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ABSTRACT

The notions of outer measure, Lebesgue measurable sets and Lebesgue measure
are studied in detail. The existence of nonmeasurable sets is proven thus demonstrating
that the family of Lebesgue measurable sets is properly contained in the power set of
R. Moreover, a complete description of the Cantor and generalized Cantor sets is given.
The Cantor set along with the Cantor function are used to construct a measurable set
that is not Borel; hence, showing that the class of Lebesgue measurable sets is larger
than the class of Borel measurable sets. In addition, the generalized Cantor set is used
to provide an example of an open set whose boundary has positive measure.

After developing Lebesgue integration over the real line, the Riemann integrable
functions are classified as those functions whose set of points of discontinuity has measure
zero. Then the convergence theorems are proven and it is shown how these theorems
are valid under less stringent assumptions that are required for the Riemann integral.

Finally, a detail analysis of abstract measure theory for general measure spaces is given.
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Chapter 1

Introduction

Archimedes was the first to develop a theory of integration in the third century
BC. His approach was to calculate the value of definite integrals by systematic methods.
But this approach could only be applied to highly symmetric figures. Then Newton
and Leibniz, in the sixteen hundreds, developed the method of antiderivatives; that
is, for a function f on [a,b] and an antiderivative F of f such that F' = f we have
f;’ flz)dr = F(b) — F(ri)'.' The adva.ﬁtage of this method was that a large class of
integrals could be calculated, many with great ease. The disadvantage was that it lacked
a rigorous foundation. A rigorous theory of integration was developed by Cauchy in
1823. His definition of integration was similar to Riemann, but he argued that in order
for the integral of a function on [a,b] to exist, f had to be continuous on [a,b]. Then in
1854, Riemann developed the well-known Riemann integral; for a bounded function f
on [a,b], f: f(z)dx = limyag o Dimy f(Ti) (@i — 2i-1), where T; is an arbitrary point of
{zi—1,2i]. Riemann concluded that the integral of a bounded function f on [a,b] exists
as long as f is not too discontinuous [Bur98|.

In 1902 Henry Lebesgue combined the notions of measure and integration.
The result was a procedure for constructing the integral that was very different from
Riemann’s construction. Instead of partitioning the the domain of the function, he
partitioned the range. Under Lebesgue theory of integration every Riemann integrable
function is also Lebesgue integrable. However, the converse is not true. In the process of
developing his theory of integration, Lebesgue developed the Lebesgue measure which is

a generalization of the length of intervals to sets known as measurable sets {Bar66). In



chapter 2, a detailed analysis of the cdnétructiori:(;f the Lebesgue measure is given. Then
in chapter 6 we use the measure theory develdped in chapter 2 to define the Lebesgue
integral. We also show in chapter 6 the classification of Riemann integrable functions
as those functions whd_se sets of points of discontinuity have measure zero. Finally in
chapter 8, we study general mea‘sﬁre' theory. We show how the procedure that Lebesgue
used to create the Lebesgue measure can be done in general to create other measures.

Lebesgue integration turns out to be more powerful and has greater applications
than Riemann integration. We will see in chapter 7 that one of the advantages of
the Lebesgue integral over the Riemann integral lies in the facilitation of interchanging
the limit and the integral. Lebesgue integration provided more general convergence
theorems [Rud76]. The proofs of the Bounded Convergence, Monotone Convergence and
Dominated Convergence theorems is given in chapter 7 along with four examples that
demonstrate the differences between the two integrals.

We will also explore some interesting facts about measurable sets. One of which
is the existence of nonmeasurable sets, given in chapter 4. Thus showing that the family
of measurable sets is properly contained in the power set of R. We also construct a
measurable set that is not Borel in chapter 5. Moreover, in chapter 3, we study the
Cantor and the generalized Cantor sets and we give an example of an open set whose

boundary has positive measure.



Chapter 2

Lebesgue Measure

Lebesgue measure is a generalization of the length £(I) of an interval I to more
complex subsets of R. We would like to define a set function m that assigns to each set B
a nonnegative extended real number mFE called the measure of E that has the following
four properties:
1. mE is defined for each set F of real numbers
2. mI = £(I), where I is an interval and £(1) is its length.
3. If {En} is a sequence of disjoint sets, then m(|J E,) = Y. mE,
4

. m is translation invariant, that is m(y + F) = m(E) for any y € R

Property 3 above is usually referred to as countable additivity, and in order to
have it satisfied, each set E should belong to a family M of subsets of R, with M being
a o — algebra of sets, definition 2.1 and 2.2 clarify this concept.

Definition 2.1. A collection A of subsets of X is called an algebra of sets if (i) BU C

is in A whenever B and C are, end (i3) B® is in A whenever B is.

Definition 2.2. An algebra A of sets is called a o — algebra, if every union (and

intersection) of a countable collection of sets in A is again in A.

