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Background: In breast reconstruction, mastectomy and free flaps are susceptible to 
vascular compromise and tissue necrosis. The SnapshotNIR device (Kent Imaging, 
Calgary, AB, Canada) utilizes near-infrared spectroscopy to measure tissue oxygen 
saturation (StO2) and hemoglobin concentration. Here, we report on the use of 
this device for StO2 monitoring among patients receiving alloplastic or autologous 
breast reconstruction.
Methods: Patients receiving immediate alloplastic reconstruction after mastectomy 
or autologous reconstruction were enrolled. Preoperative, intraoperative, and 
postoperative images were taken of the flaps. StO2 and hemoglobin were mea-
sured at the following locations: superior and inferior breast, free flap skin paddle 
(when applicable), and un-operated control skin. Linear mixed effects model for 
repeated measurements was used to model measurements to estimate the area 
effect difference across time, time effect difference across area, and pairwise com-
parisons between two areas at each time point.
Results: Thirty-two breasts underwent alloplastic reconstruction; 38 breasts under-
went autologous reconstruction. No enrollees developed skin necrosis. StO2 was 
highest after mastectomy and closure in alloplastic reconstructions. StO2 was 
observed to decline at follow-up in autologous reconstructions. Mean preopera-
tive StO2 was highest in breasts that had previously undergone mastectomy and 
alloplastic reconstruction.
Conclusions: The SnapshotNIR device detected normal spatial and temporal differ-
ences in tissue oxygenation over the operative course of alloplastic and autologous 
breast reconstruction. A multi-institutional, prospective clinical trial is needed to 
determine the sensitivity and specificity of this device for detecting skin flap necrosis. 
(Plast Reconstr Surg Glob Open 2023; 11:e5113; doi: 10.1097/GOX.0000000000005113; 
Published online 11 July 2023.)

William R. Moritz, MD
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INTRODUCTION
Both alloplastic and autologous breast reconstruc-

tion carry the risks of malperfusion and tissue necrosis. 
During mastectomy, resection of native breast tissue 
removes the deep blood supply to the skin overlying the 
breast resulting in relative hypovascularity. Mastectomy 

flap necrosis can occur in up to 20% of alloplastic recon-
structions after simple mastectomy.1 These rates can be 
even higher in skin- or nipple-sparing mastectomy.2–7 In 
alloplastic reconstruction, tissue expander overfilling 
can put the flaps under tension, further reducing perfu-
sion.5 Autologous reconstructions carry the additional 
risk of total flap failure from occlusion of the vascular 
pedicle8 or fat necrosis from hypoperfusion of flap tis-
sue.9 Patient-specific factors such as smoking status, dia-
betes, mastectomy technique, flap thickness, and flap 
length can influence an individual’s risk of necrosis.7,10 
This heterogeneity can make it difficult to assess indi-
vidual patient risk of flap necrosis. Clinical assessment 
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is widely relied upon when evaluating flap tissue perfu-
sion. However, clinical assessment alone can be inad-
equate for predicting free flap failure and mastectomy 
flap necrosis.11–13 For these reasons, more objective 
methods of evaluating flap perfusion have entered the 
clinical space.

Systems utilizing laser-assisted fluorescein or indo-
cyanine green angiography, like SPY Elite (Stryker, 
Kalamazoo, Mich.), have been frequently adopted as 
intraoperative perfusion assessment tools. Utilizing an 
intravenous dye injection, these systems facilitate real-
time perfusion assessment, allowing surgeons to identify 
and resect at-risk tissues. These systems have been shown 
to be effective at detecting and preventing mastectomy 
flap necrosis4,14–20 and free flap fat necrosis.9,21 However, 
laser-assisted angiography is costly. In addition to the 
price of equipment, which can amount to $300,000 for 
a single system,22 the estimated per-use cost can be $650 
per patient, depending on the institution (price estimates 
for USA).17 This may be cost-prohibitive for some health-
care systems. Additionally, the equipment can be bulky; 
the systems are primarily used in the operating room; 
and intravenous dye can cause allergic reactions in some 
patients.23

