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Genetic insights into resting heart rate and
its role in cardiovascular disease

A list of authors and their affiliations appears at the end of the paper

Resting heart rate is associated with cardiovascular diseases and mortality in
observational andMendelian randomization studies. The aims of this study are
to extend the number of resting heart rate associated genetic variants and to
obtain further insights in resting heart rate biology and its clinical con-
sequences. A genome-wide meta-analysis of 100 studies in up to 835,465
individuals reveals 493 independent genetic variants in 352 loci, including 68
genetic variants outside previously identified resting heart rate associated loci.
We prioritize 670 genes and in silico annotations point to their enrichment in
cardiomyocytes and provide insights in their ECG signature. Two-sample
Mendelian randomization analyses indicate that higher genetically predicted
resting heart rate increases risk of dilated cardiomyopathy, but decreases risk
of developing atrial fibrillation, ischemic stroke, and cardio-embolic stroke.
We do not find evidence for a linear or non-linear genetic association between
resting heart rate and all-causemortality in contrast to our previousMendelian
randomization study. Systematic alteration of key differences between the
current and previous Mendelian randomization study indicates that the most
likely cause of the discrepancy between these studies arises from false positive
findings in previous one-sample MR analyses caused by weak-instrument bias
at lower P-value thresholds. The results extend our understanding of resting
heart rate biology and give additional insights in its role in cardiovascular
disease development.

Higher resting heart rate (RHR) is associated with cardiovascular
diseases and all-cause mortality in traditional epidemiological
studies1–5. However, RHR is influenced by disease status and a
plethora of potential confounders, which could affect these
associations.

A Mendelian randomization (MR) approach, in which genetic
variants associated with RHR are used as a proxy for RHR, can
also be used to study the association of RHR with cardiovascular
diseases and all-cause mortality. Since genetic variants are fixed
from conception and then randomly assigned from parents to
offspring, they are more immune to reverse causation and
confounders6. In our previous study, we found evidence for a
positive association between genetically predicted RHR and all-
cause mortaliy7. However, a higher genetically predicted RHR was

not found to increase the risk of cardiovascular diseases7–9 and
appeared to decrease the risks of atrial fibrillation and cardio-
embolic stroke9. Multiple genome-wide association studies
(GWAS) have identified RHR-associated genetic variants which
could be used as genetic instruments in MR studies to entangle
the relationship between RHR and cardiovascular disease7,8,10. The
two largest GWAS to date have been performed in the UK
Biobank7,10 but were either performed in a subcohort of indivi-
duals with available genetic data during its time of publication7 or
lacked a replication cohort10. We set out to perform a genome-
wide meta-analysis of RHR in the largest sample size to date with
internal replication of the associated genetic variants, in order to
broaden our knowledge of the biological mechanisms underlying
interindividual differences in RHR and identify robustly
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associated RHR-associated genetic variants to assess the genetic
association of RHR with cardiovascular disease and all-cause
mortality.

In this work, a genome-wide meta-analysis of 100 studies in
up to 835,465 individuals reveals 493 independent RHR-
associated genetic variants in 352 loci, including 68 genetic var-
iants outside previously identified RHR-associated loci (Fig. 1a).

In addition, in silico analysis pinpoint that identified candidate
genes are mainly enriched in cardiomyocyte tissue (Fig. 1b), and
Mendelian randomization analyses indicate that higher geneti-
cally predicted resting heart rate is not associated with all-cause
mortality, increases the risk of dilated cardiomyopathy, but
decreases the risk of developing atrial fibrillation, ischemic
stroke, and cardio-embolic stroke (Fig. 1c).

UK Biobank data
N = 484,307 with genetic and phenotypic data.

19,400,416 variants after QC filtering on INFO >0.3
and Neff≥25

IC-RHR data
N = 351,158 from 99 cohorts.

27,082,649 variants after QC filtering on INFO >0.3
and Neff≥25

UK Biobank GWAS analysis
UKB GWAS of HRC imputed SNPs

HR ~ SNP + sex + age + age2 + BMI + heart rate
measurement method + 30PCs + GenChip

IC-RHR GWAS analysis
GWAS of imputed SNPs (1000G)
IVW Fixed-effects meta-analysis;
Genomic control using lambda

Internal replication

1) P < 1 × 10-8 in the discovery (UKB+IC-RHR) meta-analysis
2) support (P < 0.01) in the UKB GWAS alone
3) support (P < 0.01) in the IC-RHR GWAS alone
4) concordant direction of effect between UKB and IC-RHR datasets

UK Biobank + IC-RHR (N = 835,465)
Genomic control using LDSC intercept

Effect sizes UKB
492 SNPs and 1 proxy
2 SNPs F-statistic <10

Effect sizes IC-RHR
484 SNPs and 2 proxies.
99 SNPs F-statistic <10

- Coronary artery disease
(CARDIoGRAMplusC4D)

- Atrial fibrillation (AFGen)
- Stroke (MEGASTROKE)

- All cause mortality
- 35 prevalent causes (>0.1% prevalance)
- Parental longevity

Gene annotation
1) Nearest 3) EQTL
2) Coding 4) DEPICT

Pathways and tissues
DEPICT

Association with other traits
1) GWAS catalog
2) LD hub

- Coronary artery disease
- Atrial fibrillation
- Stroke
- Heart failure

Effect on electrocardiogram
ECGenetics

UK Biobank, mortality

UK Biobank, cardiovascular disease

External cohorts, cardiovascular disease

493 SNPs in 352 loci. 
SNP: R2<0.005 within 5 MB window; locus: lowest P-value in 2 MB window

443 SNPs in 332 loci replicated

a

b

c

Exposure Outcome 

Article https://doi.org/10.1038/s41467-023-39521-2

Nature Communications |         (2023) 14:4646 2



Results
Genome-wide meta-analysis of resting heart rate
We performed a meta-analysis of RHR GWAS using 99 cohorts con-
sisting of up to 351,158 individuals, which from here on will be referred
to as the International Consortium of Resting Heart Rate (IC-RHR).
Second, we performed a GWAS on 484,307 individuals from the UK
Biobank. These large cohorts were meta-analyzed to include up to
835,464 individuals, in whom 30,458,884 directly genotyped and
imputed autosomal variants were analyzed (Supplementary Data 1,
Fig. 1a). The meta-analysis revealed 493 independent genetic variants
in 352 loci. Out of these 493 independent genetic variants, 68 were
outside previously identified RHR-associated loci and 67 of those were
internally replicated (Fig. 2a, SupplementaryData 2)7,8,10. Out of the 425
genetic variants inside previously identified RHR-associated loci, a
total of 376 were internally replicated. In addition, 332 out of the 352
loci were considered internally replicated as they showed the con-
cordant direction of effects and nominal associations (P < 0.01) in the
UK Biobank GWAS and IC-RHR meta-analysis (Fig. 2b). The RHR-
associated genetic variants identified previous studies from Eppinga
et al. and Den hoed et al. were all replicated in the current study
(SupplementaryData 3). A total of 74 loci identified in the studybyGuo
et al. were not replicated in the current study, of which 40 would not
have been identified as loci using the current GWAS clumping criteria.
The remaining 34 loci did not reach genome-wide significance in the
current meta-analysis with generally high P-values in the IC-RHR con-
sortium, probably therefore failing replication (Supplementary
Data 3). The linkage disequilibrium (LD) score regression intercept of
the meta-analysis was 1.051 ± 0.002, suggesting little evidence of
genomic inflation (Fig. 2c). TheQQplots for theUKBiobankGWAS and
IC-RHRmeta-analysis are shown in Supplementary Fig. 1. The genomic
control lambda’s, LD-Score intercepts and the attenuation ratio sta-
tistics suggested no inflation due to non-polygenic signals11,12. Single
nucleotide polymorphism (SNP) heritability of RHR, as calculated by
LD score regression, was estimated to be 10%. A polygenic score
weighted by the effect sizes of the IC-RHR explained 5.33% of the
variation in RHR in the UK Biobank. A Chow test indicated the absence
of strong differences between participants with a history of any car-
diovascular disease or use of RHR-altering medication versus partici-
pants without such a medical history (Supplementary Data 4). Genetic
correlation analyses were performed and we observed significant
correlations with anthropometric measurements, pulse wave reflec-
tion index, and physical activity measurements (Supplementary
Data 5). A query of the GWAS Catalog showed that the 493 genetic
variants associated with RHR were most commonly in high LD (LD >
0.8) with anthropometric measurements and blood pressure traits
(Supplementary Data 6).

Candidate genes and insights into biology
We explored the potential biology of the 352 RHR-associated loci by
prioritizing candidate genes in these loci (Supplementary Data 2). A
total of 407 unique genes were in close proximity to the lead var-
iant, defined as the nearest gene and any additional gene within
10 kb (Supplementary Data 2). There were 52 genes that contained

coding genetic variants in LD (R2 > 0.80) with RHR lead variants.
Functional annotation of these coding variants is provided in Sup-
plementary Data 7. Using summary data-based Mendelian rando-
mization analysis (SMR) and heterogeneity in dependent
instruments (HEIDI) tests, we found that the RHR-associated loci
and eQTLs colocalized at 88 genes (Supplementary Data 8)13. Lastly,
381 unique genes were taken forward by data-driven expression-
prioritized integration for complex traits (DEPICT) analyses (Sup-
plementary Data 9). Of the 670 unique candidate causal genes
identified, 33 genes were prioritized by at least three out of four
established methods, which may be used to prioritize candidate
genes (Fig. 2d). Of these genes, PHACTR4, ENO3, and SENP2 were
prioritized by all four methods. Full annotations of all identified
genes are in Supplementary Data 10.