2.1 Outer Measure

Definition 2.3. We define the outer measure m*A of a set A to be
m*A = infacyr, (2 UIn))



where I, is a countable collection of open intervals that cover A, and we are considering
the sum of the length of the intervals in any such collection. The outer measure of A is

the infimum of all such sums.

The outer measure m* is a set function satisfying almost all 4 conditions we
would like our desired set .function to have. The almost part refers to the fact that
the outer measﬁr:e is not countably'additive but rather countably subadditive that is
m*(UA,) < > m*A, [Roy88]. The next proposition lists the properties of the outer

measure, the proof is postponed until chapter 8.

Proposition 2.4. The outer measure has these properties:
1. m*(E) is defined for each set E of real numbers
2. md=0

8. If AC B, then m*(A) < m*(B)

4. m*(I) = £(I)

5. m* (U An) <X m* A,

6

*

. m* is translation invariant

As we can see the advantage of the outer measure is that. it is defined for all
sets. The disadvantage is that it is not countably additive. It is actually impossible fo
construct a set function with all four properties mentioned in the introductory paragraph.
Usually the first condition is weakened in order to retain the last three conditions, that
is we have to reduce the family of sets on which the outer measure is defined in order to

make it countably additive. To do this we use Caratheodory’s definition given helow.

Definition 2.5. A set E is measurable if for each set A we have m*A =m*(ANE) +
m*(AN E°), where E¢ represents the complement of E.

Some sets that are known to be measurable are sets whose outer measure is

zero. Hence we will prove the following lemma.
Lemma 2.6. If m*E=0, then E is measurable.

Proof. By property 3 of the outer measure, m*(AN E) < m*(E) since ANE C E.
It follows m*(A N E) = 0. Now m*(A N E¢) < m*(A) since AN E* C A. Moreover
m*(A) = m*((ANE)U(ANE")) < m* (AN E) +m*(AN E) by countable subadditivity.



Also m*(A) < m*(ANE*°) since m*(AN E) = 0. This implies m*(A) = m*(AN E°) since
m*(A) > m*(ANE*®) and m*(A) < m*(ANE*®). Hence m*(A) = m*(ANE)+m*(ANE°).
O

2.2 Lebesgue Measurable Sets

The sets obtained by using the Caratheodory’s criteria form a g-algebra which
we will call M, and the outer measure restricted to this o-algebra is countably additive.
Moreover M contains the intervals. The proofs of these statements is given in chapter
8. In chapter 4 we will show that M is properly contained in the power set of R; that is,
there are subsets of R that are not elements of M. We call the elements of M Lebesgue
measurable sets or just simply measurable sets|Bur98){Roy88).

Next we will take a look at a g-algebra called the o-algebra of Borel sets. The
collection of Borel sets are due to Emile Borel who in 1898 came up with a measure on
the Borel sets. We will see that the class of Borel measurable sets belongs to the class
of Lebesgue measurable sets[Rud87]. We will show, in chapter 5, that the converse does
not hold. The definition of Borel sets is given-below, along with the proof that every
Borel set is measurable. But first recall that a set O of real numbers is called open if for
every z in O there is an open interval I such that z € I C Q. Moreover, a set F' of real

numbsers is called closed if its complement is open.

Definition 2.7. The collection B of Borel sets is the smallest o —algebra which contains
all the open sets. Moreover, it is also the smallest o — algebra which contains all of the

closed sets and the smallest o — algebra that contains the open intervals.
Theorem 2.8, Every Borel set is measurable.

Proof. M contains the family B of Borel sets since M is a o—algebra containing the

open intervals, and B is the smallest c—algebra containing the open intervals. O

2.3 Lebesgue Measure

Definition 2.9. If E is a measurable set, then the Lebesgue measure mE is defined
to be the outer measure of E. That is, m is the resiriction of m* to the family M of

measurable sets. We call this set function m, the Lebesgue measure.



The Lebesgue measure is due to Henri Lebesgue(1902). Since m is the restric-
tion of m* to the family M of measurable sets, m is our sought after function, that is m
is a set function defined on a family M of subsets of R containing the intervals, with M
a 0 — algebra, that satisfies the following conditions(proof given in chapter 8):
1. mI = ¢(I)
2. m(J E,) = 3, mE, for each sequence {E,} of disjoint sets in M
3. m is translation invariant

From now on when measure is used we are referring to Lebesgue measure. Now
that Lebesgue measure has been defined, let us find the measure of some sets. But before

we do this, we give some definitions and examples.

Definition 2.10. A set A is countable if there is a 1-1 mapping from A onto the set of

naotural numbers.
Definition 2.11. A set A is uncountable if A is neither finite nor countable.

For exa.mple the rational numbers are a countable set while the irrational num-
bers are uncountable The first sets we w1ll measure are the countable sets which have

measure zero. The proof follows.

