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ABSTRACT

The primary mathematical question concerning knots'1 

remains their classification, in other words, the problem of 

the comparison of two arbitrary knots. From a physical 

point of view, consider the knots to be constructed from 

deformable rubber. Then the question becomes: Suppose we 

are given two knots K2 and K2. Is it possible to manipulate 

K2 by stretching and twisting, without tearing, to transform 

K2 into K2? However, this process is uncertain and 

potentially tedious. A mathematical approach is required.

It has been established that if two knots are 

topologically equivalent, fundamental groups associated with 

each knot are isomorphic although the converse is not 

necessarily true. That is, two knots with the same group 

may be topologically inequivalent. The fundamental group of 

a knot, denoted nlf is considered a knot invariant. 

Definition: A knot invariant on the set of all knots FF is

a function which assigns to each knot K

I: JT e 

an object I (K) in & in such a manner that knots which are of 

the same type are assigned to equivalent objects-1

Initial approaches to solutions of problems in knot 

theory stemmed from a combinatorial point of view. In 



addition, graph theory played its part in the development of 

knot theory as have noncommutati've algebra and algebraic 

topology.

The goal of this project is to study the relationship 

between algebraic invariants and topology which are used to 

determine whether two knots are distinct. Special attention 

will be given to the topological invariants of knots coming 

from algebraic topology.
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INTRODUCTION

Flying a kite, sailing a boat, tying down an airplane, 

a viral attack on a DNA molecule, connecting two lengths of 

rope together and rappelling down a rock face all make 

extensive use of different types of knots and links. In 

order to study knots from a mathematical perspective take a 

length of twine, tie a knot in it, then tie the loose ends 

of the twine together. The result is a knot with no loose 

ends. This physical object provides the analogue for the 

knots and knot theory studied by mathematicians for more 

than a century. A diverse range of scientists, from the 

organic chemist to the mathematical physicist, consider the 

knotty problems of knot theory of significant relevance to 

their own work.
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CHAPTER ONE

Section 1

Knots, Links and Classes of Knots

The initial objective in this section is to introduce 

knots, links, equivalence of knots and special classes of 

knots. In the effort to distinguish one knot from another 

and identify equivalent knots, some applicable topological 

topics concerning mappings between spaces are first 

reviewed.

Given two topological spaces, X and Y, a homeomorphism 

from X to Y is a mapping f: X -> Y that is bicontinuous and 

bij ective.

Definition 1.1.1: A knot K is the homeomorphic image of the 

unit circle S1 JE2 into R3. A link L of n components is the 

homeomorphic image of n disjoint copies of S1. Hence, a link 

of one component is a knot.

A knot K is a one dimensional object, a cross section 

of which consists of a single point. However, a link or a 

knot exists in three dimensional space, with the exceptions 

of the unknot and unlink respectively represented by the 

union of one or more disjoint circles lying in the plane. 

Two dimensional pictures called link diagrams are used to 

represent and study links. To obtain a link diagram the 

projection map is utilized. The projection map is a
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function f? which takes the ordered triple (x,y,z.) in JR3 to 

the ordered pair (x,y) in R2- Consider the knot K and the 

image of Kr denoted KIt shown under the projection mapping 

in Figure 1.1. The projection of the trefoil knot on the 

left in Figure.1.1 fails to display important detail. It is 

not'possible to distinguish which portions of the knot pass 

over other sections. This difficulty is resolved in the 

link diagram on the right in Figure 1.1 by leaving suitable 

gaps at the intersections in the projection.

a) projection b) link diagram

Figure 1.1 Trefoil-knot

The point at which a knot crosses over and under itself in a 

link diagram is called a crossing. The curves or segments 

of a link diagram which are continuous are called arcs.

The unbroken arc at a crossing is called an overpass and the 

two broken arcs which pass under the crossing together make 

the underpass.

Definition 1.1.2: An overpass is a subarc of a knot that 

3



goes over at least one crossing but never goes under a 

crossing.2

Definition 1.1.3: An underpass is a subarc of a knot that 

goes under at least one crossing but never goes over a 

crossing.

Sometimes an orientation is chosen to indicate

direction traveled on each component of a link. Figure 1.2 

depicts a four crossing link diagram of two components with 

these details illustrated.

orientation

crossing

underpass

overpass

Figure 1.2 A link diagram

Usually homeomorphic space are considered equivalent in 

topology. Since all knots homeomorphic to the unit circle, 

they are all homeomorphic to one another. Therefore 

homeomorphism type is an uninteresting equivalence relation 

on knots and a rather unnatural one.

The following topological criterion is a more 
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appropriate equivalence relation on knots.

Definition 1.1.4: Given a topological space X, an isotopic 

deformation is a family of homeomorphisms ht: X - X 

satisfying two properties.

