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ARTICLE

Genetic characterization of primary and metastatic
high-grade serous ovarian cancer tumors reveals
distinct features associated with survival
Emilee N. Kotnik 1,2,3, Mary M. Mullen1,2,3, Nicholas C. Spies3,4, Tiandao Li 5, Matthew Inkman 6,

Jin Zhang 6, Fernanda Martins-Rodrigues 7, Ian S. Hagemann 1,2,3,4, Carolyn K. McCourt1,2,3,

Premal H. Thaker1,2,3, Andrea R. Hagemann1,2,3, Matthew A. Powell1,2,3, David G. Mutch1,2,3, Dineo Khabele1,2,3,

Gregory D. Longmore 7,8, Elaine R. Mardis 9, Christopher A. Maher 7,10,11,12, Christopher A. Miller7 &

Katherine C. Fuh 1,2,3,13✉

High-grade serous ovarian cancer (HGSC) is the most lethal histotype of ovarian cancer and

the majority of cases present with metastasis and late-stage disease. Over the last few

decades, the overall survival for patients has not significantly improved, and there are limited

targeted treatment options. We aimed to better characterize the distinctions between pri-

mary and metastatic tumors based on short- or long-term survival. We characterized 39

matched primary and metastatic tumors by whole exome and RNA sequencing. Of these, 23

were short-term (ST) survivors (overall survival (OS) < 3.5 years) and 16 were long-term

(LT) survivors (OS > 5 years). We compared somatic mutations, copy number alterations,

mutational burden, differential gene expression, immune cell infiltration, and gene fusion

predictions between the primary and metastatic tumors and between ST and LT survivor

cohorts. There were few differences in RNA expression between paired primary and meta-

static tumors, but significant differences between the transcriptomes of LT and ST survivors

in both their primary and metastatic tumors. These findings will improve the understanding of

the genetic variation in HGSC that exist between patients with different prognoses and better

inform treatments by identifying new targets for drug development.
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H igh-Grade Serous Cancer (HGSC) of ovary, fallopian tube,
or peritoneum is the most lethal ovarian cancer histotype
and the second most common gynecologic malignancy1,2.

Over the past few decades, chemotherapy has been the standard
of care, yet overall survival (OS) has not significantly improved3,4.
PARP inhibitors, which target base-excision DNA repair
mechanisms and cause genetic lethality in tumors of patients
harboring BRCA1 or BRCA2 mutations or homologous recom-
bination deficiencies, can be used as maintenance therapies, but
are only applicable for ~ 50% of HGSC patients5,6. The majority
of cases, about 80%, present with late-stage disease, when the
tumor has already metastasized3,4,7. These patients have only a
29.2% chance of surviving longer than 5 years4. Therefore, to
improve patient survival, we sought to better characterize the
genomic and transcriptomic landscapes of matched primary and
metastatic ovarian cancers and to identify novel targets for drug
development, especially in a more aggressive metastatic disease
setting.

Large-scale tumor characterizations, by consortia such as The
Cancer Genome Atlas (TCGA), have established that primary
HGSC tumors harbor ubiquitous TP53 mutations and copy
number alterations, and a low prevalence of other recurrently
mutated genes8. Prior genomic studies of ovarian cancers have
only included large numbers of primary tumors rather than
comparing matched primary and metastatic disease in the context
of outcomes. A recent study, Yang et al., characterized clinical
and genomic features from HGSC primary tumors that correlated
with short-term (ST, OS < 2 years) and long-term (LT, OS > 10
years) survival9. While this study does provide evidence that there
are clinical and genomic characteristics unique to patient survival
in primary tumors, metastatic tumors were not included. Study
design is further nuanced by the context of survival duration,
since exceptional survivors (>10 years of survival), have a high
prevalence of BRCA mutations, and are known to respond well to
standard therapy10. One study has examined genomic and tran-
scriptomic sequencing from matched primary and metastatic
tumors in the context of response to chemotherapy or surgical
resection11. Another study identified a transcriptome signature
that distinguished between primary and metastatic tumors but
did not relate this to survival12.

Here, we sought to determine whether there are unique fea-
tures in the genomes and transcriptomes of metastatic tumors
from short-term survivors when compared to their matched
primary tumors and/or to primary/metastasis paired tumors from
long-term survivors. Our cohort design examines these differ-
ences between tumors from patients within the median survival
time for ovarian cancer13. In this context, we compared somatic
variants, copy number alterations, mutational burden, differential
expression, immune cell infiltrates, and gene fusion predictions
between chemo naïve primary and metastatic tumors from 23
HGSC short-term (ST, OS < 3.5 years) survivors and 16 HGSC
long-term (LT, OS > 5 years) survivors using whole-exome
sequencing (WES) and RNA sequencing (RNA-seq).

Results
Characterization of genomic landscape. We compared somatic
variants, copy number alterations, and mutational burden between
the primary and metastatic tumors of the ST and LT survival
groups. Our cohort of patient tumors exhibited characteristics
typical of those seen in previously sequenced HGSC tumors, such
as nearly ubiquitous TP53 mutations, high numbers of copy
alterations, and a low number of recurrently mutated genes
(Fig. 1a, b). As was found in the Yang et al. study, our cohort of LT
survivors also exhibited a significantly greater mutational burden
than the ST survivors (Mann–Whitney–Wilcoxon test statistic=

611, p-value= 5.1e-6)9. There was no statistical difference
between the mutational burden of paired primary and metastatic
tumors (MW stat= 611, p-value= 0.4299) (Fig. 2c).