Theorem 2.12. Every countable set has measure zero. That is, if A C R is a countable
set, then m*(4) = 0.

Proof. Since A is countable there exists an enumeration of A . Without loss of generality

we may assume A = {z, :n=1,2,...}. Let ¢ > 0. Consider C = |J52, (Tn — 551, Zn +
-2—-%:1-) By design {z,} C C. Moreover, E( — Ty Tn + 2_,1_,._-1-) = £
Hence 3020, £(Zn — 551, En + 5255T) = Doy 2 = €-

By definition m*({z}) = inf { 532, £(es,b) {on} C U (a1, b}
Therefore m*({zn}) < €. Since m*({z,}) > 0 and e > 0 and arbitrary, m*({z,}) = 0. O

Note that every countable set is measurable since every countable set has mea-
sure zero and by lemma 2.6 every set of outer measure zero is measurable. The next sets
we will measure are the Cantor and the generalized Cantor sets. We will do this in the
next chapter. We will also show in the next chapter that the converse to theorem 2.12

is not true.



Chapter 3

The Cantor and the Generalized

Cantor Sets

In this chapter we will study some special sets called the Cantor and the gen-
eralized Cantor sets and we will find their measures. Then in section 3.1 we will look at
an application of the generalized Cantor sets. Let us begin by defining the Cantor and

the generalized Cantor sets by means of a constructive process.

Definition 3.1. The Generalized Cantor Set. Let 0 < a < 1.

Stepl: Divide [0,1], into two closed intervals of equal length by removing an
open interval of length §. We are left with the closed set Fi(a) = [0,da,) U [da, + §,1],
where 2dg, + § = 1.

Step 2: Remove an open interval of length gz from each closed interval of Fy(a)
in such a way to obtain four closed intervals of equal length. We are left with the closed
set Fo(a) = [0,day) U [day + 35,0y ) U [day + §1day +day + §U [doy +da, + 5+ 57,1],
where 2da, + 57 = da, -

Step 8: Remove an open interval of length 5% from each closed interval of Fa(c)
in such a way to obtain 2° closed intervals of equal length.

Continuing this way, at the nth step we remove an open interval of length %
from each of the closed intervals of Fp_1(c) in such a way to obtain 2" closed intervals
of equal lengths.

The generalized Cantor set Cla) is the intersection of the Fp(a)'s, that is



Cla) = Mol Fale).  »,0 -+
Note that for a« =1, C(1) is-the Cantor set

The following are some properties of the distances of the intervals removed
during the constructior'l of the generalized Cantor set. These properties will be used in
the application section of this chapter. Let d,, = the length of each closed interval in
Fp(a).

Proposition 3.2. d,, = $[da,_, — &]

Proof. By construction
2de, +§ =1
2da2 + ':‘?2' = da;

g, + & = dg,_,
Solving for da,, gives dg, = 5[da,_, — &].0

Proposition 3.3. d,, < #rdal

Proof. For n = 2 we have, by Proposition 3.2, that da, = 1[da; — §] = 3dar— 33 < 3da-
Assume, we have d,, < 2“—1_1-da1. Then by Proposition 3.2, do,,, = 7%-[(1.0.,n — 3n¥T), 80
dapp = 5dan — %gﬁr < kg, < '%W,—l_rdm = sdq,. Therefore we must have dg, <

gerdg,. O

Proposition 3.4. ds, > 5

Proof. When n = 1, we have 2d,, + § = 1. Suppose do, < § then 2d,, + 3 < 24 % =
a < 1 Contradiction. Hence dqo, 2> 3.

Assume is true for n-1, then dg,,_, > 5,-,‘-’5;1- and 2dg, + 5% = da,_,-
Suppose do, < 5= then dq,, | = 2da, + 3% < Lt = Sa — g1 < do

Hence dg,_, = 2dy, + 37 < da,_;- Contra.dxcmon Hence dg,, > &. O
Proposition 3.5. do, > 0 and limd,, =0

Proof. By previous propositions, we have & < do, < grdg, -
Since dg, <1, we have 5= < dg, < om ey < oy 2,. which implies 5 < do,, < 5% 2,,..

Hence, limy0 & < limy0da, < lim,, 0 = 5w which gives lim,y0 da,, = 0.0



Proposition 3.6. d,, < d,,_,

Proof. do, = §[da,_, — &] which implies da, < ida,_,. Hence da, < da,_,.O]

Now we are ready to find the measures of the generalized Cantor sets.
Theorem 3.7. m*(C(a)) =1-a.

Proof. Let Dyp(c) be the union of the open intervals removed at the nth step, and let
D{e) = s, Dp(a). Now {0,1] = C(a) U D{a) with C(a) N D{a) = 0. Since D(e) is
a countable union of open sets, it is measurable. Now the complement of the set D(c)
intersected with [0,1] is C{«). Since C() is the complement of a measurable set, it is
measurable. Hence m*([0,1]) = m*(C(a)) + m*(D(a)).

