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Abstract: Identifying complete response (CR) after rectal cancer preoperative treatment
is critical to deciding subsequent management. Imaging techniques, including endorectal
ultrasound and MRI, have been investigated but have low negative predictive values. By imaging
post-treatment vascular normalization using photoacoustic microscopy, we hypothesize that
co-registered ultrasound and photoacoustic imaging will better identify complete responders. In
this study, we used in vivo data from 21 patients to develop a robust deep learning model (US-PAM
DenseNet) based on co-registered dual-modality ultrasound (US) and photoacoustic microscopy
(PAM) images and individualized normal reference images. We tested the model’s accuracy
in differentiating malignant from non-cancer tissue. Compared to models based on US alone
(classification accuracy 82.9 + 1.3%, AUC 0.917(95%CI: 0.897-0.937)), the addition of PAM and
normal reference images improved the model performance significantly (accuracy 92.4 + 0.6%,
AUC 0.968(95%CI: 0.960-0.976)) without increasing model complexity. Additionally, while
US models could not reliably differentiate images of cancer from those of normalized tissue
with complete treatment response, US-PAM DenseNet made accurate predictions from these
images. For use in the clinical settings, US-PAM DenseNet was extended to classify entire
US-PAM B-scans through sequential ROI classification. Finally, to help focus surgical evaluation
in real time, we computed attention heat maps from the model predictions to highlight suspicious
cancer regions. We conclude that US-PAM DenseNet could improve the clinical care of rectal
cancer patients by identifying complete responders with higher accuracy than current imaging
techniques.

© 2023 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

In 2020, there were over 45,000 cases of rectal cancer in the US. Worldwide, the rectal cancer
incidence was over 732,000, with a mortality over 339,000 [1]. The current standard-of-care
treatment for Stage II and III tumors (locally advanced rectal cancer, or LARC) involves radiation,
chemotherapy, and rectal resection. However, rectal surgery is a procedure with high morbidity,
and it may lead to lifelong bowel dysfunction, incontinence, sexual dysfunction, and ostomy [2,3].
Studies of non-operative strategies — collectively known as “watch and wait” — have shown that
patients who achieve complete tumor destruction with no residual cancer cells, called complete
responders (CR), can safely avoid surgery while achieving satisfactory long-term oncologic and
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functional outcomes [4,5,6,7]. However, the main barrier to widespread adoption of “watch and
wait” is that existing imaging techniques, including MRI and endorectal ultrasound, have very
low sensitivity in identifying patients who have been completely cured by preoperative chemo-
and radiotherapy. The problem is mainly that current imaging techniques cannot accurately
differentiate post-treatment scar from viable cancer in the patient rectum [8,9,10]. If this problem
could be resolved by improving existing imaging techniques, the “watch and wait” management
would be adopted more widely, and hundreds of thousands of LARC patients could benefit from
this non-operative alternative. One promising imaging modality, photoacoustic imaging, uses
hemoglobin as an endogenous contrast agent to map tissue vascular networks. Photoacoustic
imaging has been shown to be effective in monitoring cancer treatment response for various
cancer types, including breast cancer, brain cancer, and head-and-neck cancer, in both animal
[11,12,13,14] and clinical studies [15]. In our previous work, we developed a co-registered US
and PAM (US-PAM) probe and conducted in vivo patient imaging. In that pilot study, we showed
that, compared with US imaging alone, PAM helped better differentiate residual cancer from
tissue with CR [16,17].

Several studies have employed deep learning to classify colorectal cancer treatment response
using data from routine imaging modalities, including endoscopy, CT, MRI, and histology. They
demonstrated that compared to the standard clinical procedure for determining CR, their deep
learning models could successfully provide a complementary “clinical decision support system”
for selecting patients who do not need surgeries [18,19,20,21,22]. In this study, using in vivo
images from 21 patients, we developed a robust deep-learning model based on co-registered
dual-modality US and PAM images and individualized normal reference images to differentiate
residual cancer from normal and normalized tissue, or CR. Additionally, based on the model
predictions, we generated attention heat maps with hot spots that indicate suspicious cancer
regions to facilitate surgeons’ decision-making. The objective of this study is to more accurately
and robustly identify CRs with co-registered US and PAM imaging. To the best of our knowledge,
this study is the first to use co-registered US and PAM images as well as normal reference images
paired with machine learning to assess rectal cancer treatment response.