Pathway analyses and tissue enrichment
Pathway analysis performed by DEPICT showed that RHR revolved
around mainly cardiac biology, including cardiac tissue development,
muscle cell differentiation, and pro-arrhythmogenic pathways. A total
of 1471 reconstituted gene sets within 155 gene clusters were sig-
nificantly associated with RHR (FDR <0.05). The newly discovered
gene clusters consisted of mostly protein–protein interaction path-
ways and were commonly located in the periphery of the network
(Supplementary Data 11, Supplementary Fig. 2). The tissue enrichment
analysis byDEPICT showed 28 tissues at FDR <0.05 and implicated the
cardiovascular system as the most important tissue type, with 8 of the
10 most significantly enriched tissues located within the cardiovas-
cular system (Fig. 3, Supplementary Data 12). Non-cardiovascular tis-
sues with enrichment included muscle and fat tissues, the adrenal
glands, the esophagus, and urogenital structures. Conditional analyses
showed that associations with non-cardiovascular tissues were rather
due to co-expression of RHR genes in cardiovascular tissue than
independent enrichment of RHR-associated genes in non-
cardiovascular tissues (Fig. 3).

ECG morphology
The ECGenetics browser, which contains genome-wide summary sta-
tistics of every time-point of the complete cardiac cycle at a resolution
of 500Hz, was used to gain insights into the electrophysiological
effect of the RHR genetic variants14. A total of 86 genetic variants were
strongly associated with at least one ECG time point on the non-
normalized and normalized association patterns across the full RR
interval at a stringent Bonferroni-corrected P-value < 1 × 10−7. The
associations represented a plethora of ECG morphologies (Supple-
mentaryData 13, Supplementary Fig. 3). TheACHE,ANKRD1, and SCN5A
genes exhibited their largest electrical effects on atrial depolarization,
BAG3 and TTN on ventricular depolarization, and RGS6 and SYT10 on
ventricular repolarization. The ECG-wide MR highlighted several loci
that had not been associated with resting heart rate or cardiac rhythm
and structure previously. The CCLN1 gene exhibited strong effects on
atrial depolarization, RAP1A and ZBTB38 exerted strong effects on
early and late ventricular repolarization, respectively. The ECG-wide
MR showed that RHR variants exert the largest effect on ventricular

Fig. 1 | Study flowchart showing the study design, in silico annotations, and
functional analyses. a Schematic overview of the study design for the discovery
and replicationof genetic loci associatedwith resting heart rate (RHR) usingmixed
linear models with a two-sided P-value of P < × 10−8 to define genome-wide sig-
nificance. A genome-wide significant genetic variant was considered replicated if
P <0.01 in the UK Biobank and IC-RHR cohort with concordant effect sizes. The
black-bordered boxes show the methodology, the red-bordered boxes show the
most important results. b Analyses performed to evaluate RHR-associated genetic
variants and to gain further insights into the underlying biology. c Schematic
presentation of the two-sample Mendelian randomization analyses of genetically
predicted RHR on mortality and cardiovascular diseases. Effect sizes were taken

from the IC-RHR data to test the associations with mortality and cardiovascular
diseases in the UKBiobank. Effect sizeswere taken from the UK Biobank to test the
association with coronary artery disease and myocardial infarction in the CARDI-
oGRAMplusC4D cohort, atrial fibrillation in the AFGen cohort, and any, ischemic,
cardio-embolic, large artery and small vessel stroke within the MEGASTROKE
consortium. BMI body mass index, GWAS genome-wide association study, HRC
Haplotype Reference Panel, IC-RHR International Consortium for Resting Heart
Rate, MB megabase, N sample size, Neff effective sample size, PC principal com-
ponents, RHR resting heart rate, SNPs single nucleotide polymorphisms, QC
quality control, 1000G = 1000 Genomes.
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repolarization on both the non-normalized and normalized associa-
tion patterns (Supplementary Fig. 4).

Single-nucleus RNA expression
Single-nucleus RNA sequencing data obtained from a healthy human
heart revealed that RHR gene expression is highest in ventricular car-
diomyocytes, followed by atrial cardiomyocytes (Supplementary
Data 14)15. The candidate genes of genetic variants involved in non-
isoelectric parts of the ECG showed stronger expression patterns than
the isoelectric parts, for example, those involved in left atrial depo-
larization (ANKRD1), ventricular depolarization (FOHD3, RBM20,
MYO18B, TTN) and ventricular repolarization (CACNA1C) (Supplemen-
tary Fig. 3).

Mendelian randomization analyses
Series of two-sample MR analyses were performed to test whether
genetically predicted RHR is associated with all-cause mortality and
cardiovascular diseases (definitions provided in Supplementary

Data 15, 16). We initially used the inverse variance weighted multi-
plicative random-effects (IVW-MRE) model, which provides a con-
sistent estimate under the assumption of balanced pleiotropy. If we
found evidence for a genetic association using the IVW-MREmodel, we
further interrogated these findings using several sensitivity analyses
that are more robust to different sources of bias in MR analyses.

First, we assessed the association between genetically predicted
RHR and all cause-mortality in the UK Biobank participants over a
median follow-up of 8.9 years (interquartile range 8.2–9.5) (Supple-
mentary Data 17–19). Genetically predicted RHR was not associated
with the risk of all-cause mortality (HR 1.024, 95% CI 0.993–1.057,
P =0.13), as shown in Fig. 4a. We did not find evidence for an asso-
ciation between genetically predicted RHR and parental longevity.
Neither did we find evidence for an association between RHR and the
35 leading causes ofmortality in the UK Biobank. Systematic alteration
of key differences between the current and previous Mendelian ran-
domization study indicated that the most likely cause of the dis-
crepancy between these studies arises from false positive findings in
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Fig. 2 | Overview of the findings in the genome-wide association study and in
silico search of candidate causal genes. a Manhattan plot showing the −log10(P-
value) for the associationof all genotypedor imputed genetics variantswith resting
heart rate (RHR) assessed using mixed linear models. Red indicates novel and
internally replicatedRHR-associated loci andblack indicates novel but unreplicated
RHR-associated loci. Dark gray indicates RHR-associated genetic variants within
1MB of previously identified RHR-associated loci, which were internally replicated
in the current study. Light gray indicates RHR-associated genetic variants within
1MB of previously identified RHR-associated loci, which were not internally repli-
cated in the current study. A two-sided P-value of P < 1 × 10−8 was used to define
genome-wide significance. A genome-wide significant genetic variant was con-
sidered replicated if P <0.01 in the UK Biobank and IC-RHR cohort with concordant
effect sizes. b Venn diagram of the 352 identified loci. Of the 352 loci, 332 were
internally replicated. c Quantile–quantile (QQ) plot of the final meta-analysis. The

black dots represent the observed statistic for the genotyped genetic variants
against the corresponding expected statistic. The linkage disequilibrium score
regression intercept after the final meta-analysis was 1.051, suggesting little evi-
dence of genomic inflation due to non-polygenic signal. d Venn diagram of the
prioritization of the 670 unique candidate causal genes as identified by one or
multiple strategies. Venn plot shows the overlapof genes tagged by one ormultiple
strategies, including (1) by proximity, the nearest gene or any gene within 10 kb; (2)
genes containing coding variants in LDwith RHR-associated variants at R2 > 0.8; (3)
eQTL genes in LD (R2 > 0.8) with RHR-associated variants which achieved a Bon-
ferroni corrected two-sided P = 2.65 × 10−7 and passed the HEIDI test at a P >0.05;
and (4) DEPICT genes which achieved multiple hypotheses corrected FDR <0.05.
DEPICT data-driven expression prioritized integration for complex traits, eQTL
expression quantitative trait loci.
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previous one-sample MR analyses caused by weak-instrument bias at
lower P-value thresholds (Supplementary Fig. 5, Supplementary
Data 20)7. Non-linear MR analysis showed an always-increasing
dose–response relation between genetically predicted RHR and all-
cause mortality that was compatible with a null effect (Fig. 4b, Sup-
plementary Data 21, 22), providing no evidence for a U-shaped pattern
that has been previously described3.

We then explored the association between genetically predicted
RHR and several prevalent cardiovascular diseases. We did not find
evidence for an association between genetically predicted RHR and
coronary artery disease in the UK Biobank (OR 0.977, 95% CI
0.946–1.009, P =0.16) or in the CARDIoGRAMplusC4D cohort (OR
0.976, 95% CI 0.944–1.010, P =0.17), in line with previous analyses8,9.
Similarly, therewas no evidence for an association between genetically
predicted RHR and myocardial infarction in the UK Biobank or in the
CARDIoGRAMplusC4D cohort (Fig. 5, Supplementary Data 23–26). We
found no evidence for non-linear dose-response relations of geneti-
cally predicted RHR with coronary artery disease or myocardial
infarction (Supplementary Data 21, 22).