1. For all points p in Xf h0(p) = (p), and,

2. the function defined by H(t,p) = ht(p) is 

simultaneously continuous in both variables3 as pictured in 

the example of Figure 1.3.

h

Figure 1.3 A fixed endpoint family ’

If two knots or links belong to the same isotopy type 

they are equivalent. If two links are equivalent, they are 

said to belong to the same link type.

Definition 1.1.5: For two unoriented knots, and K2f to 

be considered of the same isotopy type, there must exist an

isotopic deformation {ht} of R3 such that h1(K1) = K2-
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Given a fixed point p c c R3r ht(p) traces the path from 

the original position at through the deformation to K2.

The unknot, trefoil, figure eight and Hopf link pictured in

Figure 1.4 all belong to distinct knot or link types.

a) unknot b) trefoil c) figure eight d) Hopflink

Figure 1.4 Distinct knot types

Knots which are of the same isotopy class are represented in

Figure 1.5 by two diagrams of the unknot.

Figure 1.5 Two link diagrams of the unknot

Definition 1.1.6: A oolvoonal, or piecewise, linear knot

consists of the union of a finite number of closed segments 

called edges, the end points of which are the vertices of 

the knot.

A knot which is equivalent to a polygonal knot is 

6



considered tame. The unknot and trefoil knots are depicted 

as polygonal knots in Figure 1.6. Knots and links are 

primarily pictured as in Figure 1.5, with curves rather than 

straight segments.

a) unknot b) trefoil

Figure 1.6 Polygonal knots

A knot which is inequivalent to a polygonal knot is 

considered wild. Tame knots are most often studied but a 

discussion of a proof by Ralph H. Fox that wild knots do 

exist4 appears in Chapter 3 of this paper. See Figure 1.7. 

The remarkable property of this wild knot is that the number 

of loops outside a ball of radius 6, centered at the wild 

point p increases without bound as the radius e - 0.

7



Figure 1.7 A wild knot

Theorem 1.1. 7: Every homeomorphism of E3 onto itself is 

either orientation preserving or orientation reversing.5

The mirror image of a knot K is the image of the knot under 

the reflection 5? defined by (xfyfz) - (xfyf-z). Figure 1.8 

shows a trefoil and its mirror image under the reflection 

5?.
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Figure 1.8 Trefoil and its mirror image

An amphicheiral knot K is one which is equivalent to its 

mirror image Km. Thus K and Km are isotop-ic. One example 

of an amphicheiral knot is the figure eight knot. The left 

hand trefoil and the right hand trefoil are examples of non- 

amphicheiral knots.6

Another interesting class of knots are invertible 

knots. An oriented knot is called invertible if it is 

possible to deform the knot back to itself with its original 

orientation sent to an opposite orientation. The right and 

left handed trefoil are invertible; simply rotate them about 

a vertical axis as indicated in Figure 1.9.7

9



Figure 1.9 The trefoil rotated about a vertical axis

Figure 1.10 A non-invertible knot

The knot 817 in Figure 1.10 is not invertible, however, this 

is difficult to prove and outside the scope of this paper.8
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Section Two

The Fundamental Group

Knot theory concerns itself with the group of the 

complementary space, R3~Kf of a knot K. Algebraic topology 

is the field which uses algebraic structures such as groups 

and group homomorphisms to study topological spaces. The 

study of the fundamental group, denoted ulf of an arbitrary 

topological space can be applied to knot theory to assist in 

distinguishing between knots.

The fundamental group provides a method of associating, 

groups with topological spaces and homomorphisms between 

associated groups with continuous functions which map one 

space to another. For example, if two topological spaces 

are homeomorphic then their fundamental groups are 

isomorphic. Consequently, this algebraic approach provides 

some very useful information. However, the algebra reflects 

only a portion of the complete topological picture. This 

tool is limited in that if the fundamental groups are 

isomorphic this is not sufficient information to conclude 

that the associated topological spaces are equivalent.

Before we can define n1 we must examine the set of 

paths in a topological space X. Once we have examined the 

set of paths in X we will then focus on loops in X which 

begin and end at the same point. Consider a particle moving
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through space. The particle travels over a particular path 

during a given period of time. Assume motion begins at time 

t ~ 0 and continues until a designated stopping time, t 2 0. 

The path a in the topological space X is a continuous 

mapping a: [Ofl/af/]-* X. A path b is similarly a continuous

mapping b: [0,/fbH]- X. The stopping time of path a is //a// > 

0, a(0) is the initial point of path a, and the terminal 

point is a(lfa/l) with similar conditions for path b. We 

denote by path a~2 the path obtained in which path a is 

traversed in the opposite direction. Since different paths 

may share the same image points it is important to 

distinguish between the actual path traversed during the 

interval [O,l(a/I] and the set of image points. For path a 

and path b to be equal they must share the same domain of 

definition, i.e., l/a/l = /(b/h and for all t in the domain, 

a (t) = b(t). As an example, let a topological space X 

consist of S1' c JR2. Using all possible pairs of polar 

coordinates (1, 9), let path a and path b range as follows.

a(t) = (l,t) , 0< t^ 2n

b(t) = (l,t), 0^ t< 2n

Although path a and path b are equal, a third path, path c, 

c: [0,/lcll]^ X , is not equal to either path a or path b, 

given the following domain of definition.
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c(t) ~ (l,2t), 0< t< 2n

Even though path c has the same starting time, stopping time 

and set of image points as the other two paths, path c does 

not share the same domain of definition9.