2. Methods

2.1. Co-registered ultrasound and photoacoustic (US-PAM) endorectal system

Imaging was performed with an in-house co-registered US-PAM system, described previously
[17]. The endorectal probe has a side-viewing design, where a stepper motor rotates the probe
head at 1 revolution per second, producing 360° co-registered US and PAM B scans at 1 frame
per second. US is transmitted and received by a single-element ring transducer with a 20 MHz
center frequency, a 75% bandwidth, and a 12.7 mm focal length (Capistrano Laboratories, Inc.).
PA signals are generated from a 1064 nm Nd:YAG laser with a pulse repetition rate of 1 kHz,
providing an angular resolution of 0.36°. The light is delivered through the 2-mm hole at the
center of the ring transducer. The system has a US axial resolution of 0.116 mm and a PA axial
resolution of 0.231 mm. Co-registered B scans were continuously captured throughout each
imaging session. Because normal rectal wall is less than 1 cm thick [13], our system excites and
detects PA signals from the entire thickness of the rectal wall. Each displayed B scan showed an
imaging depth of 24.6 mm. Due to this short imaging depth, no time-gain compensation was
applied to either US or PAM A-lines.

2.2. Patient imaging

This study was approved by the Institutional Review Board of the Washington University School
of Medicine. All patients provided informed consent. Between May 2019 and April 2022, a total
of 21 patients were imaged with the endorectal probe prior to surgery. The imaging protocol was
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as follows. After the administration of anesthesia, a study surgeon used a rigid proctoscope and
followed standard procedure to identify the location of the treated tumor bed. The surgeon then
inserted the US-PAM endoscope and acquired co-registered US and PAM B scans at 1 frame per
second across the tumor bed. The scanning process was then repeated. The entire procedure
took about ten minutes.

2.3. DenseNet model training
2.3.1. Dataset preparation and ground truth labeling

US images of the normal rectum show alternating hyperechoic and hypoechoic layers, corre-
sponding anatomically to the mucosa, submucosa, muscle, and fat/ligament layers of the rectal
tissue. To highlight this layered structure, a custom surface detection algorithm automatically
identified the rectal tissue surface in polar coordinates on each US B scan, as illustrated in Fig. 2.
The algorithm first searches for the position of the first positive gradient for each A line on
a B scan. Using these positions as the initial trial for the rectal tissue surface, the algorithm
then optimizes a balance between the depth-directional gradient magnitude, which is a measure
of edge strength, and the overall surface smoothness. Using the found surface, the tissue was
then digitally flattened on both the US scan and its corresponding co-registered PAM scan by
translating each A line to the average surface depth across the entire B scan. This flattening
procedure corrected for off-center probe positions inside the rectum during scanning, and made
the rectal tissue layers appear approximately horizontal on the B scans when displayed in the
polar coordinates. As a result, the layered structure of the normal rectum was characterized by
alternating horizontal bands in all images or sections of images, regardless of the endoscopic
position inside the lumen when the scans were captured.

To prepare the model inputs, a set of co-registered US and PAM B scans were first divided into
subsections, each covering 60° of the circumference and measuring 11 mm in radius. Because the
normal colon wall is less than 1 cm thick, 11 mm was chosen to ensure the entire layered structure
of the patient’s rectal tissue was included in the subsection [23]. In polar coordinates, these
subsections corresponded to rectangular regions of interest (ROIs) measuring 167 (W) x 302 (H)
pixels on the raw images. To automate ROI generation for model training, a horizontal sliding
window uniformly sampled ROIs, with a 50% overlap between adjacent ROIs. The selected ROIs
were subsequently downsampled to 64 x 128 pixels to reduce the effect of interpatient variation
in microscopic rectal features, while maintaining the mesoscopic layered structure. Additionally,
downsampling the ROIs effectively reduced the number of model parameters and helped avoid
overfitting the training data.