Higher genetically predicted RHR was suggestively associated
with a lower risk of atrial fibrillation development in the UK Biobank
(OR0.946, 95%CI 0.897–0.998, P =0.04) and in the AFgen consortium
(OR 0.942, 95% CI 0.897–0.989, P =0.02), but these results were not
significant after correction for multiple testing (P < 4.17 × 10−3). MR-
Lasso, which can provide evidence for potential causal associations
when there is a small number of genetic variants with heterogeneous

ratio estimates, indicated that genetically predicted RHR was sig-
nificantly inversely associated with atrial fibrillation (Fig. 5, Supple-
mentary Data 23). The contamination mixture model, which provides
evidence for potential causal associations if the plurality of the genetic
instruments is valid, provided evidence for a negative association
between genetically predicted RHR and atrial fibrillation in the UK
Biobank cohort, but this was not replicated in the AFgen consortium
(Fig. 5). Non-linear MR analyses showed a significant negative expo-
nential growth pattern in the dose-response relation between geneti-
cally predicted RHR and atrial fibrillation (Supplementary Data 21, 22,
Supplementary Fig. 8). Specifically, individuals at the extreme right tail
of the distribution of genetically predicted RHR had a lower risk of
atrial fibrillation. For example, compared with the population mean
RHRof approximately 70 bpm, individualswith a genetically predicted
RHR of 89 and 98 bpmhad a significantly lower risk of atrialfibrillation
(OR 0.969, 95% CI 0.941–0.998, P =0.04; OR 0.922, 95% CI
0.897–0.948, P = 6.36 × 10−9), while this was not true for a genetically
predicted RHR of 80 bpm (OR 1.000, 95% CI 0.968–1.034, P =0.99).

We found that higher genetically predicted RHR is associatedwith
the risk of any stroke (OR 0.951, 95% CI 0.926–0.976, P = 1.59 × 10−4),
ischemic stroke (OR 0.940, 95% CI 0.915–0.967, P = 1.08 × 10−5) and
cardio-embolic stroke (OR 0.875, 95% CI 0.828–0.925, P = 2.11 × 10−6),
suggestively associated with large artery stroke (OR 0.939, 95% CI
0.884–0.998, P =0.04) and not with small vessel stroke (OR 1.001, 95%
CI 0.950–1.055, P = 0.97) in the MEGASTROKE consortium. The results
were consistent across MR methods for any, ischemic and
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Fig. 3 | Conditional analyses of tissue enrichment by DEPICT emphasizes car-
diac tissue for RHR biology. a Results of the DEPICT tissue enrichment analysis.
The Y-axis shows the tissues clustered by the first MeSH term, ordered on Z-value
per cluster. The X-axis shows the Z-value. A multiple comparisons corrected two-
sided FDR <0.05, corresponding to a P-value < 9.75 × 10−3 and Z-value of 2.585, was
considered to be statistically significant. Significant tissues are plotted in red and
annotated, other tissues are plotted in gray. Conditional analyses were performed

by correcting for the tissue with the highest Z-value to investigate whether sig-
nificant tissues were independently associated with RHR. Not a single tissue
remained significant at an FDR<0.05 after three consecutive corrections (for the
heart, heart valve, and arteries). Panel b–d shows Z-values of all tissues after con-
secutive correction for respectively heart and heart valves, heart and arteries, and
heart valve and arteries. This jointly provides information on which the other tis-
sues are co-dependent. FDR false discovery rate.
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cardioembolic stroke (Fig. 5, SupplementaryData 23). The associations
between genetically determined RHR and any stroke or ischemic
stroke could not be replicated in the UK Biobank using a univariable
MR IVW-MRE approach (OR 0.987, 95% CI 0.953–1.023, P =0.49; OR
0.970, 95% CI 0.928–1.015, P =0.19). We found no evidence for a non-
linear association between genetically determined RHR and any
ischemic stroke (Supplementary Data 21, 22). We used a multivariable
MR approach to gain insights into potential mediating factors or
pleiotropic pathways in the association between genetically predicted
RHR and stroke. First, we found that the direct effects of RHR on
cardio-embolic stroke to be attenuated by the effects of atrial

fibrillation and estimated the attenuation through atrial fibrillation to
be 18.4% (Fig. 6, Supplementary Data 27, 28). The direct effects of
genetically predicted RHR on any stroke and ischemic stroke were
most strongly attenuated by pulse pressure, with estimated attenua-
tion of 28.1% and 31.5%, respectively (Fig. 6a, b, SupplementaryData 27,
28). Therewas a strong association between genetically predicted RHR
and pulse pressure (β = −0.192, SE = 0.019, P = 1.81 × 10−24), but MR-
Steiger sensitivity analysis filtered a large part of the genetic variants
and repeating the MR on the remaining subset did not show a sig-
nificant association between RHR and pulse pressure (β = −0.005,
SE = 0.008, P =0.57, Supplementary Data 29, 30).

b Dose response curve of the non−linear MR between RHR and all−cause mortality

Fractional polynomial non−linearity P−value: 0.36

0.8
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Fig. 4 | Mendelian randomization shows absence of linear and non-linear
associations between geneticallypredictedRHR andall-causemortality. Linear
and non-linear Mendelian randomization analyses were performed to test the
association between genetically predicted RHR and all-cause mortality. a Forest
plot of the linear MR analyses between genetically predicted RHR and all-cause
mortality (Ncases = 16,289, Ncontrol = 396,183).With a single outcome, a two-sided
P-value of P <0.05 was considered significant. Hazard ratios and 95% confidence
intervals are shown. The X-axis shows hazard ratio’s on a log10 scale, the center as
indicated by a gray line depicts a hazard ratio of 1. b Dose–response curve of the
non-linear MR analyses between genetically predicted RHR and all-cause mortality

(Ncases = 16,039, Ncontroles = 394,144). The comparisons are conducted within
strata and therefore the graph provides information on the expected average
change in the outcome if a person with an RHR of (say) 70 bpm instead had an RHR
value of 90 bpm. The gradient at each point of the curve is the localized average
causal effect. Shaded areas represent 95% confidence intervals. With a single out-
come, a two-sided fractional polynomial non-linearity P-value of P <0.05 was
considered significant. The X-axis shows RHR, the Y-axis shows hazard ratios. The
center as indicated by a dark gray line depicts a hazard ratio of 1. RHR resting heart
rate, HR hazard ratio, CI confidence interval, MR Mendelian randomization, IVW
inverse variance weighted, FE fixed effects, MRE multiplicative random effects.
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Lastly, we found that genetically predicted RHR is associated with
an increased risk of dilated cardiomyopathy in the UK Biobank (OR
1.391, 95% CI 1.205–1.605, P = 6.27 × 10−6). The results were robust to
MR-Lasso (OR 1.411, 95% CI 1.228–1.622, P = 1.20 × 10−6) and MR-
contamination mixture models (OR 1.697, 95% CI 1.318–2.184,
P = 4.03 × 10−5). We excluded 96 variants associated with the Q-R
upslope at −18ms of the R peak (P <0.05), which has been established
as a biomarker for dilated cardiomyopathy14, to investigate whether
reversed causation contributed to the association with dilated cardi-
omyopathy. The results were similar to the main analyses (Supple-
mentary Table 1). We did not find evidence for an association between
genetically predicted RHR and heart failure, heart failure excluding
cardiomyopathies, and hypertrophic cardiomyopathy (Fig. 5, Supple-
mentaryData 23).Wedid not find evidence for a non-linear association
between genetically determined RHR and any type of heart failure
(Supplementary Data 21, 22). Scatterplots and dose-response curves of
the association between RHR and all assessed outcomes can be found
in Supplementary Figs. 6–10.

We assessed whether the Wald estimates between the RHR-
associated genetic variants and the cardiovascular diseases could
identify risk loci not anticipated to be associated with these outcomes
in the outcome GWASs. The locus FOXC1 for coronary artery disease,
USP39 for myocardial infarction, and SLC35F1 and SSPN for atrial
fibrillation were significantly (P < 1.01 × 10−4) and concordantly

associated with their respective outcomes in both cohorts while not
reaching genome-wide significance in either one of the outcome
cohorts (Supplementary Data 31).