If the terminal point of one path is the initial point 

of another it is possible to define the product of these two 

paths. Let a(Ha/l) = b(0). Then a*bf the product of path a 

and path b, may be defined (a*b) (t) = a(t) for 0 < t r jjaH 

and as b (t - Ha//) for /a/ < t < l/all + Hb//. Since both path a 

and path b are defined as continuous paths in X, a*b also 

describes a continuous path consisting of the concatenation 

of path a with path b as illustrated in Figure 1.11.

Figurel.il Path a*bina torus

Similarly, we can define the product of three paths a, b and

c; then

13
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1) a*b and b*c are defined,
2) a * (b*c) is defined,
3) (a*b)*c is defined,

and it is not hard to verify that a* (b*c) = (a*b) *c and 

multiplication of paths is associative when defined. So 

far we have discussed a set of paths with the binary 

operation of path multiplication which is associative. In 

order to obtain a group structure, we must impose the 

restriction that all paths begin and end at a given point, 

say p in X. Our new focus becomes the study of p-based 

loops. Certainly, any two p-based loops can be multiplied 

and the product of any two p-based loops will also be a p- 

based loop, so this set is closed under * multiplication. 

In addition, the identity path at point p is a 

multiplicative identity.

In order to complete the construction of inverse 

elements, and hence a group structure, we must define an 

equivalence relation on paths. A set whose elements consist 

of equivalence classes of paths restricted to p-based loops 

will provide us with the necessary structure for the 

fundamental group. The appropriate equivalence relation is 

homotopy, which is similar to isotopy.

To define a homotopy, let us examine a collection of 
paths hs c X, 0 r s < 1. This collection M will be called 

14



a continuous family of paths provided the stopping time //hj 

is continuously dependent on sr and the function h defined 
by h(s,t) = hs(t) maps the closed region {s, 11 0 < s r 1, 0 < 

t s //hj continuously into X. It is also required that 

h(s,t) must be simultaneously continuous with respect to 
both s and t. Further structure is imposed on (hj by 

requiring it to be a fixed endpoint family of paths. That 

is, points p and q exist in X such that hs(0) = p and 

hs(HhsH) - q for all s in the interval 0 < s < 1. Two paths 

a and b in a topological space X are homotopic, denoted path 

a ~ path b, if a fixed endpoint family, {hs}, of paths 

exists such that path a ~ ho and path b ~ h-.. As a result, 

the set of all such fixed endpoint families of paths 

partition the set of all paths in X into equivalence 

classes. The equivalence class of paths containing path a 

will be denoted by [a].

Definition 1.2.1: The fundamental groupoid of Xf F(X)z is 

defined to be the set of all equivalence classes of paths in 

X.

A geometric interpretation of equivalence of paths is 

that path a and path b are considered equivalent if and only 

if one can be deformed into the other in X without moving 

the endpoints.

15



Multiplication of paths induces a multiplication in the 

fundamental groupoid P(X) . To illustrate this let us 

consider four paths in Xf path a, path a2, path b and path 

b2 with a*b defined, and with path a ~ path a2 and path b ~ 

path b2. Let path a and path b be contained in the fixed 

endpoint family {hs} and path a2 and path b2 be contained in 

the fixed endpoint family {ks}. The collection of paths 

{hs*ks} will again be a fixed endpoint family with a2*b2 

defined and with a*b ~ a2*b2. Since a*b is defined, the 

product of the equivalence classes may be defined as [a]*[b] 

= [a*b]. Thus multiplication in P(X) is well defined. The 

inverse of an element [a] is defined as [a]~l = [a'1].

Let a = [a], = [b], and y - fcj f P(X). Because all

paths belonging to an equivalence class will have the same 

initial and terminal point, we may choose the terminal point 

of a representative path in a to be the initial point of a 

representative path in /3 and the terminal point of the 

initial point of a representative path in y. From this, and 

the fact that path multiplication is associative, we have 

that multiplication in P(X) is associative as well and that 

cr* (fi*y) = *y.