Now the sum of the lengths of the intervals removed is the geometric series
FHEHPEH A PTIE = D = § TR, () = P = 3=
So m*(D{a)) = a and since m* ([0, 1]) =1, we have 1 = m*(C(a)) + .

Hence m*(C(a)) =1-a. O

As a consequence of the theorem we have that the Cantor set has measure zero
since when o = 1, m*(C(1)) = 1 — 1 = 0. Now the Cantor set is an uncountable set, the
proof of this will be postponed until chapter 5. Hence we have found an uncountable set

with measure zero!

From now on let us refer to C(1) as just C, Dy(1) as Dy, and D(1) as D.

3.1 An Example of an Open Set whose Boundary has Pos-
itive Measure
In this section we will use the generalized Cantor sets to help us answer the

following question: Does there exist an open set whose boundary has positive measure?

Let’s explore this problem in detail.

Definition 3.8. The closure of a set G, G, is the intersection of all closed sets containing
G.
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Definition 3.9. The boundary of an open set O is Bd(0) =0 — O

First note that any open set can be written as O = |J;2;(as, b;) where (a;, ;)N
(aj,b;) = @ when i # j. Let Op = U (i, &%) and note O, = {[a;, 4] | 1 < i < n},
and Bd(On) = {a;,b; | 1 < i < n}. It therefore seems reasonable to predict Bd(0O) =

w1 Bd(On), and m(Bd(0)) = 0 since (U, Bd(O,) is countable. However, we well
show that this reasoning is faulty.

The problem is that for a finite number of disjoint open intervals the boundary
is precisely the endpoints of the intervals but when we are dealing with a countable
number of disjoint open intervals this may not be true which means that the boundary
is made up of more than just endpoints.

There exist an open set whose boundary has positive measure and that open
set is D(a) with e # 1; that is, the open set obtained during the Cantor process. It
follows D(a) = |Js~; Dn(a) where D,(c) is the union of the open intervals removed at
the nth step in the construction of the generalized Cantor set. The proof of this is given

in theorem 3.12, but to prove theorem 3.12 we need lemma 3.10 and corollary 3.11.
Lemma 3.10. D(a) = [0,1]

Proof. Since o € D(a) if and o;lly if there exist a =z, C D, such that limz, = a. It
suffices to show that for any a € C(a) there exists a sequence {z,} in D(a) such that

on—1

limz, = a. Since. D(a) = JS2; D), let Dpa(e) = U7, (@i, b;) and ki, = %%, Let
a € C(a). There exist 1.< m < 27! such that d{kmn,a) < d(kim,a) for 1 <i <271,
Define z, = kmn then {z,} C D(a).

By proposition 3.5, limd,, = 0 and lim 5 = 0. Hence for any ¢ > 0 there
exists an N such that.'daN + 3% < e Since a € C(a), "a” is in precisely one closed
interval of Fn{a). Moreover the length of this closed interval is dg, . In Dy () each of
the open intervals has length % and there is at least one open interval directly to the
right or left of the closed interval containing a. It follows d(zn,a) < day + 3% . Hence
for any n > N, dq, < day, 35 < 5% and we have d(zy,0) < da, + 3% < doy + 37 <€

It follows limz, = a. O
Corollary 3.11. Bd(D{a)) = C(a)

Proof. Bd(D(e)) = D(a) — D(a).
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Now Bd(D(a)) = [0,1] — D(a) since D(a) = [0,1].
Hence Bd(D(a)) = C(a). O

Theorem 3.12. There exist an open set whose boundery has positive measure.

Proof. Let D{c) be the open set obtained in the construction of the generalized Cantor
set with a # 1. By corollary 3.11, we have that Bd(D(a)} = C(a). Since m*(C(a)) =
1 — o, we have m*(Bd(D(e))) =1 - . O

As we have seen, the Cantor and the generalized Cantor sets are very important
sets for they provide counterexamples to different propositions we might believe are true.
We will see in chapter 5 yet another application of the Cantor set, and the generalized
Cantor sets. This time tﬁey help us find a measurable set that is not Borel. But in order
to find this measurable set that is not Borel, we fist need to prove the existence of a

nonmeasurable set.

4o



Chapter 4

Nonmeasurable Sets

In 1905 Vitali was the first mathematician to discover Lebesgue nonmeasurable
sets, hence showing that M is properly contained in the power set of R. The construction
of every Lebesgue nonmeasurable set of real numbers requires the use of the Axiom of
Choice which states that for any nonempty collection C of sets there is a choice function
f such that f(A) € A for each A € C. That it is actually impossible to construct a
Lebesgue nonmeasurable set without the Axiom of Choice was proved by Solovay in
1970 [Bur98][Roy88].