Discussion
We report 493 genetic variants in 352 loci associated with RHR, dis-
covered in the largest GWAS meta-analysis of RHR to date in up to
835,465 individuals7,8,16,17. This increase in sample size allowed us to
report 68 novel RHR-associated genetic variants and, importantly,
provide internal replication for 376 genetic variants previously
associatedwith RHR. A total of 670 candidate genes were prioritized,
providing a comprehensive data catalog for future studies on RHR
and offering potential new insights into its biology. Four strategies
were employed to prioritize candidate genes and PHACTR4, ENO3,
and SENP2were highlighted by all four strategies. The PHACTR4 gene
regulates protein phosphatase 1 which interacts with actin and is
involved in processes ranging from angiogenesis to cell cycle
regulation18. It has been associated with pulse pressure and systolic
blood pressure in a previous GWAS analysis19. ENO3 encodes beta-
enolase, which plays an important role in glycolysis and striated
muscle development20. It has been implicated in cardiac myocyte
development through its function in energy metabolism in both
humans and rats21,22. SENP2 encodes sentrin-specific protease 2,
which deconjugates small ubiquitin-relatedmodifiers 1 and 2 that are
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Fig. 5 | Mendelian randomization of genetically predicted RHR on cardiovas-
cular diseases. Forestplots of the linear Mendelian randomization analyses of
resting heart rate (RHR) on cardiovascular diseases. Effect sizes were taken from
the IC-RHR data to test the associations with mortality and cardiovascular diseases
in the UKBiobank (panel a). Effect sizes were taken from the UK Biobank to test the
association with cardiovascular diseases in the CARDIoGRAMplusC4D, AFGen, and
MEGASTROKE consortia (panelb). Results of theMR-IVW, outlier-robustMR-Lasso,

and plurality valid MR-Mix are provided. Sample sizes vary per outcome and per
cohort and are shown in the figure. Odds ratios and 95% confidence intervals are
shown. The X-axis shows odds ratio’s on a log10 scale, the center as indicated by a
gray line depicts an odds ratio of 1. RHR resting heart rate, MR Mendelian rando-
mization, IVW inverse variance weighted multiplicative random effects, OR odds
ratio, CI confidence interval.
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involved in regulating posttranslational modification of a wide
variety of proteins that affect a multitude of different cellular
processes23,24. Several of these affected proteins are critical in cardiac
development and mouse models have shown that alterations in
SENP2 activity lead to congenital heart defects25,26. Involvement of
SENP2 in a multitude of cellular processes is reflected by its impli-
cation in GWAS of various conditions, including systolic and diastolic
blood pressure27, type 2 diabetes28, the conduction system of the
heart29,30 and estimated glomerular filtration rate31. The loci we
associated with coronary artery disease (FOXC1), myocardial infarc-
tion (USP39), and atrial fibrillation (SLC35F1 and SSPN) through their
effects on RHR have been associated with these cardiovascular dis-
eases in recent studies32–35.

To obtain further biological insights into RHR, we performed
pathway analyses using DEPICT and found numerous newly associated
pathways. The strongest associated clusters were identified previously
and their importance to RHR biology was therefore validated in the
current study7. Conditional analyses on the tissue enrichment
demonstrate that genes influencing RHR are more likely co-expressed
than primarily or solely located within non-cardiovascular tissues.
However, it should be noted that conditional analyses inherently
attenuate tissue enrichment considering DEPICT is based on the co-
regulation of gene expression36. Using cardiac single-nucleus RNA
data, we demonstrate that RHR genes are mostly expressed in cardi-
omyocytes. We provide electrophysiological insights into the biology
of the RHR-associated variants and show that they exert diverse effects
on ECG morphology with the largest effect on ventricular
repolarization.

In-depth analyses were performed to assess genetic associations
of RHR with clinical outcomes. In contrast to previous observational1,2

and MR studies7, we do not find evidence for an association between
genetically predicted RHR and all-cause mortality. Moreover, geneti-
cally predicted RHR was not associated with parental longevity nor
with anyof the 35 leading causes ofmortality. Lackof suchassociations
suggests that follow-up length or largeheterogenetic effects ofRHRon
different causes of mortality are unlikely causes for the absence of an
association between genetically predicted RHR and all-cause
mortality37. We demonstrate that the most likely cause of the dis-
crepancy between current and previous results arises from false
positive findings in previous one-sampleMR analyses thatwere caused
by weak-instrument bias at lower P-value thresholds38. We hypothesize
that RHR is not on the causal pathway to mortality itself and that
previous observational studies are more likely to reflect confounders,
such as stress and socio-economic status, or reversed causation, in
which an individual’s disease status increases both RHR and mortality
risk39,40.

The linear MR between RHR and atrial fibrillation provided sug-
gestive evidence for an inverse relationship between RHR and atrial
fibrillation, in line with a previous linear MR study9. We do find a sig-
nificant negative exponential dose-response curve between RHR and
atrial fibrillation in support of an inverse relationship, and take the
non-linear MR forward as the main result considering the fractional
polynomial test indicated that a non-linear model fitted the localized
average causal effect estimates better than the linear model. Previous
observational studies on the relationship between RHR and atrial
fibrillation have shown conflicting results and have described various
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Fig. 6 | Multivariable Mendelian randomization reveals pulse pressure and
atrial fibrillation as potential mediators of the association of genetically pre-
dicted RHR with ischemic and cardio-embolic stroke, respectively. Forestplots
of the results of the two-samplemultivariableMendelian randomization analyses of
resting heart rate on a any stroke (Ncases = 67,162; Ncontrols = 454,450),
b ischemic stroke (Ncases = 60,341; Ncontrols = 454,450) and c cardio-embolic
stroke (Ncases = 9006; Ncontrols = 403,807), when using atrial fibrillation, systolic,
diastolic and pulse pressure as secondary exposures. Shown in red are the uni-
variableMendelian randomization estimates which represent the total estimates of
resting heart rate on the outcome. In black are the multivariable Mendelian ran-
domization estimates, which show the direct effect of RHR when corrected for the

secondary exposure. These results indicate that atrial fibrillation attenuates the
beneficial effect of a higher resting heart rate on cardio-embolic stroke, while pulse
pressure attenuates the beneficial effect on any ischemic stroke. MR-Steiger sen-
sitivity analysis indicated that the association between the RHR-associated genetic
variants and pulse pressure is unlikely mediated through RHR entirely and biolo-
gical pleiotropic effects are therefore more likely to cause the attenuation of the
association between RHR and stroke when correcting for pulse pressure. Odds
ratios and 95% confidence intervals are shown. The X-axis shows odds ratio’s on a
log10 scale, the center as indicated by a gray line depicts an odds ratio of 1. RHR
resting heart rate; MV multivariable, Nsnp number of SNPs.
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relationships including inverse linear41–43, U-shaped43, and J-shaped44

associations. All these associationpatterns support the hypothesis that
individuals with a low RHR might exhibit a higher risk of atrial fibril-
lation development compared to those with an average RHR. A recent
stratified Mendelian randomization showed an inverse genetic rela-
tionship between RHR and atrial fibrillation in individuals with an RHR
below 65 bpm as well45. Possible mechanisms that could underly an
increased risk of atrial fibrillation in individuals with a lowRHR include
increased left atrial stroke volume and consequent atrial remodeling
due to myocyte stretching46, or an increased vagal tone promoting
global disorganization in the left atrium due to increased hetero-
geneity of the refractory period47. In contrast to the often hypothe-
sized U-shaped or J-shaped association43,44, we find a decreasing risk of
atrial fibrillation development in those with a high RHR. One potential
explanation is that previous observational studies were affected by
collider bias through confounding factors which increase atrial fibril-
lation risk and typically occur in tandem with a high rather than a low
RHR, such as hypertension48 and obesity49. We advocate for a cautious
interpretation of current results due to the diverse biological
mechanisms through which the RHR-associated genetic variants alter
the risk of atrial fibrillation development8.

We found that genetically predicted RHRwas inversely associated
with risk of any, ischemic and cardio-embolic stroke. The results were
not replicated in the UK Biobank, possibly due to the substantially
lower amount of cases. The inverse association is in contrast to many
observational studies and we therefore performed multivariable MR
analyses to pinpoint biological mechanisms that could underly the
discrepancy4,5. We showed that atrial fibrillation attenuates the pro-
tective effect of higher genetically predicted RHR on developing
cardio-embolic stroke. This indicates either biological or mediated
pleiotropic effects of atrial fibrillation in the association between
genetically determined RHR and cardio-embolic stroke, which cannot
be distinguished based on the current results. The relationship
between a low RHR and cardioembolic stroke was attenuated by only
18.4% when corrected for atrial fibrillation, which might under-
estimated due to atrialfibrillation being a commonlymissed diagnosis.
Correction for atrial fibrillationonlyminimally affected the association
between RHR and any or ischemic stroke, despite cardio-embolic
stroke accounting for a substantial amount of ischemic stroke cases50.
Although hypertension is another important risk factor for stroke, it
commonly occurs in tandem with a higher and not a lower RHR4,51,52

and we found that neither systolic nor diastolic blood pressure affects
the association between RHR and stroke. We did find that pulse pres-
sure attenuates the association between RHR and any, ischemic and
large-artery stroke. Lower RHR has previously been demonstrated to
increase pulse pressure due to a higher likelihood of pressure wave
reflections during prolonged systole53 and increased pulse pressure
has been established as a risk factor of stroke53–55. Moreover, the
Conduit Artery Functional Endpoint Study (CAFE) study postulated
that pulse pressure underlies the inferiority of β-blocker based treat-
ment (which lowers RHR) to amlodipine-based treatment in the pre-
vention of stroke, despite equal effects on peripheral blood
pressure53,56. Our results could be considered as support for this
mechanism in the scenario that the RHR-associated genetic variants
only affect pulse pressure throughRHR and the associationwith stroke
is primarily driven by RHR. However, MR-Steiger sensitivity analysis
indicated that the association between the RHR-associated genetic
variants and pulse pressure is unlikelymediated through RHR entirely.
Biological pleiotropic effects are therefore more likely to cause the
attenuation of the association between RHR and stroke when cor-
recting for pulse pressure.