On each US scan, a study surgeon identified the tumor bed region. The ground truth label of an
ROI extracted from this scan was determined by its overlap with the tumor bed region, quantified
by R0m+0"}‘”b€d. We observed that if <5 mm of the tumor bed was included at the edge of an
RO, it was challenging to distinguish it from the normal morphological variation of rectal tissue.
At the focal depth of the probe, a lateral length of 5 mm corresponded to 25% of the ROI width,
so an empirical threshold of 0.25 was selected, such that if the overlap exceeded 0.25, the ROI
would receive a preliminary label of suspected cancer. Based on the final diagnosis in the surgical
pathology report, if there were no cancer cells remaining in the patient’s tumor bed (CR), the
tissue was considered fully normalized and the ROI was relabeled as normal. Otherwise, if the
pathologic diagnosis was cancer, the ROI was confirmed as cancer.

Ground truth artifact ROIs were labeled through a similar process. Two frequent sources of
image artifacts are poor signal coupling between tissue and the water balloon surface, and air
bubbles trapped inside the water balloon. Both types of artifacts were clearly identifiable on US
scans. A researcher experienced in reading ultrasound determined if any artifacts were on US
scans. If the overlap between an ROI with artifact regions on the scan exceeded 0.15, the ROI
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was labeled as an artifact. The threshold for an artifact was smaller than for a cancer because
some air bubbles could be smaller than a typical tumor bed.

2.3.2. Model design and dataset preparation

Our classification model adopted a densely connected neural network (DenseNet) architecture.
This architecture was chosen because it requires considerably fewer parameters to achieve
comparable performance with competing neural network architectures such as VGG and ResNet
[24]. To select the appropriate model architecture for our study, we conducted transfer learning
using pretrained DenseNet121, VGG11, and ResNet18 models for differentiating cancer from
normal tissue, and compared their classification performance, as summarized in Table 1. Two
types of inputs were used: US images alone and co-registered US and PAM images arranged in
two channels. DenseNet121 yielded the highest accuracy and area under the ROC curve (AUC)
for both input types. This finding confirmed that the DenseNet architecture was the most suitable
for our dataset, which was from a small patient population and had limited available data. In this
model architecture, a significantly more complex data connectivity is established, where data in
each layer are connected with data in every other layer. Consequently, complex and hierarchical
information can be learned with relatively few parameters. Additionally, in conventional neural
networks with a sequential model architecture, there is a vanishing gradient risk, where the
errors during model training become vanishingly small in the shallowest layers because the errors
are attenuated as they are propagated back from the last layer to previous layers sequentially.
However, DenseNet does not have a vanishing gradient risk, because during DenseNet training,
errors in deeper layers are directly propagated to all previous layers

Table 1. Comparison of model performance on normal vs cancer classification
using transfer learning based on pretrained models. The performance results were
averaged from 10 independently trained models using the same architecture with
different initializations.

Model Model US Accuracy | US AUC US-PAM US-PAM
Architecture Parameters (%) Accuracy (%) AUC
VGG11 128.8M 76.8 0.880 79.8 0.899
ResNet18 11.2M 774 0.877 81.6 0.914
DenseNet121 6.9M 80.2 0.903 83.7 0.918

To further avoid overfitting during model training, we monitored the model performance on
the validation dataset while gradually reducing the model complexity of the original DenseNet
121 architecture, which has 6.9 M parameters (Fig. S1). The final model architecture was a
simplified 3-layer DenseNet with 200 k parameters (US-PAM DenseNet), as illustrated in Fig. 1.
This simplification significantly improved the model accuracy, from 83.7% to 92.0%, and the
AUC, from 0.918 to 0.974.