Interestingly, in comparison to recurrently mutated genes
identified in the TCGA cohort, we also observed that RB1
mutations were found only in primary and metastatic tumors of
LT survivors. This is a finding consistent with studies analyzing
exceptional HGSC survivors8,14. CDK12 was only mutated in the
LT survivors. We confirmed previously published findings that
tumors of LT survivors were more likely to have BRCA1
alterations and copy-altered segments when compared to ST
survivors9. In total, we identified an average of 723 somatic
mutations per LT survivor (10,124 SNVs total/14 patients) and an
average of 591 somatic mutations per ST survivor (13,599 SNVs
total/23 patients). Four patients exhibited somatic BRCA1
mutations with VAF > 30 (Supplementary Table 2). Six patients
exhibited germline BRCA1 mutations and 1 LT survivor had a
benign germline BRCA2 mutation (VAF > 30), all of which had
mixed ClinVar-based clinical interpretations of pathogenic
significance (Supplementary Tables 3 and 4)15.

We applied Classification of Ovarian Cancer signatures to our
dataset and observed no statistically significant differences based
on survivorship or tumor type among the signatures. The most
prevalent signatures among our cohort were Mesenchymal and
Differentiated (Fig. 1b)16. To compare the types of variants found
in each of the tumors, we calculated the percentage of total
variants identified in each patient that can be contextualized by
the human cancer mutational signatures17,18. In our cohort, the
most common signatures were for 5- methylcytosine deamina-
tion, mismatch repair, and double-strand break repair, along with
a large number of mutations contributing to the unknown
signature. There were no statistically significant differences
between the signature percentages when comparing matched
primary and metastatic tumors or ST and LT survivors. However,
there is a higher percentage contribution to the mismatch repair
signature in LT survivors compared to ST survivors, although not
statistically significant (Supplementary Fig. 4). We also calculated
percentages of the mutational nucleotide transitions and
transversions. Transitions from C > T account for the largest
percentage of total mutations in most of the tumor samples. The
percent of total mutation ratios remain relatively the same
between the primary and metastatic tumors in the majority of
patients, but large shifts in the mutational transitions and
transversions can be seen in Patients 15, 20, 30 and 34. There
were no statistically significant differences when comparing the
mutational percentages of transitions and transversions between
ST and LT survivors and primary and metastatic tumors
(Supplementary Fig. 5).

ST survivors exhibited a higher percentage of shared variants.
For each patient, we calculated the percentage of called variants
that were unique to the primary or to the metastatic tumor, or
were shared between the two tumors. We observed that there
were higher percentages of shared variants between the primary
and metastatic tumors for ST survivors compared to LT survi-
vors, although this was not statistically significant (MW statis-
tic= 117.0, p-value= 0.0866) (Fig. 2a, b). Of note, all of our LT
survivor samples were FFPE whereas the ST survivors included
FF specimens. There was no FFPE/FF specific variant filtering
applied in our variant calling pipeline, but each sample
did undergo quality control and log-likelihood ratio (LLR) fil-
tering (https://github.com/genome/docker-somatic-llr-filter/blob/
master/somatic_llr_filter.py). Thus, the differences seen in the
number of shared variants of the ST and LT cohorts could be
affected by FFPE artifacts from sample preparation.
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Within our cohort, all but 2 patients had tumors that harbored
TP53 variants (Supplementary Table 5). Of the 35 patients that
carried TP53 mutations, all but one patient shared the same TP53
mutation between their primary and metastatic tumor and 4
patients carried multiple TP53 mutations. The majority of TP53
mutations were missense or frame-shift deletions within the
DNA-binding domain. One known hotspot mutation, R273H,
was present in 3 patients, 2 of which were ST survivors. The 2 ST
survivors that harbored this hotspot mutation had an overall
survival ranging between 17-19.6 months, whereas the LT
survivor lived more than 147 months after their diagnosis. In
the TCGA-OV patient cohort, 2% (11/489) of tumor samples also
had the TP53 R273H mutation, compared to the 8% (3/37) in our
cohort8,19,20.

LT survivors exhibited more copy number alterations. Con-
cordant with findings from the TCGA-OV project, CNAs were
abundant in these data, with CNAs observed in every sample, and
the number of copy-altered segments ranged from 33 to 739, with
segment lengths ranging from 3636 to 229,754,969 nucleotides.
The average segment length was 3,997,903 nucleotides (Supple-
mentary Fig. 1a–c)8. The LT survivors had a greater proportion of
copy-altered segments (p= 0.03, 95% CI 0.004 to 0.11), driven by
a greater proportion of amplifications (p= 0.01, 95%CI 0.01–0.1).
There was no significant difference between primary tumor
samples and metastases, nor were there significant differences in
mean estimated ploidy between groups.