Finally, our study provides evidence that higher genetically pre-
dicted RHR increases the risk of developing dilated cardiomyopathy.
The importance of decreasing RHR in the treatment of heart failure
with reduced ejection fraction, the clinical phenotype of dilated

cardiomyopathy, has been thoroughly studied. Beta-blockers have
been shown to reduce mortality in individuals with heart failure with
reduced ejection fraction and form the cornerstone of pharmacolo-
gical treatment57–59. There is also evidence that ivabradine lowers car-
diovascularmortality inheart failurewith a reduced ejection fraction60.
This protective effect is more likely due to its effect on RHR than heart
rate variability as it has a larger effect on RHR61. The fact that the MR
results were robust to the exclusion of SNPs associatedwith the −18ms
point of the R-peak, an established biomarker of dilated cardiomyo-
pathy, supports the interpretation that current findings are driven by
RHRdifferences thatmimic pharmacological rate control14. OurMRon
the compound definition of heart failure could be hampered by its
phenotypical heterogeneity, as we were unable to differentiate
between heart failure with reduced and preserved ejection fraction. It
would be interesting to repeat the current MR analyses if more in-
depth phenotyping on left ventricular ejection fraction and function
becomes available, especially considering the different effects of RHR
on familial dilated versus hypertrophic cardiomyopathy in the
current study.

Several limitations should be considered. Although the current
493 RHR-associated genetic variants explained more than double the
RHR variance compared to the 64 loci from our previous study7, there
is still a large gap with heritability estimates from twin studies that
range between 23% and 70%62–64. Future studies could include whole
exome sequencing data to further increase our insights into the
genetic architecture of RHR65. Second, individuals with cardiovascular
diseases were included in the GWAS, which could potentially affect
exposure-outcome associations. However, post-hoc analysis showed
that UK Biobank participants with a history of cardiovascular disease
or who used RHR-altering medication can be jointly analyzed with
participants without such a medical profile. In addition, a two-sample
MR strategy was adopted, reducing the risk that potential weak-
instrument bias increases type 1 error rates through the reintroduction
of confounding, population stratification, or correlated pleiotropy38.
We note the broad biological nature of RHR genetic variants as illu-
strated by the diverse ECG patterns the genetic variants elicit on the
full cardiac cycle. These broad effects should be taken into con-
sideration for the correct interpretation of the MR results, as pleio-
tropy and reversed causation might be introduced in the MR. For
example, some genetic variants were included in the MR analyses
which could be more specific for another trait (i.e. rs2234962 near
BAG3 for dilated cardiomyopathy). We believe that the influence of
reversed causation on current results is minimal because we excluded
variants more strongly associated with the outcome. The MR results
were generally consistent across a multitude of sensitivity analyses,
strengthening the interpretation of a true relationship. However, our
study is not interventional in design, and a conservative interpretation
of the results as generally unconfounded rather than causal estimates
should be preferred.We stress that any causal claims canonly bemade
if interventions or drugs alter RHR equal to the biological mechanisms
in which RHR-associated genetic variants affect RHR.

In conclusion, our GWAS meta-analysis identified 493 RHR-
associated genetic variants within 352 loci, to which we prioritized
670 candidate causal genes. We demonstrated cardiovascular tissues
as the primary enrichment sites for RHR gene effects and showed that
their gene expression is highest in cardiomyocytes. ECG signatures
showed that RHR-associated genetic variants exert the largest effect
on RHR through ventricular repolarization. We found no evidence for
linear and non-linear associations between genetically predicted RHR
and all-cause mortality across several analyses, suggesting that the
well-known link between higher RHR and all-cause mortality reflects
confounding factors and reversed causation. The results point towards
an inverse association between genetically predicted RHR and the
development of atrial fibrillation and any stroke, ischemic stroke, and
cardio-embolic stroke, whereas it is positively associated with dilated
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cardiomyopathy development. Multivariable MR analyses showed
that atrial fibrillation attenuates the protective effect of higher RHR
on the development of cardio-embolic stroke. Pulse pressure attenu-
ates the protective effects on any stroke, ischemic and large artery
stroke, but this likely reflects biological pleiotropy rather than true
mediation.

Methods
Method details
Populations. The full RHR meta-analysis included 100 studies with
data on RHR in up to 835,465 individuals. RHR was obtained from ECG
in 54 studies, from pulse rate in 31 studies (of which seven were self-
measured by the participants), from blood pressure monitor in nine
studies, from electronicmedical records in three studies, frommanual
measurement in one study and through a combination of multiple of
the beforementionedmethods in two studies. Further information on
cohort characteristics is provided in Supplementary Data 1 and sta-
tistical details are provided in the “Genome-wide association studies”
section.

Imputation and quality control. Genotyping and quality control
before imputation were performed using different genome-wide
genotyping arrays and methods, as further detailed in Supplemen-
tary Data 1.

The UK Biobank was imputed to the Haplotype Reference v1.1
panel (HRC) by the Wellcome Trust Centre for Human Genetics. Ana-
lysis has been restricted to variants that are in the HRC v1.1. Quality
control of samples and variants and imputation was performed by the
Wellcome Trust Centre for Human Genetics, as described in more
detail elsewhere66.

The 99 cohorts of the IC-RHR were imputed to 1000 Genomes
Phase 1 and 3. For further information, please see Supplemen-
tary Data 1.

On the cohort level, we performed quality control by (1) re-
formatting and SNP-name harmonization; (2) checking the used
reference panel by plotting effect allele frequency plots using 1000G
as a reference; (3) checking for genomic inflation by plotting QQ plots;
(4) checking the betas by plotting histograms of the beta, frequency
and info; (5) comparison of the expected P-value based on beta and
standard error versus reported P-values.

Associationwith other traits. Genetic correlation analyses with GWAS
of previously investigated traits were performed using LD Hub
platform67. Genetic correlations were considered significant if they
achieved a Bonferroni-corrected significance threshold of P < 0 .05/
855 = 5.85 × 10−5. The GWAS Catalog was queried to find previously
established genetic variants (P < 1 × 10−5) in LD (R2 > 0.8) with all 493
RHR variants68. Summary statistics were downloaded from the NHGRI-
EBI GWAS Catalog on 27/04/2020.

Functional annotation of genes. For all independent genetic variants
that were genome-wide significantly associated in the final meta-ana-
lysis, candidate causal genes were prioritized as followed: (1) by
proximity, the nearest gene and any other gene within 10 kb; (2)
protein-coding genes containing variants in LD with RHR-associated
variants at R2 > 0.8; (3) eQTL genes in LD with RHR-associated variants
at R2 > 0.8; and (4) DEPICT gene mapping using variants that achieved
P < 1 × 10−8 (further information described below). Annotation of all
identified genes was performed by querying GeneALacart69.

Query of dbNSFP. The dbNSFP database (version 3a) was queried to
obtain functional prediction and annotation of all potential non-
synonymous genetic variants70. The dbNSFP database contains infor-
mation on multiple prediction algorithms and conservation scores
further detailed elsewhere70.

eQTL analyses. Colocalization of multiple expression quantitative
trait loci (eQTL) was performed using SMR andHEIDI analyses (version
0.710)13 in data repositories from GTEx V771, GTEx brain71, Brain-eMeta
eQTL72, and blood eQTL from Westra73 and CAGE74. Colocalization
analyses were performed to test whether the effect size of the RHR-
associated variants on the phenotype is most likely mediated by gene
expression13. eQTL genes were considered as candidate causal genes if
they achieved a significance after Bonferroni correction for the
amount of eQTLs tested (P <0.05/188,737 = 2.65 × 10−7), passed the
HEIDI test at P >0.05, and if the lead variants of the eQTLgeneswere in
LD (R2 > 0.8) with the RHR-associated genetic variants.

DEPICT analyses. DEPICT was used to find genes associated with
identified variants, enriched gene sets, and tissues in which these
genes are highly expressed. DEPICT.v1.beta version rel137 (obtained
from https://data.broadinstitute.org/mpg/depict/) was used to per-
form integrated gene function analyses as stated above36. DEPICT was
run using all genetic variants that achieved P < 1 × 10−8. Genes were
considered possible candite genes if FDR <0.05, taking into account
multiple hypothesis testing.

Pathway analyses. DEPICT was used to find enriched gene sets using
the settingsdescribedabove36. Enrichedgenesetswere further clustered
on the basis of the correlation between scores for all genes using an
Affinity Propagation method as provided by DEPICT36. Each cluster was
named according to the name of the most central gene set as identified
using the Affinity Propagation method. Identified meta-clusters were
compared to the clusters found in the study of Eppinga et al. and were
determined to be new if not a single cluster within themeta-cluster had
been identified before. Clustering was performed using DEPICT soft-
ware in python 2.775 and visualization using Cytoscape 3.8.076.