For an element r(X) to be an identity it must contain 

the identity path. Let e be the constant path in P(X). Let 

16



both G*cr and {$*£ be defined for all af$ G r(X) . Then [e] is 

an identity if G*a = a and 3*e = 3- It is clear that r(X) 

inherits the semigroup structure previously defined for the 

set of paths in X. We define the inverse of an arbitrary 

element a in P(X) by fa-1 J = (a)'1 - or1. Hence cf1 depends 

only upon cr and remains independent of any particular 

representative path.

Let p be a point of X and let nj (X,p) be the subset of 

r(X) in which all elements have p as both the initial and 

terminal point. The product of two such p-based loops is 

again a p-based loop. By limiting our attention to such 

closed paths, we now have sufficient structure established 

to state that (X,p), with the binary operation of path 

multiplication, is a group.

Theorem 1,2.2: The group ir (X,p) is called the fundamental 

group of the topological space X relative to the basepoint 

p.

17



a’ ~a, b9 ~ b, c’~c 
a / b, b /c, a / c

Figure 1.12 P-based loops

The example in Figure 1.12 displays various p-based loops in 

a two holed annular region of the plane as well as path 

equivalences and orientations. It is interesting to note 

that the various paths reflect basic structural 

characteristics of X. Given a pathwise connected 

topological space Xf the fundamental groups of X which are 

defined for different basepoints in X are isomorphic.

18



Theorem 1.2.3: Let a be any element of r(X) with initial 

point p and terminal point p'. Then the assignment or1 ft ex

is an isomorphism of n1(X,p) onto Hj/X^').10

To show the fundamental group is a topological 

invariant we will demonstrate that homeomorphic spaces have 

isomorphic fundamental groups. To do so we must consider 

how continuous maps of topological spaces induce 

homomorphisms between fundamental groups. In order to 

obtain induced homomorphisms of fundamental groups given two 

topological spaces X and Y, let us examine a continuous 

mapping f: X Y. Path a in X induces a path fa in Y given 

by the composition fa (t) = f (a (t)) . The stopping times //a/l 

and Ufa/I are the same. The following theorems follow 

readily from the definitions.

Theorem 1.2.4: If the product a*b is defined, so is fa*fb, 

and f(a*b) = fa*fb.

Theorem 1.2.5: If path e is an identity, so is path fe.

Theorem 1.2.6: fa'1 = (fa)'1

Theorem 1.2.7: If path a - path b, then path fa - path

fb.n

The consequence of these theorems is that the function 

f induces a mapping £* from the fundamental, groupoid r(X) 

into the fundamental groupoid f(Y) given by f*([a]) = [fa]. 

19



The characteristics of the mapping f* are outlined in the 

following propositions.

Propositions 1.2.8, (i) - (iv):

( i) Given identity f*e is also an identity.

( ii) If is defined, then (f*ct) * (f*fi) is defined.

(iii) If f: X - X is the identity function such that

f (x) = x, then f* is the identity function such that 

f*& = a.

( iv) If X under the function f maps to Y, and if Y 

under the function g maps to Z are both continuous 

mappings and gf: X - Z is the composition, then (gf)*= 

g f .

Given any choice of basepoint p in the topological space X 

it follows that f* determines a homomorphism f*:(n(X,p) -* 

n(Y,fp) .12

If X is restricted to a pathwise' connected space the 

properties of f* remain independent of the choice of 

basepoint. Given points p, q & X with p the initial point 

and q the terminal point of a c I(X), the following diagram 

commutes with the vertical mappings being isomorphisms.

20



f*

n(X,p) n(Y,fp)

7 I

ft -* cr y (f^a)'1 Y (f*cJ

f*

n(X,q) -> n(Y,fq)

Theorem 1.2.9: If f: X Y is a homeomorphism of X onto Y, 

the induced homomorphism f*: n (X,p) n(Y, fp) is an 

isomorphism onto for any basepoint p in X.13

This homomorphism f* of the fundamental group ir(X,p) induced 

by the continuous mapping f is the desired connection 

between the topological and algebraic properties of the 

space X. Diagrammatically, the homeomorphisms f and f'2 

induce homomorphisms f* and (f"1)* as indicated.

f f-1
x y x

f* (f~J *
rr(X,p) -> n(Y,fp) - n(X,p)14

In summary, given pathwise connected, homeomorphic 

topological spaces X and Y, the fundamental groups 

associated with spaces X and Y are isomorphic. Specifically 

given two knots Kx and K2, with respective fundamental 

groups n(R3' KJ and n(]R3~ K2) , if it can be proven that n(]E3

KJ is not isomorphic to n($3 " KJ , then K2 and K2 are not 

21



equivalent knots. If K3 and K2 are equivalent knots their 

fundamental groups will be isomorphic. Although this tool 

has some limitations, it is extremely useful in 

distinguishing knots.
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CHAPTER TWO 

Section One 

The Free Group

In order to calculate the fundamental group of a 

particular knot K it is essential to define .and' describe a 

method of presenting the group. This is accomplished by 

determining generators of the group along with specific 

relationships among those generators which are called 

defining relations. The free group, denoted F[H]r is an 

important component of this development and is our starting 

point. The development of the presentation of a group will 

be made first in a general sense and then as applied to 

fundamental groups of knots, both tame and wild.