The final model input contained five channels, where each input channel is an image providing
different or complementary information to guide the model’s learning. The first two channels
were the coregistered US and PAM ROlIs, respectively, of the region to be classified. One
limitation of PA B scans is that they do not provide information about the anatomical depths of PA
signals, which could have clinical significance. While normal vasculature lies in the submucosal
and, to a lesser extent, mucosal layers, strong PA signals from deeper tissue could suggest tissue
abnormality. To provide structural information for a PAM ROI, the vertical image gradient of the
corresponding US ROI was computed and overlaid on the PAM ROI. This superimposed image
was used as the model’s third input channel. The fourth and fifth channels were a US ROI and its
co-registered PAM ROI from the same patient’s normal rectal tissue, respectively, acquired either
proximal or distal to the tumor bed. These two channels established an individualized reference
for the patient’s normal rectal tissue to reduce the impact of interpatient variability and to make
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US-PAM B scan

uuuuuu

Input

channels:
1.US ROI REEU *| Linear |¥|Classification
2. PAMROI fow 1x148 1x3

Output

64x32x64 16x8x76
64x32x112 32x16x152 16x8x148

3. US-PAM overlay —>
4.US normal ref ——~7

5. PAM normal ref —/

128x 64 x5

Fig. 1. US-PAM DenseNet architecture. The white dotted box shows an example ROI
selected from a co-registered US-PAM B scan. Five channels are generated from the selected
ROI as the model input, which has dimensions of 128 x 64 x 5. Solid arrows indicate data
flows and connections inside the model: different colors correspond to different data origins.
Connections are made between every pair of layers in the DenseNet architecture. The model
has three layers, with 64 initial kernels in the first layer, a kernel growth rate of 12 from one
layer to the next, and block repetition numbers of 4, 8, and 6 respectively for the three layers.
The size of each model layer is marked under the layer icons. BN: batch normalization,
ReLU: rectified linear unit. Conv: convolution.

the model more generalizable when applied to patients not encountered during model training.
The five channels were then stacked along a third dimension to augment the original US-PAM
ROI and fed into the model as a single input.

Image data from 21 patients were used for training and testing the models. The dataset included
rectal cancers of all stages with four 4 TO (CR), four T1, three T2, eight T3, and two T4 cancers.
It was partitioned into a training cohort of 15 patients (two TO, three T1, two T2, seven T3,
and one T4), a validation cohort of 3 patients (one TO, one T1, one T4b), and a testing cohort
of 3 patients (one TO, one T2, and one T3). From the training cohort, a total of 1758 normal
ROIs, 1651 cancer ROIs, and 735 artifact ROIs were selected. Artifact ROIs were given twice
the sampling weight during model training to ensure the number of ROIs in each classification
outcome was balanced. The training dataset was then augmented using random adjustment
of image contrast and random horizontal flip. To determine the stopping point during model
training, 219 normal ROIs, 176 cancer ROIs, and 88 artifact ROIs from the validation cohort
were used. Finally, the testing dataset consisted of 187 normal ROIs, 168 cancer ROIs, and 87
artifact ROIs from the three patients in the testing cohort. The models used the cross entropy
loss as their objective loss function, and were trained using Adam optimization with an initial
learning rate (LR) of 107*. To avoid overfitting, the models were trained for only 8 epochs with a
multistep LR decrease, namely, LR was reduced to 10% of its previous value after epoch number
2,5 and 7. The models were constructed in the PyTorch framework and training one model took
less than 90 minutes on an NVIDIA GeForce RTX 2080 Ti Graphics Processing Unit.

