z-grading, where
we consider both N and Z under addition. It is possible to consider any ring R as a
N-graded (or Z-graded) ring using the trivial grading, where we set R as R0 and all
Ri to be trivial for i ̸= 0. We say that a ring with a trivial grading is trivially graded.
However the theory of graded rings is much richer than that of trivially graded rings,
and gradings can be placed onto many rings.

Example 1.3.4. Let R = k[x] be the polynomial ring in one variable over a field k. Then
R is considered to be an N-graded ring with Ri = {axi | a ∈ k}, in other words an
element r is of homogeneous degree i if r = axi for some scalar a ∈ k. It is clear that
this satisfies the conditions to be an N-graded ring, as each Ri is an additive group,
and any two elements axi ∈ Ri and bxj ∈ Rj multiply to give abxi+j ∈ Ri+j. This can
be extended to polynomial rings in multiple variables, where a ring S = k[x1, . . . , xn]
is N-graded with a decomposition S = ⊕

i∈N Si such that

Si = ⟨xm1
1 xm2

2 · · ·xmn
n ∈ k[x1, . . . , xn] | m1 +m2 + . . .+mn = i⟩,

is an additive abelian group.

When we consider rings without gradings, we often look at the modules over the
ring. This is no different when we consider a graded ring, when we can look at the
graded modules over a graded ring.

Definition 1.3.5. Let R be an I-graded ring and let M be an R-module. Then M is
an I-graded R-module if

• M = ⊕
i∈IMi, where each Mi is an abelian group,

• RiMj ⊆Mi·j for all i, j ∈ I.

Let V,W both be I-graded R-modules, then a morphism of R-modules f : V → W

is a morphism of graded R-modules if it additionally satisfies f(Vi) ⊂ Wi for all i ∈ I.
We denote the category of graded R-modules by ModgrR.
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Any graded ring can be considered as a graded module over itself, and we can
consider a graded ring as a module over a trivially graded ring. For instance, let R be
a commutative, trivially graded ring and let S = R[x1, . . . , xn] be a polynomial ring in
n variables over R. Then S is an N-graded R-module with the grading given by the
same grading on S when viewed as a ring.

It is also possible to define a graded Hom-space between two graded R-modules Let
V,W be two graded R-modules, then the grading on the space of morphisms is;

HomModgrR(V,W )n = {f ∈ HomR(V,W ) | f(Vp) ⊂ Wp+n ∀p ∈ Z}.

Additionally, it is possible for a module to have two distinct gradings, making them
non-isomorphic in grR − mod. For example, take the polynomial ring over R in n

variables, R[x1, . . . , xn]. Then it can be considered with an N-grading as in Example
1.3.4, or it could also be considered with the trivial grading.

As with graded modules, there is a notion of a graded algebra.

Definition 1.3.6. Let A be an algebra over an I-graded ring R. Then we say that A
is an I-graded R-algebra if A = ⊕

i∈I Ai is a I-graded R-module and

AiAj ⊆ Ai·j

for all i, j ∈ I.

Notably, if R is trivially graded then we simply require all graded pieces Ai to
be left R-modules. Examples of graded algebras include the tensor algebra over a
vector space, exterior algebras and symmetric algebras. One may also look at Clifford
algebras, which are an example of a Z/2Z-graded algebra, also known as a superalgebra.

§ 1.3.3 | The Differential

Graded rings can be generalised further to something called differential graded rings.
These are graded rings that also carry the structure of a chain complex (Definition
1.3.1) and are often seen as a powerful tool in areas such as homological algebra and
homotopy theory.

Definition 1.3.7. A differential graded ring, R, is a Z-graded ring endowed with a
degree one morphism d : R → R, called the differential, such that d2 = 0, and d

satisfies the graded Leibniz rule. That is,

d(ab) = d(a)b+ (−1)deg(a)a d(b),

for all a, b ∈ R.
A differential graded R-module, M , is a graded R-module with a differential dM

such that d2
M = 0, and

dM(am) = dM(a)m+ (−1)deg(a)a dM(m),
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for all a ∈ R and m ∈M . A morphism of differential graded R-modules f : M → N is
a morphism of graded rings that also satisfies f ◦ dM = dN ◦ f .

We denote the category of differential graded (=dg) R-modules as ModdgR. As with
the trivial grading there exists a trivial differential, d = 0, which makes all Z-graded
rings into differential graded rings. For an example of a dg ring with a non-trivial
differential, let R = k[x], a polynomial ring in one variable over a field, with grading
given by xi ∈ Ri. Let the differential be

d(axi) =
0 if i is even,
axi+1 if i is odd,

for all a ∈ k. It is clear that d2 = 0, and to check that d satisfies the graded Leibniz
rule, we have

d(axi · bxj) = d(axi) · bxj + (−1)iaxi · d(bxj).

If i, j are even then both sides are zero, similarly if i, j are odd then both sides are
also zero. If i is odd and j even, then d(axi · bxj) = abxi+j+1 and d(axi) · bxj +
(−1)iaxi · d(bxj) = abxi+j+1 + 0 = abxi+j+1. Finally, if i is even and j odd, then
d(axi ·bxj) = abxi+j+1 and d(axi)·bxj+(−1)iaxi ·d(bxj) = 0+(−1)iabxi+j+1 = abxi+j+1,
and so d satisfies the graded Leibniz rule.

The grading of HomModgrR(V,W ) naturally induces a grading on HomModdgR(V,W ),
which can be seen as a dg R-module with the differential

∂f : dW ◦ f − (−1)deg(f)f ◦ dV .

In particular, ModdgR is enriched over dg abelian groups. The category ModdgR is
also equipped with a family of endofunctors known as the shift functors;

[n] :ModdgR→ ModdgR

(
⊕
i∈Z

Vi, dV ) 7→ (
⊕
i∈Z

Vi+1, (−1)ndV ).

Definition 1.3.8. Let A be a dg R-module endowed with a degree zero morphism
m : A⊗ A→ A such that,

dA(ab) = dA(a)b+ (−1)deg(a)adA(b),

where ab := m(a ⊗ b), then A is a differential graded algebra over R. A morphism of
differential graded algebras over R is a degree zero morphism f : A → A′ such that
f ◦ dA = dA′ ◦ f .

Examples of dg algebras include the tensor algebra of a vector space, De-Rham
algebras, and Koszul complexes.
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§ 1.4 | Derived Categories
The derived category has its roots in Verdier’s PhD thesis [67], taking form as the
primary example of a triangulated category. Since then derived categories have become
indispensable, with algebraic geometry and homological algebra making particularly
heavy use of them.

In this section we build up to the seemingly abstract definition of a derived category
by first looking at chain complexes and homotopic maps. We then look at homology
functors and quasi-isomorphisms, all necessary ingredients in the construction of a
derived category.

The Homotopy Category

Let A and B be objects in Ch(A). Then we can impose an equivalence relation on
HomCh(A)(A,B) by relating morphisms that are homotopic to each other.

Definition 1.4.1. Let Ch(A) be the category of chain complexes over an additive
category A. We say that two morphisms f, g : A → B, for any A,B ∈ Ch(A), are
homotopic (or, equivalently, f−g is null-homotopic) if there exists a collection of maps
hn : An → Bn+1 such that

fn − gn = dBn+1hn − hn−1d
A
n

for all n ∈ Z. If f and g are homotopic, we write f ∼ g.

When showing whether or not two morphisms are homotopic, we often visualise the
problems using the following diagram.

· · · An+1 An An−1 · · ·

· · · Bn+1 Bn Bn−1 · · ·

dA
n+1

gn+1fn+1

dA
n

gnfn
hn

gn−1fn−1
hn−1

dB
n+1 dB

n

Definition 1.4.2. Let A be an additive category, and Ch(A) the category of chain
complexes over A. Then the homotopy category, K(A) has the same objects as Ch(A),
and morphism spaces

HomK(A)(A,B) = HomCh(A)(A,B)/ ∼ .

The homotopy category of an additive category A, K(A), is a triangulated category
[68, Proposition 10.2.4].

The homotopy category of bounded chain complexes in A is denoted by Kb(A),
and the category of bounded below (resp. bounded above) chain complexes is denoted
K+(A) (resp. K−(A)).
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§ 1.4.1 | Homology and the Derived Category

From now on, we consider the category A to be abelian. That is, an additive cate-
gory where every morphism has a kernel and cokernel, and every epimorphism (resp.
monomorphism) is a cokernel (resp. kernel) of some morphism.

Let A,B ∈ K(A), and suppose there is a morphism of chain complexes in K(A),
f : A→ B. Then, for all n ∈ Z, we may construct the commutative diagram

im dAn+1 ker dAn

· · · An+1 An An−1 · · ·

· · · Bn+1 Bn Bn−1 · · ·

im dBn+1 ker dBn

ϕ

pd
A
n+1

dA
n+1

fn+1

dA
n

fn fn−1

d
B
n+1

dB
n+1 dB

n

ψ

l

where p is the kernel of dAn , and l is the kernel of dBn . By the universal property of
the kernel, and the fact that dBn fnp = fn−1d

A
np = 0, there exists a unique morphism

α : ker dAn → ker dBn such that lα = fnp.

Definition 1.4.3. Let A,B ∈ K(A) be two chain complexes. We define the nth homol-
ogy functor, Hn : Ch(A) → A, to act on objects by taking Hn(A) ∼= ker dAn/im dAn+1.
Given a map of chain complexes, f : A → B, then Hn(f) : Hn(A) → Hn(B) is the
unique morphism such that cokerψ ◦ α = Hn(f) ◦ cokerϕ.

We say that a chain complex B is exact if Hn(B) = 0 for all n ∈ Z.

Example 1.4.4. Let A = mod(k[x]) and let A be the chain complex as in Example
1.3.2. Then the kernel of di is the ideal of k[x]/(x2) generated by x, and the image
of di+1 is also the ideal of k[x]/(x2) generated by x. Therefore Hi(A) = cokerϕ ∼=
ker di/im di+1 = 0 for all i ∈ Z.

Definition 1.4.5. Let A,B ∈ K(A) be two objects with a morphism f : A → B. We
call f a quasi-isomorphism if Hn(f) : Hn(A)→ Hn(B) is an isomorphism for all n ∈ Z.
The set of quasi-isomorphisms in K(A) is labelled Sqi(A).

It is possible that two objects A,B ∈ K(A) with an isomorphism between Hn(A)
and Hn(B) for all n ∈ Z, are not quasi-isomorphic. This is as there is no guarantee
that there exists a morphism f : A → B such that Hn(f) is an isomorphism in A for
all n ∈ Z.

Definition 1.4.6. Let A be an abelian category. Then the derived category of A,
D(A), is the localisation of K(A) by Sqi(A), i.e. we formally invert all morphisms
f ∈ Sqi(A).
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The derived category of an abelian, k-linear category is always a triangulated, k-
linear category. Throughout we shall make reference to the bounded below derived
category, D+(−), the bounded above derived category, D−(−), and the bounded de-
rived category, Db(−), which are defined as subcategories of D(−) with objects being
complexes that are bounded below, bounded above, and bounded, respectively.

Let A,B be abelian categories such that there exists an equivalence between D(A)
and D(B). Then we say that A and B are derived equivalent. Moreover, two rings R, S
are also said to be derived equivalent if D(ModR) is equivalent to D(ModS).

§ 1.5 | Auslander-Reiten Theory
Auslander-Reiten theory was developed in a series of papers by Auslander and, later,
Auslander and Reiten [4, 5, 6, 7], to study the representation theory of Artinian rings,
and involves the use of Auslander-Reiten sequences and Auslander-Reiten quivers.
Some aspects of Auslander-Reiten theory are necessary for the understanding of cluster
categories, and so we go over some of the basic ideas here.

§ 1.5.1 | The Auslander-Reiten Translation

To define the Auslander-Reiten translation functor, we begin by letting A be a finite
dimensional k-algebra. Let projA be the category of finitely generated projective A-
modules, and injA the category of finitely generated injective A-modules. Then we
have dualities

D := Homk(−, k) : modA↔ modAop,

(−)∗ := HomA(−, A) : projA↔ projAop,

which induce the equivalence

ν := D(−)∗ : projA→ injA,

called the Nakayama functor. For an object X ∈ modA with a minimal projective
resolution

P1
d1−→ P0

d0−→ X → 0,

we define τX, the Auslander-Reiten translation of X, by the exact sequence

0→ τX → νP0
νd1−−→ νP1.

The Auslander-Reiten translation is a bijection between the isomorphism classes of
non-projective objects in modA and the isomorphism classes of non-injective objects,
given in Theorem 1.5.1.

§ 1.5.2 | Auslander-Reiten Quivers

Let A be a finite dimensional k-algebra, and let M,N ∈ modA. Then we say a mor-
phism f : M → N is irreducible if f is not a split epimorphism, a split monomorphism,
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and f = gh implies either g is a split epimorphism and h is a split monomorphism. In
particular, if f ̸= 0 is an irreducible morphism, then f is either an epimorphism or a
monomorphism.

A short exact sequence
0→M

f−→ N
g−→ L→ 0

is said to be an Auslander-Reiten sequence if f, g are both irreducible morphisms, and
M,L are indecomposable objects in modA. Auslander-Reiten sequences are uniquely
determined up to isomorphism by the objects at either end of the sequence. Also, as
an Auslander-Reiten sequence does not split by definition, then M cannot be injective
and L cannot be projective. In fact, the following theorem shows that all non-injective
indecomposable objects sit on the left of an Auslander-Reiten sequence, and that all
non-projective indecomposable objects sit on the right of an Auslander-Reiten sequence.

Theorem 1.5.1. [6] Let A be a finite dimensional algebra and let M be an indecom-
posable object in modA, then

• if M is not projective, then there exists an Auslander-Reiten sequence of the form
0→ τM → E →M → 0.

• if M is not injective, then there exists an Auslander-Reiten sequence of the form
0→M → E ′ → τ−1M → 0.

Here τ is the Auslander-Reiten translation, and τ−1 is the inverse Auslander-Reiten
translation.

Another tool from Auslander-Reiten theory that we make use of is the Auslander-
Reiten quiver of a finite dimensional algebra A, which is a quiver with relations
(QA, IA). The quiver QA has a set of vertices in bijection with the set of isomorphism
classes of indecomposable objects in modA. Let M,N ∈ modA be indecomposable
objects, and suppose there is an irreducible morphism from M to N , then there is an
arrow in the Auslander-Reiten quiver starting at the vertex corresponding to M and
ending at the vertex corresponding to N .

Incidentally, we may see the Auslander-Reiten sequences, and so the Auslander-
Reiten translation, from the Auslander-Reiten quiver. Let M ∈ modA be indecom-
posable, and suppose that

0→ τM → L1 ⊕ L2 ⊕ · · · ⊕ Li →M → 0

is the Auslander-Reiten sequence ending at M . Then there exists a mesh in QA,
a collection of paths starting at the vertex corresponding to τM and ending at the
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vertex corresponding to M .

L1

L2

τM
... M

Li

b1

b2

a1

a2

ai bi

Moreover, we consider QA with a set of relations IA, known as the mesh relations. For
each mesh, using the notation in the above diagram, we have the k-linear sum of paths∑i
j=1 bjaj, and IA is generated by the sums of paths corresponding to the set of all

meshes in QA. The path algebra of the Auslander-Reiten quiver is kQA/IA, the path
algebra of the underlying quiver modulo the mesh relations.

By an abuse of notation, for the Auslander-Reiten quiver (QA, IA) of a finite dimen-
sional algebra A, we shall drop the set of relations and denote the Auslander-Reiten
quiver by QA.

Example 1.5.2. Let Q = 1→ 2→ 3 be a linearly orientated quiver of Dynkin type A3,
and let B be the path algebra kQ. Let Pi be the indecomposable projective module
associated to the vertex i, Ii be the indecomposable injective module associated to the
vertex i, and Si be the indecomposable simple module associated to the vertex i. We
have the three isomorphisms P3 ∼= I1, P1 ∼= S1, and I3 ∼= S3. Then modB has three
indecomposable, non-projective modules, S2, I2, I1. We know by Theorem 1.5.1 that
these are the only indecomposable objects that sit on the right of an Auslander-Reiten
sequence. These Auslander-Reiten sequences are

0→ P3 →P2 → S2 → 0,
0→ P2 → P1 ⊕ S2 → I2 → 0,

0→ S2 →I2 → I1 → 0.

These Auslander-Reiten sequences respectively give us the following meshes

P2 P1 I2

P3 S2, P2 I2, S2 I1.

S2
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Hence the Auslander-Reiten quiver QB has the form

P1

P2 I2

P3 S2 I1,

β2

β1

α2

β3α1
α3

where the dotted arrows takes an indecomposable object M to its Auslander-Reiten
translation τM . The mesh relations of QB are IB = ⟨β1α1, β2α2 + α3β1, β3α3⟩.

§ 1.6 | Cluster Categories
Cluster categories associated to hereditary algebras were introduced shortly after the
introduction of cluster algebras, and were intended to be a categorification of cluster
algebras. They were introduced in [18] as an orbit category of the bounded derived
category of an hereditary algebra H, and in [19] for the An case as the category of
representations over a quiver with relations.

Another construction of cluster categories, this time for algebras of global dimension
≤ 2, was introduced by Amiot in [1]. This cluster category has an equivalence to the
cluster category found in [18] when the algebra is hereditary, and so may be seen as an
extension of this construction.

§ 1.6.1 | Cluster Categories From Hereditary Algebras

We recall that, given a triangulated category T and an autoequivalence F : T → T ,
we can construct the orbit category T /F with the same objects as T , and

HomT /F (X, Y ) ∼=
⊕
n∈Z

HomT (X,F nY )

Definition 1.6.1. LetH be an hereditary algebra. Then the cluster category associated
to H is defined to be the τ−1 ◦ [1]-orbit category of the bounded derived category of
H, i.e.

CH := Db(H)/(τ−1 ◦ [1]).

Let T be a triangulated category with suspension functor [1], and let S be a
subcategory of T . Let f ∈ HomT (X, Y ), then, we call f a right S-approximation of
Y ∈ T if X ∈ S and

Hom(−, X) f ·−→ Hom(−, Y )→ 0

is exact as functors on S. We call S a contravariantly finite subcategory of T if any
Y ∈ T has a right S-approximation. A left S-approximation and a covariantly finite
subcategory are dually defined. We say that a contravariantly and covariantly finite
subcategory is functorially finite.

Contravariantly finite subcategories were first introduced in [8], with respect to
finitely generated module categories of artin algebras.
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Now, let S be a functorially finite subcategory of T , then we say S is a cluster
tilting subcategory of T if

S = (S[− 1])⊥ = ⊥(S[1])

where
X⊥ = {Y ∈ T Hom(X, Y ) = 0 for all X ∈ X}

and
⊥X = {Y ∈ T Hom(Y,X) = 0 for all X ∈ X}

for a subcategory X of T . In a 2-Calabi-Yau, Hom-finite triangulated category,
⊥(X [1]) = (X [ − 1])⊥ for all subcategories X , and so it suffices to only show that
X = ⊥(X [1]), or X = (X [− 1])⊥.

Exchange pairs in a cluster category were introduced in [18] as an extension of the
notion of the completion of an almost complete basic tilting module over a hereditary
algebra, to the theory of cluster categories and almost cluster tilting objects. They also
provide us with an analogue of the idea of mutation of clusters in a cluster algebra,
and are hence useful to understand when looking at cluster categories generally. More
specifically, we wish to understand them as they play a crucial role in a result in [57]
which we will use in the proof of Theorem 3.2.5.

Definition 1.6.2. Let T be a triangulated category, and let S ⊂ T be a cluster tilting
subcategory, with M ∈ S. Let S ′ be the full additive subcategory of S containing all
the same indecomposables as S except M , i. e. M ̸∈ S ′. Then we call S ′ an almost
cluster tilting subcategory of T , and M a complement of S ′.

It was shown in [18] that there are two complements for each almost cluster tilting
subcategory S ′, which we label M and M∗ respectively. We call the pair (M,M∗) an
exchange pair.

Let S ′ be an almost cluster tilting subcategory of a cluster category T , and let
M and M ′ be complements of S ′. Let S, resp. R, be the cluster tilting subcategory
containing S ′ and M , resp. M ′. Then we obtain the cluster tilting subcategory R from
S by removing the indecomposable object M and replacing it with the indecomposable
object M ′. This operation is the mutation of S at M , denoted µM(S).