We identified recurrent CNAs in our cohort overall and
subsets of the ST survivors, LT survivors, primary tumors, and
metastatic tumors (Supplementary Fig. 2a–c)21. Overall, our
cohort exhibited a total of 254 recurrent copy-altered segments,
including 85 amplified segments and 169 deleted segments with a
90% confidence interval. We identified 2333 genes within the
amplified peaks and 4904 genes within the deleted segments.
Region 20q13.12, previously identified in other ovarian tumors,
was amplified in our cohort, along with other genes that have
previously found amplified in ovarian cancer such as CCNE1,
ERBB2, RSF1 and deleted genes like BRCA18,22. Among the
cohort and subset analyses, there were more recurrently deleted

segments than amplified segments and regions within 8q, 3q, and
19q were among the most recurrently amplified segments while
peaks on 9q, 15q, 16q, 17q were among the most recurrently
deleted segments. We correlated the CNA and our RNA-seq data
for all samples in our cohort, utilizing the threshold values
GISTIC2.0 calculates with their corresponding RNA-seq FPKM
values for the genes involved in altered regions (Supplementary
Fig. 2c). The relationship between copy number and expression is
not simple, but the medians of the data suggest that more
amplified genes trend toward having higher RNA expression.

Our GISTIC2.0 analysis results comparing ST to LT survivors
revealed that there were more recurrent copy-altered segments
among the ST survivors (ST= 79 amplified, 198 deleted; LT= 60
amplified, 101 deleted). Comparing the primary and metastatic
tumor analyses showed that the metastatic tumors had more
recurrent segments (primary= 39 amplified, 135 deleted; met=
63 amplified, 157 deleted). Consistent with published data9,
CCNE1 was amplified in ST survivors, primary tumors, and
metastatic tumors sample subsets, but not among the LT survivor
samples. Both the primary tumor and metastatic tumor subsets
were significantly amplified at 19q12 and at 20q13.12, while the
ST subset had 19q12 amplified and the LT subset had
20q13.12 significantly amplified.

Differentially expressed genes correlate with survival. We cal-
culated differential expression (DE) of genes between the ST and
LT survivors in both primary and metastatic tumors. Overall,
there were distinct transcriptomes that correlated with ST or LT
survival, both within the tumor cohorts separately and when
combining all patients regardless of tumor type (Fig. 3a, b).
Within the metastatic tumor cohort, there were 4792 DE genes
(DEGs) between ST and LT survivors, with an FDR < 0.01, after
selecting for only protein-coding genes. Genes such as SZRD1 and
ERV3-1 were upregulated in the metastatic tumors of ST survi-
vors, as previously reported in other solid cancer types such as
cervical and colorectal cancer23,24.

In order to identify DEGs that were specifically associated with
survival in the metastatic tumors, we filtered out any genes that
were also differentially expressed between the ST and LT

Fig. 1 Mutational Landscape of primary and metastatic tumors from ST and LT survivors. a Samples (n= 74) are organized as matched tumor pairs, with
primary first followed by metastatic tumor. Somatic mutations in OV TCGA frequently mutated genes, colors indicate mutational type. b Status of samples
source (primary tumor (light blue), metastatic tumor (dark blue)), survival class (ST (dark red), LT (red)), and Classification of Ovarian Cancer signature
(mesenchymal, differentiated, immunoreactive, and proliferative) (Green shades).
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survivors’ primary tumors. This revealed 325 genes only DE in
metastatic tumors, with 295 of these (90.7%) downregulated in ST
survivors (Fig. 3a). The DEGs unique to metastatic tumors of ST
survivors are enriched for several Biological Processes GO terms
with an FDR < 0.05, such as “regulation of cellular biosynthetic
process” (Supplementary Fig. 6)25–28. A GO enrichment analysis
on the 30 upregulated DEGs unique to metastatic tumors showed
enrichment with an FDR < 0.05 for several Molecular Function
GO terms associated with DNA binding and transcriptional
activity (Fig. 3c)25,27,28. This enrichment is most likely due to the
13/30 of those upregulated DEGs that are in the zinc finger
family. We also used DAVID to find enrichment of the KEGG
and Biocarta pathways within our DEGs, and although there were
no significantly enriched Biocarta terms, there were 9 KEGG
pathways enriched. Some of these included “Adherens junction”
and “protein processing in endoplasmic reticulum”. (Supplemen-
tary Fig. 7) Of note, FOXL2NB and PTCH2 have correlated with
poor survival in other cancer types29,30. There is evidence that

OGN plays a role in EMT, and PRDX1 has been studied as
prognostic marker in lung cancer31,32. We calculated DE between
genes of ST and LT survivors within the primary tumors. We
found that there was a total of 4248 DE genes with FDR < 0.01.
After filtering for protein-coding genes, we narrowed our list of
DE genes to 3694, with 502 DEGs that were specifically
differentially expressed only in primary tumors (Fig. 3b).

When all tumors are included in the DE analysis, there were a
total of 7304 protein-coding DEGs between ST and LT survivors
(Supplementary Data 1). The top 50 upregulated and top 50
downregulated DEGs are included in Supplementary Fig. 8.
Additionally, we calculated DEGs between primary and meta-
static tumors and identified only 4 DEGs with an FDR < 0.01.
When we lower the FDR filter to <0.1, the number of DEGs
increased to 15. Of those, 5 genes (WIPF3, STAR, SCUBE1, PEG3,
CNTNAP2) were also found in the top 100 DEGs identified by
Sallinen et al., which compared DEGs between 10 matched
primary and metastatic ovarian tumors having an FDR < 0.112.