2.3.3. Two-class models and three-class models

Because image artifacts can be easily identified by an experienced US reader or a surgeon,
two-class models were first trained to differentiate residual cancer from normal or normalized
tissue. Excluding image artifacts as a possible model outcome by manually removing them from
the training dataset helped to isolate the task of making clinical diagnosis for the model. To
investigate the added benefit of including co-registered photoacoustic and normal reference images
to improve diagnosis, DenseNet models with the same architecture but four different types of
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inputs were constructed and trained separately: First, models trained on only individual ultrasound
ROIs established the baseline reference for comparing model performances. Additionally, models
that accepted co-registered US and PAM ROIs, US ROIs with a normal US reference, and
co-registered US and PAM ROIs with normal US and PAM references were trained. To evaluate
and compare the performance of models for each input type, the average performance of 10
independently trained models with different initializations was computed.

To achieve automatic real-time diagnosis in the clinical setting, the models need to identify
image artifacts on a scan and exclude those regions from further analysis. Therefore, a third
category was included during model training to distinguish image artifacts from normal or
cancerous tissue. Similar to training two-class models, three-class DenseNet models accepting
four different types of inputs were trained and compared.

2.4. US-PAM DenseNet interpretation and clinical application

Three-class US-PAM DenseNet classifies ROIs independently. To make predictions on an entire
B scan, 24 ROIs with 75% horizontal overlap were densely sampled from the B scan and classified
sequentially. Model predictions at 24 angles along the rectal luminal circumference were obtained.
The B scan was predicted to contain cancer if the model classified at least one ROI as cancer, and
the cancer location could be further resolved based on the angles corresponding to all the ROIs
classified as cancer.

To facilitate the model’s clinical application in real time, suspicious cancer regions on the
scan were highlighted through guided backpropagation based on the model predictions [25,26].
By back propagating the model outputs of each ROI, the regions in the ROIs that contributed
to the model prediction of either normal or cancer were identified and assigned the weights
of the model’s prediction scores. Color-coded heat maps were reconstructed to differentiate
regions that the model predicted as cancer from normal. Image artifacts were not color-coded.

Input

1. Find rectal tissue surface

2. Generate model input ROIs

DenseNet

Output

Attention heat map Attention heat map
of normal region’  of cancer region

Fig. 2. Pipeline for applying US-PAM DenseNet to diagnose a whole US-PAM B scan and
generate an attention heat map of suspicious cancer regions to facilitate surgeons’ decision
making. The processing pipeline is illustrated in the blue box. In steps 3, 4, and 5, green
dotted boxes show the ROIs that US-PAM DenseNet classifies as normal, red shows the
cancer ROIs, and cyan shows artifacts. In step 5, guided backpropagation is computed for all
three potential classification outcomes, i.e., normal, cancer and artifact, weighted with their
respective prediction scores. When displaying the attention heat maps, normal regions and
cancer regions are plotted separately, while suspected artifacts, indicated by the blue arrows
in the output images, are not color coded.
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The pipeline for applying the US-PAM DenseNet to an entire B scan and displaying interpreted
model predictions is summarized in Fig. 2 (detailed description of image results for each ROI see
Fig. S2).

3. Results

Figure 3 shows representative co-registered US and PAM B scans of normal rectal tissue, tissue
with residual rectal cancer, and a tumor bed with no residual cancer (CR). A clear layered structure
was observed on ultrasound scans of normal rectal tissue, as shown in Fig. 3(a). There is typically
one thick or two closely-spaced hyperechoic layers indicating the mucosa and submucosa. The
microvasculature distributed in the submucosa layer generates most PA signals from a normal
rectum. The muscular layer beneath the submucosa is hypoechoic on US and does not generate
significant PA signals. Cancer typically appears hypoechoic and disrupts the layered structure
seen on US, as seen in Fig. 3(b). PA signals from cancer are discontinuous from the surrounding
normal tissue. Depending on the patterns of cancer-related blood vessel growth and the friability
of the tumor’s surface, cancers generate significantly more varied PA signals than normal tissue.
Figure 3(c) shows a B scan of the tumor bed from a complete responder. While abnormal
morphology was clearly visible on the US scan, PA signals in the tumor bed region appeared
consistent with the PA signals on the opposite side of the rectum where tissue was normal,
suggesting vascular normalization in the tumor bed region. These observations implied that
although US was sufficiently sensitive to cancer, its specificity was not satisfactory because it
could not accurately differentiate the tumor beds from complete responders. On the other hand,
PA imaging provides functional information of a tumor bed that reflects the extent of the patient’s
treatment response.