Consider a set Ji with elements of the form a, bf c. . . f 

and cardinality a. Any element raised to an integral power 

is called a’syllable, for example, an. A word is 

constructed by concatenation of syllables. The empty word 

is denoted by 1, and any element to the zero power also 

denotes the identity. A product of two words consists of 

concatenation. It is clear this operation is associative 

and the empty word is a left and a right identity. The 

familiar .rules of powers apply to the exponents.

Given words u, v, wIz and w2 such that u = w2aow2f and
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v = w^zr we say that v is obtained from u by an elementary 

contraction of type I or that u is obtained from v by an 

elementary expansion of type I. If u=w1ainanw2 and w2r

we say that v is obtained from u by an elementary 

contraction of type II or that u is obtained from v by an 

elementary expansion of type I.

Definition 2.1.1: A word u is considered reduced, denoted 

ur, if it is not possible to perform any contractions of 

either type I or type II.

Definition 2.1.2: Words u and v are considered equivalent, 

denoted u ~ v, if through a succession of elementary 

contractions and elementary expansions one may be rewritten 

as the other.

The collection of all words formed from the set X will 

consequently be partitioned into equivalence classes. Let 

us denote by [u] the equivalence class represented by the 

word u. The set of equivalence classes of words is denoted 

F[J?] . Multiplication in F/J?] is defined as [u] [v] = [uv]. 

It is clear that associativity holds and that the 

equivalence class [1] is both a left and a right hand 

identity. The inverse of the class [uJf denoted [u]'1 is 

obtained by writing the string u in reverse order and 

changing the sign of each non-zero exponent. As an example, 
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if u = a“4b2a3, then u"1 = a"3b“2a4. Therefore, the set F[J7] is 

a group.

Each element of F[i?] can be written in a variety of 

ways as some product of the elements of the set J?r for 

example, [u] = [a2b~4c3] = [a]2 [b]~4 [c]3. The elements [a], 

[b], [c],..., constitute a generating set of F[JZ] , denoted

Definition 2.1.3: A generating set E of elements of a group 

G is a free basis if given any group H, any function E 

H can be extended to a homomorphism of G into H.

Def inition 2.1.4: A free group is a group that has a free 

basis.

The group F[JZ] is known as the free group on the free basis 

[J?]. If we have F[f], this is the trivial group, and a 

group F[a] generated by one element is infinite cyclic. 

Theorem 2.1.5: A group is free if and only if it is 

isomorphic to F[J7] for some set [J?].

Theorem 2.1.6: Any group is a homomorphic image of some 

free group.15

Theorem 2.1, 7: Each equivalence class of words contains one 

and only one reduced word. Furthermore, any sequence of 

elementary contractions of the word u must lead to the same 

reduced word ur.16
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Although the detail has been omitted, an algorithm does 

exist to perform the contractions to proceed from a word u 

to the reduced word ur.17 By comparing such reduced words it 

is then possible to determine if words are equivalent.

The importance of the free group F[JI] is that in 

developing a group presentation, elements of F[Ji] are used 

as a framework upon which to build the presentation. 

Examples are presented in section three of this chapter.
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Section Two

Generators and Defining Relations

The development of the presentation of a group using 

elements of the free group F will be made first in a general 

sense and then as application to the fundamental groups of 

specific knots, both tame and wild. First, let us be 

specific regarding the character of the defining relations 

and generators.

Let G be a group with a set {glf g2r - [gil of 

generators of the group. In addition, a set of equations, 

called defining relations exist such that f1(glf g2...) = 1, 

f2(gir = 1- The free group F[X] is the free group on

the free basis {xlfx2/ -•-} which is in a one to one 

correspondence with the set [gil.

Define a homomorphism <p: F G, such that <p(Xi) = g±. 

For each defining relation fi(glf g2f ...) = 1, let = fi(xlf

x2. . .) G F. For example, if an equation is of the form

= 1, then (x2) ~1x1x2 (xY) = r2 which is an 

element of the free group F. Therefore, we have <p(rT) = 

fi(gi, = J- The element r2 is in the kernel of the

homomorphism <p and r2 is called a relator.

Definition 2.2.1: Let (g0, glf . . . gj} be elements of an 

arbitrary group G and let there exist a group homomorphism 
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A: G -* H. An element g0 is 'called a consequence of other 

elements glf . . . , g^, if every homomorphism A of G into H 

which maps the elements glr....f gj, into T also maps g0 into - 

1.