Fig. 2 Shared variants between primary and metastatic tumors. a Percentage of somatic mutations unique to primary (Red) and metastatic tumor (Blue)
and shared (Purple) between samples. b Comparison of percentage of shared variants among primary and metastatic tumor between ST and LT survivors
(ST survivors n= 23 LT survivors n= 14). c Boxplot displaying the mutational burden rates (mutations/MB) for all tumors and subsets. (All n= 74, ST
survivors n= 23, LT survivors n= 17, primary tumors n= 37, metastatic tumors n= 37). The boxplots define the range of the minimum to the maximum by
lines, a box from the first quartile to the third quartile with the median as the center line. Circles outside the range of the data are outliers.
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Differentially expressed lncRNAs correlate with survival. From
the RNA-sequencing data, we identified several long-noncoding
RNA transcripts (lncRNAs) that were among the top differen-
tially expressed transcripts between the ST and LT survivors in
both metastatic and primary tumors. Within the metastatic
tumors, we identified 11 lncRNAs that were differentially

expressed and all but one was upregulated in ST survivors
(Fig. 3d). This set of lncRNAs included ARRDC1-AS1, which was
shown to be a part of a potential lncRNA prognostic signature in
breast cancer33. Among the primary tumors, we identified 36
lncRNAs of which 35 were upregulated in ST survivors. Of these
36 lncRNAs, 9 lncRNAs (25%), (FAR2P1, ARRDC1-AS1,

Fig. 3 DEGs and lncRNAs in tumors from ST and LT survivors. a Heatmap displaying the 325 significant protein-coding DEGs between ST and LT
survivors unique to metastatic tumors in our patient cohort (ST survivors n= 20, LT survivors n= 14). Red indicates upregulated DEGs while blue indicates
downregulated DEGs with FDR < 0.01according to gradient legend. Gene list is provided in Supplementary File 1. b Heatmap displaying the 502 significant
protein-coding DEGs between ST and LT survivors unique to primary tumors in our patient cohort (ST survivors n= 21, LT survivors n= 14). Red indicates
upregulated DEGs while blue indicates downregulated DEGs with FDR < 0.01according to gradient legend. Gene list is provided in Supplementary File 1.
c Barplot displaying the GO Molecular Function Terms that are statistically overrepresented in the 30 upregulated DEGs unique to Metastatic tumors. Plot
displays their -Log10(FDR) value for each GO term. d Heatmap displaying 11 significantly (FDR < 0.01) differentially expressed lncRNAs between the ST
and LT survivors in metastatic tumors (ST survivors n= 20, LT survivors n= 14).
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MIRLET7BHG, OVCH1-AS1, C11orf72, FLJ22447, LACTB2-AS1,
ALOX12-AS1, and C5orf56) overlapped with the lncRNAs iden-
tified in our metastatic tumor cohort.

Tumors from ST survivors harbored recurrent gene fusion
predictions. A total of 1164 gene fusions were predicted among
our tumor sample cohort, 35 of which were recurrent (seen in at
least 2 samples) and unique to ST survivors (Supplementary
Table 6). The higher number of gene fusions identified in ST
survivors was due to a higher level of quality in the RNA-
sequencing since this subgroup included FF tumor samples,
whereas all LT survivors were FFPE samples.

INTEGRATE detected several ESR1 gene fusions in our tumor
cohort, which have previously been implicated in breast and
ovarian cancer9,34. In particular, the ESR1 > CCDC170 recurrent
gene fusion identified by Yang et al. was present in 2 of our tumor
samples, 1 ST primary tumor (5 reads) and 1 LT metastatic tumor
(7 reads). Interestingly, we also noticed that a total of 33 gene
fusions involved collagen genes, 32 of which were identified in ST
survivors, 21 were in metastatic tumors, and 20 are in-frame
fusions (Supplementary Table 7). Pathway analysis on the genes
involved in recurrent gene fusions in our cohort were significantly
enriched for terms related to “collagen chain trimerization” and
“Collagen degradation” in the PANTHER reactome set, which is

interesting given the known role of collagen in the ovarian cancer
tumor microenvironment25–28.

Immune cell populations abundances. We used the program
Cibersort to estimate the fraction of immune cell types in our
tumor samples (Fig. 4). The immune cell groups CD4 T-Cells,
macrophages, and monocytes had the highest fractions in many
of the tumor samples. There was much variability in immune cell
type fractions across patients, but there were few significant dif-
ferences in immune cell fractions between primary or metastatic
tumors or between ST and LT survivors among the 22 immune
cell types (Supplementary Fig. 9). Of note, CD4 naïve T-cells
(higher fractions in ST), follicular helper T-cells (higher fractions
in LT), regulatory T-cells (higher fractions in LT), and activated
dendritic cells (higher fractions in LT) were significantly different
between ST and LT survivors with Mann–Whitney statistical p-
values < 0.05. Between the primary and metastatic tumors, the
CD8 T-cells, activated CD4 memory T-cells, and neutrophils
were significantly higher in metastatic tumors based on Wilcoxon
statistical p-values < 0.05. A chart of the statistical differences
between all of the subsets for the 22 immune cell fractions is in
Supplementary Table 8.