Near-infrared spectroscopy (NIRS)-based systems are 
potentially useful tools for tissue perfusion assessment24 
and have been deployed in the clinical setting for several 
years.13,25,26 These systems utilize near-infrared light to 
assess tissue oxygen saturation (StO2). Continuous periph-
eral free flap monitors utilizing NIRS technology, like the 
T.Ox (ViOptix Inc., Newark, Calif.), allow for continuous 
noninvasive perfusion monitoring and have been shown 
to have excellent sensitivity and specificity for vascular 
compromise.27 However, these devices are most commonly 
used for free flap monitoring during the early postopera-
tive period and for sampling a small area of tissue. There 
has been new interest in adapting NIRS technology for 
handheld tools that allow clinicians to rapidly evaluate tis-
sue perfusion at the point-of-care. The handheld Intra.Ox 
(ViOptix Inc., Newark, Calif.) has detected significant dif-
ferences in tissue oxygenation saturation associated with 
risk for flap necrosis in preclinical studies.28,29 However, 
both T.Ox and Intra.Ox measure StO2 at a single point of 
interest and do not allow users to appreciate oxygenation 
patterns across an entire flap.

The SnapshotNIR (Kent Imaging, Calgary, AB, 
Canada)  addresses a limitation of current NIRS-based 
systems by combining NIRS with imaging technology to 
evaluate patterns of tissue oxygenation within a wide area 
of interest. This allows surgeons to evaluate perfusion dif-
ferences over a wider area than possible with the existing 
ViOptix devices. During image capture, SnapshotNIR pro-
duces a red, green, and blue image, an image depicting 
StO2 measurements within every pixel, and three hemo-
globin reflectance images (oxyhemoglobin, deoxyhemo-
globin, and total hemoglobin). The device is handheld, 
lightweight, instantaneous, and easy to use, allowing for 
its use in the operating room, hospital floor, or clinic. 
Unlike traditional clinical examinations, SnapshotNIR 
provides an objective means to evaluate oxygenation. It is 

significantly cheaper than the laser-assisted angiography 
systems and has no per-use cost. Additionally, measure-
ments are not confounded by ambient temperature or 
humidity, as with thermal imaging systems like FLIR ONE 
(FLIR Systems, Inc., Wilsonville, Oreg.).30,31 Previous work 
has shown it not to be inferior to laser-assisted indocyanine 
green angiography at predicting skin flap necrosis in a rat 
model32 and it can detect oxygenation differences in tis-
sues that go on to develop skin flap necrosis in the clinical 
setting.22 In this prospective study, we used SnapshotNIR 
to detect oxygenation differences observed throughout 
the course of alloplastic and autologous reconstruction.

METHODS

Patients
Institutional review board approval was obtained (IRB 

#: 202103145) to recruit adult patients undergoing breast 
reconstruction at the Washington University School of 
Medicine (St. Louis, Mo.). Patients receiving immediate 
reconstruction with tissue expanders or implants after 
mastectomy (alloplastic reconstruction) or those under-
going free flap reconstruction were recruited for study 
participation. There were no exclusion criteria outside 
of patients who did not consent to be part of this study. 
Written consent was obtained from all participants, includ-
ing consent for photography.

Study subjects were imaged throughout the course 
of their care. When alloplastic reconstruction was per-
formed, images were then taken at the following time 
points: (1) preoperatively and intraoperatively, (2) after 
mastectomy, (3) after implant or tissue expander place-
ment and closure, and (4) at a follow-up visit within 6 
weeks of surgery. When autologous reconstruction was 
performed, mastectomy flaps and free flaps were imaged 
at the following time points: (1) preoperatively and intra-
operatively, (2) after vascular anastomosis, (3) after clo-
sure, and (4) at a follow-up visit within 6 weeks of surgery. 
Clinical care decisions were based solely on clinical evalu-
ation. The surgeons and clinical team were blinded to the 
SnapshotNIR device measurements. All images were taken 

Takeaways
Question: Can the SnapshotNIR detect spatial and tem-
poral differences in tissue oxygenation over the intraoper-
ative and postoperative period among patients receiving 
breast reconstruction?

Findings: No patients developed skin flap necrosis. Tissue 
oxygen saturation and oxyhemoglobin were highest after 
mastectomy and closure in alloplastic reconstruction. 
Tissue oxygen saturation declined at follow-up in autolo-
gous reconstructions.

Meaning: Tissue oxygen saturation variations reported 
here reflect normal physiologic responses to breast recon-
struction and could contextualize abnormal-appearing 
changes in oxygenation observed by physicians hoping to 
deploy this device in their surgical practice.
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by a member of the research study not involved in clinical 
decision-making. Patient demographics were recorded, 
and postoperative complications (mastectomy flap necro-
sis, surgical site infection, seroma, hematoma, wound 
dehiscence, and implant exposure) were monitored for 6 
weeks after reconstruction.