Tissueenrichment. DEPICTwasused tofind enriched tissues using the
settings described above36. Enriched tissues were further investigated
by performing conditional analyses to provide evidence for an inde-
pendent association with RHR. The following formula was used:

Tcond =
Z t � ρtsZ s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ρts
2

p ð1Þ

Here,Zt is themaximumZ-valueof all tissueZ-values,Zs a vectorof
all tissue Z-values, and ρts the correlation between the tissue of Zt and
the tissue of Zs

77. The maximum Z-value (Zt) was determined for every
new iteration. Conditional analyses were performed up until the
highestZ-value reached2.585,whichcorresponds to the lowestZ-value
with an FDR <0.05.

ECG morphology. The ECGenetics browser was used to gain insights
into the electrophysiological effect of the RHR-associated genetic
variants14. Detailed information on the methodology can be found in
the study of Verweij et al. and is briefly discussed below. The
ECGenitics browser contains genome-wide summary statistics of the
complete cardiac cycle. The complete cardiac cycle was defined using
two methods, including (a) the signal-averaged electrocardiographic
beat surrounding the R wave at a resolution of 500Hz resulting in 500
averaged data points and (b) R–R intervals corrected signal (made of
equal length of 500 data points).

All RHR-associated genetic variants were tested for their associa-
tion with both the non-normalized and normalized association pat-
terns. A heatmap was constructed containing all associated genetic
variants associated with at least one point on the ECG at a Bonferonni-
corrected P-value of 0.05/493/(500 × 2) = 1 × 10−7. Effects were aligned
to the most positively associated allele across all time points. The
heatmap shows a hue ranging from red (positive effect) to a blue
color (negative effect) color scale, with yellow indicating no effect.
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Secondly, the total effect of the 493 RHR-associated genetic variants
on ECG morphology was assessed using an ECG-wide MR approach
(inverse varianceweightedfixed-effectsmodel) on thenon-normalized
and normalized association pattern.

Single-nucleus RNA expression. All genes prioritized in the current
study were queried in the single-cell data from the study of Tucker
et al. through the Broad Institute’s Single Cell Portal (available at:
https://singlecell.broadinstitute.org/single_cell/study/SCP498/
transcriptional-and-cellular-diversity-of-the-human-heart under study
ID SCP49) to gain insights in their transcriptional and cellular
diversity15.We selected the86genetic variants strongly associatedwith
at least one ECG timepoint.We took forward themost likely candidate
gene per genetic variant, based on the amount of gene identification
strategies by which the gene was identified. When a genetic variant
highlighted multiple genes identified by the same amount of gene
identification strategies, we took forward the gene with the highest
biological plausibility of involvement in RHR biology. A dotted heat-
map was constructed for this subset of genes.

UKBiobankdefinitions. In theUKBiobank,wecaptured theprevalence
and incidence of functional outcomes through data collected at the
Assessment Centre in-patient Health Episode Statistics (HES) and data
on the cause of death from the National Health Service (NHS) Infor-
mation Centre. Prevalence of disease was also based on an interview
with a trained nurse at the baseline visit (self-reported). HES data were
available up to 31-03-2017 for Englishparticipants, 29-02-2016 forWelsh
participants, and 31-10-2016 for Scottish. Information on cause of death
was available for participants from England and Wales until 31-01-2018,
and from the NHS Central Register Scotland for participants from
Scotland until 30-11-2016. Definitions of all-cause mortality, 35 leading
causes of mortality (defined as any cause of mortality with a prevalence
>0.1%), coronary artery disease, myocardial infarction, atrial fibrillation,
stroke (any stroke, any ischemic stroke), heart failure and subtypes
(hypertrophic cardiomyopathy, dilated cardiomyopathy) are provided
in Supplementary Data 15. Longevity was obtained through ques-
tionnaires in which participants were asked to provide the age of death
of both parents. Individuals were excluded in case the answer was older
than 115 years, if they reported themselves as adopted, if their parent
was still alive but not yet long-lived, or if their parent died prematurely
(fathers <46 years or mothers <57 years), in line with previously estab-
lished methods37. Combined parental longevity was assessed by sum-
ming Z-scores of the age of death from both parents if the information
on both parents was provided37. Systolic and diastolic blood pressure
valueswere obtained through two automated and/or twomanual blood
pressure measurements. The average value of all available blood pres-
sure measurements was used per phenotype. Automated measure-
ments were corrected according to the previously described
methodology78. In addition, we corrected systolic and diastolic blood
pressure formedication use, by adding respectively 15 and 10mmHg to
the blood pressure trait79. Pulse pressure was calculated by subtracting
diastolic from systolic blood pressure.

Statistical details of the analyses on functional outcomes are
provided in the “Genetics and regression analyses on functional out-
comes in the UK Biobank” and “Mendelian randomization” sections.

External cohort definitions. External cohorts included the
CARDIoGRAMplusC4D80, AFGen81, MEGASTROKE50, and ICBP-plus19

consortia and descriptions have been detailed previously. Effect sizes
from the ICBP-plus consortium were obtained from the meta-analysis
of the UKBiobank and ICBP-plus, after subtracting the effects from the
UK Biobank (for further details, see the section “Meta-subtract of
blood pressure traits”). An overview of these studies is provided in
Supplementary Data 16. We searched for proxies (LD >0.8) in case
variants could not be found within the outcome datasets.

Quantification and statistical analysis
Genome-wide association studies. All included cohorts performed
genetic variant association analyses on RHR using linear regression
analyses assuming an additive genetic model (Supplementary Data 1).
No transformation of heart rate was performed and extreme (>4 SD)
phenotypic outliers were excluded analogous to previous GWAS
on RHR and as per predefined criteria7. The GWASmodel was adjusted
for age, age2, body mass index, sex, and study-specific covariates (e.g.
principal components, genotyping array, and RHR measuring method
in case multiple RHR methods were used within a study).

The UK Biobank GWAS was performed using BOLT-LMM
v2.3beta2, employing a mixed linear model that corrects for popula-
tion structure and cryptic relatedness82. A total of 484,307 participants
from the UK Biobank remained available for the GWAS after the
exclusion of 14,242 individuals forwhomnogenetic datawas available,
1341 individuals who failed genetic quality control, 1058 individuals
who were outside the 4SD range for RHR, and 1587 individuals due to
missing covariates (Supplementary Data 1).

Study-specific details and methodology of the 99 cohorts of the
IC-RHR are provided in Supplementary Data 1. Several software pro-
grams were used for the analysis, including mach2qtl83, minimac84,
minimac285, IMPUTE286, GEEPACK87, ProbaABEL88, and MMAP89, for
which versiondetails per cohort areprovided in SupplementaryData 1.
A fixed effect meta-analysis using the inverse variance method in
METAL was performed on all 99 cohorts, including up to a total of
351,158 individuals90. Genomic control was applied at the study level by
correcting for the study-specific lambda.

All genetic variants were excluded if they had poor imputation
quality score (Info < 0.3) and effective sample size (Neff) < 25 for the
genetic variants computed as sample size × Info × 2 ×minor allele fre-
quency (MAF)×(1−MAF). After these exclusions, a total of 19,400,415
and 27,082,649 variants remained available for the UK Biobank and IC-
RHR GWAS respectively.

Again, a fixed-effects meta-analysis using the inverse variance
method in METAL was performed to pool the data from the UK Bio-
bank and IC-RHR up to 835,465 participants using ~30M genetic
variants90. LD score regression software (v1.0.0) was used to calculate
linkage disequilibrium score regression intercepts and attenuation
ratios11,12. We corrected for genomic inflation prior to themeta-analysis
by multiplying the standard errors with the square root of linkage
disequilibrium score regression intercepts in the UK Biobank
(1.132 ± 0.017) and the IC-RHR (1.020 ±0.010)11,12.

PLINK (version 1.9) was used to prune genetic variants in a set of
independently associated variants91. An independent genetic variant
was defined as a genome-wide significant genetic variant in low LD
(R2 < 0.005)with another genome-wide significant variantwithin afive-
megabase window. A genetic locus was defined as the most significant
variant in a megabase region at either side of the independent genetic
variant.

A single one-stage replication analysis was performed next. The
following criteria had to be satisfied for a signal to be reported as a
replicated signal for RHR:
1. the sentinel genetic variant has P < 1 × 10−8 in the discovery

(UKB + IC-RHR) meta-analysis;
2. the sentinel genetic variant shows support (P < 0.01) in the UKB

GWAS alone;
3. the sentinel genetic variant shows support (P <0.01) in the IC-RHR

meta-analysis alone;
4. the sentinel genetic variant has the concordant direction of effect

between UKB and IC-RHR datasets;

The sentinel genetic variants were compared with previous loci
from previous GWAS of RHR and were determined novel if located
outside a 1-megabyte distance of previously RHR-associated loci7,8,10.
We selected the P-value thresholds to be an order of magnitude more
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stringent than a genome-wide significance P-value to ensure robust
results and to minimize false positive findings.