The goal of this chapter is to prove that every set of positive measure contains
a nonmeasurable set. Before doing the general proof we will first prove the case when the
set of positive measure is the interval [0,1], this will be done in theorem 4.1 and corollary
4.2 which say that if we can break the interval [0,1] into a countable union of disjoint sets
with the same outer measure then one of those sets has to be nonmeasurable. Theorem
4.1 and corollary 4.2 provide a guide for the construction of the general nonmeasurable
set.

Note that by |J Efisf we mean the sets Ejs are disjoint.
Theorem 4.1. If [0,1] = U E" with E; measurable, then m(E;) # m(E;) for some
i .
Proof. Assume m(E;) = m(E;) for all 4 and j, then eithexr m(E;) = 0 or m(E;) > 0.

Case 1: m(E;) = 0 then m(|J E;) =1 # > m(E;) = 0. Contradiction.
Case 2: m(E; > 0 then m(|J E;) =1 # > m(E;) = co. Contradiction.
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Hence, m(f5;) # m(E);) for some i 3 j. O

Corollary 4.2. If [0,1] = |JA%* suc_h.,tﬁ'&t m*(A;) = m*(A;) for all i,j then there

exists an i such that A; is a nonmeasurable set.

Proof. Assume A; is measurable for all i, then by theorem. 4.1 m(4;) # m(A;) for some:
i # j. Moreover, m*(A4;) = m(A;) and m*(A;) = m(4;). Hence, m*(4;) # m*(4;).

Contradiction. Hence, there exists an 4 such that A4; is a nonmeasurable set.0]

Theorem 4.3. If E is measurable and m(E) # 0 then there exist By C E such that E;
is measurable, 0 < m(E;) < 1 and By C (n,n+ 1) for some n € Z.

Proof. R=J,cz(n,n+1)UZ

E=FEnNR

E=En(U,ez(nn+1)U2)
E=(Upez(mn+1)NE)U(ZNE)

m(E) =m(Upez(n,n+ 1) N E) + m(Z N E)

m(E) =3, czm((n,n+ 1) NE)

Since m(E) > 0, there exist n such that m((n,n+1) N E) > 0.0

AAnd now we are ready to prove the general case.

Theorem 4.4. If E is a measurable set with m(E) # 0, then F contains a nonmeasurable

set.

Proof. Using theorem 4.3, we can assume that there exist By C E such that B is
measurable, 0 < m(E1) <1 and By C (n,n + 1) for some n € Z. It suffices to show Ej
contains a nonmeasurable set.

Define the equivalence relation on By by z ~ y ifand only if z—y € QN{-1,1).
Form the equivalent classes as follows: X = {z+ ¢ | ¢ € Q} N E;. Noticé that each
equivalent ¢lass will have a countable number of elements since it is indexed by QN(—1,1).
Also the collection of distinct equivalent classes is uncountable since By is uncountable.

Let P be the set whose elements consist of exactly one element from each
equivalent class, by the axiom of choice such a set exists. Let {r;} = @N(-1,1). Form the
sets P+r; = {z+r; | z € P and I € N}. Notice that by design By = {{Jj=; P+ri} NE1.
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Lemma 1: (P + r;) ﬂ (P +r;) =0, where i # 7.

Proof of lemma 1: Assume (P +7;) N (P +r;) # 0. Then for some z; and 25 € P, we
have zy + r; = :E2 + ;. This u:nphes T — Zaisa ratlonal number. Hence z; and z, are
in the same equlva,lent classes However by constructmn of P, 2y and 29 are in different
equivalent classes. Hence (P + ;) N (P +r;) =

Lemma 2: |J2, P+r;C(n—1,n+ 2).

Proof of lemma 2: For aﬁy z €.P a,nd;r;,-' we have n <z < n+1and —1 < r; < 1. Hence
n—l<z+r<nt+l ‘

If P is measurable then so is P + r; and m(P) = m(P + r;) since measurable
sets are translation invariant. Moreover, [ J;2, P + r; is measurable since measurable
sets form a o — algebra. Now m(|U2, P+ 1) = 12, m(P + ;) = T.52, m(P) since
P+4+rNP+r; =0, fori#j.

Now By cU2, P+riCc(n—1,n+2).

Suppose P is measurable then m(E;) < m(|J2, P+ ;) < m{(n —1,n +2))
Cim{P+ 1) < m((n—1,n+2) and m(BE;) < T2, m(P) <
m((n — 1,n +2)) with 0 < 302, m(P) < 3. If 322, m(P) < 3 then m(P) = 0, and if
0 < Y22, m(P), then m(P) > 0. Contradiction. Hence P’ is a nonmeasurable set. O

implies m(Ey) <

Corollary 4.5. Any set of positive outer measure contains a nonmeasurable set.

Proof. Let E be the set of positive outer measure.

Case 1: If F is nonmeasurable, then done.