For every exchange pair (M,M∗) we have two non-split triangles due to [18], called
the exchange triangles:

M → BM∗ →M∗ →M[1] and M∗ → BM →M →M∗[1]

where the maps BM → M and BM∗ → M∗ are right S-approximations, where S is
the cluster tilting subcategory containing both the almost cluster tilting subcategory
S ′ and its complement M .

Here we show an example of a cluster category associated to an hereditary algebra,
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and then give a cluster tilting subcategory and its mutation at an indecomposable
object.

Example 1.6.3. Let H = modA3, where A3 is the linearly orientated quiver

1 −→ 2 −→ 3.

Then the bounded derived category Db(H) has the Auslander-Reiten quiver

I1[− 1] P1 P3[1] S2[1] I1[1]

· · · P2 I2 P2[1] I2[1] · · ·

P3 S2 I1 P1[1] P3[2]

where Pi (resp. Ii) is the projective (resp. injective) module associated to vertex i, Si is
the simple module at vertex i, and [1] is the suspension functor. The Auslander-Reiten
translation τ of an object is given by the dotted arrows.

The cluster category CH is the orbit category of Db(H) with respect to the functor
τ−1 ◦ [1], and has the Auslander-Reiten quiver

P1 P3[1] P3

P2 I2 P2[1] P2

P3 S2 I1 P1[1] P1

where the objects in red are isomorphic to the objects on the left hand side of the
quiver. We represent the Auslander-Reiten quiver like this to show the Möbius strip-
like behaviour that the Auslander-Reiten quiver of a cluster category exhibits, as there
are non-zero irreducible morphisms from the objects Pi[1] to Pi−1 for i = 2, 3.

There is a canonical cluster tilting subcategory of CH given by add(⊕3
i=1 Pi), the

additive subcategory of objects corresponding to direct sums of projective modules of
H. Denote this cluster tilting subcategory T . Suppose we want to mutate T at the
object P2, and say T ′ = add(P1⊕P3). Then to find the exchange pair (P2,M) we need
an indecomposable object M ̸∼= Pi such that HomCH(M,P1[1]) = HomCH(M,P3[1]) =
0. By highlighting the non-zero morphisms into P1[1] and P3[1] on the Auslander-
Reiten quiver of CH,

P1 P3[1]

P2 I2 P2[1]

P3 S2 I1 P1[1]

we can see that the only object M not isomorphic to Pi for any i = 1, 2, 3, such that
HomCH(M,P1[1]) = HomCH(M,P3[1]) = 0, is the object I1.
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Therefore the cluster tilting subcategory S = µP2(T ) is the additive subcategory,

S = add(P1 ⊕ P3 ⊕ I1).

§ 1.6.2 | Quivers and Fomin-Zelevkinsky Mutation

The process of mutation of a quiver was introduced by Fomin and Zelevinsky in [30]
as a combinatorial aspect to their definition of a cluster algebra. Here we go through
the mutation of a quiver at a chosen vertex, under some mild conditions on the quiver.

Let Q be a quiver without loops and 2-cycles, and let i be a vertex of Q. The
Fomin-Zelevinksy mutation of Q at i is constructed as follows:

1. for all subquivers j → i→ l, we add a new arrow j → l,

2. reverse all arrows that start or end at i,

3. chose a maximal set of 2-cycles and delete the set from the quiver.

In the case of i being a sink or source, we simply reverse all of the arrows incident to
i. The operation of quiver mutation is an involution, that is µiµiQ = Q for all i ∈ Q0.

We label the new quiver obtained from mutation of Q at i by µiQ, and we say that
two quivers Q and Q′ are mutation equivalent if we can mutate Q finitely many times
to obtain Q′. The online applet [43] by Keller can be used to check whether two quivers
are mutation equivalent.

Example 1.6.4. We look again at the quiver Q = A3 with linear orientation,

1→ 2→ 3

and we mutate at the vertex 2.
By the first step in the construction, we add an arrow from vertex 1 to vertex 3

and get the quiver
2

1 3.

Next we reverse all of the arrows incident with vertex 2, and get

2

1 3,

and since there are no 2-cycles to delete, we are done. So the mutation of the quiver
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Q at vertex 2 is
2

µ2Q = 1 3.

As an example of showing that mutation is an involution, we now mutate the quiver
µ2Q, again at vertex 2. First we add an arrow 3→ 1, as there is a subquiver 3→ 2→ 1,

2

1 3.

Now we reverse all arrows incident to 2,

2

1 3.

Finally, given there is a 2-cycle between the vertices 1 and 3, we delete this to get

1→ 2→ 3,

and so we see that µ2µ2Q = Q.

A quiverQ is said to be of finite mutation type, if there are only finitely many quivers
in the mutation equivalence class of Q. All of the quivers of finite mutation type were
classified by Felikson, Shapiro and Tumarkin across two papers [25, 26], where they
show that a quiver is of finite mutation type if it satisfies some decomposition condition,
or is mutation equivalent to one of the 11 exceptional cases. Namely, quivers of Dynkin
type An and Dm are of finite mutation type.

§ 1.6.3 | Cluster Structures

Not all categories that have cluster tilting subcategories will be cluster categories as in
Definition 1.6.1. The study of cluster tilting subcategories in 2-Calabi-Yau triangulated
categories developed into the notion of a cluster structure on a category [17].

Definition 1.6.5. Let T be a k-linear, Hom-finite, Krull-Schmidt, triangulated cate-
gory. Let S be a cluster tilting subcategory of T , and let S ′ ⊂ S be an almost cluster
tilting subcategory. Then we say T has a weak cluster structure if the following hold:

1. Let M ∈ S be an indecomposable object, then M can be replaced by another
indecomposable object M ′ ∈ C such that the new subcategoryR is again a cluster
tilting subcategory.



CHAPTER 1. PRELIMINARIES 34

2. For each M ∈ S, there are triangles M ′ f−→ B
g−→ M → M ′[1] and M

s−→ B′ t−→
M ′ → M[1], where g and t are minimal right S ′-approximations and f and s

are minimal left S ′-approximations.

We say T has a cluster structure if the following hold:

3. The Gabriel quiver of EndT (S) has no loops or 2-cycles.

4. The Gabriel quiver of EndT (R) is the Gabriel quiver of EndT (S) under Fomin-
Zelevinsky mutation at a vertex corresponding to M .

The discrete cluster categories of Dynkin type A∞ discussed in the rest of this thesis
are not cluster categories in the sense of [18]. However they do have a cluster structure,
which was shown in [38] for the one accumulation point case, and shown directly for n
accumulation points in [35]. More generally, it was shown that any algebraic, 2-Calabi-
Yau triangulated categories that admits a directed cluster tilting subcategory has a
cluster structure by Šťovíček and van Roosmalen [65].

The completion of the discrete cluster categories of Dynkin type A∞ used in this
thesis, due to Paquette and Yıldırım [58], do not have a cluster structure however, or
even a weak cluster structure. This is due to Theorem 4.4 in [58], which states a cluster
tilting subcategory must have an object corresponding to a limit arc (Subsection 2.4),
which cannot be mutated. Thus the completion does not satisfy the first axiom in
Definition 1.6.5.



Chapter 2

Cluster Categories and Surfaces

In this chapter we take a closer look at a class of cluster categories, those which
can be defined via a marked surface. The connections between cluster combinatorics
and surfaces has be known since the introduction of cluster algebras by Fomin and
Zelevinsky in the early part of the century [30], and has been studied in great detail
from the perspective of both surfaces, cluster algebras and cluster categories.

We begin this chapter by looking at one of the earliest connections between cluster
combinatorics and marked surfaces, that of the bijection between the clusters of the
cluster algebra associated to An and the triangulations of an (n + 3)-gon [33]. From
there, we define one of the main topics of interest to this thesis, the discrete cluster
category of Dynkin type A∞, first introduced for a single accumulation point in [38] as
a subcategory of a derived category of a polynomial ring seen as a differential graded
ring, and later generalised for finitely many accumulation points in [39] as a stable
Frobenius category constructed via cyclic posets. The construction of the discrete
cluster category of Dynkin type A∞ used throughout will be the one in [35], which is
more combinatoric in nature. In the interest of completeness, and as a more algebraic
view of these categories, we also provide the construction due to Holm and Jørgensen
in [38].

We then look at the other main interest in this thesis, a completion of the discrete
cluster category of Dynkin type A∞ due to Paquette and Yıldırım [58]. Although they
may not be a cluster category in the sense of Definition 1.6.1, nor do they have a cluster
structure, they are still a powerful tool in which to study cluster combinatorics, and
have even been shown to arise in other settings, being equivalent to a category of graded
maximal Cohen-Macaulay modules over an A∞ singularity in the single accumulation
point case [3]. As with the non-completed case, there are alternative constructions
of the completed version. We go through some of these other constructions after
describing the Paquette-Yıldırım completion.

Finally, we conclude the chapter by looking at some more marked surfaces and their
associated cluster categories. For instance, we look at the marked surface associated
to the cluster category of Dynkin type Dn [63], and the cluster category associated to
a marked surface satisfying some elementary properties [16, 61].
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§ 2.1 | The Cluster Category of Dynkin Type An

The cluster algebra of Dynkin type An is one of the earliest examples of a cluster
algebra, studied in [33, 31] shortly after the introduction of cluster algebras. In [33] it
was shown that there is a bijection between the diagonals of an (n + 3)-gon and the
cluster variables of the cluster algebra of type An, and further that there was a bijection
between the triangulations of the (n + 3)-gon and the clusters. This representation
carried over to the categorification of these cluster algebras into cluster categories,
where the cluster variables correspond to indecomposable objects, and set of cluster
variables in a cluster corresponds to the set of indecomposable objects in a cluster-
tilting subcategory.

The mutation of an indecomposable object in a cluster tilting subcategory of CAn

can be viewed as replacing the corresponding arc in a triangulation of an (n + 3)-gon
with the unique arc that forms a different triangulation such that all other arcs in the
triangulation remain.

Cluster categories constructed from hereditary algebras inherit a natural triangu-
lated structure by a result of Keller [42] and so have an autoequivalence, known as the
suspension (or shift) functor and denoted by [1]. In the case of cluster categories aris-
ing from non-punctured surfaces, there is an appropriate choice of bijection between
indecomposable objects and arcs such that the suspension functor acts on arcs by a sin-
gle rotation of both endpoints in a direction opposite to the orientation of the surface,
as shown in the Figure 2.1. For the cluster category of Dynkin type An, this bijection
is given in [19], where they associate a category to the set of arcs in the (n + 3)-gon
where the Auslander-Reiten translation acts on an arc by rotating the endpoints in
the opposite orientation, and showing that the category is equivalent to the cluster
category of An defined in [18].

ℓX

ℓX[1]

Figure 2.1: The suspension functor [1] acting upon the arc ℓX , corresponding to the
object X in the cluster category CA5 .

We use Example 1.6.3 to give an example of how the bijection between indecom-
posable objects in CAn and the arcs of the (n + 3)-gon can be constructed, using an
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adaptation of the coordinate system used in [38].

Example 2.1.1. The Auslander-Reiten quiver for CA3 is given in Example 1.6.3.

P1 P3[1]

P2 I2 P2[1]

P3 S2 I1 P1[1]

From here, we may associate a coordinate system to the indecomposable objects, with
coordinates being ordered pairs in Z/6Z. Let P3 = (0, 2), then we define the coordinates
for each indecomposable object in the Auslander-Reiten quiver by using the following
rule for each mesh relation.

(i, j + 1)

(i, j) (i+ 1, j + 1)

(i+ 1, j)

We can now relabel the Auslander-Reiten quiver with the coordinate systems to get;

(0, 4) (1, 5)

(0, 3) (1, 4) (2, 5)

(0, 2) (1, 3) (2, 4) (3, 5)

0

1

2

3

4

5

Figure 2.2: A representation of the set of indecomposable objects of CA3 seen as arcs
on the hexagon.

The indecomposable objects of a cluster tilting subcategories of CAn are in bijec-



CHAPTER 2. CLUSTER CATEGORIES AND SURFACES 38

tion with triangulations of a hexagon, and mutation of an object in a cluster tilting
subcategory is shown below.

ℓ

ℓ′µℓ

Figure 2.3: A representation of the mutation of a cluster tilting subcategory by the
indecomposable object corresponding to the arc ℓ.

§ 2.2 | Discrete Cluster Categories of Type A∞
Our main object of interest is the family of categories known as the discrete cluster
categories of type A∞, as well as their completions in the sense of Paquette-Yıldırım.
Although discrete cluster categories of Dynkin type A∞, which we label Cn where n
represents the number of accumulation points, precede the work by Gratz, Holm, and
Jørgensen [35] by a few years (particularly in [38], [39]), we follow their construction
here. Later on, we pass to a completion of the discrete cluster categories of Dynkin
type A∞, labelled Cn, following the Paquette-Yıldırım construction [58].

We start by defining the marked surface we use to construct the category Cn, where
we always consider the circle S1 to have an anti-clockwise orientation.

Definition 2.2.1. A subset M of the circle S1 is called admissible if it satisfies the
following conditions:

1. M has infinitely many elements,

2. M ⊂ S1 is a discrete subset,

3. M satisfies the two-sided limit condition, i.e. each x ∈ S1 which is the limit of a
sequence in M is a limit of both an increasing and decreasing sequence from M

with respect to the cyclic order.

We call the points at which the two-sided limits in M converge accumulation points.
Note that these accumulation points are not in M , as they do not have defined succes-
sors and predecessors, meaning M would not be discrete if they were to be included.
As in [35], we may think of M as the vertices of the ∞-gon. For an admissible sub-
set M ∈ S1, we label the set of accumulation points L(M ), and give them a cyclic
ordering induced by the orientation of S1.
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Let a ∈ L(M ) be an accumulation point, we define the successor a+ ∈ L(M ) of a
(resp. predecessor a− ∈ L(M ) of a) to be the accumulation point such that a ≤ b ≤ a+

with b ∈ L(M ) (a− ≤ c ≤ a with c ∈ L(M )) implies b = a or b = a+ (resp. c = a−

or c = a). We define the segment between a and a+ to be the set of marked points
{x ∈ M | a < x < a+}, where the ordering is given by the orientation of S1. If
L(M ) = n, then there exists n segments in M , and notably all of M is one segment
in the one accumulation point case.

x
x−

x+

Figure 2.4: An admissible subset M of S1. The marked points in M converge to the
accumulation points represented as small circles, and each marked point x has both a

predecessor and a successor, labelled x− and x+ respectively.

Definition 2.2.2. [35, Definition 0.2] A arc of M is a subset ℓX = {x0, x1} ⊂M where
x1 /∈ {x−

0 , x0, x
+
0 }, where x+ and x− are the successor and predecessor respectively to

x ∈M . If ℓY = {y0, y1} is another arc, then ℓX and ℓY cross if x0 < y0 < x1 < y1 < x0

or x0 < y1 < x1 < y0 < x0.

If we consider the disc D bounded by S1, then we may think of an arc ℓX =
{x0, x1} as being a representative of the isotopy class of non-self-intersecting curves in
D between the marked points x0 and x1. Two arcs cross if any of their representative
curves cross in the interior of D.

There are two types of arcs for us to consider; short arcs are the arcs that have both
endpoints in the same segment, and long arcs are the arcs with endpoints in different
segments.

ℓX

ℓY

x1x0

y1

y0

Figure 2.5: Two arcs of M , where ℓX is a short arc and ℓY is a long arc.
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By considering this combinatorial description of arcs and crossings, in [35] the au-
thors associate a k-linear, Hom-finite, Krull-Schmidt, 2-Calabi-Yau, triangulated cate-
gory to M , labelled C(S1,M ) and called a discrete cluster category of Dynkin type A∞.
The arcs of the ∞-gon are in bijection with the indecomposable objects of C(S1,M ),
where ℓX is the arc corresponding to the indecomposable object X ∈ C(S1,M ). Given
two indecomposable objects X, Y ∈ C(S1,M ), then HomC(S1,M )(X, Y ) ∼= k if the cor-
responding arcs ℓX and ℓY [−1] cross, otherwise there are no morphisms from X to
Y .

Let M and M ′ be admissible subsets of S1 such that L(M ) = L(M ′) = n, then
there is an equivalence of categories between C(S1,M ) and C(S1,M ′). Therefore for
all n ∈ Z≥1, we will consider an admissible subset of S1 with n accumulation points,
M n, and so we consider the category Cn := C(S1,M n) as the representative of the
equivalence class of discrete cluster categories of Dynkin type A∞ with n accumulation
points.

We have the following in Cn;

1. Cn is 2-Calabi-Yau, that is there are natural isomorphisms

HomCn(X, Y ) ∼= DHomCn(Y,X[2]),

where D(−) = Homk(−, k) and [1]: Cn → Cn is the suspension functor.

2. The suspension functor acts on arcs by taking ℓX = {x0, x1} to ℓX[1] = {x−
0 , x

−
1 }.

3. We have

Ext1(X, Y ) ∼=

k if ℓX and ℓY cross,
0 else,

for indecomposable objects X, Y ∈ Cn.

4. If ℓX = {x0, x1} and ℓY = {y0, y1} with x0 ≤ y0 ≤ x−−
1 < x1 ≤ y1 ≤ x−−

0 , then a
morphism X → Y factors through S if and only if ℓS = {s0, s1} with x0 ≤ s0 ≤ y0

and x1 ≤ s1 ≤ y1.

5. Let ℓX = {x0, x1} and ℓY = {y0, y1} such that Ext1(X, Y ) ∼= k, then we have the
following distinguished triangles in Cn

X → A⊕B → Y → X[1]
Y → C ⊕D → X → Y [1],

where ℓA = {x0, y1}, ℓB = {y0, x1}, ℓC = {x0, y0} and ℓD = {x1, y1}.
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x1

x0

y0

y1

ℓX

ℓY

ℓC

ℓD

ℓA

ℓB

Figure 2.6: Arcs corresponding to the distinguished triangles induced by non-trivial
Ext1(X, Y ) ∼= Ext1(Y,X) groups.

Notice that Ext1-spaces are symmetric in the two arguments, which is a consequence
of Cn having the 2-Calabi-Yau property.

Definition 2.2.3. Let X be an indecomposable object in Cn. Let MX ⊆ M be the
set of marked points that are the endpoints of the arcs corresponding to suspensions
and desuspensions of X.

If A ∼=
⊕l

i=1 Xi, with all Xi indecomposable, then MA = ⋃l
i=1 MXi

. We call MA

the orbit of A in M . If we have MA = M , then we say ℓA has a complete orbit in M .

In particular, MX is equal to the union of the segments containing an endpoint of
ℓX , and so any object in C1 has a complete orbit in M .

The cluster-tilting subcategories of Cn were classified by Gratz, Holm and Jørgensen
in [35] with combinatorial descriptions. For this, they defined what it means for a
sequence of marked points in M to converge to a point.

Definition 2.2.4. [35, Definition 1.4] Let {xi}i∈Zi≥0 be a convergent sequence in M .
If {xi}i∈Zi≥0 converges to p ∈ L(M ), then we write xi → p.

• We say that xi → p from below if there is a µ ∈ S1\{p} such that xi ∈ [µ, p] from
some step.

• We say that xi → p from above if there is a ν ∈ S1\{p} such that xi ∈ [p, ν] from
some step.

Furthermore, they introduced two different combinatorially defined sets of arcs
based on convergence of arcs to a point, known as a leapfrog and a fountain, that
can either form part of a triangulation, or a whole triangulation of (S1,M ). These
collections are important in the classification of the cluster-tilting subcategories of Cn.

Definition 2.2.5. [35, Definition 0.4] Let X be a set of arcs of M .

• Let a ∈ L(M ), then we say that X has a leapfrog converging to a ∈ L(M ) if
there is a sequence {xi, yi}i∈Z≥0 of arcs from X with xi → a from below and
yi → a from above. We call the set of arcs {xi, yi}i∈Z≥0 a leapfrog.
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• Let a ∈ L(M ) and z ∈ M , then we say that X has a right fountain at z
converging to a if there is a sequence {z, xi}i∈Z≥0 from X with xi → a from
below. We say that X has a left fountain at z converging to a if there is a
sequence {z, yi}i∈Z≥0 from X with yi → a from above.

• We say that X has a fountain at z converging to a if it has a right fountain and a
left fountain at z converging to a. We call the set of arcs {z, xi}i∈Z≥0∪{z, yi}i∈Z≥0

a fountain.