Lee et al. found significant abundance differences of M2
macrophages and monocytes between their R0 and NACT patient

Fig. 4 Cibersort immune cell fractions stacked barplot of the proportion of the 22 immune cell types expressed in each tumor sample. Samples are
organized by tumor type, then by survival (ST Primary n= 22, LT Primary n= 14, ST Metastatic n= 22, LT Metastatic n= 14). Annotation colors are shown
in legend above barplot.
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groups, and a significant difference between the abundance of
resting CD4 memory T cells between primary and metastatic
tumors, but these patterns did not appear in our dataset11.
Thorsson et al. performed immunogenomic analysis across
cancer types in TCGA and identified six immune subtypes35. In
their analysis, the ovarian cancer cohort correlated the most with
their C2 IFN-y dominant signature, which is defined by having
high M1 and M2 macrophage polarization and strong
CD8 signal. This is consistent with the higher fraction of
macrophages we found in our Cibersort analysis. The ovarian
cohort also had representation of their C1 wound healing and C4
lymphocyte depleted signatures, but did not have representation
for their C3 inflammatory, C5 immunologically quiet, or C6
TGF-B Dominant signatures. The lack of these signatures is
consistent with our cohort’s low immune cell fractions for several
lymphocytes and the variability between patient samples. Since
our cohort included metastatic tumors that are not represented in
TCGA, perhaps a more specific immunogenomic analysis with
more metastatic tumors for ovarian cancer is necessary to better
understand the immune landscape in these tumors35.

Discussion
HGSC can rapidly metastasize before patients experience symp-
toms, therefore many patients are diagnosed at late stages and
have limited treatment options. Despite many studies of the
genetics of HGSC tumors, we have yet to fully characterize and
identify genetic biomarkers of HGSC metastatic tumors, espe-
cially those with poor survival outcomes. In this study we built on
previous studies to better characterize the genomic features of
matched primary and metastatic tumors in the context of patient
survival, so we might identify unique features of ST metastatic
tumors.

We found supporting data for RB1 mutations as a marker for
long survivorship as previously discovered, since RB1 mutations
were identified exclusively in our LT survivor cohort8,14. In our
study we found that there was a higher percentage of shared
variants between the primary and metastatic tumors of ST sur-
vivors compared to LT survivors. Although this difference was
not significant, it can suggest that tumors from ST survivors may
be more clonal and genetically similar than tumors from LT
survivors. This could mean that tumors from ST survivors are
inherently more resistant to treatments, since both their primary
and metastatic tumors are genetically similar. However, other
studies of the clonality of HGSC tumors have yet to find a cor-
relative pattern between clonality and survival1,7,36–38, hence,
many more tumor samples will need to be analyzed to answer this
question. Shared variants that are likely to be present in all clones
of the tumor may be the best suited for targeted therapies. With
the advent of single-cell sequencing, we may now be able to
answer more questions about the heterogeneity and clonal
development of HGSC tumors39.

TP53 mutations are a hallmark of high-grade serous ovarian
cancer and TP53 gene has known hotspot mutations across
cancer types. One of these hotspot mutations, R273H, was
identified in 3 patients within our cohort, two of whom had an
overall survival ranging 17-34 months. In TCGA Genomic Data
Commons Portal, there are a total of 99 cases across cancer types
that harbor a mutation at this position in TP53, 9 of which are in
ovarian cancer samples. Recent functional studies have shown
that this particular mutation results in a p53 gain-of-function that
may promote metastasis in colorectal, esophageal, and breast
cancers. Additionally, breast cancer cell lines with a R273H gain-
of-function have been found to have improved response to
combination PARPi and a DNA-damaging agent40–42. If this is
also seen in ovarian cancer cells, this may lead to additional

patients receiving PARP inhibitor and combination treatments in
the future. However, further work in characterizing the ther-
apeutic potential of this specific TP53 mutation in ovarian cancer
is needed.

Yang et al. demonstrated genomic differences between HGSC
primary tumors of ST and LT extreme survivors9. Our study
focused on paired primary and metastatic tumors within the
median survival range of ovarian cancer. Yang et al. demonstrated
that more than 50% of tumors with BRCA mutations are LT
survivors with an OS > 10 years. This is consistent since HGSC
patients with BRCA mutations respond better to chemotherapy10.
Therefore, our study was better able to characterize the genomic
features of tumors from patients with more moderate survival to
poor survival.

Recently gene fusions have proven to be useful drug targets for
cancer. For example, the identification of EML4 > ALK gene
fusions in non-small cell lung cancer paved the way for the
development of ALK inhibitors and recently drugs targeting
tumors of any cancer type with gene fusions involving NTRK
genes have been approved by the FDA43,44. In our analyses, we
identified an ESR1-CCDC170 gene fusion in our cohort as pre-
viously described by Yang et al.9. There is evidence that ESR1
gene fusions in estrogen receptor-positive breast cancer promote
endocrine therapy resistance and metastasis, thus ESR1 gene
fusions may have a role in ovarian cancer progression34. Lei et al.
demonstrated that CDK4/6 inhibitors were able to suppress
growth that was driven by ESR1 gene fusions, indicating that gene
fusion driven cancers are treatable34. We found a higher number
of gene fusion predictions in our tumors from ST survivors and
these could be a potential source for new drug development, but
additional work will be needed to identify recurrent gene fusions
that are targetable in ovarian cancer.