Case 2: If F is measurable then by theorem 4.3, there exist Ey C E such that E; is
measurable, 0 < m(E;) < 1 and E; € (n,n+ 1) for some n € Z. By theorem 4.4, E

contains a nonmeasurable set. Hence F contains a nonmeasurable set. [
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Chapter 5

A Measurable Set that is not
Borel

In chapter 2, we learned that every Borel set is measurable and that the col-
lection of Borel sets is the smallest sigma. algebra that contains the open sets. It seems
as if the collection of Borel sets account for all conceivable sets, thus all possible mea-
surable sets. For some years it wasn't clear if there existed Lebesgue measurable sets
that were not Borel measurable, but in 1914 this question was put to rest by Suslin, a
Russian mathematician. Suslin proved the existence of a Lebesgue measurable set that
is not Borel by constructing such a set [Bur23j[Rud76]. Hence we have that the Borel
‘measurable sets are a 1‘)r0pér subset of Lebesgue measurable sets!

In order to show that there exists a measurable set which is not Borel, it will be
sufficient to show the following two things: First, if B. is a Borel set and g a measurable
function then g~'(B) is measurable; and second, there exists a measurable bijection g
and measure zero set A such that g7'(A) is a measurable set with m(g~'(4)) > 0.
Using these two results and the fact that every set of positive outer measure contains a
nonmneasurable set we will be able to construct a measurable set that is not Borel. We
will see that the measurable function we need uses the Cantor ternary function which
will be explained in section 2. We will also see how the Cantor set plays a key role in this
proof. Hence sections one through three are devoted to laying the foundations. Finally

in section 4, we will put it all together.
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5.1 Measurable Functions

Definition 5.1. An extended real-valued function f, defined on o Lebesgue measurable
set of real numbers E, is said to be Lebesgue measurable on E if f~1((c,00]) = {z :

f(z) > c} is a Lebesgue measurable subset of E for every real number c.

Proposition 5.2. Let f be an eztended real-valued function whose domain is a Lebesgue
measurable set of real numbers E, and ¢ is any real number. Then the following state-
ments ore equwalent BEE R
1 f 18 a Lebesgue measurable funciion on E.

(e,00]) = {=z: ( ) > c} is e Lebesgue measurable subset of E.

( o)) ={z: f > c} is a Lebésgue measurable subset of E.
( [—o0,¢)) = {z: f a:) < ¢} is o Lebesgue measurable subset of E.

[—o0, c)) = {z f :1,') < c} zs a Lebesgue measumble subset of E.

....

\\',_

Some examples of measurable functlons are continuous functions. The proof

follows.

’
o Yy

Theorem 5.3. If f is a-‘continuoye‘?ﬁnction, then f is measurable.
Proof. Recall, f is continuous if and only if f~1(O) is open for all open sets O. Since
open intervals are open sets, we have f -1 of open intervals is open for all open intervals.

Hence since open sets are measurable, f is a measurable function.Od

The following is a relationship between measurable functions and Borel sets

that is key in proving the existence of a measurable set that is not Borel.
Theorem 5.4. Let f be measurable and B a Borel set. Then f~1(B) is measurable.

Proof. Let f : E — R, where E is a measurable set. Let S = {A C R | f"l(A) is
measurable }. Note if A; € S then the following are true:
1) FHUR, Ai) = UL, £~ (A;)which is measurable.
2) FFYNZ, Ai) = N2, f~1(A;) which is measurable.
3) FYR ~ A) = fYR) — f~{A;) which is measurable.

Also for @ < b we have f~((¢,00)) = {z € E|f(z) > o} and f~}((—00,b)) =
{z € E|f(z) < b} are measurable. Hence, f~}(a,00)} N f~}(—00,b) = f~1{(a,00) N
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(-00,b)) = f~(a,b) is measurable. Since the Borel sets are the smallest o-algebra
which contain open intervals, we must have B C S where B is the collection of Borel
sets. O

Finally we will show that the composition of a measurable function with a

continuous function is measurable. But first we need this lemma.
Lemma 5.5. (go f)~}(4) = f1(g~1(A))

Proof. z € (go f)71(A)

= (gofllm)c A

— g(f(z)) e A

= f(z) €g7(4)

= z€fg7'(4)

Hence (go f)~1(4) = f~(¢7'(4)). O

Theorem 5.6. If f is a measurable real-valued function and g is a continuous function

defined on (—oo,00), then go f is measurable.

Proof. Let A be an open interval. By lemma 5.5, we have (go f)~}(4) = f~ (g7 (4)).
Since g is a continuous function, g~!(A) is an open set. Now since an open set is a
Borel set and f is measurable, it follows from theorem 5.3 that f~! of a Borel set is

measurable. Hence g o f is measurable. [J

5.2 The Ternary Representation of the Cantor Numbers

In chapter 3 we learned that the Cantor numbers are obtained by intersecting
all the closed intervals removed during the Cantor process, ie. C = (e Fn. In this
section we will study another way of representing the Cantor numbers, namely its ternary
representation. Let us first take a look at what is meant by the binary expansion and

ternary expansion of a real number z € (0,1).