This definition does not stipulate that either a fountain or a leapfrog have to be
maximal in any sense, the endpoints of the arcs simply have to form a subset of M

that converges to an accumulation point, from either above, below, or both.

z

a a

Figure 2.7: An example of a fountain at z converging to a on the left, and an example
of a leapfrog converging to a on the right.

§ 2.2.1 | Cluster Tilting subcategories of Cn

When we are working in a 2-Calabi-Yau category, it is clear that (S[−1])⊥ = ⊥(S[1]),
and so we only need to show that S = ⊥(S[1]) for S to be a cluster tilting subcategory.
The cluster tilting subcategories of Cn were classified by Gratz-Holm-Jørgensen in [35]
for any n ≥ 1.

Let add(X ) denote the full additive subcategory of Cn, for some collection of objects
X ⊂ Ob(Cn).

Theorem 2.2.6. [35, Theorem 5.7] Let X be a set of arcs in (S1,M ), and let X be
the set of objects in Cn = C(S1,M ) corresponding to the set X . Then add(X ) is a
cluster tilting subcategory of Cn if and only if X is a maximal set of pairwise non-long
arcs, such that for each a ∈ L(M ), the set X has a fountain or leapfrog converging to
a.

In Section 3.2.2, we will need to chose a cluster tilting subcategory of Cn to work
with, for each n ≥ 1. For some technical reasons, it makes more sense for us to
consider a cluster tilting subcategory with a leapfrog converging to each accumulation
point rather than a fountain. With this in mind, from now on we shall fix a cluster
tilting subcategory of Cn with which we want to work.
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Construction 2.2.7. Given we have n accumulation points induced by M then we
have L(M ) = {a1, . . . , an}, which has a cyclic ordering. Let {z1, . . . , zn} ⊂ M be a
set of marked points such that zi ∈ (ai, ai+1) for all i = 1, . . . , n. By taking the arcs
ℓZi

= {zi, zi+1} for all i = 1, . . . , n we inscribe an n-gon inside the circle; the arc ℓZi

shall correspond to the object Zi ∈ Cn for all i = 1, . . . , n. For all ai ∈ L(M ), let
{zi, zi+1} be the first arc in a leapfrog converging to ai+1, such that if the arc {x, y}
is in the leapfrog, then so are either the arcs {x+, y} and {x, y+}, or the arcs {x−, y}
and {x, y−}. We label the leapfrog converging to ai by Li. Without loss of generality,
we may let ℓYi

= {zi, z−
i+1} be in Li+1. Notice that this implies that for every arc

ℓM ∈ Li+1 that is not ℓZi
, there are exactly two other arcs, ℓM− , ℓM+ ∈ Li+1 that

share an endpoint with ℓM .
For n ≥ 4, we give the inscribed n-gon a fan triangulation; that is, we add the arcs

ℓXi
= {z1, zi} for all i = 2, . . . , n. Notice that this means that we have X2 ∼= Z1 and

Xn
∼= Zn. This collection of arcs will look like Figure 2.8, along with a leapfrog Li

converging to each accumulation point.

Theorem 2.2.6 ensures that this construction corresponds to a cluster tilting sub-
category of Cn, as the collection of arcs is a maximal set of non-long arcs, and each
accumulation point has a leapfrog converging to it.

ℓZ1

ℓY1

ℓX3
ℓXn−1

ℓZn

ℓZ2

ℓY2

ℓZn−1

ℓYn−1

ℓYn

z1

z2

z3zn−1

zn z−
2

z−
1

z−
3

z−
n

a1

a3

a2

an

Figure 2.8: The collection of arcs corresponding to the cluster tilting subcategory we
wish to consider for n two-sided accumulation points, where leapfrogs are represented
by the dashed lines. By Theorem 2.2.6, this collection of leapfrogs together with the
fan triangulation of the inscribed n-gon corresponds a cluster tilting subcategory of

Cn.

Given some cluster tilting subcategory T , with an exchange pair (M,M∗) and
M ∈ T , then by [35] the arc ℓM∗ must cross an arc ℓX for some indecomposable object
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X ∈ T , as T corresponds to a maximal set of pairwise non-long arcs. However, there
exists a cluster tilting subcategory S with M∗ ∈ S such that S and T share an almost
cluster tilting subcategory T ′, which has complements M and M∗. This implies that
the arcs ℓM and ℓM∗ must cross. Therefore we have Ext1(M,M∗) ∼= k, and therefore
dimk HomCn(M,M∗[1]) = 1. By the symmetry of Ext1(−,−) inherent in 2-Calabi-Yau
triangulated categories, we also have dimk HomCn(M∗,M[1]) = 1.

It is important to note that by definition BM , BM∗ ∈ T (Section 1.6), and the pair
of arcs ℓBM

and ℓBM∗ form a quadrilateral with the arcs ℓM and ℓM∗ .

§ 2.3 | The Holm-Jørgensen Construction
Holm and Jørgensen were the first to look at the ∞-gon through the lens of a cluster
category in [38]. They construct a subcategory of a derived category of a differential
graded algebra, that can be represented as the arcs on an ∞-gon (or, equivalently,
as curves between non-consecutive integers on the number line). This construction is
shown to be equivalent to C1 in [39].

Let R = k[T] be the polynomial ring over a field k, seen as a differential graded
algebra with zero differential and T placed in homological degree 1. Then D = Df (R)
is the subcategory of the derived category of R with objects having finite dimensional
homology over k. This is a Hom-finite, k-linear, Krull-Schmidt, 2-Calabi-Yau, trian-
gulated category, where the indecomposable objects are isomorphic to the object

Xr = R/(T r+1)

for each integer r ≥ 0, up to suspension.
The Auslander-Reiten quiver of D is

X3[0] X3[− 1] X3[− 2] X3[− 3]

X2[1] X2[0] X2[− 1] X2[− 2]

X1[1] X1[0] X1[− 1] X1[− 2]

X0[2] X0[1] X0[0] X0[− 1]

Figure 2.9: The Auslander-Reiten quiver of D, QD.

In [38] the authors associate a coordinate system to the indecomposable objects of
D according to the rule

(m,n) = Xn−m−2[− n].

This allows them to associate the indecomposable objects to curves between integers
on the number line, which are non-consecutive because we require n − m − 2 ≥ 0,
therefore m < n and n−m ≥ 2. It is also clear from the Auslander-Reiten quiver that
(m,n)[1] = (m− 1, n− 1).
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The morphism space between two indecomposable objects may also be seen on the
Auslander-Reiten quiver QD, in Figure 2.9, however we use the following definition and
proposition found in [38].

Definition 2.3.1. Let X = (i, j) be an indecomposable object in D. The unbounded
subsets H−(X) and H+(X) of QD are given by

H−(X) ={(m,n) m ≤ i− 1, i+ 1 ≤ n ≤ j − 1},
H+(X) ={(m,n) j + 1 ≤ n, i+ 1 ≤ m ≤ j − 1}.

We write H(X) = H−(X) ∪H+(X).

Using this definition, Holm and Jørgensen prove the following proposition.

Proposition 2.3.2 ([38]). Let X and Y be indecomposable objects in D. Then

HomD(X, Y ) ∼=

k, for Y ∈ H(X[1]),
0, else.

They later prove that the two curves on the number line associated to X and Y

cross if and only if Y ∈ H(X[1]) if and only if X ∈ H(Y [ − 1]). By considering
the indecomposable objects in D as curves between non-consecutive integers on the
number line, and that morphism spaces between objects are induced by the crossing
of these curves, it is relatively straightforward to see that D and C1 are equivalent as
categories.

§ 2.4 | A Completion of Cn
We now give a completion of discrete cluster categories of Dynkin type A∞, which was
first presented by Paquette and Yıldırım in [58]. In the case of a single accumulation
point, there is an alternative yet equivalent completion due to Fisher [27], which in-
volves formally adding a certain class of homotopy colimits into C1. However we stay
with the Paquette-Yıldırım construction, which is much more combinatoric in nature,
and which also provides us with a useful inbuilt functor between C2n and a completion
of a discrete cluster category.

§ 2.4.1 | The Paquette Yıldırım Construction

We follow the construction given in [58], and state some results about the construction
that will be of use to us.

Construction 2.4.1. [58] Let a1, . . . , an ∈ L(M ) be the accumulation points of an
admissible subset M of S1, which corresponds to the category C(S1,M ). Then we
replace each ai ∈ L(M ) with an interval [a+

i , a
−
i ] containing the points aij ∈ (a+

i , a
−
i )

for all j ∈ Z, such that aij < aij′ if and only if j < j′, and we have limj→∞ aij = a+
i

and limj→−∞ aij = a−
i . We denote this new admissible subset of S1 as M ′. Let Dn be
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the full subcategory of C(S1,M ′) consisting of objects that correspond to short arcs
with endpoints in one of the segments (a−

i , a
+
i ).

Let Ω to be the set of morphisms f in Mor(Cn) such that the cone of f corresponds
to an arc with both endpoints in an interval (a−

i , a
+
i ) for some i = 1, . . . , n, i.e.

Ω = {f ∈ Mor(Cn) | cone f ∈ Dn}.

Then the completion of C(S1,M ) = Cn, in the sense of Paquette-Yıldırım, is defined
to be the localisation C(S1,M ) := C(S1,M ′)[Ω−1]. As before, we shall denote the
completion by Cn when the admissible subset M has n accumulation points and need
not be specified.

As well as the short arcs and long arcs that we consider in Cn, there are two more
types of arcs to think about in the Paquette-Yıldırım completion; limit arcs are the
arcs where a single endpoint is at an accumulation point, and double limit arcs are
those arcs with both endpoints at accumulation points.

The following lemma shows how the Ext1-spaces are given in Cn.

Lemma 2.4.2. [58, Prop. 3.14] Let X, Y ∈ Cn be indecomposable objects. Then
HomCn

(X, Y [1]) is at most one dimensional. It is one dimensional if and only if one
of the following conditions are met for the arcs ℓX and ℓY :

• ℓX , ℓY cross,

• ℓx ̸= ℓY share exactly one accumulation point, and we can go from ℓX to ℓY by
rotating ℓX about their common endpoint following the orientation of S1,

• ℓX = ℓY are double limit arcs.

Unfortunately, Lemma 2.4.2 shows that Cn is no longer 2-Calabi-Yau, as any two
limit arcs that share an endpoint at an accumulation point have a non-trivial Ext1-
space in only one direction.

It is useful for us to note that Construction 2.4.1 is equivalent to the Verdier locali-
sation of C2n by the full subcategory Dn, which we will see is equivalent to the disjoint
union of n copies of C1.

Proposition 2.4.3. There is an equivalence of categories:

Dn ≃
n⊔
i=1
C1,

where ⊔ni=1 C1 denotes the disjoint union of n copies of C1.

Proof. We note that Dn only has objects corresponding to short arcs on n segments,
and no two short arcs on different segments cross, so there are no morphisms between
objects corresponding to short arcs on different segments. In other words, any two
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subcategories that correspond to arcs on different segments, are orthogonal. We label
the segments s1, . . . , sn.

There exists a canonical functor ψ from D1, a subcategory of C2 = C(S1,M ′), to
C1 = C(S1,M ), that takes an arc ℓX = {x′, y′} in D1 to an arc ℓψX = {x, y} in C1, such
that for every marked point x′ < z′ < y′ with x′, y′, z′ ∈ M ′, there exists a marked
point x < z < y with x, y, z ∈M , and every arc with x′ ∈M ′ as an endpoint is sent
to an arc with x ∈ M as an endpoint. The functor ψ is fully faithful on Ext1-spaces
as two arcs that cross in D1 are sent to two arcs that also cross in C1. This is an
equivalence of categories between D1 and C1.

There also exists a fully faithful functor ρi from Dn to D1 that is the functor that
canonically maps objects corresponding to arcs in the segment si to D1, and is the
zero functor on all other objects. This is an equivalence of categories between D1 and
the full subcategory of Dn corresponding to arcs in the segment si. The category Dn
has n mutually orthogonal subcategories equivalent to D1 by construction, and so the
canonical functor

ρ =
n∑
i=1

(ρi) : Dn →
n⊔
i=1
D1

is an equivalence of categories.
Hence there is an equivalence of categories:

ι := ρ−1 ◦
(

n⊔
i=1

ψ

)
:

n⊔
i=1
C1

∼−→ Dn.

ℓX
ℓY

ι(ℓX)

ι(ℓY )

⊔ ι

Figure 2.10: How the equivalence ι from C1 ⊔ C1 to D2 acts on corresponding arcs.

§ 2.4.2 | Alternative Completions of C1

The completion of C1 in the Paquetter-Yıldırım sense is not the only completion that
has been discussed in the literature. In this section we briefly discuss some other
completions of C1, found in [27] and [12] respectively.

The Fisher Completion

In [27], Fisher constructs a completion of C1 by formally including a certain class of
homotopy colimits into C1. To do this they define a slice in the Auslander-Reiten quiver
QD, Figure 2.9, as a collection of vertices and arrows associated to a direct system of
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irreducible morphisms

X0[n]→ X1[n− 1]→ · · · → Xi[n− i]→ · · ·

and then take the homotopy colimit of this collection, which is defined as follows.

Definition 2.4.4 ([60]). Let {fn : Xn → Xn+1 n ∈ N} be a sequence of morphisms
in T , a triangulated category. The homotopy colimit of this sequence is an object
hocolimiXi = X ∈ T that fits into the distinguished triangle

⊕
n∈N

Xn
ψ−→
⊕
n∈N

Xn → X →
⊕
n∈N

Xn[1].

Where ψ is the morphism given by the infinite matrix

ψ =



eX1 f1 0 0 · · ·
0 eX2 f2 0 · · ·
0 0 eX3 f3 · · ·
0 0 0 eX4 · · ·
...

...
...

...
. . .


with eXn denoting the identity morphism on Xn.

Let D = D(k[T]), where k[T] is seen as a differential graded ring with T placed in
homological degree 1. That is, the ambient derived category of the category considered
in [38] by Holm and Jørgensen (Section 2.3), and so C1 ⊂ D. Let

X0[n]→ X1[n− 1]→ · · · → Xi[n− i]→ · · ·

be a slice in the Auslander-Reiten quiver of C1. We label the homotopy colimit of this
slice En ∈ D, and there is a natural identification En[m] = En+m in D for all m ∈ Z.

Then Fisher defines the completion of C1 to be the full subcategory

Ĉ1 = add{En, Xm[i]} ⊂ D

for all n, i ∈ Z and m ∈ N. We do not consider arbitrary coproducts inside of Ĉ1.
It was shown by August, Cheung, Faber, Gratz and Schroll in [3] that there is

an equivalence of triangulated categories between Ĉ1 and C1. In fact, it was shown
that these completions occur naturally as the category of Z-graded, maximal Cohen-
Macaulay modules over C[x, y]/(x2), with x in degree 1 and y in degree −1.

§ 2.5 | Marked Surfaces and Cluster Categories
From the introduction of cluster algebras by Fomin and Zelevinsky in [31] it was known
that there was a connection between cluster algebras and triangulations of marked sur-
faces. They have a brief discussion on an example of a cluster algebra, the homogeneous
coordinate ring C[Gr2,n+3] of the Grassmannian of 2 dimensional subspaces of Cn+3,
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and how its cluster variables are in bijection with the diagonals of an (n+ 3)-gon, and
clusters in bijection with triangulations of the (n + 3)-gon. In particular, the cluster
categories considered throughout this thesis can be loosely seen as a limit of these
categories as n tends to infinity. Since then there has been a lot of progress on the
relationship between marked surfaces and cluster algebras/categories, and in this sec-
tion we briefly go over the cluster categories of Dynkin type Dn, as well as looking at
marked surfaces more generally.

Although not talked about explicitly here, a combinatorial model for the cluster
categories of Dynkin type E6, E7 and E8, along with the combinatorial model for a
family of related cluster categories, was found by Lamberti in [48].

§ 2.5.1 | Cluster Categories of Dynkin Type Dn

After the cluster categories of Dynkin type An, the next combinatorial model to follow
was introduced by Schiffler in [63] for the cluster category of Dynkin type Dn. Schiffler
constructs a cluster category from an n-gon with a single puncture, where some objects
are in correspondence to ordered pairs of vertices (a, b) of the n-gon, where b is not
the anti-clockwise successor of a. They also introduce a collection of tagged arcs, such
that every vertex x induces two tagged arcs, ℓM−

x
and ℓM+

x
, with both endpoints at the

same vertex, and represented by a (potentially tagged) arc between the vertex and the
puncture.

·

x

Figure 2.11: Some arcs on the punctured n-gon, where the cross denotes the tagged
arc ℓM−

x
and the other arc with the same endpoints is ℓM+

x
.

Schiffler then builds a category D by defining the tagged arcs in the punctured n-
gon to be the indecomposable objects, and showing that the dimension of Ext1(M,N)
over a field k is equal to the crossing number of the two indecomposable objects M
and N . The crossing number is defined to be the minimal number of intersections of
two arcs ℓM and ℓN on the interior of the n-gon.

The suspension functor (denoted by the Auslander-Reiten translation, τ , in [63])
acts on tagged arcs with distinct endpoints in the same way as the non-punctured
n-gon, by rotating each endpoint anti-clockwise to its successor, and acts on a tagged
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arc with a single endpoint, say M−
x , by rotating the endpoint anti-clockwise to its

successor, and by changing the sign of the tagged arc, i.e. τM−
x
∼= M+

x′ where x′ is the
anti-clockwise successor to x.

§ 2.5.2 | Cluster Categories Via Marked Surfaces

There has been an abundance of work dedicated to understanding the cluster com-
binatorics and cluster structures inherent to marked surfaces in the years since the
introduction of cluster algebras; such as in [28, 29, 20, 21, 52, 51] for cluster algebras,
and in [16, 61, 69] for cluster categories.

In a series of papers [28, 29], Fomin and Thurston (as well as Shapiro in [28])
construct a cluster algebra from an arbitrary Riemann surface with boundary and
finitely many marked points on each boundary segment. They go on to prove a series
of results for these cluster algebras by using techniques found in combinatorial topology
and hyperbolic geometry, exploiting a connection that until then had been commonly
used in the reverse direction, using cluster algebra theory in certain topological and
geometric settings.

Moving into the world of categories, Brüstle and Zhang [16] explicitly described a
cluster category from a marked surface with finitely many marked points and without
punctures. It was already known that a cluster category may be associated to a marked
surface without punctures by combining two ideas; cluster categories from quivers with
potential [1], and quivers with potential from triangulated surfaces [2, 47]. However,
the aim of [16] is to combinatorically describe the objects and irreducible morphisms
in the cluster category associated to a finitely marked surface without punctures. To
do this, they classify the indecomposable objects as string objects and band objects,
named for their connection to the objects in the module category of a string algebra.
The string objects, similar to the objects in Cn, are given by the homotopy classes of
arcs between marked points, whilst the band objects are given by scalar products (by
elements of k∗ = k\{0}) of elements in the fundamental group of the surface modulo
certain relations.

This explicit description was generalised to the case of a punctured surface by Qiu
and Zhou in [61]. To achieve this they combine the ideas presented in [16] for the non-
punctured case, and the tagged arcs used in the combinatorial model for the cluster
category associated to Dn [63].

§ 2.5.3 | Quivers With Potential Arising From Triangulations

For a surface S with a collection of marked points M ⊂ S we may construct a tri-
angulation of the surface under some mild assumptions on M. It was noticed in [28,
34] that for a triangulation of a marked surface (S,M) we may associate a quiver with
potential.

In this section we describe the construction of a quiver with potential arising from
a triangulation of a surface, using [46] as a reference.
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Definition 2.5.1. Let Q be a quiver, and let P be a possibly infinite linear combination
of cycles in Q, with coefficients in some field k. Then P is a potential if no two cycles
in P with non-zero coefficients can be obtained from each other by rotation. We say
that the pair (Q,P ) is a quiver with potential.

Example 2.5.2. Let Q be the quiver

1 4

3

2 5

α1

α4

α3

α6

α2

α5

and let P = α1α2α3 + α6α5α4. Then P is a potential, and the pair (Q,P ) is a quiver
with potential.

Construction 2.5.3. Let (S,M) be a marked surface with all marked points on the
boundary of S, and let τ denote a triangulation of (S,M), with an arc in τ if it is
non-isotopic to the boundary of S. The vertices of Q are in bijection with the arcs in
τ , and an arrow α between two vertices i and j only exists if the arcs ℓi and ℓj are in
the same triangle of τ . The arrow α goes from i to j if ℓj is anti-clockwise of ℓi about
their shared endpoint.