Image Capture
Images were captured with the SnapshotNIR system 

(Kent Imaging Inc, Calgary, AB, Canada) by holding the 
device parallel to the surgical site at a distance of 30 cm, 
allowing the user to assess the perfusion characteristics 
within a 15 cm × 20 cm field of view. The SnapshotNIR sys-
tem automatically takes a digital color picture at the same 
time as that of the StO2 image, and both images are spa-
tially matched.

Image Analysis
A blinded reviewer (W.R.M.) selected areas of the 

color images for analysis. If patients underwent a nip-
ple-sparing mastectomy, and the nipple areola complex 
(NAC) was preserved throughout enrollment, measure-
ments were taken in the following areas: (1) superior to 
the NAC and (2) inferior to the NAC (Fig.  1A). If the 
patient underwent a skin-sparing mastectomy, simple 
mastectomy, or modified radical mastectomy, measure-
ments were taken from (1) the superior (above the inci-
sion) and (2) inferior skin flaps (Fig. 1B). If a vertical or 
inframammary incision was utilized for the mastectomy, 
measurements were taken at the superior and inferior 
portions of the breast pocket. This was consistent in both 
alloplastic and autologous reconstruction. Measurements 
of flap skin were taken at (1) the donor site (preopera-
tive) and (2) the recipient site (anastomosis, closure, fol-
low-up). Control areas were defined as areas not affected 
by the procedure and with similar tissue tone and quality. 
Within each area of interest on the color image, three 
locations were chosen for measurement. Areas of skin 
that were shadowed, reflective, or otherwise obscured 

were avoided. Measurements within each area of inter-
est were averaged. Measurements included StO2, deoxy-
hemoglobin (deoxyHb), oxyhemoglobin (oxyHb), and 
total hemoglobin (total Hb).

Statistical Analysis
Linear mixed effects model for repeated measure-

ments was used to model measurements (StO2, total 
Hb, oxyHb, and deoxyHb) with effect of area, time, and 
area*time interaction to estimate the area effect differ-
ence across time, time effect difference across area, and 
pairwise comparisons between two areas at each time 
point. For StO2 values, the least square mean for the area 
difference averaged across time and averaged across area 
were derived with standard error and P value. For all mea-
surement values, the least square mean for the difference 
between areas at each individual time point were derived 
with P values and adjusted P values using Tukey-Kramer 
Adjustment. For visualization, the least square mean esti-
mate of each area and associated 95% confidence inter-
val were plotted. Statistical analysis was performed by the 
Washington University Biostatistics Core (St. Louis, Mo.).

Post-hoc subgroup analysis of preoperative StO2 mea-
surements was also performed. Breasts scheduled to receive 
autologous or alloplastic reconstruction were separated 
into the following subgroups: (1) breasts that had not pre-
viously undergone mastectomy (Native Breast Tissue), (2) 
breasts that had previously undergone mastectomy without 
reconstruction (+Mast, -TE/Imp), and (3) breasts that had 
previously undergone mastectomy with implant or tissue 
expander placement (+Mast, +TE/Imp). A Shapiro-Wilks 
test was used to determine normality. An ordinary one-way 
ANOVA was used for pairwise comparisons of preoperative 
StO2 measurements. Results were reported as mean and SD.

RESULTS
A total of 42 individuals were enrolled in this study 

between July 2021 and July 2022. One individual received 

Fig. 1. Measurement selection. two preoperative images are shown. three measurements are taken 
within three areas of interest: superior (Sup, red), inferior (inf, blue), and unoperated control skin (ctl, 
black). a, if patients underwent a nipple-sparing mastectomy and the nac was preserved throughout 
enrollment, measurements were taken in the following areas: (i) superior to the nac, (ii) inferior to the 
nac. B, if the patient underwent a skin-sparing mastectomy, simple mastectomy, or modified radical 
mastectomy, measurements were taken from (i) the superior (above the incision) and (ii) inferior skin 
flaps. control areas were defined as areas not affected by the procedure and with similar tissue tone 
and quality. Skin that was shadowed, reflective, or otherwise obscured was avoided.
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alloplastic reconstruction, and then autologous recon-
struction, and was enrolled twice, once for each type of 
reconstruction (43 enrollees). One enrollee could not 
be imaged on the day of surgery and was removed from 
the study. Images taken from three enrollees could not be 
analyzed due to high skin melanin content (Fitzpatrick 5). 
The newer algorithm on the SnapshotNIR device includes 
melanin correction; however, the algorithm on the device 
was continuously being improved throughout the study 
period and, for consistency, the data from these subjects 
could not be included in analysis.