Post-hoc quality control. We performed additional analyses to
investigatewhether individualswith a history of cardiovascular disease
or those who took RHR-alteringmedication could influence the results
of the GWAS. The UK Biobank population was stratified by a medical
history of any cardiovascular disease or reported intake of RHR-
altering medication. A history of any cardiovascular disease was
defined according to the definition in Supplementary Data 15. RHR
altering medication was defined as intake of beta-blockers, calcium
antagonists, sotalol, amiodarone, flecainide, anti-depressants, atro-
pine, other anti-cholinergic medication, cardiac glycosides, diuretics,
ACE-inhibitors or angiotensin II receptor blockers, analogous to pre-
vious methods92. Linear regressions on RHR were performed in both
populations, using cluster-robust standard errors with genetic family
IDs as clusters to account for the relatedness among participants.
Exclusions and covariates were similar to those used for the GWAS.
Individuals belonging together based on 3rd-degree or closer as indi-
cated by the kinship matrix (kinship coefficient > 0.0442) provided by
UK Biobank received a family ID. A Chow test was used to investigate
whether there were significant differences in beta estimates in parti-
cipants with and without cardiovascular disease or RHR-altering
medication93. The post-hoc quality control was performed using the
statistical software STATA 15 (StataCorp LP).

Genetics and regression analyses. All of the outcomes assessed in
the UK Biobank that are reported in this manuscript have been
adjusted for age, sex, the first 30 principal components (PCs) to
account for population stratification, and genotyping array (Affyme-
trix UK Biobank Axiom® array or Affymetrix UK BiLEVE Axiom array).
The exclusions were performed according to the above-mentioned
methods for the GWAS of RHR in the UK Biobank. In addition, we
excluded 74,471 individuals based on familial relatedness, after which
412,481 individuals remained available for further analyses.

SNP-outcome associations for all outcomes (see the section “UK
Biobank definitions”) were obtained for all 493 variants with a
P < 1 × 10−8 in the RHR GWAS (see section “Mendelian randomization
analyses”). The associations with all-cause mortality and 35 leading
causes of mortality within the UK Biobank (defined as a prevalence
higher than 0.1%) were obtained using a Cox proportional hazard
model during a median (interquartile range) follow-up of 8.9 (8.2–9.5)
years. The associations with parental longevity was assessed using
linear regression analyses. The associations with both prevalent and
incidence of cardiovascular diseases were assessed using logistic
regression analyses. Cox and linear regressions were corrected for age
at baseline, while the logistic regression analysis was corrected for age
until the last date of follow-up to correctly account for both prevalent
and incident disease.

We performed an in-depth assessment of the association between
RHR and all-cause mortality in the UK Biobank by systematically
altering the differences between the current study and the previous
study from Eppinga et al., which included (a) the set of SNPs, (b) the P-
value threshold for SNP inclusion, (c) the assessment of the outcome in
an independent cohort, and (d) the follow-up length7. Genetic risk
scores for RHR were created following an additive model by summing
the number of alleles (0, 1, or 2) for each individual aftermultiplication
with the effect size for RHR. Genetic risk scores were constructed
using the 493 discovered variants within the full meta-analyses using
the effect sizes of the IC-RHR, the effect sizes of the UK Biobank,
and using the 73 previously discovered variants at five P-value
thresholds (1 × 10−8, 5 × 10−8, 1 × 10−7, 1 × 10−6, 1 × 10−5). These were
transformed to translate to a change of 5 bpm. The associationwith all-
cause mortality was tested using Cox regression analyses in different
populations of the UK Biobank. One population included all

individuals (ncases = 16,289, ncontrols = 396,183). Another population
included a subset of individuals which were genotyped for the UK
Biobank interim release from May 2015, which included in the GWAS
by Eppinga et al. (ncases = 4953, ncontrols = 133,102). The final popu-
lation consisted of a subset of individuals without genetic information
at the time of the UK Biobank interim release, which was therefore not
included in the GWAS by Eppinga et al., ncases = 11,336, ncontrols =
283,081). Please note that sample sizesmight slightly differ from those
in the previous GWAS due to updated exclusions. Lastly, point d) was
taken into account by re-performing above-mentioned steps using
mortality data up until the previously available follow-up (All indivi-
duals, ncases = 7099, ncontrols =405,373; individuals not included
in the GWAS by Eppinga et al., ncases = 5000, ncontrols = 289,417;
and those included in the GWAS by Eppinga et al., ncases = 2099,
ncontrols = 115,956). All regression analyses were performed using the
statistical software STATA 15 (StataCorp LP).

Mendelian randomization analyses. All 493 independent genetic
variants at P < 1 × 10−8 in the final meta-analysis were taken forward in
theMR. Tominimize overlap between exposure and outcome cohorts,
effect sizes were taken from the IC-RHR data to test the associations
with outcomes within the UK Biobank, whereas effect sizes were taken
from the UK Biobank to test the association within other independent
cohorts. Proxies (LD >0.8) were searched in case genetic variants
could not be found within the UK Biobank or IC-RHR. All effect sizes
were transformed to translate to a change in RHR of 5 bpm.

Potential weak instrument bias was assessed by calculating the
F-statistic using the following equation:

F =
R2ðn� 2Þ
1� R2

ð2Þ

In this formula, n is the sample size of the exposure and R2 is the
amount of variance of the exposure explained by the SNP94. R2 was
calculated based on summary statistics using a previously established
formula95. Genetic variants were not excluded from further analyses if
the F-statistic was <10 as this can exacerbate bias by increasing the
chance of winner’s curse38. Exposure and outcome summary statistics
were then harmonized using the TwoSample MR package96. Forward
strand alleles were inferred using allele frequency information and
palindromic SNPs were removed if the MAF was above the recom-
mended setting of 0.4296. MR-Steiger filtering was applied to explore
pleiotropic effects through the assessment of potential reversed cau-
sation. R2 for both the exposure and outcome were calculated and
variants were removed from further analyses if the R2 of the exposure
is significantly lower (P-value < 0.05) than the R2 of the tested
outcome97. R2 for linear traits was calculated as described above95, R2

for binary outcomeswas calculated on the liability scale98. A true causal
direction was assumed if the R2 for binary outcomes was too small to
be correctly estimated. Variants were excluded from further analyses
in case a false causal direction was indicated.

The linear association between genetically determined RHR on all
outcomes was initially assessed using the IVW multiplicative random-
effects method, which provides a consistent estimate under the
assumption of balanced pleiotropy. The Rücker framework was
applied to assess heterogeneity and thus potential pleiotropy within
the MR effect estimates99. A Cochran’s Q P-value of <0.05 was con-
sidered as proof of heterogeneity within the IVW estimate and, as a
consequence, balanced horizontal pleiotropy. An I2 index >25% sup-
ports this conclusion100. The MR-Egger test was performed to
allow SNPs to exert unbalanced horizontal pleiotropy101. The Rücker
framework assesses heterogeneity within the MR-Egger regression
(Rucker’s Q) and calculates the difference between heterogeneity
within the IVW effect estimate (Q–Q’)99. A significantQ–Q’ (P < 0.05) in
combination with a significant non-zero intercept of the MR-Egger
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regression (P < 0.05) was considered an indication of unbalanced
horizontal pleiotropy. We then moved from an IVW model to the MR-
Egger model as initial analysis, as the MR-Egger can provide causal
estimates if SNPs exert unbalanced horizontal pleiotropy under the
assumption that the Instrument Strength Independent of Direct Effect
(InSIDE) assumption holds. Weak instrument bias in the MR-Egger
regression analysis was assessedby I2GX andwas considered to indicate
a low risk of measurement error if larger than 95%102. The MR-Lasso
method was used to find consistent estimates under the same
assumptions as the IVWmethod, but only for the set of genetic variants
not identified as outlier103. Thismethod ismost valuable in the scenario
that a small proportion of the genetic variants is invalid and shows
heterogeneous ratio estimates103. The weighed median approach was
used to provide a consistent estimate if up to half of the variants are
invalid. Finally, we performed the MR contamination mixture method
to provide a consistent estimate if no larger subset of invalid genetic
variants estimates the same causal association than the subset of valid
genetic variants104.