The potential P is the linear combination of cycles coming from a triangle where
all three edges are non-isotopic to the boundary of S, and cycles coming from linear
paths around a puncture in S.

Example 2.5.4. Let S be an circle and M = 8, with M ⊂ ∂S, i.e. there are no punctures
in (S,M). Let τ be the following triangulation of (S,M).

1

2

3

5

4

The dotted arrows form the quiver Qτ associated to the triangulation τ . Therefore, we
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get the quiver with potential (Qτ , Pτ ) that has the following quiver,

1 4

3

2 5

α1

α4

α3

α6

α2

α5

with potential Pτ = α1α2α3 + α6α5α4.
Moreover, if we flip τ at the arc labelled 5, that is, remove the arc 5 from τ and

replace it with the unique new arc 5′ that forms a triangulation τ ′, then we get a new
quiver with potential from τ ′.

1

2

3

5′ 4

From τ ′ we get the quiver with potential (Qτ ′ , Pτ ′) given by the quiver

1

Qτ ′ = 3 5′ 4,

2

β1

β3

β5′ β4
β2

and the potential Pτ ′ = β1β2β3.
Note that the quiver Qτ ′ is in fact the quiver Qτ under Fomin-Zelevinsky mutation

at the vertex 5.

The phenomenon exhibited in Example 2.5.4, that flipping an arc is equivalent to
Fomin-Zelevinsky mutation at the corresponding vertex of the associated quiver, is no
accident. In fact, it was shown by Fomin, Shapiro and Thurston in [28] that this is
true for any triangulation of a marked surface that can be triangulated.

Proposition 2.5.5. Let τ be an ideal triangulation of a marked surface. Suppose τ ′ is
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obtained by flipping an arc labelled i in τ . Then Qτ ′ = µi(Qτ ′).

The language used in [28] is that of signed adjacency matrices, however there is a
natural way of obtaining a signed adjacency matrix from a quiver without loops and
2-cycles, and these statements are equivalent for our purposes.

Furthermore, using Proposition 2.5.5, it is also shown in [28] that the cluster algebra
associated to a surface is uniquely determined by the surface, and does not depend on
a choice of initial triangulation.



Chapter 3

Grothendieck Groups

In this chapter we look at Grothendieck groups and some of their basic properties.
We then compute the triangulated Grothendieck group of discrete cluster categories of
Dynkin type A∞. Subsequently, we compute the triangulated Grothendieck group of
the Paquette-Yıldırım completion of the discrete cluster categories of Dynkin type A∞.

§ 3.1 | Grothendieck Groups
The Grothendieck group of a category is a way of constructing an abelian group on
the set of objects in the category in a universal way. This is a generalisation of the
Grothendieck group over a commutative monoid, and obeys the same universal property
as found in the commutative monoid setting.

Given an commutative monoid M with Grothendieck group K, there exists a
monoid homomorphism i : M → K such that for any monoid homomorphism f :
M → A for an abelian group A, there is a unique group homomorphism g : K → A

such that f = g ◦ i. That is, the following diagram commutes

M A.

K.

f

i
g

The general idea of the Grothendieck group of a category is to take the free abelian
group generated by the isomorphism classes of objects of the category, then taking
the quotient by a set of relations [Y ] = [X] + [Z] for all triples (X, Y, Z) in a distin-
guished class of triples. Here we discuss three different Grothendieck groups a category
may have, depending upon the class of distinguished triples that we wish to consider.
Throughout, for some category C, we shall use the free abelian group, G0(C), with basis
{[X] | X ∈ C}, with [X] denoting the isomorphism class of X ∈ C.

In an additive category, that is, a category with a zero object, finite products
and finite coproducts, such that there is an isomorphism between the product and
coproduct of any two objects, we consider (X, Y, Z) as a distinguished triple if and
only if Y ∼= X ⊕ Z.
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Definition 3.1.1. Let S be an additive category. The split Grothendieck group of S,
Kadd

0 (S), is the group

Kadd
0 (S) = G0(S)/⟨[X ⊕ Y ]− [X]− [Y ] X, Y ∈ S⟩.

When working with the split Grothendieck group, we will want to use the following
well-known result:

Proposition 3.1.2. [53, Proposition 2.1] Let T be a Krull-Schmidt category with a
collection of non-isomorphic indecomposable objects {Xi}i∈I . The split Grothendieck
group of T is the free abelian group

Kadd
0 (T ) ∼=

⊕
i∈I

Z · [Xi]

with basis {[Xi]}i∈I .

In a small abelian category, we choose a class of distinguished triples such that if

0→ X → Y → Z → 0

is a short exact sequence, then (X, Y, Z) is a distinguished triple.

Definition 3.1.3. Let A be a small abelian category. The abelian Grothendieck group
of A, Kab

0 (A), is the group

Kab
0 (A) = G0(A)/⟨[Y ]− [X]− [Z] 0→ X → Y → Z → 0 a short exact sequence⟩.

For a small triangulated category, a triple (X, Y, Z) is a distinguished triple if the
triangle

X → Y → Z → X[1]

is a distinguished triangle. This is the Grothendieck group that we will focus on from
now on, and the one that we will compute for Cn and Cn.

Definition 3.1.4. Let T be a small triangulated category. Then the triangulated
Grothendieck group of T , K0(T ), is the group

K0(T ) = G0(T )/⟨[Y ]− [X]− [Z] X → Y → Z → X[1] a triangle in T ⟩.

From now on, whenever we refer to the Grothendieck group, this will be used to
mean the triangulated Grothendieck group.

Generally when we talk about Grothendieck groups of categories, we wish to avoid
categories with arbitrary coproducts, as these categories are guaranteed to have trivial
Grothendieck groups due to something called the Eilenberg swindle [11], sometimes
known as the Mazur swindle in the context of geometric topology [49, 50].
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This is where we take any object X ∈ C and show that it must be zero in the
Grothendieck group via the isomorphism ⊕∞

i=0 X ⊕X ∼=
⊕∞

i=0 X, and the relation

[
∞⊕
i=0

X]⊕ [X] = [
∞⊕
i=0

X],

and so [X] = 0 in the Grothendieck group. This holds for any of the categories that
we have defined the Grothendieck group for, and so we limit ourselves to essentially
small categories.

All of the different types of Grothendieck groups have analogous definitions, so it
would be natural to ask whether there is any relationship between them. For example,
let A be an abelian category, and its bounded derived category Db(A), then if we know
anything about K0(Db(A)), do we have any information about Kab

0 (A)?
We do in fact get a positive answer to this question, and there exists an isomorphism

K0(Db(A)) ∼= Kab
0 (A). Similarly, we have Proposition 3.1.2 that gives us a way of

computing the split Grothendieck group of a category without having to look at every
possible relation, so is there a way that we can do this for an abelian or triangulated
Grothendieck group? Unfortunately, there is no way of doing this in general, however
there is a theorem due to Palu [57] that we can use in our situation, that relates the
triangulated Grothendieck group of a 2-Calabi-Yau triangulated category to a quotient
of the split Grothendieck group of a cluster tilting subcategory of the triangulated
category.

Theorem 3.1.5. [57, Theorem 10] Let C be a Hom-finite, 2-Calabi-Yau triangulated
category with a cluster tilting subcategory T , and let M ∈ ind(T ). Let BM and BM∗

be the central objects in the exchange triangles for the exchange pair (M,M∗). Then,
if Kab

0 (mod T ) is generated by all classes [SN ] of simple T -modules, the triangulated
Grothendieck group of C is the quotient of the split Grothendieck group of the cluster
tilting subcategory T by all relations [BM∗ ]− [BM ]:

K0(C) ∼= Kadd
0 (T )/⟨[BM∗ ]− [BM ] M ∈ ind(T )⟩

It should be noted that this is not the original statement in [57], as the condition
that Kab

0 (mod T ) be generated by the simple modules in mod T is implicitly used in
the proof, but not explicitly stated as a requirement. Here mod T is used to denote the
category of T -modules, i.e. the category of k-linear, contravariant functors from T to
the category of k-vector spaces, and Kab

0 (−) is used to mean the abelian Grothendieck
group, where triples arise from short exact sequences, see Remark 3.2.6 for further
details.
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§ 3.2 | The Grothendieck Groups of Discrete Cluster
Categories

In this section we look at some previous results on the Grothendieck groups of discrete
cluster categories, before going on to compute the Grothendieck groups of Cn and Cn.

§ 3.2.1 | Discrete Cluster Categories of Dynkin Type

The Grothendieck group of the cluster category of a hereditary algebra was studied in
[10] by Barot, Kussin and Lenzing. They compute Grothendieck groups for a number
of cluster categories, including the cluster categories of finite dimensional hereditary
algebras, and the cluster categories of canonical algebras, equivalently, the cluster
category of the hereditary category of coherent sheaves on a weighted projective line.

For our purposes, we care about the Grothendieck groups of the cluster categories of
a connected, hereditary, representation-finite algebra, for which they give the following
classification.

Proposition 3.2.1. [10] Let ∆ be a Dynkin diagram, and let H∆ be the hereditary,
representation-finite algebra associated to ∆. Then we have the following:

K0(CH) ∼=


0 if ∆ = Am, Em with m even,

Z if ∆ = Am, Dm, E7 with m odd,

Z2 if ∆ = Dm with m even.

Here CH is the cluster category associated toH in the sense of Buan, Marsh, Reineke,
Reiten, and Todorov [18].

What is interesting to note is the periodic behaviour of the Grothendieck groups of
Dynkin type Am and Dm as m increases. This may lead us to naïvely assume that the
Grothendieck group of Cn may also exhibit a similar periodic behaviour as n increases,
or that it may stabilise. However, we show in Theorem 3.2.5 that this does not happen,
and the dimension of K0(Cn) increases as n does.

§ 3.2.2 | The Grothendieck Group of Cn

Let T be a cluster tilting subcategory of Cn. As Cn is a Krull-Schmidt category, this
implies by Proposition 3.1.2 that Kadd

0 (T ) is exactly the free abelian group generated
by the indecomposable objects X ∈ T . This leaves us with only the exchange pairs
of T to find, and thus we can compute the Grothendieck group of Cn. The exchange
pairs are found with the following lemma.

Lemma 3.2.2. Let T be a cluster tilting subcategory of Cn, and let T be the corre-
sponding collection of arcs. Let X, Y,W,Z ∈ T be indecomposable or zero objects, such
that the corresponding arcs in T form a quadrilateral. Let M ∈ ind(T ) correspond to
an arc ℓM as in the following diagram.
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ℓX

ℓW

ℓY

ℓZ

ℓM

ℓM∗

Let M∗ ∈ Cn\T be the unique indecomposable object such that (M,M∗) is an exchange
pair. Then

BM
∼= W ⊕ Z, BM∗ ∼= X ⊕ Y.

Proof. By [39], there exists two triangles for the pair of long arcs ℓM and ℓM ′ ,

M → X ⊕ Y →M∗ →M[1]
M∗ → W ⊕ Z →M →M∗[1].

However we also have the exchange triangles [18],

M → BM∗ →M∗ →M[1] and M∗ → BM →M →M∗[1].

By using the fact that Ext1(M,M∗) ∼= Ext1(M∗,M) ∼= k, we now only need to show
that none of these triangles split.

To split, the triangle

M
u−→ X ⊕ Y v−→M∗ w−→M[1]

must have a retraction v, however we have

Hom(M∗, X ⊕ Y ) ∼= Ext1(M∗, X[− 1]⊕ Y [− 1]) = 0

where the final equality holds as neither ℓX[−1] nor ℓY [−1] cross ℓM∗ , and so have trivial
Ext1-spaces. Hence there are no maps v′ : M∗ → X ⊕ Y , and so v cannot be a retract.
Thus the triangle doesn’t split.

A similar argument works for the triangle

M∗ → W ⊕ Z →M →M∗[1]

The two exchange triangles are non-split by definition. Hence we have BM
∼= W⊕Z

and BM∗ ∼= X ⊕ Y .

Before we move on, we recall the cluster tilting subcategory from Construction
2.2.7, shown in Figure 3.1.

Construction 3.2.3. We construct a cluster tilting subcategory Tn of Cn. Given there
are n accumulation points, we have L(M ) = {a1, . . . , an} with a cyclic order.
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Let {z1, . . . , zn} ⊂ M be a set of marked points such that ai−1 < zi < ai for all
i = 1, . . . , n. By taking the arcs ℓZi

= {zi, zi+1} for all i = 1, . . . , n we inscribe an n-gon
inside the circle; the arc ℓZi

shall correspond to the object Zi ∈ Cn for all i = 1, . . . , n.
For all ai ∈ L(M ), let {zi, zi+1} be the first arc in a leapfrog converging to ai, such
that if the arc {x, y} ≠ {zi, zi+1} is in the leapfrog, then so are either the arcs {x+, y}
and {x, y+}, or the arcs {x−, y} and {x, y−}. We label the collection of arcs in the
leapfrog converging to ai by Li. Without loss of generality, we may let ℓYi

= {zi, z−
i+1}

be in Li. Notice that this implies that for every arc ℓM ∈ Li that is not ℓZi
, there are

exactly two other arcs, ℓM− , ℓM+ ∈ Li that share an endpoint with ℓM .
For n ≥ 4, we give the inscribed n-gon a fan triangulation; that is, we add the arcs

ℓXi
= {z1, zi} for all i = 2, . . . , n. Notice that this means that we have X2 ∼= Z1 and

Xn
∼= Zn. This collection of arcs will look like Figure 2.8, along with a leapfrog Li

converging to each accumulation point.

ℓZ1

ℓY1

ℓX3
ℓXn−1

ℓZn

ℓZ2

ℓY2

ℓZn−1

ℓYn−1

ℓYn

z1

z2

z3zn−1

zn z−
2

z−
1

z−
3

z−
n

an

a2

a1

an−1

Figure 3.1: The collection of arcs corresponding to the cluster tilting subcategory we
wish to consider for n two-sided accumulation points, where leapfrogs are represented
by the dashed lines. By Theorem 2.2.6, this collection of leapfrogs together with the
fan triangulation of the inscribed n-gon corresponds a cluster tilting subcategory of

Cn.

As Tn corresponds to a triangulation of a marked surface, we may associate a quiver
with potential Q(Tn) to Tn following Construction 2.5.3.

Proposition 3.2.4. Let Tn be the cluster tilting subcategory in Construction 2.2.7,
and let Li be the collection of arcs in the leapfrog converging to ai. Then there is a
subquiver of Q(Tn) with vertices corresponding to arcs in Li of the following form;

· · · · · · · · · · .
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Proof. Let ℓM = {m1,m2} be an arc in the leapfrog Li, such that zi < m1 < ai <

m2 < zi+1. Then we have two cases, either ℓM ′ = {m1,m
−
2 } and ℓM ′′ = {m−

1 ,m2} are
both arcs in Li, or ℓN ′ = {m1,m

+
2 } and ℓN ′′ = {m+

1 ,m2} are both arcs in Li.
In the first case, ℓM ′ and ℓM ′′ are both clockwise rotations of ℓM about their re-

spective shared endpoints. Moreover, ℓM and ℓM ′ form a triangle in the triangulation
associated to Tn, along with an arc {m2,m

−
2 }, which is isotopic to the boundary. Hence

there is a arrow in Q(Tn) from the vertex corresponding to ℓM ′ to the vertex corre-
sponding to ℓM , and a similar argument finds an arrow from the vertex corresponding
to ℓM ′′ to the vertex corresponding to ℓM . Thus the following quiver is a subquiver of
Q(Tn),

1 2 3.

The second case is when ℓN ′ and ℓN ′′ are both anti-clockwise rotations of ℓM about
their respective shared endpoints. From these we get a subquiver of Q(Tn),

1′ 2′ 3′.

We note that if ℓM is of the type in the first case, then the arcs ℓM ′ and ℓM ′′ will be
of the type in the second case, and vice versa with the arcs ℓN ′ and ℓN ′′ of the type in
the first case.

Thus we get a subquiver of Q(Tn),

· · · · · · · · · · ,

where the terminal vertex corresponds to the arc ℓZi
.

The subquiver in Proposition 3.2.4 is the full quiver (with trivial potential) associ-
ated to the cluster tilting subcategory T1 ⊂ C1.

In the case of n = 2, then the quiver associated to T2 ⊂ C2 is given by two copies of
the subquiver in Proposition 3.2.4 with the terminal vertices identified, i.e. the quiver,

· · · · · · · · · · · · · .

Furthermore, we consider Proposition 3.2.4 to find the quiver with potential asso-
ciated to Tn for n ≥ 3 (Figure 3.2).

The path algebra A ∼= kQ(Tn)/P is generated by paths of finite length, with the
longest path βn−2αn−2 . . . β2α2β1α1δ, with length 2n− 3. Hence, any object in modA
can be generated by a finite sum of simple objects in Kab

0 (modA) ∼= Kab
0 (mod Tn).

Therefore we may use Theorem 3.1.5, combined with Lemma 3.2.2, to obtain the
following result.
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· · ·

· · ·

· · ·

· · · · ·

· ·

· ·

β1 β2 βn−2α1 α2

γ1 γ2

αn−2

γn−2
δ

Figure 3.2: The quiver with potential associated to the cluster tilting subcategory
Tn ⊂ Cn for n ≥ 3, where each arm is a subquiver of the type in Proposition 3.2.4.

The potential is P = ⟨∑n−2
i=1 γiβiαi⟩.

Theorem 3.2.5. Then the discrete cluster category of Dynkin type A∞ with n accu-
mulation points, Cn, has the triangulated Grothendieck group,

K0(Cn) ∼= Zn.

Moreover, for n ≥ 2, the elements {[Y1], [X2], . . . , [Xn]} forms a basis of K0(Cn).

Proof. One may see by Lemma 3.2.2 that each leapfrog Li induces two basis elements
[Zi], [Yi] in Kadd

0 (Tn)/⟨[BM ]− [BM∗ ]⟩. To see this, take some arc ℓM ∈ Li+1, with arcs
ℓM− , ℓM+ ∈ Li+1 sharing an endpoint with ℓM . Then one of the pair of objects BM

and BM∗ coming from the exchange triangles must be trivial, and the other have two
indecomposable direct summands, due to the construction of the leapfrog. From this,
and by the relation [BM ]−[BM∗ ] = 0, one may see that we get that we get [M−] = [M+]
using Lemma 3.2.2. Then, via induction on the arcs in the leapfrog, one may see that
every arc ℓM ∈ Li+1 corresponds to either [Zi] or [Yi] in Kadd

0 (Tn)/⟨[BM ]− [BM∗ ]⟩.
To prove the claim for all n > 0, we shall prove it for n = 1, 2, 3 respectively, and

then for n ≥ 4.
In the case n = 1, we only have a1 ∈ L(M ). Thus the first non-trivial arc in L1 is

the arc ℓZ1 = {z−
1 , z

+
1 }, which we label Z1 in lieu of the arc {z1, z2}. Let us take the

arc ℓY1 = {z−−
1 , z+

1 }. From this, we may see that the arc ℓZ∗
1

has endpoints {z−−
1 , z1}.

Using Lemma 3.2.2 we see that BZ1
∼= Y1 and BZ∗

1
= 0, so we have [BZ1 ] = [Y1] and

[BZ∗
1
] = 0, meaning [BZ1 ]− [BZ∗

1
] = [Y1]. There are no more relations in Kadd

0 (T1) left
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to consider, and so by Theorem 3.1.5 [57],

K0(C1) ∼= Z.

In the case of n = 2, the arc ℓZ1 = {z1, z2} is contained in both L1 and L2, and
thus we have Z1 ∼= Z2. One can see from Lemma 3.2.2 that BZ1

∼= Y1 ⊕ Y2 and
BZ∗

1
∼= 0, and thus we have [BZ1 ] − [BZ∗

1
] = [Y1] + [Y2], which means that when we

quotient by [BZ1 ]−[BZ∗
1
] we get [Y2] = −[Y1]. Meaning we have only two basis elements

in Kadd
0 (T2)/⟨[BM ] − [BM∗ ]⟩, and there are no more relations to consider. Hence, by

Theorem 3.1.5 [57],
K0(C2) ∼= Z2.