Theorem 2.2.2: Let {glf g2, • • • I a set of elements of a 

group G and let $ be a group homomorphism (p: G H. Then 

<p maps the' consequence of {gz, g2, . . . } onto the consequence 

of the set {(f>(gi), o.f elements in H.18

In the homomorphism defined earlier, <p: F G, let us denote 

by R the consequence of all such relators {r17 r2f ...}.

The claim that the set of equations of the form fi(glr g2,

...) = 1 form a set of defining relations for the group G 

from which all other relations may be inferred, is 

equivalent to saying that the set R is the kernel of the 

homomorphism. Consequently, R is a normal subgroup of F.

In summary, the group G is determined by the free basis 

{xlf x2,. . . } and the set of elements frJZ r2, ...} since G is 

isomorphic to its factor group F(x)/R.
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Section Three

Group Presentations

Two components are necessary to obtain a presentation 

of a group G. An object called a group presentation and an 

isomorphism onto G -are both required. The basic concept is 

that a known group, the free group F[X], is mapped onto G to 

obtain a representation of the group G. This section 

details the process.

Let F be a free group with a free basis E. The group 

presentation, denoted (X : r) consists of a subset X of E 

and a subset r of a subgroup F[X] generated in F by X. The 

subsets X and r respectively constitute the sets of 

generators and relators of the group presentation.

Definition 2.3.1: The group of a presentation is the factor 

group F[X]/R, denoted X : r, (remembering that R is the 

consequence of (r^ in F[X]) .

Definition 2.3.2: A group presentation (X : r), together 

with an isomorphism <j of the group of a presentation X ; r 

onto the group G is a presentation of a group G.

A presentation of a group G is determined by a homomorphism 

0, whose kernel is the consequence of frj, of the free 

group F[X] onto a group G. The following commutative 

diagram under the canonical homomorphism y, the homomorphism 
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<p and the isomorphism cr, illustrates these relationships.

FW
y I S <p

a
X : r G19

It is possible for a group to have a variety of 

presentations. For example, let us examine the group 

presentation

G = (X : r) = (xlt x2 : x2x2x2 (x2) ~2 (xj ~2 fx2) = 1).

If we ,let x2x2 = a and x2xxx2 = br then it is possible to 

obtain the group presentation fa, b : a3b~2 = 1) . Obtaining 

this less complex presentation by substitution is known 

formally as the Tietze Transformations.20 The calculations 

follow.

1) x2x2x2 (x2) -1 (x2) '2 (x2) -1 =

2) x2x2x2 [x2 (x2) -1] (x2)_I (x2) -1 (x2) -1 =

3) x1x2x1x2[x1 (xj rl] (x2)_1 (x2) ~] (x2) (x2) =

4) x1x2x1x2x1[x2(x2)~1] (X2)'1 (x2)-2 (x2)~2 (x^-1 (x2)-2 =

5) xJx2xIx2xJx2 (x2) -1 (x2) -1 (x2) -1 (x2) ~2 (x2) -1 (x2) -1 =

6) [x2x2] [x2x2] [x2x2] [ (x2)~2 (x2)~2 (x2)'2] [ (x2)~2 (xj-1 (x2) ] =

7) [x2x2] [x.2x2] [x2x2] fx2x2x2Jfx2x]x2J"J =

8) [a] [a] [a] [b~2] [b~2] =

9) a3b~2 = 1.

Hence, the groups represented are isomorphic.21
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CHAPTER THREE 

Section One

The Wirtinger Presentation

Returning to the original goal of presenting the group 

of a knot K with respect to a basepoint p, this chapter is 

dedicated to the process of developing the presentation of a 

knot group from a knot diagram. Reference to the basepoint 

p is omitted since R3 - K is pathwise connected and changes 

in basepoint result in groups which are isomorphic. The 

group of the knot K may be abbreviated as n(l$3 - K) , 

although a basepoint is implied, and still further as .

Let K be a polygonal knot in regular position, divided 

into the two categories of connected, closed segments called 

overpasses and underpasses previously discussed in chapter 

one, page 2. The diagram of a knot K with n crossings 

consists of the union of a finite number of subarcs a2,

an} (subscripts are taken mod n) in R2.

The algorithm requires a fixed orientation on the knot 

diagram achieved by placing a directional arrow which 

corresponds to the numerical order of the subscripts of the 

subarcs {, 0f2, . .., an} . ' A basepoint p in R3 - K is

chosen. Next, imagine traversing the knot according to the 

chosen orientation and under each a2, an} fix one

arrow which proceeds from right to left. This arrow enables 
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us to trace an oriented p-based loop from the chosen 

basepoint p to the tail of the arrow, from there to the head 

of the arrow and back to the basepoint. This p-based loop 

is labeled with an element x2 with subscript index matching 

that of the overpass subarc cq. Let F[X] be the free group 

with free generating set [X] = {x2, x2, • xn}. The knot 

group 17(1$3 - K) will be a quotient of F[X]. Figure 3.1

Figure 3.1 Figure eight knot

illustrates the first step of the algorithm. Each crossing

must either be a left handed or right handed crossing.