MAX MAX

(a) normal (b) cancer (c) complete responder MN MN

Fig. 3. Representative co-registered US-PAM scans. PAM images are overlaid on co-
registered grayscale US images in hot color maps. (a) normal rectal tissue. The region in
the blue dashed box is zoomed in to illustrate the layered rectal tissue structure visible on
ultrasound scans. M = mucosa, SM = submucosa, MP = muscularis propria, S = serosa. (b)
cancer (yellow dashed box) persisted after rectal cancer therapy. (c) tumor bed (green dashed
box) with no residual cancer from a complete treatment responder.

3.1.  Model classification performance

As shown in Table 2 and Fig. 4, when differentiating cancer from normal tissue, the addition of
co-registered PA images significantly improved the classification performance in both accuracy
and area under the ROC curve (AUC). This finding suggested that the local structural information
from US ROIs was not sufficient for accurate diagnosis, and that the functional information
from the co-registered PA ROIs provided a useful diagnostic marker to complement the US
ROIs. Compared with models based on only ultrasound ROIs, model performance also improved
significantly with the inclusion of an individualized normal reference input channel. The normal
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reference effectively reduced the interpatient variability by providing each ROI with a global
context for the patient’s tissue structure. However, the addition of a normal reference to co-
registered US and PAM ROIs did not result in a significant improvement in model performance.
Overall, US-PAM DenseNet achieved an accuracy of 92.4 +0.6% and an AUC of 0.968 (95%CI:
0.960-0.976) when differentiating residual cancer from normal ROIs. On the patient level,
US-PAM DenseNet accurately classified all three patients in the testing cohort.

1.0
0.8
3
(1]
o
v 0.6
=
=
n
o
< 04
S us AUC = 0.917
= US + ref AUC = 0.955
0.2 — US-PAM AUC=0.974
= US-PAM + ref AUC = 0.968
0.01 . , : :
0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

Fig. 4. Average ROC curves of models for differentiating normal rectal tissue and cancer
based on different model inputs. Models based solely on ultrasound image inputs are
compared to models based on ultrasound images complemented with co-registered PAM
and/or a normal reference. The standard deviation of each ROC curve is shown as a gray
shaded region.

Table 2. Effect of incorporating co-registered PAM and/or normal
reference on model performance in differentiating normal rectal tissue
and residual cancer

Model input Accuracy (%) AUC
Us 829+1.3 0.917 (95% CI: 0.897-0.937)
US + normal reference 89.3+0.5 0.955 (95% CI: 0.945-0.965)
US-PAM 92.0+1.6 0.974 (95% CI: 0.966-0.982)
US-PAM + normal reference 92.4+0.6 0.968 (95% CI: 0.960-0.976)

The capability to identify completely normalized tissue with no residual cancer (CR) is of
ultimate clinical interest. Accordingly, the model was tested on only tumor bed ROIs from CRs
and those with residual cancers. As shown in Table 3 and Fig. 5, the addition of either co-registered
PA images or individualized normal references significantly improved the model’s performance.