When we have n = 3, we must consider the triangle consisting of sides being the
arcs ℓZ1 = {zi, zi+1}, with i = 1, 2, 3. The exchange pair of Z1 consists of BZ1

∼= Z2⊕Y1

and BZ∗
1
∼= Z3, giving us the relation [Z2] + [Y1] = [Z3]. Similarly, via the exchange

pairs at Z2 and Z3 respectively, we have the relations,

[Z3] + [Y2] = [Z1]
[Z1] + [Y3] = [Z2].

Which means that we have three basis elements of Kadd
0 (T3)/⟨[BM ]− [BM∗ ]⟩, which are

the elements {[Z1], [Z2], [Z3]}, with no more relations to consider, and so by Theorem
3.1.5,

K0(C3) ∼= Z3.

For n ≥ 4, we have the additional arcs forming the fan triangulation of the inscribed
n-gon to consider. The corresponding objects to these arcs induce the elements [Xi]
in Kadd

0 (Tn), for all i = 3, . . . , n − 1. In these cases we wish to consider the exchange
pairs on two different families of objects, {Zi}i=1,...,n and {Xj}j=3,...,n−1.

For all Xi, i = 3, . . . , n− 1 using Lemma 3.2.2, we have the exchange pairs BXi
∼=

Zi ⊕Xi−1 and BX∗
i

∼= Xi+1 ⊕ Zi−1. These exchange pairs give us the relations,

[Zi] + [Xi−1] = [Zi−1] + [Xi+1], for all i = 3, . . . , n− 1,

where we use the fact that by definition X2 ∼= Z1 and Xn
∼= Zn. By inspection at the

arcs ℓZi
for i = 2, . . . , n − 1, one can see that by Lemma 3.2.2 we have the exchange

pairs BZi
∼= Xi+1 ⊕ Yi and BZ∗

i

∼= Xi. This means we have the set of relations

[Xi] = [Xi+1] + [Yi],

for i = 2, . . . , n− 1.
It only remains to check the relations induced by the exchange pairs for Z1 and Zn.
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One may easily check that we have the exchange pairs by applying Lemma 3.2.2,

BZ1
∼= Z2 ⊕ Y1 BZ∗

1
∼= X3

BZn
∼= Yn ⊕Xn−1 BZ∗

n
∼= Zn−1.

These exchange pairs then induce the relations,

[X3] = [Z2] + [Y1]
[Zn−1] = [Yn] + [Xn−1].

This means that all of the relations ⟨BM−BM∗⟩, forM an indecomposable summand
of the cluster tilting object T , have been found. These are

[Zi] = −[Xi−1] + [Xi+1] + [Zi−1] for all i = 3, . . . , n− 1 (3.1)
[Yi] = −[Xi+1] + [Xi] for all i = 2, . . . , n− 1 (3.2)
[Z2] = [Y1] + [X3] (3.3)
[Yn] = [Zn−1]− [Xn−1]. (3.4)

By considering (3) and then (1) inductively, we find each [Zi] for i = 2, . . . , n − 1 in
terms of the elements {[Y1], [X2], . . . , [Xn]}. We may also find all [Yi] for i = 2, . . . , n
in terms of the same set of elements, by considering (2) and (4). Note, given we also
have X2 ∼= Z1 and Xn

∼= Zn, so therefore [X2] = [Z1] and [Xn] = [Zn], meaning
we have found all elements in terms of linear combinations of the set of elements
{[Y1], [X2], . . . , [Xn]}.

Given there are no more relations to consider, this means we have a basis for the
group Kadd

0 (Tn)/⟨BM −BM∗⟩;

{[Y1], [X2], . . . , [Xn]}.

All of these elements in the basis have infinite order, as there exists no relation such
that m[A] = 0 for any m ∈ Z and A ∈ ind(Tn); and so, by Theorem 3.1.5,

K0(Cn) ∼= Zn.

Remark 3.2.6. A natural question to ask is why this choice of cluster tilting subcategory
is being used in particular. We choose this cluster tilting subcategory primarily because
it satisfies an implicit condition required to apply Theorem 3.1.5, which other cluster
tilting subcategories do not necessarily satisfy. This is that, given a cluster tilting
subcategory T , then Kab

0 (mod T ) must be generated by the simple T -modules, SM
associated to the indecomposable object M ∈ T .

For example, take the additive subcategory S ⊂ C1 with indecomposable objects
that correspond to a fountain at z ∈ M converging to a ∈ L(M ). This is a cluster
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tilting subcategory by [35] when the corresponding arcs are maximal as a set of pairwise
non-crossing arcs. When we apply Theorem 3.1.5 to S we get the result that K0(C1) ∼=
Z2. We know this cannot be true by considering only the triangles in C1 that correspond
to the crossings of arcs, which shows that K0(C1) must be a quotient of Z.

We also see that S does not satisfy the condition of Kab
0 (modS) is generated by sim-

ple S-modules. To do this, we can associate a quiver to a triangulation (see Subsection
2.5.3), and for S this quiver with potential has infinite length paths between vertices,
and so a projective S-module P may not be the sum of finitely many simple S-modules
in Kab

0 (modS). Thus Kab
0 (modS) is not generated by the simple S-modules.

This is a condition that is mentioned within the proof of Theorem 3.1.5 in [57],
however is not mentioned within the statement of the theorem. Whilst this does serve
as a counterexample to the theorem as it is originally stated, the author still believes
that a form of the theorem could still be used on cluster tilting subcategories without
this condition, however a more explicit computation may be necessary, and it would
be preferable to find a cluster tilting subcategory satisfying this condition if possible.

The author does not currently know of any 2-Calabi-Yau, triangulated category
with at least one cluster tilting subcategory, such that there does not exist a cluster
tilting subcategory that satisfies the conditions of Theorem 3.1.5.

§ 3.2.3 | The Grothendieck Groups of Cn

Here we compute the triangulated Grothendieck group of the completed discrete cluster
category of Dynkin type A∞ with n two-sided accumulation points, Cn. A similar
approach to the main result used in the previous section would not be feasible, as the
results in [57] require the category in question to be 2-Calabi-Yau, a property that Cn
does not have due to the lack of Serre functor. Therefore a new approach must be
made, one for which the 2-Calabi-Yau property is not necessary.

This new approach involves using the localisation functor used in [58] (Construction
2.4.1) to construct the category Cn from the category C2n. As shown in Proposition
2.4.3 this essentially surjective functor π has a kernel of n copies of the category C1,
and so fits into the short exact sequence:

0→
n⊔
i=1
C1

ρ−→ C2n
π−→ Cn → 0.

Before we get to the main result and its proof, we must provide some useful state-
ments that hold for both Cn and Cn. We state these lemmas for Cn, however note that
the statements and proofs are analogous for Cn.

Lemma 3.2.7. Let W ∈ Cn be any indecomposable object such that the arc ℓW is a
short arc. Then ℓW has an odd number of marked points between its two endpoints if
and only if [W ] ̸= 0.

Proof. We will show this inductively.
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Let ℓWi
be an arc with i ∈ Z>0 marked points between its two endpoints, with all

ℓWi
sharing one endpoint, i.e. {ℓWi

}i>0 is a left sided fountain. It is clear to see that ℓW0

is isotopic to a boundary segment between two adjacent marked points, and therefore
a zero object, so [W0] = 0.

Next, we have W1, to which we will assign [W1] ∈ K0(Cn). We can then use the
following triangle to find all subsequent [Wi] ∈ K0(Cn);

Wi → Wi+1 → W1[i]→ Wi[1].

This is verified as a distinguished triangle by construction of a quadrilateral of arcs,
with the arcs ℓWi

and ℓW1[i] crossing.
From this, we can see that in K0(Cn) we have;

[Wi+1] = [Wi] + (−1)i[W1],

and hence, using induction on i, we find

[Wi] =
0 if i is even

[W1] if i is odd

Recall from Figure 2.8 and the proof of Theorem 3.2.5 that we have the set of arcs
{ℓY1 , ℓX2 , . . . , ℓXn} that correspond to a basis in K0(Cn). For reference, we give a figure
with these arcs on it.

ℓX2

ℓY1

ℓX3
ℓXn−1

ℓXn

z1

z2

z−
2

z3zn−1

zn

Figure 3.3: The set of arcs corresponding to the chosen representatives of the basis of
K0(Cn).
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Lemma 3.2.8. Let W ∈ C2n be indecomposable with ℓW a short arc such that [W ] ̸= 0
in K0(C2n), then there exists j ∈ Z such that there exists a triangle of the form

Xi → A⊕W[j]→ Xi[l]→ Xi[1],

for some i ∈ {2, . . . , n} with l even, and where ℓA is a short arc. Moreover, one of the
following is true,

• z1 is an endpoint of ℓA, and [A] = [X2] + [Y1],

• or z1 is an endpoint of ℓW[j], and (−1)j[W ] = [X2] + [Y1].

Proof. There exists some j ∈ Z such that ℓW[j] = {zi, x}, where ai < x < zi < ai+1.
By Lemma 3.2.7, there are an odd number of marked points between zi and x.

We consider two cases, where ℓW has endpoints on the same segment as z1, and
where ℓW has endpoints on the same segment as zi for i ̸= 1.

Suppose i ̸= 1, then ℓW[j] shares the endpoint zi with ℓXi
, and the endpoint x

with ℓXi[l], where l > 0 is even. We see that l is even as there is an odd number of
marked points between zi and x, and the endpoints of ℓM[1] are the predecessor of the
endpoints of ℓM with respect to the anti-clockwise orientation, for any indecomposable
object M ∈ Cn. Therefore, if there are m marked points between the marked points
a > b ∈M , and ℓM has an endpoint at a, then ℓM [m+1] has an endpoint at b.

Also, the arcs ℓXi
and ℓXi[l] cross, meaning there is a triangle

Xi → A⊕B → Xi[l]→ Xi[1],

where ℓB = {zi, zi − l} and ℓA = {z1, z1 − l}. Therefore B ∼= W[j] and ℓA is a short
arc with z1 as an endpoint.

To show that [A] = [X2] + [Y1], consider the objects X2 and Y1[l]. Then the
corresponding arcs are ℓX2 = {z1, z2} and ℓY1[l] = {z1− l, z−

2 − l} respectively, and ℓX2

crosses ℓY1[l]. Hence we have a triangle

X2 → A′ ⊕B′ → Y1[l]→ X2[1],

with ℓA′ = {z1, z1 − l} and ℓB′ = {z2, z
−
2 − l}, so there is an even number of marked

points between the endpoints of the short arc ℓB′ and A′ ∼= A. In the Grothendieck
group, this means we have the relation

[A] + [B] = [X2] + [Y1[l]].

However, [B] = 0 by Lemma 3.2.7 and l is even so [Y1[l]] = [Y1], therefore we get
[A] = [X2] + [Y1].

Now suppose that ℓW has endpoints on the same segment as z1. Then there exists
some j ∈ Z such that ℓW[j] = {z1, z1 − l}, still with l > 0 even. For any i = 2, . . . , n,



CHAPTER 3. GROTHENDIECK GROUPS 67

there exists a triangle

Xi → A⊕W[j]→ Xi[l]→ Xi[1]

with ℓA = {zi, zi − l}, as ℓXi
crosses ℓXi[l] and both share an endpoint with ℓW[j].

To show that (−1)j[W ] = [X2] + [Y1], we use the same argument as when ℓW has
endpoints in the same segment as zi, to show that [W[j]] = [X2] + [Y1], and note that
j ∈ Z could be either odd or even, and so we use (−1)j[W ] = [W[j]] = [X2] + [Y1] to
prove our statement.

With these results, we can now compute the Grothendieck group for Cn.

Theorem 3.2.9. Let Cn be the completion of a discrete cluster category of Dynkin type
A∞ with n two-sided accumulation points. Then Cn has the triangulated Grothendieck
group:

K0(Cn) ∼= Zn ⊕ (Z/2Z)n−1

Proof. We have the localisation functor π : C2n → Cn, which has kernel n copies of C1

by Proposition 2.4.3. This means that we have a short exact sequence of categories (in
the language of [64]):

0→
n⊔
i=1
C1

ρ−→ C2n
π−→ Cn → 0

We also use the fact that the Grothendieck group functor, K0(−), is right exact [64,
Fact 1.2], and so that means we have the commutative diagram with exact rows:

K0(
⊔n
i=1 C1) K0(C2n) K0(Cn) 0

Zn Z2n K0(Cn) 0

f

∼=

g

∼= ∼=

f g

where the first and second isomorphisms come from Theorem 3.2.5.
Therefore, given g is a surjection, it is sufficient to describe the map f and find its

cokernel.
We know that the functor ρ : ⊔ni=1 C1 → C2n is injective on objects, with each copy

of C1 mapping into alternating segments in C2n. This is due to the choice of D by
Paquette and Yıldırım in the construction of Cn [58]. We will label the basis elements
of K0(

⊔n
i=1 C1) as {[M1], . . . , [Mn]}, with corresponding arcs ℓM1 , . . . , ℓMn ∈

⊔n
i=1 C1.

Further, we shall choose the labelling such that ρ(M1) ∼= X, where X is the object
corresponding to the arc ℓX = {z−−

1 , z1}, and so we have f([M1]) = [ρ(M1)] = [X].
Generally we say that the arc ℓρ(Mi) = {z−−

2i−1, z2i−1} corresponds to the object ρ(Mi),
and so [ρ(Mi)] ̸= 0 by Lemma 3.2.7.

Notice that if we choose an object, W , that corresponds to the arc ℓW = {z−−
i , zi}

and so [W ] ̸= 0 by Lemma 3.2.7, then X is the unique object, corresponding to the arc
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ℓX , fitting into the distinguished triangle

Xi → X ⊕W → Xi[2]→ Xi[1]

and so [X] = [X2] + [Y1], by Lemma 3.2.8.
Given [ρ(Mi)] ̸= 0 we may now apply Lemma 3.2.8, giving us the triangle

X2i−1 → X ⊕ ρ(Mi)→ X2i−1[2]→ X2i−1[1]

with [X] = [X2] + [Y1]. This in turn means we have

[ρ(Mi)] =
2[X2i−1]− [X2]− [Y1] if i = 2, . . . , n

[X2] + [Y1] if i = 1

By summing [ρ(Mi)] and [ρ(M1)], we get [ρ(Mi)] + [ρ(M1)] = 2[X2i−1], and so we get
the image of f being the span of the elements {[X2]+[Y1], 2[X2i−1]} for all i = 2, . . . , n.
This gives us im(f) ∼= (2Z)n−1 ⊕ Z, and so by the exact sequence

Zn f−→ Z2n g−→ K0(Cn)→ 0,

we get K0(Cn) ∼= Z2n/ ker(g) ∼= Z2n/ im(f), where the last equivalence comes from the
above sequence being exact. Hence we get

K0(Cn) ∼= Zn ⊕ (Z/2Z)n−1.



Chapter 4

Generators of Cn

In this chapter we start by looking at what it means for an object to generate a
triangulated category, and how we can use the set of generating objects of a triangulated
category to define a dimension on the category. We follow this up by classifying the
generators of Cn, the completed discrete cluster categories of Dynkin type A∞.

Then we compute the graded endomorphism ring of a particularly nice generator
of Cn in an attempt to obtain a homological description of Cn for all n ≥ 1, similar to
that of C1 discussed by Holm and Jørgensen in [38].

Finally, we introduce a homological length for an object in a triangulated category,
and show that the homological length of a generator in Cn is an upper bound for the
time that generator takes to generate Cn. Subsequently, we use this to provide an
upper bound for the Orlov spectrum of Cn.

With the exception of the section on the graded endomorphism ring of a given
generator, the results in this chapter can be extended to the non-completed categories
Cn, with only a few subtleties to contend with.

§ 4.1 | Generators of a Triangulated Category
Objects that generate a triangulated category have been the subject of study for many
years, notably being used to construct equivalences of categories by Keller [41] for
algebraic triangulated categories. There are a few different definitions of what it means
for an object to be a generator, with various implications between the definitions.
Throughout when we say generator, we shall mean what may be referred to as a
classical generator by some authors. Many of the definitions in the section are adapted
versions of the definitions given in [15] by Bondal and Van den Bergh.

Recall the definition of a thick subcategory.

Definition 4.1.1. Let C be a triangulated category with a triangulated subcategory
B, then we say B is a thick subcategory of C if it is closed under direct summands.

It is important to understand thick subcategories, as they play a crucial role in the
definition of classical generators of a triangulated category.

Definition 4.1.2. Let E = {Ei}i∈I be a collection of objects in C. We say that E

classically generates C if the smallest thick subcategory of C containing E is C itself.
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Some authors use the term classical generator to distinguish them from other no-
tions of generators, for instance a (weak) generator E in a triangulated category is
an object such that for all objects K, there exists a non-zero morphism E → K[n]
for some n ∈ Z. It should be noted that all classical generators are weak generators,
however the converse is not always true. Whenever we refer to generators, we shall
always be referring to classical generators.

Following [13], we define an operation on two subcategories of a triangulated cate-
gory to obtain another subcategory containing both of the original subcategories.

Definition 4.1.3. LetR,S ⊂ C be two subcategories, thenR⋆S is the full subcategory
of direct summands of all objects Y such that there exists a triangle

X → Y → Z → X[1]

with X ∈ R and Z ∈ S.

The following proposition shows us that given three subcategories R,S, T ⊆ C,
then the subcategory R ⋆ S ⋆ T is well defined.

Proposition 4.1.4. The operation ⋆ is associative.

Proof. Let R,S, T be subcategories of a triangulated category C. Suppose that Z ∈
(R ⋆ S) ⋆ T , we show that Z ∈ R ⋆ (S ⋆ T ).

As Z ∈ (R ⋆ S) ⋆ T , then we can choose some object X ∈ R ⋆ S such that we have
two triangles,

A
f−→ X → B → A[1]

and
X

g−→ Z ′ → C → X[1]

with A ∈ R, B ∈ S and C ∈ T , with Z a direct summand of Z ′ ∈ (R ⋆ S) ⋆ T . Given
the two composable morphisms f and g, we can construct the triangle

A
gf−→ Z ′ → D → A[1].

With these three triangles, we can apply the octahedral axiom to get

A X B A[1]

A Z ′ D A[1]

0 C C 0

A[1] X[1] B[1] A[2].

f

∼ g

gf

∼
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From the commutative diagram, we see that D ∈ S ⋆T , and so Z ′ ∈ R⋆ (S ⋆T ), hence
Z ∈ R ⋆ (S ⋆ T ) as it is closed under direct summands.

Therefore (R ⋆ S) ⋆ T is a full subcategory of R ⋆ (S ⋆ T ), and to show the reverse
inclusion is a dual argument, so we see that ⋆ is associative.

Given some subcategory R ⊆ C, it is possible to build an iterative series of subcat-
egories from R using this operation. These subcategories prove to be a useful tool in
determining whether or not a collection of objects classically generate C or not.

Definition 4.1.5. Let G = {Gj}j∈J be a collection of objects in C. We denote by
⟨G ⟩1 ⊂ C the full subcategory consisting of all direct summands of finite coproducts of
suspensions of objects in G . Further, we define the full subcategory ⟨G ⟩n+1 to be

⟨G ⟩n+1 := ⟨G ⟩n ⋆ ⟨G ⟩1.

Moreover, we define ⟨G ⟩ to be the union of all ⟨G ⟩n, i.e.

⟨G ⟩ :=
⋃
n

⟨G ⟩n.

We assume all ⟨G⟩i to be closed under isomorphism. It is clear from the definition
that ⟨G ⟩n ⊂ ⟨G ⟩n+1 for all n ≥ 1. This is due to having the following triangle

X → X → 0→ X[1]

for any X ∈ ⟨G ⟩n, and so X ∈ ⟨G ⟩n+1.
Notice also that by Proposition 4.1.4 we may see that ⟨G ⟩n may be obtained via

the operation of any two ⟨G ⟩a and ⟨G ⟩b, as long as a+ b = n. For instance, we define
⟨G ⟩n as ⟨G ⟩n−1 ⋆ ⟨G ⟩1, but we also have

⟨G ⟩n = ⟨G ⟩n−1 ⋆ ⟨G ⟩1
= (⟨G ⟩n−2 ⋆ ⟨G ⟩1) ⋆ ⟨G ⟩1
= ⟨G ⟩n−2 ⋆ (⟨G ⟩1 ⋆ ⟨G ⟩1)
= ⟨G ⟩n−2 ⋆ ⟨G ⟩2,

where the third equality comes from Proposition 4.1.4.
Throughout the rest of this thesis, we need only consider finite collections of objects,

and so can express things in terms of objects in Cn. In other words, we consider objects
that classically generate C and we consider the subcategory ⟨add(G[i] i ∈ Z)⟩ ⊆ C
for an object G ∈ C, which we denote as ⟨G⟩. If an object E classically generates a
triangulated category C, then we say E is a classical generator.