Definition 5.7. Let p be an integer greater than 1, and z @ real number 0 < z < 1.
There is a sequence (an) of integers with 0 < ap < p such that z = 370 %% and this
sequence is unique except when x is of the form 5‘1,;, in which case there are ezactly two
such sequences. Every number in the interval (0,1) has ot least one, and at most two,
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ezpansions. If p = 2,, Jhis sequence is called the binary ezpansion of z. For p = 3 it is

called the ternary ezpansion.

'
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The next two theorems classify all the numbers with two ternary expansions.

‘ . . , -1
Theorem 5.8. z € [0,1] has two ternary ezpansions if and only if & = Yy & + 3,,.
where k=1 or k =2 and a, € {0,1,2}.

Proof. Suppose z = zn_l % = D ooy % where ag, b € {0,1,2} and {as} # {bs}. Let
M be the smallest integer such that b, # a,,. Without loss of generahty we may assume
tm > b Now 0 = 370 Saghe > L4 5700 eazbe > L

n=1 g% — [Xno 55tm=] = 0.

Hence, we must have by, =2 and ap4m =0 for n > 1. Moreover, am =1oray =2
Conversely, suppose z € E?;ll &+ 3% where £ = 1 or 2. Let b, = @, for

n<m-—1,b,=0ifk=1o0rb,=1ifk=2and b4, = 2 for n > 1. By design

_ oo b
=) g 3x. O

Theorem 5.9. Let ay, by, € {0,1,2} for alin. Ifz = m-lgn 4 k 3,,, where k=1 or 2,

n=1 3»
and b, # ay for some n < k then 2:’:1_%% # .

le o]

Proof. Suppose z =} -~ | 3n Let r be the smallest integer such that b, # an,.
Oasel br. > a,. Then 0 = 3722, J;"ﬂ-=."*‘;aa+zm 1 ”-G +2m-_am+

n n=r41
ZO-m,H gn 2 - ,T:rl“ 3w+ 3m] >'0. Contradiction.
Casez ar > b,. Then 0 _En lﬁn_—_bn.= ﬂdn+zn_r+19ﬂ.+ﬂm—_bm._
00 1

_ 1, 1
n=m-+1’ 3n > 3 3r [Zn'—r+1 3n + g 3m + =m41 3n] =g 3 taw 3m > 0. Contra-
diction. O

Now we are ready to classify the Cantor ternary numbers. Let D be the set of

open intervals removed in the Cantor process.

By construction D = ;22{U,ea, Dn, } UD1 where Dy, = (Zz_l
T Dy —(3;1 + &) with g € A = {set of all functions from {1,2,..n — 1} to {0, 2'}}
represents an arbitrary open interval removed at the nth step of the Cantor process and
Dl = (%: %’)
Theorem 5.10. € C if and only if there ezist {an} such that =3 ° g2 with ap, =0

or G = 2.



Theorem 5.10 is equivalent to the following theorem.
Theorem 5.11. z € D; if.and o‘nly if = has no tqrhav"y ezpansion with only 0’s and 2’s.

Proof. Assume z € D then z € DNg for some N and g

Hence z € (Zz-l cal S E?——ll % + ) implies Y75 4 + & < 2 <
En 1 g z + 3“

Now z = ;‘:11 13(:—2 + 31? + D ient %’} where b;’s cannot be all zeroes or all twos.

Forif by =0for alli > n, thenz = % 7, 1 ﬂfl + 3,. which is the left endpoint
of (Z” 19 _Ll + g;, E;‘_ll ia;l + 3;). So if bpay = 0, then there exist £ > n - 1 such that
be=1or bk = 2.

Also if b; = 2 for all i > n, then z = 37} géf ta YR e =y
=Yg 1 g ’ +3,, ‘which is the right endpoint of ( Y77 19 —Q+3n,2” 19 —)-+ =).
So if by = 2, then there exist £ > n + 1 such that by =0 or by = 1.

It follows 0 < 2z-n+1 3 < Ez"n+l 7= 3%

.‘-

If x has two ternary expansions, by theorem 5.8, z = :Tll g, + 2 where k=1
or 2. Moreover, by theorem 5.9, z = 377} 9—3@ + 37 + E;"__,I{H 3+ + o= and any other

expansion of x must agree in the first m-1 terms of the series. Hence every expansion of

x has a nonremovable one in the nth position, that is x has no ternary expansion with
0’s and 2’s.