Table 3. Effect of incorporating co-registered PAM and/or a normal
reference on model performance in differentiating a normalized tumor
bed in a complete treatment responder from residual cancer

Model input Accuracy (%) AUC
Us 78.6+3.8 0.873 (95% CI: 0.816-0.930)
US + normal reference 81.6+3.2 0.922 (95% CI: 0.853-0.985)
US-PAM 84.4+2.0 0.914 (95% CI: 0.875-0.951)
US-PAM + normal reference 94.7+1.9 0.984 (95% CI: 0.955-1)
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When both were incorporated, US-PAM DenseNet achieved an accuracy of 94.7 + 1.9% and
an AUC of 0.984 (95%CI: 0.955-1), compared to 78.6 + 3.8% and 0.873 (95%CI: 0.816-0.930)
from models trained on individual US ROIs alone. It should be noted that interpatient variability
was not accounted for in this evaluation because there was only one complete responder in the
testing cohort, and all normalized tumor bed ROIs were selected from the same patient.

1.0
0.8
3
[0+
o
o 0.6
2
4
N
=]
£ 0.4
g us AUC = 0.873
= US + ref AUC = 0.922
0.2 — US-PAM  AUC=0.914
— US-PAM + ref AUC = 0.984
0.0 4 : : : :
0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

Fig. 5. Average ROC curves of models for differentiating a normalized tumor bed in a
complete treatment responder and residual cancer, based on different model inputs. Models
based solely on ultrasound image inputs are compared to models based on ultrasound images
complemented with co-registered PAM and/or a normal reference. The standard deviation
of each ROC curve is shown as a gray shaded region.
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Fig. 6. Comparison of three-class classification model performance with and without the
addition of co-registered PA images and/or a normal reference of the patient’s rectal tissue.
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Fig. 7. Representative images from patients in the testing cohort and their US-PAM
DenseNet predictions. The blue boxes in the endoscopic photos indicate the cancer sites.
The US model activation and the US-PAM activation columns show the attention heat maps
computed from the US model and US-PAM DenseNet, respectively. On the attention heat
maps, green highlights the normal regions based on the model predictions, and red highlights
the cancer regions. (a) Patient with T3 cancer with little or no treatment response. (b) Patient
with T2 cancer with extensive scarring. (c) Complete treatment responder (pCR) with no
residual cancer. Purple arrowhead indicates an image artifact due to poor ultrasound signal
coupling. It is correctly classified in both the US model and US-PAM DenseNet.

The presence of image artifacts, such as air bubbles or fecal debris, can lead to misclassification.
Therefore, to facilitate real time clinical application without manual ROI selection, an extension
of US-PAM DenseNet included a third classification category to identify image artifacts. Figure 6
illustrates the three-class classification performance of US-PAM DenseNet compared to that
of models trained on only US images or images without a normal reference. The confusion
matrices suggest that incorporating co-registered PA images better differentiates normal from
either cancer or artifact images, whereas adding a normal reference allows the model to more
accurately differentiate cancer images from image artifacts. Overall, US-PAM DenseNet achieved
an average accuracy of 89.1 + 0.8%, compared to 75.1 + 1.6% from models trained on only US
images.

3.2. US-PAM DenseNet-guided attention heat map

Three-class US-PAM DenseNet was applied to whole B scans by making predictions on
overlapping ROIs sequentially. Guided backpropagation was used for more straightforward
interpretation of model outputs and visualization. Figure 7 illustrates the model performance
on patients in the testing cohort with different degrees of treatment response and cancer stages
after treatment. When the post-treatment cancer boundary was clear, the attention heat maps
reconstructed from US-PAM DenseNet predictions were consistent with those from the US
model, as shown in Fig. 7(a). However, when there was extensive scarring around the treated
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tumor, as shown in Fig. 7(b), US-PAM DenseNet predicted a more localized cancer region
than the US model, because the PA signals appeared more continuous with and similar to the
surrounding normal tissue at the scar boundary. Finally, the models were tested on a CR with
no residual cancer. As shown in Fig. 7(c), the US model incorrectly highlighted the tumor bed
as a suspicious cancer region. But according to US-PAM DenseNet, while the prediction score
for cancer was slightly elevated at the scar region, the model correctly classified the region as
cancer-free. This result suggested that US-PAM DenseNet better distinguished scar from residual
tumor than models based on US ROIs alone.