Next, we show that there is another way to characterise the subcategory ⟨E⟩ for
some object E ∈ C, which will be useful when we look for generators of a triangulated
category.
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Proposition 4.1.6. Let C be a triangulated category, and let E ∈ C. Then ⟨E⟩ ⊆ C is
the smallest thick, triangulated subcategory containing E.

Proof. We must show that ⟨E⟩ is closed under direct summands, suspension and exten-
sions, and is the smallest such subcategory containing E. By definition, ⟨E⟩ is closed
under direct summands.

Let X, Y ∈ ⟨E⟩ such that there exists a triangle

X → Z → Y → X[1].

Further, there exists some i, j ∈ Z such that X ∈ ⟨E⟩i and Y ∈ ⟨E⟩j. Thus Z ∈
⟨E⟩i+j ⊆ ⟨E⟩, and so ⟨E⟩ is closed under extension.

For closure under suspension, we know that ⟨E⟩1 is closed under suspension by
definition. Now assume that ⟨E⟩n is closed under suspension, and that some object
X ∈ ⟨E⟩n+1 is the central object in a triangle

Z → X → Y → Z[1]

where Z ∈ ⟨E⟩n and Y ∈ ⟨E⟩1. Then, by TR2 in Defnition 1.1.5, there exists a triangle

Z[1]→ X[1]→ Y [1]→ Z[2],

which implies that X[1] ∈ ⟨E⟩n+1 as ⟨E⟩n and ⟨E⟩1 are closed under suspension, and
so ⟨E⟩n+1 is also closed under suspension. Hence it is only left to show that ⟨E⟩ is the
smallest such subcategory of C containing E.

Suppose there exists a thick subcategory B ⊂ ⟨E⟩ ⊆ C, and an object A ∈ ⟨E⟩ but
not in B. Further, suppose that A ∈ ⟨E⟩n+1, then we have a triangle

Xn → A→ Y1 → Xn[1]

with Xn ∈ ⟨E⟩n and Y1 ∈ ⟨E⟩1. If Y1 is not in B, then E ̸∈ B as Y1 is a direct sum
of suspensions of direct summands of E, and B is closed under direct sums, direct
summands, and suspension.

Therefore we suppose that Y1 ∈ B. Then Xn ̸∈ B, as B is thick and A ̸∈ B.
Repeating this, we obtain a series of triangles

Xn−1 → Xn →Y2 → Xn−1[1],
...

Xi−1 → Xi →Yn−i+2 → Xi−1[1],
...

X1 → X2 →Yn → X1[1],

where Xi ∈ ⟨E⟩i, Yj ∈ ⟨E⟩1 and Xi ̸∈ B for all i = 1, . . . , n. However X1 ∈ ⟨E⟩1 and
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so is a direct sum of objects isomorphic to some suspension of a direct summand of E,
and so E cannot be in B, as B is closed under suspension and direct summands. Hence
⟨E⟩ is the smallest thick, triangulated subcategory of C containing E.

As an immediate consequence of this proposition, we see that classical generators
have the following property.

Corollary 4.1.7. An object E ∈ C is a classical generator if and only if ⟨E⟩ = C.

If, for some n ∈ Z, we have ⟨E⟩n = C, then we call E a strong generator of C and
say that E generates C in n steps. Note that if one classical generator of a category
C is a strong generator, then all other classical generators are also strong generators.
To show this, let E ∈ C be a strong generator and consider another classical generator
G ∈ C. By definition, E must be contained in some subcategory ⟨G⟩n of C, and given
E generates C in finite steps, say m steps, then we must have ⟨G⟩nm = C. Hence G is
a strong generator.

We shall use the following definition throughout the next few sections, as it is an
important requirement used in the proofs of some of the results stated.

Definition 4.1.8. Let G = ⊕
j∈J Gj be a classical (resp. strong) generator of some

triangulated category C. We say that G is a minimal classical (resp. strong) generator
of C if there exists no classical (resp. strong) generator, G′, such that G ∼= G′ ⊕Gj for
some j ∈ J .

If a minimal strong generator E ∈ C generates C in n steps, then a strong generator
E ′ ∼= E ⊕ F , for some F ∈ C, must generate C in ≤ n steps, as ⟨E⟩i ⊆ ⟨E ′⟩i for all
i ≥ 0, and ⟨E⟩n = C.

§ 4.2 | Generators of Cn
In this section we introduce homologically connected objects, and show that under
certain conditions, any object in a triangulated category may be decomposed into ho-
mologically connected direct summands. We use the notion of homologically connected
to classify the classical generators of Cn.

§ 4.2.1 | Homologically Connected Objects

We say that a morphism f ∈ Exti(X, Y ) is a morphism of degree i.

Definition 4.2.1. Let T be a Hom-finite, Krull-Schmidt triangulated category. Let
G = ⊕m

i=1 Gi be an object in T . Then we say G is homologically connected if for any
two indecomposable objects F1 and Fl+1 in ⟨G⟩1, then there is some finite set of non-
zero morphisms of degree 1, f1, . . . , fl, between indecomposable objects in ⟨G⟩1 that
form a sequence between F1 and Fl+1;

F1 F2 Fl Fl+1.
f1 fl

We call these sequences a zig-zag from F1 to Fl+1.
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The direction of the morphisms and their composition is not required, it is sufficient
to know that there is a zig-zag between all indecomposable direct summands of G. We
say that a zig-zag between two indecomposable objects has length l if there are l

morphisms of degree 1 in the zig-zag, and a zig-zag in minimal if it has the smallest
length of all zig-zags between the same objects. We fix it so that a minimal zig-
zag between two isomorphic objects has length zero. The homological length of a
homologically connected object G is the supremum of the length of all minimal zig-
zags between any two indecomposable direct summands of G. If no supremum exists,
then we say that the homological length is ∞.

Let f ∈ Ext1(X, Y ) be a morphism of degree 1, then we say that an object Z in a
distinguished triangle

Y → Z → X → Y [1],

is an extension of X by Y .
The following proposition shows us how to reduce the length of a zig-zag by using

the cones of morphisms in the zig-zag.

Lemma 4.2.2. Let X, Y, Z ∈ Cn be indecomposable objects such that

X Y Z

is a minimal zig-zag between X,Z ∈ ⟨G⟩, for a homologically connected object G ∈ Cn.
Let X ∈ ⟨G⟩a and Y ∈ ⟨G⟩b, such that Y ̸∼= X[ ± 1] if ℓX is a limit arc. Then there
exists an indecomposable object A ∈ ⟨G⟩a+b that is a direct summand of an extension
of X by Y , or a direct summand of an extension of Y by X, such that there exists a
minimal zig-zag

A Z.

If ℓX is a limit arc and Y ∼= X[1] (resp. Y ∼= X[ − 1]), then such an A exists as
a direct summand of an extension of Y [1] by X (resp. A is a direct summand of an
extension of X by Y [− 1]).

Proof. We have two cases to consider, where ℓX and ℓY cross, and where they share an
endpoint. First, we consider when ℓX and ℓY cross.

Let ℓX = {x1, x2}, ℓY = {y1, y2} and ℓZ = {z1, z2}, where x1 < y1 < x2 < y2 < x1.
Let f ∈ Ext1(X, Y ), then there exists a triangle

Y A⊕ A′ X Y [1]

where ℓA⊕A′ = ℓA ⊕ ℓA′ = {x1, y1} ⊕ {x2, y2}, and A,A′ ∈ ⟨G⟩a+b as X ∈ ⟨G⟩a and
Y ∈ ⟨G⟩b. As there is a non-zero morphism of degree 1 between Y and Z in at least
one direction, then either ℓY and ℓZ cross, or they share an endpoint. If ℓZ and ℓY

share an endpoint, then ℓZ and ℓA share an endpoint (or ℓZ and ℓA′ share an endpoint),
and therefore there is a morphism of degree 1 in some direction between Z and A (or
between Z and A′).
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Suppose ℓZ and ℓY cross, and further suppose y1 < z1 < y2 < z2 < y1. However, we
know ℓX and ℓZ cannot cross or share an endpoint as there are no morphisms of degree
1 between X and Z by minimality of the zig-zag. Therefore one of the following holds

y1 < x2 ≤ z1 < y2 < z2 ≤ x1 < y1,

y1 < z2 ≤ x2 < y2 < x1 ≤ z1 < y1,

and so ℓA′ and ℓZ cross and thus there is a morphism of degree 1 between A′ and Z.
Now suppose ℓX = {x, x1} and ℓY = {x, y1} share an endpoint at an accumulation

point. We consider two cases, one where Y ̸∼= X[ ± 1], and the second case where
Y ∼= X[1] (or, Y ∼= X[ − 1]). For the first case, let x < x1 < y−

1 < x, so we get the
triangle

X → A→ Y → X[1]

where ℓA = {x1, y1}. Let ℓZ = {z1, z2}, as there is a morphism of degree 1 between Y

and Z, but no morphisms of degree 1 between X and Z, then either x1 < z1 < y1 <

z2 < x < x1, or one of the following holds and y1 is an accumulation point,

x1 < z1 < y1 = z2 < x < x1,

x1 < y1 = z1 < z2 < x < x1.

Therefore ℓA either shares an endpoint with ℓZ at an accumulation point, or they cross,
and so there is a morphism of degree 1 between A and Z. Further, if X ∈ ⟨G⟩a and
Y ∈ ⟨G⟩b, then A ∈ ⟨G⟩a+b. A similar argument holds when we consider x < y1 <

x−
1 < x.

Next we focus on the second case where Y ∼= X[1] (resp. Y ∼= X[ − 1]). There
exists a non-zero morphism of degree 1 between X and Y [1] (resp. between X and
Y [− 1]) by [58]. Any ℓZ that crosses ℓY but not ℓX either crosses ℓY [1] (resp. crosses
ℓY [−1]), or ℓZ = {x1, x

−−
1 } (resp. ℓZ = {x1, x

++
1 }), and in this case Z is isomorphic to

A.
If ℓZ crosses ℓY [1] (resp. crosses ℓY [−1]) we are back in the previous case, and so

there exists some object A ∈ ⟨G⟩a+b such that there exists a zig-zag

A Z.

The new zig-zags that are formed using Lemma 4.2.2 are minimal zig-zags, which
we show with the next lemma.

Lemma 4.2.3. Let G ∈ Cn be homologically connected, and let

G1 G2 · · · Gd+1,

be a minimal zig-zag of objects in ⟨G⟩1, with length d. Then there exists a minimal
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zig-zag
Mi Gi+1 · · · Gd+1,

of length d− i+ 1, with Mi ∈ ⟨G⟩i, and 2 ≤ i ≤ d.

Proof. Let ℓGi
= {yi, zi} for all i = 1, . . . , d+1. By Lemma 4.2.2, there exists an object

M2 ∈ ⟨G⟩2 such that

M2 G3 · · · Gd Gd+1

is a zig-zag. We repeat this process d− 1 times using Lemma 4.2.2, producing a series
of zig-zags for i = 2, . . . , d,

Mi Gi+1 · · · Gd+1,

where Mi ∈ ⟨G⟩i−1. We show that this zig-zag is minimal.
If Gi+1 ̸∼= Mi[ ± 1], or if Mi is a long arc, then we may have ℓMi+1 = {y1, zi+1}.

This is because Gi+1 and Mi are indecomposable objects with a morphism of degree 1
between them, and so the cone of the morphism Gi+1[−1]→Mi (or Mi[−1]→ Gi+1)
is a direct sum of objects corresponding to arcs sharing endpoints with ℓGi+1 and ℓMi

.
If Mi is a limit arc and Gi+1 ∼= Mi[1] (resp. Gi+1 ∼= Mi[ − 1]), then we may

replace Gi+1 in the zig-zag with Gi+1[1] ∼= Mi[2] (resp. Gi+1[ − 1] ∼= Mi[ − 2]).
This is possible as Gi+2 cannot be a short arc by Corollary 4.2.12, and ℓGi+2 crosses
ℓGi+1 but not ℓMi

, so ℓGi+2 must cross ℓGi+1[1] (resp. ℓGi+1[−1]). In this case we have
ℓMi+1 = {x1, z

−
i } (resp. ℓMi+1 = {y1, z

+
i }).

As the zig-zag

G1 G2 · · · Gd Gd+1

is minimal, then ℓGa does not cross any arc ℓGj
for j = a + 2, . . . , d + 1, or share

an accumulation as an endpoint. However, as ℓMi
shares one endpoint with ℓG1 and

another with ℓGi
, then ℓGj

, j ≥ i + 2 can only cross ℓMi
if it also cross some ℓGa , or

shares an endpoint at an accumulation point with some ℓGa , for a ≤ i. This cannot
happen, and so there exists no morphisms of degree 1 between Mi and Gj for j ≥ i+2,
and so the zig-zag

Mi Gi+1 · · · Gd+1,

is minimal with Mi ∈ ⟨G⟩i.

Next we show when we can expect an indecomposable object to be homologically
connected.

Proposition 4.2.4. Let X ∈ Cn be an indecomposable object. Then X is homologically
connected.

Proof. We must check the four different types of arc; double limit arcs, limit arcs, long
arcs, and short arcs.
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If ℓX is a double limit arc, then X ∼= X[i] for all i ∈ Z, and so X is homologically
connected. Similarly, if ℓX is a limit arc, then by [58] there exists a morphism of degree
1 in Ext1(X,X[i]) for all i < 0, so X is homologically connected.

Now suppose that ℓX is a long arc, then there exists a morphism of degree 1 in
Ext1(X,X[i]) for all i ∈ Z\{0}, as ℓX and ℓX[i] cross for all i ̸= 0. So X is homologically
connected.

Now let ℓX be a short arc. Then ℓX and ℓX[1] cross, and so

Ext1(X,X[1]) ∼= k.

Therefore there exists a non-zero morphism of degree 1 in Ext1(X,X[1]), and so there
exists a sequence of morphisms of degree 1 from X[i] to X for all i ≥ 0. Hence there is
a zig-zag between any two suspensions of X, and so X is homologically connected.

Next, we show that any object in Cn, and more generally any object in a Hom-
finite, Krull-Schmidt triangulated category, can be decomposed into a direct sum of
homologically connected summands.

Lemma 4.2.5. Let T be a Hom-finite, Krull Schmidt triangulated category such that
each indecomposable object is homologically connected, and let G be an object in T .
Then there exists a decomposition of G ∼= ⊕li=1Xi, such that Xa is homologically con-
nected for all a = 1, . . . , l, and Xa ⊕Xb is not homologically connected for a ̸= b.

Proof. Suppose that G ∼=
⊕m

i=1 Gi where Gi are all indecomposable. We construct a
graph Q with m vertices, with an edge between i and j if Gi ⊕ Gj is homologically
connected. Then we either have a set of disjoint graphs, or the graph is connected. We
label the connected subgraphs Q1, . . . , Ql.

For a connected subgraph Qa with vertices {a1, . . . , ap}, let Xa
∼=
⊕p

i=1 Gai
. Then

Xa is homologically connected as each indecomposable direct summand is homologically
connected by assumption, and an edge between ai and aj represents a zig-zag between
Gai

and Gaj
in ⟨Xa⟩1. Hence there exists a zig-zag between any two indecomposable

objects in ⟨Xa⟩1, meaning Xa is homologically connected.
As there are no morphisms of degree 1 between the indecomposable objects corre-

sponding to vertices in disjoint subgraphs, then each Xa and Xb, for a ̸= b, have no
morphisms of degree 1 between them, and so Xa ⊕Xb is not homologically connected.
Therefore we have

G ∼= X1 ⊕ · · · ⊕Xl,

such that each Xa is homologically connected and Xa ⊕Xb is not homologically con-
nected for any a ̸= b.

We call such a decomposition of an object X a hc (=homologically connected)
decomposition of X.
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§ 4.2.2 | Thick Subcategories

The thick subcategories of Cn were classified by Gratz and Zvonareva in [37]. In fact,
they prove that there exists an isomorphism of lattices between the thick subcategories
of Cn, thick(Cn), and non-exhaustive non-crossing partitions of [n] = {1, . . . , n}.

Let P = {Bm ⊆ [n] | m ∈ I} be a collection of non-empty subsets of [n] for
some indexing set I. Then Gratz and Zvonareva [37] define P to be a non-exhaustive
non-crossing partitions of [n] if Bm1 ∩Bm2 = 0 when m1 ̸= m2 ∈ I, and whenever

1 ≤ i < k < j < l ≤ n

for i, j, k, l ∈ [n] with i, j ∈ Bm1 and k, l ∈ Bm2 for m1,m2 ∈ I, then m1 = m2. The
set of non-exhaustive non-crossing partitions of [n] is denoted NNCn.

Let P = {Bm ⊆ [n] | m ∈ I} be a non-exhaustive non-crossing partition of [n]. The
authors of [37] consider the full subcategory ⟨P⟩ ⊆ Cn that is closed under direct sums
and direct summands, and contains the zero object,

⟨P⟩ := add{X ∈ Cn | ℓX = {x, y}, x, y ∈
⋃
i∈Bm

(ai, ai+1), for somem ∈ I}.

Recall that a1, . . . , an are the accumulation points in the combinatorial model for Cn.

Theorem 4.2.6. [37, Theorem 3.7] There is an isomorphism of lattices

NNCn ∼= thick(Cn).

Under this isomorphism a non-exhaustive non-crossing partition P corresponds to the
thick subcategory ⟨P⟩.

It is noted by Gratz and Zvonareva [37] that in general for P = {Bm ⊆ [n] |
m ∈ I}, the subcategory ⟨P⟩ is equivalent to the union of mutually orthogonal thick
subcategories of the form ⟨{Bm}⟩. Here, we show how to construct ⟨G⟩ for any object
G ∈ Cn in terms of non-exhaustive non-crossing partitions of [n].

Lemma 4.2.7. Let F ∈ Cn be a object, and let F ∼=
⊕

i∈I Fi be hc decomposition of F .
Let {Bmi

| i ∈ I} be a collection of subsets of [n] such that MFi
= ⋃

p∈Bmi
(ap, ap+1) for

all i ∈ I.
Then P = {Bmi

| i ∈ I} is a non-exhaustive non-crossing partition of [n]. More-
over, ⟨F ⟩ is equivalent to ⟨P⟩.

Proof. First, we show that the collection P is a non-exhaustive non-crossing partition
of [n].

Let Bmi
, Bmj

be two subsets of [n], corresponding to the homologically connected
objects Fi and Fj respectively. As Fi and Fj are non-isomorphic objects in a hc de-
composition of F , there are no morphism of degree 1 between indecomposable objects
in ⟨Fi⟩1 and indecomposable objects in ⟨Fj⟩1. That is, MFi

∩MFj
= 0 as arcs cor-

responding to an indecomposable object A ∈ ⟨Fi⟩1 and an indecomposable object
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B ∈ ⟨Fj⟩1 cannot cross, and in particular ℓA and ℓB[1] cannot share an endpoint.
Hence Bmi

∩Bmj
= 0 if mi ̸= mj.

Let e, f, g, h,∈ [n] such that

1 ≤ e < g < f < h ≤ n,

with e, f ∈ Bmi
and g, h ∈ Bmj

. As Fi and Fj are homologically connected, there exists
zig-zags

X1 X2 X3 Xs−1 Xs,

Y1 Y2 Y3 Yt−1 Yt,

with X1, . . . , Xs ∈ ⟨Fi⟩1 and Y1, . . . , Yt ∈ ⟨Fj⟩1, such that ℓX1 has an endpoint x ∈
(ae, ae+1), ℓXs has an endpoint in x′ ∈ (af , af+1), ℓY1 has an endpoint in y ∈ (ag, ag+1),
and ℓYt has an endpoint in y′ ∈ (ah, ah+1). As there is a morphism of degree 1 between
Xs′ and Xs′+1, then ℓXs′ and ℓXs′+1 must cross, similarly ℓYt′ and ℓYt′+1 must cross.