Previous studies have demonstrated that HGSC primary and
metastatic tumors have similar transcriptomes. Two such studies
using microarrays identified few differentially expressed genes
between the HGSC primary and metastatic tumors45,46. In this
study, we also identified few DEGs between primary and meta-
static tumors. However, when we analyzed primary or metastatic
tumors separately to find DEGs between ST and LT survivors, we
found DEGs unique to metastatic tumors from patients with ST
survival. This demonstrates that clinical outcome can be used to
identify DEGs specific to metastatic tumors. We found several
DEGs in the zinc finger family that were upregulated in the ST
survivor metastatic, suggesting that these tumors have more
transcriptionally active genes that could be promoting metastatsis
or could be used as markers for poor prognosis, like FOXL2NB29

and PTCH230, which have correlated with poor survival in other
cancer types. The large number of DEGs that identified in our DE
analyses are a resource for future studies for biomarkers given
their correlation with poor prognosis in ovarian and other cancer
types and because we filtered for genes unique to the metastatic
tumors in our cohort.

Additionally, we identified lncRNAs that were differentially
expressed between survival groups. LncRNAs have only recently
been studied for their role in cancer development and prognosis
and have not been extensively studied in ovarian cancer yet47,48.
There are some lncRNAs, such as RP11-190D6.2, that have
shown to be tumor suppressors or oncogenes in ovarian cancer
cell lines48,49. Given that we found several lncRNAs having
increased expression in ST survivors, they could serve as potential
targets or biomarkers for future treatment development.

It should be noted that all of our LT survivor samples are from
FFPE, while ST tumors were not. Though we have applied rig-
orous quality control and filtering to our variant calling, we
cannot exclude the possibility that sample preparation has some
effect on the results. It is possible that the batch correction from
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FFPE and FF samples reduced the number of DEGs that were
able to be identified in our cohort between the primary and
metastatic tumors. The SVA batch correction may have over
accounted for unknown variation or it may be introduced var-
iation, but was still necessary so we could include all tumor
samples in our DE analysis, regardless of RNA sample prepara-
tion. This dataset, like many using patient samples, has limita-
tions but provides insights into the differences between HGSC
primary and metastatic tumors in the context of moderate sur-
vival outcomes.

In conclusion, our research characterizes the exomes and
transcriptomes of a unique dataset of matched primary and
metastatic tumors in the context of patient survival. We were able
to confirm many of the genomic features seen in previous
studies8,9,11,12,16. We observed that the transcriptomes of primary
and metastatic tumors were similar to each other, compared to
the transcriptomes of tumors from ST and LT survivors that had
more DEGs and DE lncRNAs. Our gene fusion analysis revealed
fusions that have the potential to be new targets in HGSC and
could warrant further functional studies. In short, our research
improves the understanding of genetic variation in HGSC
metastases that exist between patients with different prognoses
can better inform treatments and may identify new targets for
drug development.

Methods
Patient cohort sample criteria. This study was approved by the Washington
University in St. Louis Institutional Review Board #201309075). Criteria for
approval are met per 45 CFR 46.111 and/or 21 CFR 56.111 as applicable. Patients
were included in they had FIGO stage III–IV ovarian cancer of serous (n= 38) or
endometrioid (n= 1) histology and were undergoing primary cytoreductive sur-
gery, and for all patients informed consent was obtained. All research conformed
with the principles of the Declaration of Helsinki. We analyzed normal tissue,
primary tumor, and metastatic tumor samples from a total of 39 patients.

Normal tissue samples consisted of adjacent non-malignant omentum or
peritoneum. All tumors were collected during primary cytoreductive surgery, prior
to any chemotherapy treatment, and were stored as either fresh frozen (FF) or
formalin-fixed paraffin-embedded (FFPE). These patients were separated into two
groups based on their overall survival. Patients who lived less than 3.5 years after
their diagnosis were considered short-term (ST) survivors and patients who lived
more than 5 years after diagnosis were considered long-term (LT) survivors
(Table 1). Other clinical characteristics of patients are shown in Table 1. All
patients received standard regimens of carboplatin and paclitaxel following
cytoreductive surgery. More LT survivors received intraperitoneal (IP)
chemotherapy than ST survivors (1 ST survivors, 5 LT survivors, p-value= 0.042),
Otherwise there were no differences in the use of bevacizumab or PARP inhibitor
treatments between the two cohorts. All 23 ST patients and 12 LT patients had
matched DNA and RNA extracted and sequenced. An additional 4 LT patients had
tumor sequencing performed: Patients 031 and 035 had matched primary and
metastatic tumors DNA sequenced and Patients 032 and 040 only had RNA-
sequencing from their matched primary and metastatic tumor tissue.

Exome and RNA sequencing. All tumors were examined by a pathologist to
determine tumor cellularity and necrosis and only samples of 60% tumor cellularity
or higher with <20% necrosis were sequenced. DNA and RNA were extracted from
FF or FFPE tissues using Qiagen’s DNeasy Blood & Tissue Kit and RNeasy kit.
Whole-exome sequencing of DNA from matched primary tumor, metastatic
tumors, and normal tissue samples was completed for 39 patients with the Nim-
bleGen VCRome exome capture kit (NimbleGen Roche) according to the manu-
facturer’s protocol. Paired-end Illumina 151 bp reads were generated for normal
samples to a minimum of depth of 65x, while tumor samples were sequenced to a
minimum of 139x, with the average coverage of ~300x. A coverage table provides
per-sample coverage details (Supplementary Table 1). RNA sequencing of primary
and metastatic tumor samples was performed using the Illumina TruSeq stranded
Total RNA library kit following the Manufacturer-recommended protocol. Paired-
end Illumina sequencing of 151 bp read length yielded an average of approximately
125 million paired reads per-sample and an average of approximately 134 million
reads mapped per sample. Quality Control metrics for the RNA-seq samples were
generated using MultiQC and are reported in Supplementary Data 2 50.