4. Discussion

In our previous work, we found that PA imaging could accurately differentiate disrupted cancer
vasculature from normal vasculature using a model trained from PA images only. In this expanded
study population with a total of 21 in vivo patients, we have increased the model’s robustness by
using co-registered dual-modality images and incorporating an individualized normal reference
in a custom DenseNet model. Compared to models trained on only US images, models including
either co-registered PA images or normal references as additional inputs showed that both
additions significantly improved the model’s performance in different aspects. Importantly, we
demonstrated that US-PAM DenseNet had higher accuracy in identifying normalized tissue
after treatment (CR) compared to models for which only US images were available. Further,
to visually interpret the model and potentially facilitate the surgeons’ clinical decision-making,
we implemented guided backpropagation to highlight hot spots of normal and cancer regions
based on model predictions. We observed from the model activation maps that signals from the
submucosa layer were important to the model’s final classifications. This finding is expected
because normal submucosa is hyperechoic to US and rich in blood vessels, generating both
strong US and PA signals. Interestingly, the outermost serosa layer, where there are typically
very weak US and PAM signals if any, was found to be equally important to the model’s final
classifications. One reason could be that because LARCs are cancers that invade at least as deep
as the muscularis, irregular or strong US or PAM signals in the serosa may suggest presence
of cancer. The algorithm was validated on the testing cohort, which included two patients with
residual cancer and one complete treatment responder. US-PAM DenseNet classified all three
patients correctly. Moreover, the generated attention heat maps accurately corresponded to the
tumor bed regions indicated by the study surgeon in the two cancer patients.

The size of the study population is a main limitation. The appearance of normal rectal tissue
varies slightly among patients, and the morphology of rectal cancer is more highly heterogeneous,
especially when rectal cancers of all stages are included for model training. Therefore, the
model’s generalizability could be affected because the training dataset consisted of only ROIs
selected from a limited pool of 15 patients. We mitigated this limitation with the following two
strategies: first, we downsampled the input images and simplified the model architecture. We
noticed that a normal diagnosis is mainly based on a clearly layered tissue structure, which is a
mesoscopic feature not affected by downsampling, and that the microscopic differences in rectal
tissue on US and PAM images are mainly due to interpatient variability, whose effect is reduced
by image downsampling. Second, we included individualized normal references as additional
model inputs because we hypothesized that by comparing US-PAM ROIs and their corresponding
normal references, the model could also learn the variation in the tissue morphology of an
individual patient, regardless of differences in normal rectal tissue among different patients. Our
results suggested that normal references made US-PAM DenseNet more generalizable in both
two-class and three-class models. Also, due to the limited study population, only three patients
were used for testing the model’s performance. Data from more patients, especially complete
treatment responders, will be collected to further improve the model’s robustness and obtain a
more reliable evaluation of the model’s performance. Additionally, to enhance the clinical utility
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of our model, we will implement the US-PAM DenseNet classification and attention heat map
generation in real-time as we scan the patients in the next phase of our imaging studies. Based on
the evaluation and feedback from the study surgeons, we will further improve the model to better
support clinical decision making.

US-PAM DenseNet has demonstrated satisfactory accuracy in differentiating residual cancer
from normal or normalized tissue after treatment. However, due to high signal variation and
limited imaging depth, it remains quite challenging to extract quantifiable features, which
can directly affect diagnosis based on PA images alone. As a result, the structural and depth
information from a co-registered US image is a necessary complement for us to draw conclusions
from PA images. Additionally, vascular normalization is not only manifested in the volume of
blood vessels, which can be inferred from the PA signal density and intensity, but in the vascular
morphology as well. To resolve both limitations, an ongoing effort is to implement axial scanning
along the length of the probe, in addition to radial scanning. Instead of acquiring B scans at
different anatomical positions by hand, we will acquire 3D data and reconstruct the vascular
morphology by computing its en face projection.
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