Let ℓX be an arc with endpoints {x, x′}, such that ℓX traces ℓXs′ until ℓXs′ and ℓXs′+1

cross, then ℓX traces ℓXs′+1 for all s′ = 1, . . . , s − 1. We define ℓY = {y, y′} similarly
for t′ = 1, . . . , t− 1. As x < y < x′ < y′ < x, then ℓX and ℓY must cross, therefore ℓXs′

and ℓYt′ must cross for some s′ ∈ {1, . . . , s} and some t′ ∈ {1, . . . , t}. Hence there is
a morphism of degree 1 between Xs′ ∈ ⟨Fi⟩1 and Yt′ ∈ ⟨Fj⟩1, and so Fi ⊕ Fj must be
homologically connected. However, Fi and Fj are both part of a hc decomposition of
F , and so by Lemma 4.2.5, Fi⊕Fj is only homologically connected if i = j. Therefore
mi = mj, and so P is a non-exhaustive non-crossing partition of [n].

To show that ⟨F ⟩ is equivalent to ⟨P⟩, we note that ⟨F ⟩ is a thick subcategory and so
is equivalent to ⟨P ′⟩ for some non-exhaustive non-crossing partition P ′. Suppose ⟨P ′⟩ ⊂
⟨P⟩, then there exists some p ∈ [n] such that indecomposable objects corresponding to
arcs with an endpoint in (ap, ap+1) are in ⟨P⟩ but not ⟨P ′⟩. However, there exists an
indecomposable direct summand of F that corresponds to an arc with an endpoint in
(ap, ap+1), as MFi

= ⋃
p∈Bmi

(ap, ap+1) for all i ∈ I and P = {Bmi
| i ∈ I}. Therefore

F ̸∈ ⟨P ′⟩, and so ⟨F ⟩ is equivalent to ⟨P⟩.

Note that Cn satisfies the axioms of Lemma 4.2.5, as Cn is a full triangulated sub-
category of Cn [58], and so every indecomposable object is homologically connected by
Lemma 4.2.4.

We provide two examples of thick subcategories of C6 as illustration.
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ℓX

ℓY

ℓZ

MX

MZ

MY

a1

a6

a5

a4

a3

a2

Figure 4.1: A representation of the thick subcategory T1 of C6 containing the object
W ∼= X ⊕ Y ⊕ Z. The indecomposable objects correspond to the arcs that are

entirely contained in the shaded area, with non-exhaustive non-crossing partition
P = {{1, 6}, {2, 5}, {3, 4}}.

ℓA

ℓB

ℓC

MA⊕C

MB

a1

a6

a5

a4

a3

a2

Figure 4.2: A representation of the thick subcategory T2 of C6 containing the objects
D ∼= A⊕B ⊕C. The indecomposable objects correspond to the arcs that are entirely

contained in the shaded area, with non-exhaustive non-crossing partition
P ′ = {{1, 2, 5}, {3, 4}}.

We may use the classification of thick subcategories in C2n to classify the thick
subcategories in Cn by using the localisation functor π : C2n → Cn from [58].
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Proposition 4.2.8. Let φ : C → C be a localisation functor, and let T ′ ⊆ C be a thick
subcategory. Then T ′ is equivalent to the essential image of some thick subcategory
T ⊆ C.

Proof. Let D ⊆ C be the subcategory defined as follows

D := {X ∈ C 0 ̸∼= φ(X) ∈ T ′},

and let T be the thick closure of D. We show that φ(T ) ≃ T ′.
As φ is an identity on objects, and T ′ is a thick subcategory then D is closed under

direct summands. Now let X, Y ∈ D such that there exists a triangle

X → Z ⊕ Z ′ → Y → Z[1]

with Z ∈ T but not in D, and Z ′ ∈ D. The localisation functor φ is triangulated and
therefore induces a triangle in Cn,

φ(X)→ φ(Z)⊕ φ(Z ′)→ φ(Y )→ φ(X[1]).

However, as φ(X), φ(Y ), φ(Z ′) ∈ T ′ but φ(Z) ̸∈ T ′\{0}, then φ(Z) ∼= 0 as T ′ is thick.
Therefore any object in T but not in D is isomorphic to a zero object in C, and so

φ(T ) ≃ T ′.

The thick subcategories of C6 from Figures 4.1 and 4.2 respectively induce the
following thick subcategories in C3.

ℓπ(X)

ℓπ(Y )

ℓπ(Z)

Figure 4.3: The thick subcategory T ′
1 of C3 that is equivalent to π(T1). Again,

indecomposable objects in T ′
1 are in correspondence with the arcs entirely contained

in the shaded area.
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ℓπ(A)

ℓπ(B)

ℓπ(C)

Figure 4.4: The thick subcategory T ′
2 of C3 that is equivalent to π(T2).

Recall from Definition 2.2.3 that an object X ∈ Cn has an orbit in M denoted
by MX (more specifically, ℓX has an orbit in M ), which corresponds to the union of
segments and accumulation points containing an endpoint of an arc corresponding to a
direct summand of X. Also recall that X (again, specifically ℓX) has a complete orbit
in M if MX = M . Here, we classify the thick subcategories of Cn in terms of orbits
of homologically connected objects.

Lemma 4.2.9. Let G be an object in Cn, with hc decomposition G ∼=
⊕

i∈I Gi. Then
an indecomposable object X ∈ Cn is in ⟨G⟩ if and only if MX ⊆MGi

for some i ∈ I.
That is, ⟨G⟩ is completely determined by the disjoint union ⊔

i∈I MGi
.

Proof. The subcategory ⟨G⟩ is a thick subcategory of Cn, and so by Proposition 4.2.8
there exists a thick subcategory T of C2n such that π(T ) ≃ ⟨G⟩. Moreover, T ≃ ⟨F ⟩ for
some object F ∈ C2n by Lemma 4.2.7, where π(F ) ∼= G. Therefore an indecomposable
object U ∈ C2n is in T if and only if ℓU has both endpoints in MFj

, for some Fj in
the hc decomposition of F , by Theorem 4.2.6 and Lemma 4.2.7. Hence ℓπ(U) has both
endpoints in Mπ(Fj) ⊆MGi

for some i ∈ I if and only if π(U) ∈ ⟨G⟩.

§ 4.2.3 | Generators

This next proposition shows that being homologically connected is a necessary condi-
tion for an object to be a generator of Cn.

Proposition 4.2.10. Let G be a generator of Cn. Then G is homologically connected.

Proof. Suppose that G ∈ Cn is not homologically connected. We show that G cannot
be a generator of Cn.

By Lemma 4.2.5, there exists a hc decomposition of G,

G ∼=
⊕
i∈I

Gi.
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Further, Lemma 4.2.9 tells us that an object X ∈ Cn is in ⟨G⟩ if and only if MX ⊆MGi

for some i ∈ I. Now let Y ∈ Cn correspond to the arc ℓY = {y1, y2}, such that y1 ∈MGj

and y2 ∈MGj′ with j ̸= j′ ∈ I. Then MY ̸⊂MGi
for any i ∈ I, hence Y ̸∈ ⟨G⟩, so G

is not a classical generator of Cn.

Finally, we can combine Lemma 4.2.9 and Proposition 4.2.10 to classify all of the
generators of Cn, and moreover, show that they all must be strong generators too.

Theorem 4.2.11. Let G be an object in Cn, then G is a generator of Cn if and only if
G is homologically connected and G has a complete orbit of M .

Proof. Let G be a generator, then by Proposition 4.2.10 G is homologically connected,
and by Proposition 4.2.9 MX ⊆MG for all X ∈ Cn, and so G has a complete orbit in
M .

Let G be homologically connected and have a complete orbit in M , then by Propo-
sition 4.2.9 all indecomposable objects are in ⟨G⟩, and so G is a generator of Cn.

It follows from Theorem 4.2.11 that no short arcs may be direct summands of a
minimal strong generator of Cn for all n.

Corollary 4.2.12. Let ℓX be a short arc. Then X cannot be a direct summand of a
minimal strong generator of Cn.

Proof. Let ℓX be a short arc, and G be a generator with X as a direct summand, and
let F be an object such that G ∼= F ⊕X.

Let G have no other direct summands with endpoints in the same segment as ℓX .
Then Exti(X,F ) = 0 for all i ∈ Z, and so G is not homologically connected.

Now let Y be an indecomposable direct summand of F such that MX ⊊ MY . If
ℓY has only one endpoint on the segment shared by ℓX , then ℓY is a long arc or limit
arc, and thus there exists a triangle

Y [j]→ X ⊕ Z → Y [l]→ Y [j + 1]

and so X ∈ ⟨Y ⟩ and so F is also a generator of Cn.
If MX = MY , then Proposition 4.2.9 implies that X ∈ ⟨Y ⟩, as Proposition 4.2.4

means that Y must be homologically connected.
Therefore, G cannot be a minimal generator if it has a short arc as an indecompos-

able direct summand.

Lemma 4.2.13. Let G be a generator of Cn, and suppose there exists a zig-zag in ⟨G⟩1,

M1 M2 Md Md+1 M1,

such that M1 ̸∼= Mi[j] for all i = 2, . . . , d + 1 and j ∈ Z, and ℓM1 shares an endpoint
each with ℓM2[a2] and ℓMd+1[ad+1] for some a2, ad+1 ∈ Z. Then the object F such that
G ∼= F ⊕M1 is a generator of Cn.
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Proof. As ℓM1 shares an endpoint each with ℓM2[a2] and ℓMd+1[ad+1], then F has a
complete orbit in M . We now need to show that F is homologically connected.

Let ℓMi[ai] = {xi, yi}, where xi < xi+1 ≤ yi < yi+1 < xi and xi+1 = yi if and only if
yi is an accumulation point. That is, for some m ∈ M such that x1 < m < y1 < x1,
then xi ≤ m ≤ yi < xi for some i = 2, . . . , d + 1, again with equality if and only if m
is an accumulation point.

Suppose an arc ℓN = {n1, n2} crosses ℓM1 , and N is in ⟨G⟩1. Then ℓN must also
cross some arc ℓMi

for i = 2, . . . , d+1, or share an endpoint with ℓMi
at an accumulation

point. In either case, there exists a zig-zag of length 1 between N and Mi, and so F is
homologically connected.

Therefore, Theorem 4.2.11 tells us that F is a generator of Cn.

§ 4.3 | Graded Endomorphism Ring of E
In this section we look at a particular generator of Cn, which we label E, and compute
its graded endomorphism ring as a matrix ring over the field k. This generator is chosen
because it has some particular properties that we want when considering its graded
endomorphism ring, for instance that the algebra is upper triangular.

§ 4.3.1 | The Generator E

The generator E can be thought of as similar to a fan triangulation of a polygon,
with all arcs sharing an endpoint at a single accumulation point, and with an endpoint
contained in one of the segments or at an accumulation point.

More explicitly, let Xi ∈ Cn correspond to the arc ℓXi
= {a1, zi} for all i = 1, . . . , n,

and Yj ∈ Cn correspond to the arc ℓYj
= {a1, aj+1} for j = 1, . . . , n− 1. Then we let E

be the direct sums of all Xi’s and Yj’s, i.e.

E = (
n⊕
i=1

Xi)⊕ (
n−1⊕
j=1

Yj).

Proposition 4.3.1. An indecomposable object is in ⟨E⟩1 if and only if it corresponds
to an arc of the form (a1, y), for a1 ̸= y ∈M . Thus E has a complete orbit in M .

Proof. Let M ∈ ⟨E⟩1 be indecomposable, then by definition M is a direct summand of
E[p] for some p ∈ Z. This means that either M ∼= Xi[a] for some i ∈ {1, . . . , n}, a ∈ Z,
or M ∼= Yj[b] for some j ∈ {1, . . . , n− 1}, b ∈ Z.

If M ∼= Xi[a], then it corresponds to the arc {a1, zi − a} by [58]. If M ∼= Yj[b],
then it corresponds to the arc {a1, aj+1}, also by [58]. Therefore, when M ∈ ⟨E⟩1 is
indecomposable, ℓM is the form {a1, y} for a1 ̸= y ∈M ∪ L(M ).

Now let ℓN = {a1, y} for some a1 ̸= y ∈ M ∪ L(M ). If y ∈ L(M ), then N ∼= Yj

for some 1 ≤ j ≤ n− 1. Similarly, if y ∈M , then N ∼= Xi[a] for some 1 ≤ i ≤ n and
a ∈ Z. In both cases, N is isomorphic to an indecomposable summand of a suspension
of E, and therefore N ∈ ⟨E⟩1.



CHAPTER 4. GENERATORS OF CN 85

ℓXn

ℓXn−1

ℓX1

ℓX2

ℓYn−1

ℓYn−2

ℓY1

ℓY2

a1

a2

a3 an−1

an

z1

z2

zn

zn−1

Figure 4.5: The arcs corresponding to Xi’s and Yj’s.

Lemma 4.3.2. The object E is a generator of Cn.

Proof. By Proposition 4.3.1, E has a complete orbit in M . Also, by [58], for any two
arcs ℓU and ℓV sharing an endpoint at an accumulation point, then Ext1(U, V ) ∼= k if
and only if ℓU is an anti-clockwise rotation of ℓV about the shared endpoint. Therefore
there exists a zig-zag of length 1 between all indecomposable summands of E, and so
E is homologically connected. The result then follows by Theorem 4.2.11.

§ 4.3.2 | End∗(E)

In this subsection, we state what that graded endomorphism ring of an object in
a triangulated category is, and then compute the graded endomorphism ring for E.
We do this in an attempt to obtain a homological description of the category Cn,
similar to that found in [38] and [3], by using a result due to Keller [41] stating that
an algebraic triangulated category T with a classical generator G is equivalent to
Dperf(RHom(G,G)). Therefore if it can be shown that there exists a quasi-isomorphism
between RHom(E,E) and End∗(E), then there is a triangulated equivalence between
Cn and Dperf(End∗(E)).

Definition 4.3.3. Let M be an object of a triangulated category T , then the graded
endomorphism ring of M , denoted End∗(M), is the graded ring with ith degree

EndiT (M) = ExtiT (M,M) ∼= HomT (M,M[i]).

Let f ∈ EndiT (M) and g ∈ EndjT (M). Then we define multiplication as

gf := g[i] ◦ f ∈ Endi+jT (M).
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To compute the graded endomorphism ring of E, it is worth first looking at the
graded endomorphism rings of the indecomposable direct summands of E. We follow
the concept of a similar proof found in [3].

Lemma 4.3.4. Let Xi ∈ Cn be the indecomposable object that corresponds to the arc
{a1, zi}. Then

End∗
Cn

(Xi) ∼= k[x]

as graded rings, with x concentrated in degree −1.

Proof. We follow part of the proof of [3, Prop. 3.6].
By [58, Prop. 3.14], we have

dimk(EndlCn
(Xi)) =

1 if l ≤ 0,
0 if l > 0,

which agrees on dimensions with k[x] considered as a graded ring with x concentrated
in degree −1. All that is left to show is that the ring structures on End∗

Cn
(Xi) and

k[x] agree.
Let f ∈ End−l(Xi) be a morphism with l > 0, then by the construction of Cn in [58]

and using [39, Lemma 2.4.2], we see f factors through an l-fold product End−1(Xi)×
. . . × End−1(Xi). This shows that the graded endomorphism ring of Xi is isomorphic
to k[x] with x in degree −1.

Lemma 4.3.5. Let Yj ∈ Cn be the indecomposable object that corresponds to the arc
{a1, aj+1}. Then

End∗
Cn

(Yj) ∼= k[x±1]

as graded rings, with x concentrated in degree −1.

Proof. By [58, Prop. 3.14] we have

dimk(EndlCn
(Yj)) = 1

for all l ∈ Z. We need to show that multiplication agrees.
Given g ∈ End−l

Cn
(Yj) for l > 0, we may use the same approach as in Lemma 4.3.4

to show that g factors through an l-fold product End−1
Cn

(Yi)× . . .× End−1
Cn

(Yi). Hence
⊕
l≤0

EndlCn
(Yj) ∼= k[x]

such that x is placed in degree −1.
Let f ∈ Endl′(Yj) for l′ > 0, we show that there exists an l′-fold product End1

Cn
(Yi)×

. . . × End1
Cn

(Yi). Let A ∈ C2n such that π(A) ∼= Yj under the localisation functor π.
There exists an l-fold product h = h1 · · ·hl′ ∈ End−1

C2n
(A) × . . . × End−1

C2n
(A) in C2n by

[39], where each hi is in the multiplicative system Ω. Therefore in Cn, there exists a
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morphism π(hi)−1 ∈ End1(π(A)) ∼= End1(Yj), and so f = π(h)−1 ∈ Endl′(Yj) factors
through an l′-fold product End1

Cn
(Yi)× . . .× End1

Cn
(Yi). Thus

⊕
l′≥0

Endl′Cn
(Yj) ∼= k[y]

such that y is placed in degree 1.
Let s ∈ End1

Cn
(Yj), then s = π(t)−1 where t ∈ Ω, as HomC2n(A,A[1]) = 0 where

π(A) ∼= Yj. Then there exists s′ ∈ End−1
Cn

(Yj) such that s′ = π(t), and so ss′ = idYj
.

Therefore ⊕
l∈Z

EndlCn
(Yj) ∼= k[x±1]

with x placed in degree −1.

When finding a graded ring with an isomorphism to the graded endomorphism ring
of E, it is necessary to find a ring with matching dimensions in each degree. Hence it
is important to know the dimension of Endi(E) over k for all i ∈ Z, which we compute
in the following lemma.

Lemma 4.3.6. The dimension of the lth Ext-space of E is

dimk(EndlCn
(E)) =

2n2 − n if l ≤ 0
2n2 − 2n if l > 0.

Proof. We may consider Endl(E) as the direct sum of all Extl(Xi, E) and Extl(Yj, E),
for 1 ≤ i ≤ n and 1 ≤ j ≤ n− 1 respectively. Then we may use the sum

dimk(Endl(E)) =
n∑
i=1

dimk(Extl(Xi, E)) +
n−1∑
j=1

dimk(Extl(Yj, E)). (4.1)

We now need only to compute dimk(Extl(Xi, E)) and dimk(Extl(Yj, E)) in each degree
l ∈ Z.

To compute dimk(Extl(Yj, E)), we may use [58, Prop. 3.14], which tells us that
for some object M ∈ Cn that corresponds to the arc {a1, z} for some z ∈ M , then
Hom(Yj,M[1]) ∼= k if and only if aj+1 ≤ z < a1, else Hom(Yj,M[1]) is triv-
ial. Hence we have Hom(Yj, Xi[l]) ∼= Extl(Yj, Xi) ∼= k for all l ∈ Z if and only if
i > j, and Hom(Yj, Xi[l]) is trivial otherwise. Similarly, we have Hom(Yj, Yj′[l]) ∼=
Extl(Yj, Yj′) ∼= k if and only if j′ ≥ j. This means we have

dimk(Extl(Yj, E)) =
n∑
i=1

dimk(Extl(Yj, Xi)) +
n−1∑
j′=1

dimk(Ext(Yj, Yj′))

= (n− j) + (n− j)
= 2n− 2j

For dimk(Extl(Xi, E)), we may also use [58, Prop. 3.14], which tells us that
Extl(Xi, Yj) ∼= k when j ≥ i and is trivial otherwise. Further, Extl(Xi, Xi′) ∼= k
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if and only if i′ > i, or if i = i′ and l ≤ 0, which means that we must consider
dimk(Extl(Xi, E)) in two different cases, one when l > 0 and the other when l ≤ 0.
When we consider l > 0, we have

dimk(Extl(Xi, E)) =
n∑

i′=1
dimk(Extl(Xi, Xi′)) +

n−1∑
j=1

dimk(Ext(Xi, Yj))

= (n− i) + (n− i)
= 2n− 2i,

and when we consider l ≤ 0,

dimk(Extl(Xi, E)) =
n∑

i′=1
dimk(Extl(Xi, Xi′)) +

n−1∑
j=1

dimk(Ext(Xi, Yj))

= (n− i+ 1) + (n− i)
= 2n− 2i+ 1.

Finally, we apply this to equation (4.1) and get

dimk(Endl(E)) =
n∑
i=1

dimk(Extl(Xi, E)) +
n−1∑
j=1

dimk(Extl(Yj, E))

=
n∑
i=1

(2n− 2i+ 1) +
n−1∑
j=1

(2n− 2j)

= 2n2 − n

when l ≤ 0, and

dimk(Endl(E)) =
n∑
i=1

dimk(Extl(Xi, E)) +
n−1∑
j=1

dimk(Extl(Yj, E))

=
n∑
i=1

(2n− 2i) +
n−1∑
j=1

(2n− 2j)

= 2n2 − 2n

when l > 0.