The non-linear associations of genetically predicted RHR with all-
cause mortality and cardiovascular diseases were assessed using a
fractional polynomial method105,106. These associations were assessed
using the UK Biobank as an outcome cohort, considering this was the
largest cohort with individual-level data available to us. Consequently,
we used the independent weights of the IC-RHR meta-analysis to
construct a weighted polygenetic risk score of RHR by summing the
number of alleles (0, 1, or 2) for each individual after multiplication
with the effect size between the genetic variant and RHR. We first
calculate residual RHR by subtracting the results of the regression of
RHR from the polygenetic score of RHR from RHR itself. Covariates of
the regression included age, age2, sex, BMI, genotyping array, and PC1-
PC30, analogous to the GWAS. Residual RHR, which characterizes the
predicted RHR for an individual if their polygenetic score took the
value zero, was then divided into 30 quantiles. Stratifying on residual
RHR rather than total RHR avoids overadjustment and collider bias as
residual RHR is not downstreamof the effect of the genetic variants on
the outcome in a causal diagram. We then calculated the genetic
associations with the exposure in each stratum of residual RHR using
linear regression analyses, correcting for the same covariates as
described above. Two tests for non-linearity in the genetic association
with the exposure (trend and Cochran’s Q tests) were performed to
investigate heterogeneity in the polygenetic score of RHR on residual
RHR in different strata. We then calculated the genetic associations
with the outcome in each stratum. The samemethodologywas used as
described in the section “Genetics and regression analyses”, including
the same covariate model (age, sex, genotyping array, and PC1-PC30)
and regression type (Cox regression for all-causemortality and logistic
regression for cardiovascular diseases). The outcome regression
coefficientwas thendividedby the exposure regression coefficient as a
ratio of coefficients to obtain local average causal effects (LACE) in
each stratum. These localized average causal effects were meta-
regressed against the mean of the exposure in each stratum in a flex-
ible semiparametric framework, using the derivative of fractional
polynomial models of degrees 1 and 2. All possible fractional poly-
nomials of degrees 1 and 2werefitted using the powers −2, −1, 0, 0.5, 1,
2, and 3106. The fractional polynomial of degree 1 is fit to the data if the
fractional polynomial of degree 1 was as good of a fit (P > 0.05) as the
degree 2 as indicated by the likelihood ratio test. Three tests for non-
linearity of the association between genetically predicted RHR and the
outcomes are reported: a trend test, which assesses for a linear trend
among the localized average causal effect estimates, a Cochran’s Q
test, and a fractional polynomial test, which assesses whether a non-
linear model fits the localized average causal effect estimates better
than a linear model. Please note that before fitting the fractional
polynomials, we subtracted 45 from the values of RHR as the most
flexible fit is achieved when the exposure is close to 0 but still positive.

A reference of RHR of 70 bpm was taken as this was close to the mean
RHR of 69.3 bpm. An additional 1390 individuals were dropped com-
pared to the linearMR estimates obtained from theUKBiobank cohort
due tomissing BMI values necessary for the correction of the exposure
regression coefficients.

A multivariable MR approach was used to gain additional insights
into the relationship between RHR (effect sizes of the UK Biobank) and
(subtypes of) stroke from the MEGASTROKE consortium. We used
either atrial fibrillation (AFgen consortium81), systolic blood pressure,
diastolic blood pressure, or pulse pressure (ICBP consortium, please
see the section “Meta-substract of blood pressure traits” for further
details19) as secondary exposures to obtain insights in the direct effect
of RHR on (subtypes of) stroke that are independent of this secondary
exposures107. First, a multivariable MR-IVWmethod was used, in which
for each exposure the instruments are selected and regressed together
against the outcome, weighting for the inverse variance of the
outcome107. Weak instrument bias for any of the exposures was
assessed using Qx1 and Qx2

107. When both are larger than the critical
value on the χ2 distribution, there is little evidence of weak instrument
bias. The critical value on the χ2 distribution was calculated by sub-
tracting one degree of freedom from the amount of SNPs at a P-value
of 0.05.Qa was considered to indicate potential pleiotropywhen larger
than the critical value on the χ2 distribution as calculated by the
amount of SNPs minus two degrees of freedom at a P-value of 0.05107.
Multivariable MR-Egger was performed to allow for unbalanced hor-
izontal pleiotropy108. An MR-Egger intercept with a P-value < 0.05 in
combination with a significantQa was considered proof of unbalanced
horizontal pleiotropy, and consequently the MR-Egger regression to
provide a robust causal estimate108. Multivariable MR-Lasso analysis
was performed as this method provides consistent estimates even
when half of the genetic variants are invalid instruments and display
unbalanced pleiotropy109. We also performed multivariable weighted
median analysis as this type of analysis has been shown to performwell
under higher levels of pleiotropy109. We did not search for proxies in
the multivariable MR setting as this could introduce uncertainty
through different LD patterns between the secondary exposure and
outcomeandwe therefore re-estimate the univariable effect of RHRon
the outcomewith the eligible SNPs to allow for a better comparison of
the results.

We assessed whether the Wald estimates between the RHR-
associated genetic variants and the cardiovascular disease
outcomes could identify risk loci not previously associated with
these outcomes in their respective GWASs. The genetic variants
were considered associatedwith the outcome if (a) theWald estimates
had concordant effects within the UK Biobank as well as either the
CARDIoGRAMplusC4D80, AFGen81, or MEGASTROKE50 cohorts,
(b)when theWald estimateswere significant at a Bonferonni corrected
threshold of P < 1.01 × 10−4, that is, α =0.05 with Bonferroni correction
for a maximum of 493 independent tests, and (c) the genetic variant
did not reach a genome-wide significant threshold of P-value < 5 × 10−8

in either one of the outcome cohorts used in the current study.
MR analyses were performed using R (version 3.6.3), the Two-

SampleMRpackage (version 0.5.3)96, and theMR-Lasso source code103.
The multivariable MR analyses were performed using the MVMR
(version 0.3)107 and MendelianRandomization (version 0.5.1)
packages110. Non-linear MR analyses were performed based on pre-
viously described methods105. For the MR on (subtypes of) mortality,
we considered a liberal two-sided P-value of P <0.05 significant for any
of the outcomes using the IVW-MR random effects model. For the MR
on cardiovascular diseases, we considered a Bonferroni corrected two-
sided P-value for the amount of unique outcomes (P = 0.05/
12 = 4.17 × 10−3) to be significant for the main IVW-MR random effects
analyses, and a two-sided P-value between 4.17 × 10−3 and 0.05 to
indicate suggestive evidence for an association. A two-sided P-value
threshold of P <0.05 was adopted for the sensitivity analyses.
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Meta-subtract of blood pressure traits. We used the MetaSubtract
(version 1.60) package in R to remove the effects sizes of the UK Bio-
bank from the largest bloodpressureGWAS’s to date in order to obtain
the independent effect sizes of the ICBP consortium19,111. Effect sizes for
the UK Biobank were obtained through linear regression analyses
using every RHR SNP available in the UK Biobank as exposure, and
systolic, diastolic, and pulse pressure as outcomes. Covariates inclu-
ded age, age2, sex, BMI, genchip, and PC1-PC30. Cluster-robust stan-
dard errorswith genetic family IDs as clusterswere used to account for
the relatedness among participants. Individuals belonging together
based on 3rd-degree or closer as indicated by the kinship matrix
(kinship coefficient > 0.0442) provided by UK Biobank received a
family ID. To keep the cohort similar to the one used in the study from
Evangelou et al., we excluded those who self-reported as of non-
European ancestry (n = 18,405) and pregnant women (n = 306) from
the 484,307 included in the GWAS, leaving 465,659 individuals for the
analysis19. We note that we did not correct the standard errors for the
genomic inflation reported for the GWASs of blood pressure traits in
the UK Biobank as our linear regression estimates, while resembling
the GWAS data, will not be exactly equal to BOLT-LMM estimates due
to different methodologies82.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All data supporting the findings described in this manuscript are
available in the article and its Supplementary Information files. The
genome-wide summary statistics, excluding the 23andMe data, gen-
erated in this study have been deposited in a Mendeley database
available through https://data.mendeley.com/datasets/9b725x7mvb/
draft?a=f8619d91-5c4d-4e4f-8f44-a73692a332a5. The top 10,000
genetic variants, including the 23 and Me data, can be downloaded
from the same repository. The full GWAS summary statistics, including
23andMe data, will be made available through 23andMe to qualified
researchers under an agreement with 23andMe that protects the
privacy of the 23andMeparticipants. Datasets will bemade available at
no cost for academic use. Please visit https://research.23andme.com/
collaborate/#dataset-access/ for more information and to apply to
access the data. The estimated average review time is 3 months. Once
this has been approved, applicants can send the confirmation to the
lead author of the manuscript to receive the full summary statistics.
The raw data of all cohorts are protected and are not available due to
data privacy laws. Referenced datasets can be obtained through their
respective publications cited in the manuscript, or otherwise be
accessed by the URLs provided below. Referenced data includes
databases from dbNSFP (https://sites.google.com/site/jpopgen/
dbNSFP), public eQTL repositories (https://cnsgenomics.com/
software/smr/#DataResource), GWAS catalog (https://www.ebi.ac.uk/
gwas/home), GeneALacart (https://genealacart.genecards.org/), LD
hub (http://ldsc.broadinstitute.org/), ECGenetics (http://www.
ecgenetics.org), single nucleus RNA expression (https://singlecell.
broadinstitute.org/single_cell/study/SCP498/transcriptional-and-
cellular-diversity-of-the-human-heart#study-summary). Publicly avail-
able GWAS summary statistics were used for the Mendelian randomi-
zation analyses, further information and URLs are detailed in
Supplementary Data 16.

Code availability
The analysis in the currentmanuscriptwasperformedusing previously
published software and code. Further information on scripts and
coding required to reproduce this work is available from the Lead
Contact upon request.
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