Consequently, the relationship among the x/s must be either 

that of Figure 3.2 a) or b). One relation is obtained for 

each crossing by traversing the loop under the crossing as 

indicated.

32



A Y
x* ................ xk

■X""' 
iA 'b xi+i

\ 0( ' , i cy . /
: / ±T1 ^i + l -

z i
X

xk
....X .....................................................

xk

b) right hand crossing 
ri: (xf)xAk(xi+f1 - 1

XAk=XfX^}

defining relations will ben

a) left hand crossing
W, friZ'M’1 = 1

xixi =xi+1xk

Figure 3.2 Left and right handed crossings

For a knot with n crossings,

established. The relation corresponding to the ith crossing 

will be denoted as ri. These are the defining relations 

required for the Wirtinger Presentation of the knot group. 

Specific examples for the unknot, trefoil and figure eight 

knot will tie given1 later.
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Theorem 3.1.3: The fundamental group n(JR3-K, p) of the knot

K, with respect to the basepoint p is generated by the 

homotopy classes of x± and has' presentation

n(R3 - K, p) = (xlf . . . , xn : r2, . . . , rn) ,22

In addition, it is always possible to eliminate one 

defining relation since any one of the r/ s may be rewritten 

as a consequence of the other n-1 defining relations.

Now we apply the algorithm and Theorem 3.1.2 to the 

figure eight knot K of Figure 3.1 to obtain the Wirtinger 

Presentation of - figure eight) , abbreviated as n(F8),

as indicated in Figure 3.3.
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Figure 3.3 Defining relations for figure eight knot

Theorem 3.1.3 results in a presentation of the knot group of 
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the figure eight knot

n(figure eight knot) = (x2/x2f x3f x4:

(1) x3x2 = x2x4,
(2) x2x3 = x3x2,
(3) *2X4 = *1*2,
(4) x4x2 = x3x4) .

Any one of these defining relations may be rewritten in

terms of the others. For example, using properties of the

group multiplication (1), (3) and (4) may be rewritten as

(5) Xx = (x3) xxx4,

(6) x2 = x2x4(x2)^

(7) x3 = x4x2 (x4)-2

Next, substitute (5) , (6) and (7) into defining relation (2)

and simplify using the group properties.

(8) X3X2 = X}X4

x3x2x4 (x2) -1 x2x4 (x2) _1x4

x4x2 (x<) _1x2x4 (x2) _1 x2x4 (x2) _IX4

The processes of substitution, simplification and rewriting 

of the group presentation can be rigorously defined in terms 

of Tietze transformations, but this is beyond the scope of 

this paper. As a result of these calculations the first and 

third defining relations-have been eliminated and the group 

presentation becomes the following equivalent presentation.
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n(figure eight knot) = (x2,x4:

(9) x4x2(x4)~1x2xi (Xz)'1 = x2x4(x2)^x4

Clearly more manipulations and equivalent representations 

are possible.

Now let us derive the Wirtinger Presentation for the 

unknot, sometimes called the trivial knot. Consider the 

unknot which has only one overpass and no crossings 

resulting in one p-based loop x2. No defining relations 

exist, since x2 is the only generator, giving the 

presentation of

(10) ji (unknot) = (x2 : ) .

From this we observe that u (unknot) is infinite cyclic and 

hence abelian.

One method for showing that the unknot and another 

knot, in our next case the trefoil, are distinct knot types 

is to show that their fundamental groups are not isomorphic. 

In general, this can be an extremely difficult. However, 

when one of the knots is the unknot it suffices to show 

ji(trefoil) is not abelian and therefore not infinite cyclic. 

First we find the Wirtinger presentation for u(trefoil).

37



p

Crossing #1

/K

*......

x2 I
% —xz

<•...
x3

3A a
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Figure 3.4 Trefoil with p-based loops

By theorem 3.31 and the above figures, the presentation of 

the group of the trefoil is therefore

(xx, x2, x3 :

(D Xi (x3) _J (x3) ^x^
(2) x3 (x2) -1 (x3) -JxJZ
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(3) x2 (xJ“J (x2) ^x3) .

One of which can be dropped immediately. Using Tietze

Transformations this can be simplified as follows. Solve

(2) for xlt substitute into (1) and (3) and simplify.