Of the remaining 39 enrollees, 18 underwent allo-
plastic reconstruction on 32 breasts; 21 underwent free 
autologous free flap reconstruction in 38 breasts with 39 
flaps. (See tables, Supplemental Digital Content 1, which 
displays (A) demographics and (B) number of aver-
aged measurements taken by region and time point. (C) 
Statistical analysis between areas of interest at each time 
point for StO2, total Hb, oxyHb, and deoxyHb measure-
ments. (D) Influence of prior mastectomy (Mast) and 
alloplastic reconstruction (TE/Imp) on preoperative 
StO2 measurements (mean ± SD). http://links.lww.com/
PRSGO/C651.) One autologous reconstruction was per-
formed using two transverse upper gracilis flaps to the 
internal mammary artery. All other autologous recon-
structions were performed with singular deep inferior epi-
gastric perforator or transverse rectus abdominis flaps. All 
free flaps included a cutaneous component. All remain-
ing subjects had Fitzpatrick scores of one to three. There 
were no instances of skin necrosis. There was one instance 
of fat necrosis (Table  1). Averaged measurements were 
obtained from each region of interest when possible. The 
number of averaged measurements per area of interest 
can be found in Supplemental Digital Content 1B. (See 
tables, Supplemental Digital Content 1, http://links.lww.
com/PRSGO/C651.)

During alloplastic and autologous reconstructions, 
measurements from the SnapshotNIR device varied across 
time. Given that there were no instances of skin flap 
necrosis, the measurement variations were not indicative 
of underlying physiologic issues. For both types of recon-
struction, when averaged across time, the StO2 values of 
the control area were significantly lower than superior 
and inferior areas (Figs. 2–4). For alloplastic reconstruc-
tions, when averaged across area, StO2 measurements 
were higher postmastectomy and after closure compared 

with measurements taken preoperatively and at follow-up 
(P < 0.0001). For autologous reconstruction, when aver-
aged across area, the StO2 values at follow-up were sig-
nificantly lower than at earlier timepoints (P < 0.0001). 
Statistical analysis between areas at each time point can be 
found in Supplemental Digital Content 1C. (See tables, 
Supplemental Digital Content 1, http://links.lww.com/
PRSGO/C651.)

Post-hoc subgroup analysis of preoperative StO2 mea-
surements demonstrated that preoperative StO2 was sig-
nificantly higher in breasts that had undergone implant 
or tissue expander placement after a previous mastectomy 
(Fig.  5). (See tables, Supplemental Digital Content 1, 
http://links.lww.com/PRSGO/C651.)

DISCUSSION
The purpose of this study was to report on chang-

ing oxygenation patterns seen in breast reconstruction 
to guide surgeons interested in using the SnapshotNIR 
device as a noninvasive adjunct for clinical evaluation of 
tissue oxygenation. Early detection of vascular compro-
mise remains an important goal for breast reconstruction. 
Here, we present the use of NIRS-based technology for tis-
sue perfusion monitoring throughout the course of oper-
ative care. This device has been previously shown to detect 
oxygenation differences in chronic wounds,33–35 critical 
limb ischemia,36 and skin flap necrosis.22,32 Additionally, it 
is affordable, small and lightweight, does not require an 
intravenous dye (as with laser-assisted angiography), and 
can be used as frequently as desired without a necessary 
washout time. Our study reports on the expected changes 
in oxygenation, as measured by the SnashotNIR device, 
throughout the course of surgical care after mastectomy 
and breast reconstruction.

Patients undergoing mastectomy and immediate 
alloplastic breast reconstruction, or autologous recon-
struction were prospectively enrolled in this study. To 
evaluate changing perfusion patterns observed over 
operative care, SnapshotNIR was used to image breast 
and free flap tissue before, during, and after mastec-
tomy and/or reconstruction. Preoperatively, breasts that 
had undergone prior mastectomy and alloplastic recon-
struction exhibited a higher mean StO2 than those that 
had not yet undergone mastectomy or those that had 
undergone mastectomy without reconstruction. These 
findings may be explained by angiogenesis secondary to 
tissue expansion.37 In alloplastic reconstructions, mas-
tectomy flap StO2 increased after mastectomy, remain-
ing elevated throughout the operation but returning to 
baseline at follow-up. This mirrors an observed increase 
in oxyhemoglobin measurements. Superior and infe-
rior StO2 and oxyhemoglobin measurements were sig-
nificantly higher than control tissue intraoperatively. 
These changes could reflect transient cutaneous vaso-
dilation after mastectomy. Alternatively, observed eleva-
tions in oxyhemoglobin and StO2 could stem from poor 
venous drainage rather than from elevated arterial 
flow. Resection of the deep and superficial veins of the 
breast during mastectomy may result in transient venous 