We relabel the indecomposable direct summands of E by E1, . . . , E2n−1, where
Xi
∼= E2i−1 and Yj ∼= E2j. From Figure 4.5, this corresponds to ℓEi+1 being an anti-

clockwise rotation of ℓEi
about their common endpoint.

Let eli,j be a non-zero vector in k ∼= Extl(Ei, Ej). It is clear from Lemma 2.4.2 that
eli,j only exists when j > i, or j = i and j is odd, for all l ∈ Z, and when i = j for all
l ≤ 0 when j is even, and does not exist otherwise, given that Extl(Ei, Ej) is otherwise
trivial.

Proposition 4.3.7. The collection of morphisms {eli,j | eli,j ̸= 0} forms a basis of
End∗(E).
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Proof. Let f ∈ End∗(E) be any non-zero morphism. Then f decomposes as a sum of
non-zero morphisms f li,j ∈ Extl(Ei, Ej), this is a finite sum as f is a morphism between
finite coproducts. Further, given that Extl(Ei, Ej) ∼= k when 1 ≤ i < j ≤ 2n − 1,
or j = i and j is odd, and l ∈ Z, and also when i = j and l ≤ 0 for j even, and is
trivial otherwise, then any f li,j corresponds to some element of k, and thus we can say
that f li,j = αeli,j for some non-zero α ∈ k. Hence we have f is equal to a finite sum of
αi,j,l · eli,j for some scalars αi,j,l ∈ k.

To show that {eli,j} is a basis, we must show that it is linearly independent. To do
this, consider the morphism eli,j and say that

eli,j = αi1,j1,l1e
l1
i1,j1 + . . .+ αip,jp,lpe

lp
ip,jp .

As each morphism el
′
i′,j′ does not have the domain and codomain as eli,j, then this sum

cannot be equal to eli,j unless αiq ,jq ,lq = 0 for all q = 1, . . . , p thus the collection {eli,j}
is a basis of End∗(E).

We may view End∗(E) as a graded k-algebra, where multiplication is defined via
composition of the basis morphisms, i.e. we have

(α · eli,j) · (β · el
′

i′,j′) =
αβ · e

l+l′
i,j′ if j = i′,

0 if j ̸= i′,

for non-zero morphisms eli,j and el
′
i′,j′ and scalars α, β ∈ k. This is as a result of

[39, Lemma 2.4.2], and [58, Proposition 3.14] (see Lemma 2.4.2) for limit arcs, which
state that any morphism between objects corresponding to arcs ℓX = {x1, x2} and
ℓY = {y1, y2} factors through the object corresponding to ℓZ = {z1, z2} such that
x1 ≤ z1 ≤ y1 and x2 ≤ z2 ≤ y2.

As a result, the identity morphism e ∈ Hom(E,E) is given by

e =
2n−1∑
i=1

e0
i,i.

We now construct a graded matrix ring that we later show is isomorphic to the
graded endomorphism ring of E, by forming a bijective morphism on the basis elements
eli,j.

Definition 4.3.8. Let R∗
n be an (2n− 1)× (2n− 1) matrix ring such that

bij ∼=


k[x] if i = j and i is odd,
k[x±1] if i < j, or i = j and i is even,
0 if j < i.

We impose a grading on R∗
n such that x is concentrated in degree −1.
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Example 4.3.9. Let n = 3, then the matrix ring R∗
3 would be

R∗
3 =



k[x] k[x±1] k[x±1] k[x±1] k[x±1]
0 k[x±1] k[x±1] k[x±1] k[x±1]
0 0 k[x] k[x±1] k[x±1]
0 0 0 k[x±1] k[x±1]
0 0 0 0 k[x]


and the additive group Ri

3, for i ≤ 0, would be

Ri
3 =



k · x−i k · x−i k · x−i k · x−i k · x−i

0 k · x−i k · x−i k · x−i k · x−i

0 0 k · x−i k · x−i k · x−i

0 0 0 k · x−i k · x−i

0 0 0 0 k · x−i


and for i > 0 would be 

0 k · x−i k · x−i k · x−i k · x−i

0 k · x−i k · x−i k · x−i k · x−i

0 0 0 k · x−i k · x−i

0 0 0 k · x−i k · x−i

0 0 0 0 0


We denote by I li,j the element of R∗

n concentrated in degree l such that every entry is
trivial, except the entry in the ith row and jth column which is ε ∈ k, the multiplicative
identity. It is easy to check that the collection

{I li,j 1 ≤ i ≤ j ≤ 2n− 1, l ∈ Z, i ̸= j if l > 0} (4.2)

is a basis for the graded k-algebra R∗
n, where multiplication is given by

(αI li,j) · (βI l
′

i′,j′) =
αβI

l+l′
i,j′ if j = i′,

0 if j ̸= i′,

for some non-zero α, β ∈ k. The multiplicative identity is thus given by

I =
2n−1∑
i=1

I0
i,i.

Theorem 4.3.10. Let E be the strong generator of Cn, as in Proposition 4.4.7. Then
we have an isomorphism of graded k-algebras,

End∗
Cn

(E) ∼= R∗
n.

Proof. To prove this, we define a map φ from End∗(E) to R∗
n, and show that this is an



CHAPTER 4. GENERATORS OF CN 91

isomorphism of graded k-algebras. Let φ act in the basis elements via,

φ : End∗(E) −→ R∗
n

eli,j 7−→ I li,j,

and let φ respect addition and scalar multiplication. This is a well-defined map, as
there is a bijective correspondence between the basis elements eli,j ∈ End∗(E) and the
basis elements I li,j ∈ R∗

n given by (4.2) and Proposition 4.3.7. We next show that φ is
an homomorphism of graded k-algebras.

It is clear that the identity e ∈ End∗(E) maps through φ to the identity I ∈ R∗
n.

Next we show that φ respects multiplication, let eli,j and el
′
i′,j′ be two basis morphisms

in End∗(E), and suppose further that i′ = j, then we have

φ(eli,j)φ(el′i′,j′) = I li,j · I l
′

i′,j′

= I l+l
′

i,j′

= φ(el+l′i,j′ )
= φ(eli,j · el

′

i′,j′).

Now suppose that i′ ̸= j, then we get

φ(eli,j)φ(el′i′,j′) = I li,j · I l
′

i′,j′

= 0
= φ(0)
= φ(eli,j · el

′

i′,j′),

and so we see that φ respects multiplication. Finally, we must show that φ respects
the grading of End∗(E) and R∗

n, but this comes naturally from multiplication via

φ(eli,j)φ(el′i′,j′) ∈ Rl
nR

l′

n ⊆ Rl+l′
n .

Hence φ is a homomorphism of graded k-algebras.
Next, we see that φ is an isomorphism because it is a bijection on the basis of

End∗(E) and R∗
n, and there exists an homomorphism of k-algebras, ρ, such that

ρ : R∗
n −→ End∗(E)

I li,j 7−→ eli,j,

which is an inverse of φ. Therefore,

End∗
Cn

(E) ∼= R∗
n.
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§ 4.4 | Generation Time
The notion of a dimension on a triangulated category was introduced by Rouquier in
[62] as a tool to help study the representation dimension of a finite dimensional algebra.
Given an algebra A, Rouquier provides a series of lower bounds for various dimensions
of A, whenever A satisfies a set of given properties. Notably, they provide a lower
bound on the representation dimension of a finite dimensional algebra over a field,
which is the dimension of the bounded derived category of said algebra. This allows
them to provide the first known examples of algebras with representation dimension
> 3, a long standing question at the time.

Throughout the rest of this thesis, we shall use Rouquier dimension to refer to the
dimension of a triangulated category, with the latter term being preferred in [62].

Definition 4.4.1. Let C be a triangulated category. If G ∈ C is a generator, then we
define the generation time of G to be the minimal integer m such that ⟨G⟩m+1 = C.
The set of generation times of generators of C is called the Orlov spectrum, denoted
O(C), and the infimum of O(C) is called the Rouquier dimension of C, denoted dim C.

If there exists no such G, then we say dim C is ∞.

The Orlov spectrum, then known as the dimension spectrum, of a triangulated
category was first introduced by Orlov in [56]. Orlov looks at the dimension spectra
of bounded derived categories of various geometric categories, and asks the question of
whether the Orlov spectrum of the bounded derived category of coherent sheaves on
a smooth, quasi-projective scheme form an integer interval? It proves to be a difficult
task to compute the Orlov spectrum for triangulated categories in general, and when it
may not be possible to directly compute the Orlov spectrum, it may be natural to ask
whether or not there are upper and lower bounds to the Orlov spectrum. We provide
an interval bound for the Orlov spectrum of Cn in Theorem 4.4.11, and compute the
Orlov spectrum for C1.

We present some previously known results about Rouquier dimensions that are of
interest. Theorem 4.4.2 is a collection of theorems from [62], compiled in a manner
as in [24, Theorem 3.2] which also includes results of Rouquier concerning algebraic
geometry.

Theorem 4.4.2. [62]

• Let A be an Artinian ring. Then dim Db(A) is bounded above by the Loewy length
of A; i.e. the minimal d such that (rad(A))d+1 = 0.

• Let A be a Noetherian ring. Then dim Perf(A) < ∞ if and only if the global
dimension of A is finite.

The following two results may be considered more folklore, however both have
proofs found in [24] by Elagin and Lunts.
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Lemma 4.4.3. [24] Assume C is a Krull-Schmidt, triangulated category. Then dim C =
0 if and only if C contains only finitely many indecomposables up to isomorphism and
shifts.

Proposition 4.4.4. [24] Let A be a Noetherian ring of global dimension n. Then

dim Perf(A) ≤ n.

Ballard, Favero and Katzarkov study the Orlov spectra of triangulated categories
arising from mirror symmetry in [9]. They develop techniques to associate a generator
to any given object in the bounded derived category of coherent sheaves on a smooth
Calabi-Yau hypersurface, and show that these generators are uniformly bounded in
their generation time. More relevantly, they also compute the Orlov spectrum of the
bounded derived category of the category of finitely generated modules of the path
algebra of a quiver of Dynkin type An.

Theorem 4.4.5. [9] Let Q be a quiver of Dynkin type An. Then the Orlov spectrum
of Db(mod kQ) is equal to the integer interval {0, . . . , n− 1}.

Our results begin by looking at a minimal strong generator of Cn.

Lemma 4.4.6. Let G be a minimal strong generator of Cn. Then the homological
length of G is an upper bound for the generation time of G.

Proof. Let G have homological length l. We show that any object in Cn has a generation
time at most l.

Let X ∈ Cn such that ℓX = {x1, x2}. As G is a generator, then x1, x2 ∈ MG by
Theorem 4.2.11, and so there exists G1, Gd+1 ∈ ⟨G⟩1 with corresponding arcs ℓG1 =
{x1, z1} and ℓGd+1 = {yd+1, x2}. Moreover, G is homologically connected, so there
exists a minimal zig-zag

G1 G2 · · · Gd Gd+1

with length d, and all Gi ∈ ⟨G⟩1. Let ℓGi
= {yi, zi} for all i = 2, . . . , d. We claim that

X ∈ ⟨G⟩d+1.
By Lemma 4.2.3, there exists a series of zig-zags of the form

Mi Gi+1 · · · Gd Gd+1

with Mi ∈ ⟨G⟩i., and ℓMi
= {x1, zi}. Importantly, there exists a zig-zag

Md Gd+1

with Md ∈ ⟨G⟩d.
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The above zig-zag means that there is a morphism of degree 1 between Md and
Gd+1, and so at least one of the following triangles exists

Md A Gd+1 Md[1],

Gd+1 B Md Gd+1[1].

The object X must be a direct summand of either A or B, as ℓMd
= {x1, zd}, ℓGd+1 =

{yd+1, x2} and ℓX = {x1, x2}. Therefore X ∈ ⟨G⟩d+1, and so any object of Cn is
generated in at most l steps, therefore G has generation time at most l.

Recall the object E = ⊕n
i=1 Xi⊕

⊕n−1
j=1 ∈ Cn from Figure 4.5, where Xi corresponds

to the arc ℓXi
= {a1, zi} and Yj corresponds to the arc ℓYj

= {a1, aj+1}.

Proposition 4.4.7. The object E ∈ Cn has a generation time 1.

Proof. The object E is a generator by Lemma 4.3.2.
By Lemma 4.4.6 we know that the generation time ofG is at most to the homological

length of E. Given any two indecomposable objects in ⟨E⟩1, we know by [58] that there
exists a non-zero morphism space between them in one direction, hence the minimal
zig-zag between any two indecomposable objects in ⟨E⟩1 has length 1, and so the
homological length of E is 1. Moreover, the arc ℓA = {a2, a3} corresponds to an
indecomposable object A ∈ Cn such that A ̸∈ ⟨G⟩1, and so the generation time of E is
at least 1. Therefore E has a generation time 1.

The following is a consequence of Proposition 4.4.7 and Lemma 4.4.3.

Corollary 4.4.8. The Rouquier dimension of Cn is 1.

Consequently, we can compute the Orlov spectrum of C1.

Corollary 4.4.9. The Orlov spectrum of C1 is

O(C1) = {1}.

Proof. We show that there is no minimal generator G with homological length l ≥ 2,
and so the generation time of G has an upper bound of 1. Let

G1 G2 Gl Gl+1

be a zig-zag with objects in ⟨G⟩1. Corollary 4.2.12 tells us that all ℓGi
must be limit arcs

as G is minimal. However, Lemma 2.4.2 states that there is a non-trivial Ext1-space
between indecomposable objects corresponding to limit arcs that share an endpoint at
an accumulation point, which all ℓGi

do as there is only a single accumulation point
for C1. Hence there is a minimal zig-zag

G1 Gl+1,
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and so the homological length of any minimal generator G is 1, therefore the upper
bound on the generation time of G is also 1.

We now look at the homological length of minimal generators in Cn in an effort to
find a bound for the Orlov spectrum of Cn. To do this, we show that for any integer l
up to a given value, there exists a minimal generator with homological length equal to
l.

Proposition 4.4.10. Let 1 ≤ d ≤ 2n− 2 be an integer. Then there exists a generator
M of Cn such that M has homological length d.

Proof. We construct a generator Md for each 1 ≤ d ≤ 2n − 2 using induction on the
generator E.

We know that E has homological length 1 by Corollary 4.4.7, so we construct a new
object from E, called M2 by replacing Y1 with the object Z1, corresponding to the arc
ℓZ1 = {z1, a2}. It is clear that M2 is homologically connected and has a complete orbit
in M , and so by Theorem 4.2.11 we know M2 is a generator of Cn. We construct M3

from M2 by replacing X2 with the object Z2, corresponding to the arc ℓZ2 = {a2, z2},
and again we see that M3 is a generator by Theorem 4.2.11. We repeat this construction
for all Md, 1 ≤ d ≤ 2n− 2.

Assume that Md has homological length d, we show that Md+1 has homological
length d+ 1. By Lemma 4.4.6 we know that there exists at least one minimal zig-zag
between indecomposable summands of Md of length d. We have a minimal zig-zag of
the form

H X1 Z1 Zd−1 Zd,
f1 fd−1 fd

whereH ̸∼= X1 is in both ⟨E⟩1 and ⟨Md⟩1. However, when we replace an indecomposable
summand, say N , in Md with Zd+1, we only have length 1 minimal zig-zags between
Zd+1 and Zd and all other minimal zig-zags between Zd+1 and another indecomposable
summand of Md+1 contain Zd up to suspension. Hence we get a minimal zig-zag

H X1 Z1 Zd Zd+1,
f1 fd fd+1

which has length d+ 1.
To see that we get no other new minimal zig-zags of length l > d + 1 between

indecomposable summands of Md+1, consider that any minimal zig-zag containing N
in the middle will not be minimal as any sequence in a zig-zag of the form

X1[j] N H

can be reduced to a sequence of the form

X1[j] H

by [58]. Hence a minimal zig-zag containing N may only contain N either at the start
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or end of the zig-zag, and so by removing N as a summand of Md+1 means that no
minimal zig-zag of this form has an increased length.

Therefore we see that the homological length ofMd+1 is d+1. Thus, by induction, we
see that there exists some object with homological length d for all d = 1, . . . , 2n−2.

Here we see an example of one of the minimal strong generators constructed in
Proposition 4.4.10.

a1

a5

a4a3

a2

z5

z4

z3

z2

z1
ℓX1

ℓZ2

ℓZ3

ℓZ4

ℓZ5

ℓX5

ℓX4 ℓY4

ℓY3

Figure 4.6: The minimal strong generator M5 in C5.

Finally, we show that there exists no minimal strong generator of Cn with a ho-
mological length greater than 2n − 2, and so compute an upper bound for the Orlov
spectrum of Cn.

Theorem 4.4.11. The Orlov spectrum of Cn for n ≥ 2 is bounded above by 2n − 2.
That is

O(Cn) ⊆ {1, . . . , 2n− 2}.

Proof. By Proposition 4.4.10 we know that there is a generator with homological length
2n − 2 and so has generation time at most 2n − 2 by Lemma 4.4.6, so we only need
to show that there exists no minimal strong generator with homological length greater
than 2n−2. To show this, we consider two situations, one where some generator M has
≥ 2n non-isomorphic indecomposable direct summands, and one where M has < 2n
non-isomorphic indecomposable direct summands.

Suppose M has ≥ 2n non-isomorphic indecomposable direct summands. Then if
we consider each segment and accumulation point as a vertex, and each arc as an edge,
then may construct each generator as a graph with 2n vertices. Basic results from
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graph theory tell us that if we have ≥ 2n edges on 2n vertices, then we must have a
loop somewhere in the graph, and this loop then corresponds to a zig-zag of the form

M1[a1] M2[a2] Md[ad] Md+1[ad+1] M1[a1],

such that ℓMi[ai] either crosses ℓMi−1[ai−1] and ℓMi+1[ai+1], or shares an endpoint at
an accumulation point, and ℓMd+1[ad+1] crosses ℓM1[a1] or shares an endpoint at an
accumulation point. Lemma 4.2.13 tells us then that the object M ′ such that M ∼=
M ′ ⊕M1 is also a generator, and so M is not a minimal generator.

Now suppose that M has 2n− 1 non-isomorphic indecomposable direct summands.
If M has homological length 2n− 1, then there must exist a minimal zig-zag of length
2n− 1, let this zig-zag be

M1 M2[m2] M2n−1[m2n−1] Mi[j].

There exists some subsequence of this zig-zag

M1 M2[m2] Mi−1[mi−1] Mi[mi],

of length i − 1 < 2n − 1. Suppose that there exists no morphisms of degree 1 in
either direction between Mi[mi] and Mi[j], then ℓMi

is a short arc, and so M is not
a minimal generator by Corollary 4.2.12.

Now suppose that there does exist a morphism of degree 1 between Mi[mi] and
Mi[j], then we have a zig-zag

M1 M2[m2] Mi−1[mi−1] Mi[mi] Mi[j],

of length i ≤ 2n− 1, where the length is equal when Mi
∼= M2n−1. As we only need to

consider zig-zags of length ≥ 2n− 1 we may assume that Mi
∼= M2n−1, and we need to

show that the zig-zag

M1 M2[m2] M2n−2[m2n−2] M2n−1[m2n−1] M2n−1[j],
(4.3)

is not minimal.
Suppose there are two arcs ℓMi

and ℓMi′ that share a ∈ L(M ) as an endpoint. If
i′ ̸= i± 1, then (4.3) is not a minimal zig-zag. Therefore, suppose that i′ = i+ 1, then
there exists a zig-zag

Mi[mi] Mi+1[m′
i+1]

such that we have the zig-zag

M1 M2[m2] M2n−2[m′
2n−2] M2n−1[m′

2n−1] ∼= M2n−1[j],

which has length 2n − 2, and so the minimal zig-zag between M1 and M2n−1[j] is at
most length 2n− 2.
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Now suppose that every al ∈ L(M ) is the endpoint of exactly one arc ℓMl
, for Ml

indecomposable direct summands of M . Then between the n segments of M , there
are at least n long arcs corresponding to direct summands of M . However, again via
seeing the segments as vertices and the long arcs as edges, there must be a cycle in
the induced graph, and so M is not minimal as we could remove any of the arcs in the
cycle, and the resulting object would still have a complete orbit and be homologically
connected, and so M is not a minimal generator. Hence there are no minimal strong
generators of Cn with a homological length greater than 2n − 2. Thus 2n − 2 is an
upper bound of the Orlov spectrum of Cn.
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