(4)
(5)
(Q

x2 = x3x2(x3)^
XjX2 (x3) (x3) -1 (x3X2 (x3) -1) ^x2
x2x3x2 = X3x2x3

(7)
(8)

x2 (XjX2 (x3) _1) “2 (x2)
x3x2x3 = x2x3x2

From (6) and (8) and using the property of symmetry, the new

presentation is

x3 .*

(9) x3x2x3 = x2x3x2)

To demonstrate n(trefoil) is not abelian, hence not infinite 

cyclic, let us homomorphically map this group onto the 

nonabelian group S3. The transpositions (12) and (23) 

generate the group and since

(8)
(9)
(10)

(12) (23) = (132) ,
(23) (12) = (123),

(132) # (123) .

it is clear that S3 is nonabelian. To define a homomorphism 

3 of n(trefoil) onto the symmetric group S3 let 3(x2) = (23) 

and 3(x3) = (12). To insure that 3 extends to a 

homomorphism we must verify that the relation in n(trefoil) 

is satisfied in S3. We have 3(x3x2x3) = 3{x3) 3 (x2) 3(x3) -•
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(12) (23) (12) = (13), and &(x2x3x2) = 0(x2) &(x3) &fx2) =

(23) (12) (23) = (13) . Since n(trefoil) can be mapped onto 

the nonabelian group S3 the fundamental groups n (unknot) and 

it (trefoil) are not isomorphic, and the unknot and the 

trefoil of different knot types. The unknot is known as 

being unknotted, and the trefoil is considered knotted.

A similar process could be used to show n(trefoil) and 

it (figure eight knot) are not isomorphic,, and therefore knot 

types are distinct, however it would be a much more 

difficult problem. In- the next section a wild knot whose 

group is nonabelian and which is considered almost unknotted 

will be examined.
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Section Two

A Wild Knot

In this section we will examine the simple closed curve

A in Figure 3.5. This curve is considered wild since it is 

not equivalent to a polygonal knot. It also has the

Figure 3.5 A wild knot with subarcs

quality of being almost unknotted according to the following 

definition..

Definition 3.1.1: A simple closed curve is considered almost 

unknotted if for any neighborhood U. of a given point p there 

is a neighborhood V U of p and a homeomorphism <p such that 

(i) fi(q) = q for every q e V, and (ii) <f> (A ~ V) is a subset 

of the plane in M.23

The generators of the curve A are an, bn, and cn with n > 0. 

One set of defining relations is
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(K) ^0 =

(2n) = bn+lCnbn+f1'

(2n) bn — En+1 &nEn+l r

(dn) cn+2 cnbn bn+jbncn

To obtain a group presentation, the following calculations 

are made.

do) = c0 bd a0

1 = Cobo'1

b0 = Co

(do) Ci = Cobo^biboCo"1

Ci
= CoCo^b^oCo'1

Cl = bi

(41) c2 =

C2 = CjCf^b^bf1

c2 =: b2

(42) C3 = c2b2~1b3b2c2~1

C3 = c2c2~1b3c2C21

c3 = b3

(30) bo - b1-1aob1

bjbg = aob!

b^obf1 = a0

From the above, it may be seen that all bn = cn. This 

information together with (ln) a0 = cnbf1an , implies that
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The result isa0 = cncn~2an, (since all bn = cn ) and a0 = an.

the group of this curve is generated by boz b2,...,blz i 2 0 

with the following defining relations

= b^bf1 - b^bf1 = . . . b^b^r1 ■ ■ ■

Since bn has the following representation it may be seen 

that the group of this remarkable simple closed curve is 

non-abelian. To define a homomorphism B of n(A) onto the 

non-abelian symmetric group S3l let B (bn) = (12) for n even 

and B (bn) = (23) for n odd. To insure that B extends to a 

homomorphism we must verify that the relation in n(A) is 

satisfied in S3.

B(b2)B(bQ)e( (be1) = (23) (12) (23)-1 =

(for n even) B (bn^) B (bn) B (b,^1) = (23) (12) (23)'1 =

(for n odd) B (b^) B (bn) B (b^'1) = (12) (23) (12)= (13).

Once again the transpositions (12) and (23) generate the 

group of n (A) as they did for n(trefoil) . This illustrates 

the fact mentioned earlier that although equivalent knots 

are associated with isomorphic groups, isomorphic images do 

not guarantee equivalency of knots since the trefoil is 

knotted and the simple closed curved A is almost unknotted.

In conclusion, I have studied the relationship between 

algebra and topology to determine whether two knots are 

distinct. I observed in the case of the trefoil and the
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example of the wild knot in figure 3.5 that although

these knots map to isomorphic fundamental groups, they are 

not equivalent since the trefoil is knotted and the wild 

knot is almost unknotted. However, the Wirtinger 

Presentation was useful in distinguishing between the unknot 

and the trefoil since the unknot mapped to a cyclic, abelian 

group and the trefoil mapped to the non-abelian non-cyclic 

group S3.

One final point concerns the structure of the wild 

knot. If one were to perform an isotopy such that one of 

the loops were "pulled out", as if this were a chain stitch 

being dropped, we would end up with an object resembling the 

unknot. The study of this and other wild knots having a 

similar "dropped stitch" quality under various isotopic 

deformations provide further opportunities for study.
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