Table 1. Complications (by Breast)

Complication 
Alloplastic  

(N = 32), n (%) 
Autologous  

(N = 38), n (%) 

Skin necrosis 0 0
Cellulitis 0 1 (2.6)
Contact dermatitis 2 (6.3) 0
Dehiscence 0 5 (13.2)
Epidermolysis 2 (6.3) 1 (2.6)
Hematoma 1 (3.1) 0
Fat necrosis 0 1 (2.6)
Seroma 1 (3.1) 0
Surgical site infection 4 (12.5) 0

http://links.lww.com/PRSGO/C651
http://links.lww.com/PRSGO/C651
http://links.lww.com/PRSGO/C651
http://links.lww.com/PRSGO/C651
http://links.lww.com/PRSGO/C651
http://links.lww.com/PRSGO/C651
http://links.lww.com/PRSGO/C651
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congestion, which may normalize over the postopera-
tive period as arterial flow adapts to the new metabolic 
demands of the remaining breast tissue and skin. These 
transient increases in StO2 could mask obvious hypoper-
fusion in flaps at risk of developing necrosis. To evalu-
ate a tissue’s risk of necrosis, it may be important for 
surgeons to consider the expected oxygenation patterns 
at the time of imaging, as these tissues may only exhibit 
relative hypoperfusion.

For autologous reconstructions, we did not observe 
the same significant increase in mastectomy flap StO2 
between images taken preoperatively and at closure, aver-
aged over area. However, superior mastectomy flap StO2 
was higher than control tissue before surgery, after anasto-
mosis, and at closure. As most autologous reconstructions 
were second-stage procedures, the elevated preoperative 
StO2 is likely related to preoperative tissue expansion or 
implant placement. Additionally, we observed a significant 
decrease in StO2 between closure and follow-up imaging 
averaged over area. This corresponded with a significant 
increase in deoxyhemoglobin. As neither mastectomy flaps 
nor free flaps exhibited obvious signs of venous conges-
tion at follow-up imaging, and because we observed a simi-
lar increase in control deoxyhemoglobin over this same 

time interval, it is possible that these observed changes 
reflect differences in skin temperature. We observed no 
instances of skin flap necrosis in either autologous or allo-
plastic reconstructions. We hypothesize that the changes 
in tissue oxygenation detected by the SnapshotNIR device 
in this study reflect normal physiology.

Although no patients enrolled in the study developed 
skin flap necrosis, the SnapshotNIR device did identify 
perfusion changes intraoperatively and at follow-up for 
one patient who developed fat necrosis. This patient was 
a 52-year-old woman who presented for a prophylactic, 
unilateral skin-sparing mastectomy with immediate deep 
inferior epigastric perforator flap–based reconstruction. 
She had a BMI of 38.79 kg/m2 and was a former smoker. 
Preoperative measurements taken at the flap donor site 
showed an StO2 of 53%. This study was observational, and 
the surgeon was blinded to all measurements. After micro-
vascular anastomosis, the flap appeared pale and cool to 
the touch. The SPY Elite system revealed absent perfusion; 
images taken by SnapshotNIR also reflected poor perfu-
sion, with low StO2 and oxyhemoglobin measurements. 
(See figure, Supplemental Digital Content 2, which dis-
plays the color (RGB) and StO2 images following vascu-
lar anastomosis, after closure, and at follow-up following 

Fig. 2.  Oxygenation time course of alloplastic mastectomy flaps. in alloplastic mastectomy flaps, changes in (a) StO2, (B) total hemoglobin 
(c) deoxyhemoglobin, and (D) oxyhemoglobin during operative care and follow-up in the superior (pink) and inferior (blue) skin flaps 
and control, un-operated (black) tissue (least square mean ± 95% ci). Significant differences in pairwise comparisons are labeled (****P < 
0.0001, ***P < 0.001, **P < 0.01, *P < 0.05).
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autologous reconstruction. Three weeks after the follow-
up images, the breast developed liquefactive fat necrosis. 
http://links.lww.com/PRSGO/C652.)