Variant calling and genomic analysis. Exome sequencing data were aligned to
human reference build GRCh37 using BWA-mem and deduplicated with Picard
version 1.11351,52. Somatic variants were called from combined data using the
Genome Modeling System pipeline53,54. In brief, variants were called from the

union of 4 callers, which included Samtools version r932, Somatic Sniper version
1.0.4, VarScan version 2.3.6, Strelka version 1.0.11, and Mutect v1.1.453,55–59.
Indels were detected from the union of 4 callers; GATK somatic-indel version 5336,
Pindel version 0.5, VarScan version 2.3.6, and Strelka version 1.0.1153,55,56,60,61.
Further variant filtering was applied as described in Ghobadi et al.53. Briefly, SNVs
and indels were discarded if they had below 20x coverage, appeared as artifacts in a
panel of 905 normal exomes, or exceeded 0.1% frequency in the 1000 genomes or
NHLBI exome sequencing projects62,63. A Bayesian classifier (https://github.com/
genome/genome/blob/master/lib/perl/Genome/Model/Tools/Validation/
IdentifyOutliers.pm) was also applied and variants that classified as somatic with a
binominal log-likelihood of at least 5 were retained53. All called variants compared
in this study are provided in Supplementary Data 2. Mutational burden was cal-
culated as the number of variants called per megabase for all variants that passed
the QC filtering. The waterfall plot (Fig. 1a, b) depicting frequently mutated genes
from TCGA-OV was generated using GenVisR8,64. Mutational clinical significance
for somatic and germline BRCA mutations was determined from ClinVar using
their definitiions of clinical signficiance terms (https://www.ncbi.nlm.nih.gov/
clinvar/) (Supplementary Data 2, Supplementary Tables 3 and 4)15. Classification
of Ovarian Cancer signatures were calculated according to parameters defined in
Verhaak et al.16. Copy-altered segments were identified from VarScan (Supple-
mentary Figs. 1 and 2)56. Significant copy-altered segments were identified for all
tumors, all tumors from ST survivors, all tumors from LT survivors, metastatic
tumors, primary tumors, and only the metastatic tumors of ST survivors using the
GISTIC 2.0 version 6.15.28 Module on the AWS GenePattern cloud (https://cloud.
genepattern.org/gp). Default parameters and reference genome Human_Hg19.mat
were used to run GISTIC 2.0 analyses21. We used the wide peak region analyses
from GISTIC 2.0 to calculate the total number of genes amplified or deleted within
those regions. The correlation between copy number alteration (CNA) and RNA-
seq expression was completed using the thresholded CNA values GISTIC 2.0
calculated based on each sample’s segment files21,65. The violin plot was created by
binning all CNA threshold values from every gene for every sample and plotting
that with their corresponding log2(FPKM) values (Supplementary Fig. 2c).

Differential expression analysis
Normalization and quality control. Transcript read counts were obtained using
Kallisto version: v0.43.1 and gene-level read counts were calculated using GRCh37
in Ensembl66. Quality control and normalization of the raw count data were
performed using the R/Bioconductor package edgeR version 3.2867. For our
comparison of LT survivor samples to ST survivor samples, we removed genes with
less than 1 Count Per Million mapped reads in at least half of the samples to ensure
that a gene was retained if expressed in only one of the two groups. For our
comparison of primary to metastatic tumors, genes with less than 1 Count Per

Table 1 Clinical characteristics of patient cohort.

Short-term (ST) Long-term (LT)

Patients (no.) n= 23 n= 16
Tumors 46 32

Primary 23 16
Metastatic 23 16

Age (years) 61.5 ± 19.5 57 ± 8.2
FIGO stage

IIIA 2 0
IIIC 14 16
IV 7 0

FIGO grade
Moderately differentiated 3 0
Poorly differentiated 20 16

Histology
Serous 22 16
Endometrioid 1 0

Median overall survival
(OS) (months)

21 (range: 0–41) 111 (range:
82–195)

Fresh frozen (FF) samples
Primary 17 0
Metastatic 11 0

Paraffin-fixed (FFPE) samples
Primary 6 16
Metastatic 12 16
Whole-exome sequenced 46 14
RNA-sequenced 46 14

Clinical characteristics of patients diagnosed with HGSC at FIGO stage III–IV. Tumor samples
were collected from patients during primary cytoreductive surgery in Washington University in
St. Louis.
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Million mapped reads in at least half the samples were removed. Normalization
factors were calculated using the Trimmed Mean of M-values normalization
method in edgeR to account for compositional biases in libraries between each pair
of samples.