Improvements in perfusion and oxygenation were 
observed with the SPY Elite and SnapshotNIR after flap 
repositioning. After closure, SnapshotNIR showed free flap 
oxygenation comparable to control tissue. Physical exami-
nation at the patient’s follow-up visit 1 week later revealed 
a healthy, well-perfused flap. However, images captured 
by SnapshotNIR indicated poor perfusion, with low StO2 
and oxyhemoglobin measurements. Three weeks later, the 
patient developed fat necrosis, requiring revision surgery. 
Although further research is required to determine if this 
device can predict fat necrosis in this context, this case 
illustrates one way that the SnapshotNIR device may be 
used for clinical evaluation in the future: identifying isch-
emia in the operating room and detecting at-risk tissues 
in the clinic before necrosis develops. Skin and fat have 
different metabolic demands, and monitoring each tissue 
type is of clinical importance with many flaps. Noninvasive 
imaging technologies like the SnapshotNIR may offer a 
cost-effective method of evaluating flaps for fat necrosis, 
a possibility that should be explored with future research.

This study builds on the literature describing the use 
of this device in breast reconstruction. In 2020, Hill et 

al found that the intraoperative StO2 measurements of 
necrotic skin flaps were 17.5% lower than unoperated 
control tissue from the same patients.22 Tissues at risk 
of necrosis had intraoperative StO2 measurements 6.9% 
lower than control tissue. However, only 52% of these 
flaps were mastectomy flaps, and intraoperative StO2 was 
only reported for flaps that eventually developed necrosis. 
We cannot determine if similar differences in StO2 were 
observed in flaps that did not develop necrosis. As we have 
demonstrated in this article, SnapshotNIR detects oxygen-
ation differences both spatially and over time in healthy 
tissue. To predict skin flap necrosis, surgeons will need 
to differentiate these normal changes in perfusion from 
the abnormal changes that may indicate risk of necrosis. 
To date, no study has reported the expected changes in 
oxygenation detected by this device after mastectomy and 
breast reconstruction. In the absence of this information, 
changes in tissue oxygenation might be misinterpreted as 
signs of malperfusion. As the body of literature describing 
the use of SnapshotNIR in breast reconstruction contin-
ues to grow, the findings presented here will help guide 
surgeons as they integrate the device into their practice.

A limitation of this study is that StO2 can be confounded 
by melanin content, meaning that our results may not be 
generalizable to the entire population. Images from three 

Fig. 3. Oxygenation time course of autologous mastectomy flaps. in autologous mastectomy flaps, changes in (a) StO2, (B) total hemoglo-
bin (c) deoxyhemoglobin, and (D) oxyhemoglobin during operative care and follow-up in the superior (pink) and interior (blue) skin flaps 
and control, un-operated (black) tissue (least square mean ± 95% ci). Significant differences in pairwise comparisons are labeled (****P < 
0.0001, ***P < 0.001, **P < 0.01, *P < 0.05).

http://links.lww.com/PRSGO/C652
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individuals with high Fitzpatrick scores could not be ana-
lyzed due to limitations of the device. Ongoing research is 
focused on improving the device’s ability to accurately mea-
sure StO2 across all skin types. Our future work will focus 
on deploying this device in other surgical scenarios when 
risk of skin flap necrosis is high, such as breast reduction. 
Furthermore, a multi-institutional, prospective clinical 
trial is needed to determine the sensitivity and specificity 
of this device for detecting skin flap necrosis.

CONCLUSIONS
Early detection of ischemia, venous congestion, and 

necrosis is an essential component of the postoperative 
period after breast reconstruction. SnapshotNIR allows 
for point-of-care perfusion assessment. It is fast, easy 
to use, and relatively inexpensive. Here, we report the 
changes in oxygenation, as measured by the SnapshotNIR 
device, observed throughout the course of surgical care 
for patients undergoing successful alloplastic and autolo-
gous reconstruction. This device may be a useful clinical 
tool for reconstructive surgeons, and further research 
is warranted to determine its ability to detect skin flap 
necrosis.

Fig. 4. Oxygenation time course of autologous free flaps. in autologous free flaps, changes in (a) StO2, (B) total hemoglobin, (c) deoxyhe-
moglobin, and (D) oxyhemoglobin during operative care and follow-up in the free flap (pink) and control, un-operated (black) tissue (least 
square mean ± 95% ci). Significant differences in pairwise comparisons are labeled (****P < 0.0001, ***P < 0.001, **P < 0.01, *P < 0.05).

Fig. 5. Preoperative oxygenation comparison. Preoperative StO2 
measurements of the (a) superior and (B) inferior breast regions 
(mean ± SD; ****P < 0.0001, *P < 0.05).
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