Removal of batch effects. Due to technical artifacts introduced by the use of FFPE
that can affect gene expression analyses, we performed batch effect correction prior
to differential expression analysis for the comparison of LT to ST survival
samples68,69. We used the SVA function of the R/Bioconductor package SVA
version 3.34.0 to estimate and remove surrogate variables for unwanted and
unknown batch effects and other sources of variation present in the data70. The
SVA function estimated surrogate variables for each subset analysis, which was
adjusted for within the statistical model applied in the edgeR package in down-
stream analyses of differential gene expression. After batch effect correction,
samples were analyzed by a Principal Component Analysis using the R function
“dist” on regularized log-transformed (rlog) data to calculate the Euclidian distance
between samples. Plotting of the first (PC1) and second (PC2) principal compo-
nents revealed that expression values from the same patient are more related to one
another than between groups (Supplementary Fig. 3). We also observed 4 potential
outlier samples, which were removed from downstream analyses because of their
distance from the other samples in the Principal Component Analysis plot after
normalizing and batch correcting transcript counts. These 4 removed samples are
highlighted in Supplementary Fig. 3a and were all collected within the same year,
but their exclusion could mean we are missing out on some biological features of
these tumor samples.

Differential gene expression (DGE) analysis. DGE analysis was performed using
edgeR version 3.28.0, which implements a negative-binomial general linear
model67. We performed 4 comparisons: ST survival samples versus LT survival
samples for all tumors in the study; ST survival versus LT survival among meta-
static tumors; ST survival versus LT survival among primary tumors; and primary
tumors versus their matched metastatic tumor. The surrogate variables estimated
with SVA were included in the model used for the LT versus ST survival com-
parison. To normalize gene-level variance, the biological coefficient of variation
was calculated using Cox-Reid dispersion for negative-binomial general linear
models. The p-values of differential expression tests were corrected for multiple-
hypothesis testing using Benjamini–Hochberg false-discovery rate (FDR) correc-
tion. The threshold for significance was set to FDR Q-value < 0.01. We further
curated our differentially expressed genes (DEGs) by limiting to protein-coding
genes that were listed in Ensembl genes 100 Human genes (GRCh38.p13) pro-
tein_coding transcript type on BioMart. All DEGs discussed in this paper are listed
in Supplementary Data 1. Pathway analysis was applied to the DEG and gene
fusion gene lists using the PANTHER classification system 16.0 (http://pantherdb.
org/), with the organisms set as ‘Homo sapiens’ and performing a statistical
overrepresentation test using Fisher’s Exact test and calculating a False-Discovery
Rate25. We used all Gene Ontology (GO) terms (Biological Processes, Molecular
Function, and Cellular Components), PANTHER pathways, and Reactome path-
ways annotation sets26–28. We used DAVID to identify enrichment for KEGG and
Biocarta pathways71,72.

Immune cell abundance estimates. We used Cibersort (https://cibersort.stanford.
edu/) to estimate the abundance of infiltrating immune cell types using our tumor
RNA-seq data73. We generated a mixture file for our cohort of tumor samples
based on the gene abundance counts generated from the RNA-seq reads using
Kallisto66. We used the LM22 gene signature, which calculated immune cell
fractions for immune cell types, and ran our Cibersort analysis with 500 permu-
tations under the relative mode.

Gene fusion predictions. Gene fusion predictions for each tumor sample were
produced using INTEGRATE v0.2.6 to analyze the tumor RNA-sequencing data74.
Full-length raw reads and a set of reads trimmed to remove potentially low-quality
bases were each aligned to human reference genome GRCh38 (r90) using STAR
v2.5.3a with a minimum chimeric segment length of 18 and chimeric alignments
output to a separate SAM file75. The chimeric alignments were then used as inputs
for INTEGRATE fusion with default parameters for fusion discovery with tumor
RNA-seq only. Fusion predictions from the full and trimmed reads were then merged
and manually reviewed to ensure all fusion calls were valid. Since normalization of
FFPE and FF tumor samples is more challenging for gene fusions, we characterized
the predicted gene fusions as independent events regardless of sample preparation.

Statistics and reproducibility. We analyzed normal tissue, primary tumor, and
metastatic tumor samples from a total of 39 patients. Statistical analysis and figure
generation was performed in R 3.6.2 and Python 3.8.2. The p-values of differential
expression tests were limited to an FDR Q-value < 0.01. Comparisons between
survival groups were determined by Mann–Whitney U-statistical tests for indivi-
dual samples and comparisons between tumor types were performed using
Mann–Whitney–Wilcoxon statistical tests for dependent samples since the primary
and metastatic tumors were matched. Enrichment for pathway analyses with our
DEGs was done using Fisher’s Exact test and calculating a false-discovery rate.

Given the genetic heterogeneity of individuals and their tumors, it should be noted
that we sequenced only one sample from each primary and metastatic tumor,
which limits our abilities to fully capture the genetic diversity within these tumors.

Reporting summary. Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
RNA-sequencing files have been deposited in the NCBI GEO data base under
GSE218939. WES data generated for this analysis have been deposited within the
Sequence Read Archive under the accession PRJNA957243, and can be found at https://
www.ncbi.nlm.nih.gov/bioproject/PRJNA957243. Lists of SNVs, DEGs, lncRNAs, and
gene fusions are provided in Supplementary Data 1 and 2. Source data for figures have
been submitted in Supplementary Data 3.

Code availability
Code used to analyze genomic data is publicly available and custom code is deposited on
Github (https://github.com/ekotnik/OC-Tumor-genomic-analyses) https://doi.org/10.
5281/zenodo.787376276.
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