For the other direction, assume y = Y72} 7)- b+ T B where 0 <

Rt < YR 2 =& Tt follows Y ) 4+ L <y < P8 4 2 Hence
yE€D Ng- a

As has been shown by the preceding theorém, the Cantor set C consists of all
those real numbers in [0,1] that have ternary expansion (es) for which a, is never 1. If
x has two ternary expansions, we put « in the Cantor set if one of the expansions has
no term equal to 1.

Before continuing with our proof of the existence of a measurable set that is
not Borel, we will take a moment to show that the Cantor set is uncountable. Our proof
will use the Schroeder-Bernstein Equivalence Theorem which states: If there exists one-
to-one mappings f and g going from A — B and B — A respectively, then there exists

a bijection from A — B.
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Theorem 5.12. The Cantor set is uncountable.

Proof. Let 1, the identity map, and ¢ be defined as follows.

I:C—=(0,1)

¢:(0,1) — C where ¢( 352, $8) = 1o, &,

If a binary number has two binary expansions, choose the one with nonrepeated ones.
Clearly, ¢ is well-defined. ¢ is strictly increasing since if z,y e (0,1) and z < y, then
¢(z) < ¢(y). Hence ¢ is one-to-one. Since I is one-to-one and ¢ is one-to-one, then by
the Schroeder-Bernstein Equivalence Theorem, C and (0,1) have the same cardinality.

Since (0,1) is uncountable, C is uncountable. O

5.3 The Cantor Ternary Function

Definition 5.13. The Cantor ternary function. Let z be a real number in [0,1] with the
ternary expansion (an), £ = 3 1 $% with ap = 0, 1 or 2. Let N = oo if none of the
an are 1, and otherwise let N be the smallest value of n such that e, = 1. Let b, = %an
for n < N and by = 1. The function f defined by setting f{z) = Z,’:':l %& is called the

Cantor ternary function.
The next lemma shows that the Cantor ternary function is well defined.

Lemma 5.14. If z has two ternary expansions, then Ef=1 ’-2"’% is independent of the

ternary expansion of x.

Proof. By theorem 5.8 we know that if x has two ternary expansions then z = ?_11 o+
& where k= 1 or k= 2 and a, € {0,1,2}.

Case 1: If k=1, then let the st expansion of x be z = Y} 22 4 s and the
second expansion be z = Yy g2 + Y000 2.

-For the first expansmn' If N=m, then f( nm__ll &a + 3m) ?_11 gn + o0; and
if N <m, then f(X0 & + )= b +

Now for the second expansion: If N = oo, then f(3-™} 8o 4 Y oms) gr)=
Yol 8 + 2ok m = z::‘:f b+ i 2=f(C0) % + 5%); and if N < m, then
f{ $:11 $+ e W 2’_11 gn + —zv f(E?J 3+ 3m)

Hence En_l 22 is independent of the ternary expansion of x when k=1.
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Case 2: If k=2, then proof follows mutandis mutates as above. O

The aim of this section is to show that the Cantor ternary function is continuous

and monotonically increasing, but in order to do this we need the following theorems.

Theorem 5.15. The Cantor function is constant on each of the open intervals removed
in the Cantor process Moreover, the value of the constant on the interval (a,b) removed
is equal to f(a) = (b)

Proof Let z € Dy, then z = "_1 J——-}-3n + )it 3, It follows f( ) =3 11 2—%5—7')4—
2. Hence f is constant on Dn, and it equals f(3ono! £ @ =) = f(z)=f(XF] _(._ +

Z). O

Theorem 5.16. The Cantor function is,monotgnically increasing on the Cantor set.

Proof. Let z,y € C such that z < y. Let z = :”_11 -l ) YA 3, and
y= 07 g+ g+ 301 % where {ai}, {bi}, {ci}, {d;} ate sequences of 0’s and 2’s.
There exists a smallest m such that a; = ¢; for i <m and a;, =0 and ¢, = 2.

If b = 2 for all ¢ > m, andd~=0forallz'>mthenm= ;TL;I%}+3%+

32
Zf_’imﬂ 33 and y = :’lll o+ g 3,,,. It follows f(z) = Z__1 2 4 2m + 3 gl o =
zHl "‘ m T g 2m = Ez-l 2% 1 (y)-
Otherw1se,
—1 ia; 'l‘di

f(.’l'}) = 2?111 1;5_ + '2_05 + Z;.im Ez—l 22 + 27'"- =+ Z'L—m-i- 5= f(y)

360 17 _ 1
since zz-m-{-l 27 < Ei:m+1 %'_ = Im- O

Theorem 5.17. The Cantor function is monotonically increasing on [0,1].

Proof. Let z,y € [0,1] such that z < y.

Case 1: Let z,y € C then f(z) < f(y) since the Cantor function is monotoni-
cally increasing on the Cantor set.

Case 2: Let z,y € D. Let z € (a,0) and y € (¢, d) with (a,b),{c,d) C D. Now
y) = f(c) implies £(z) < f(y).
a,b) C D. Now z < y implies z £ a.

z < y implies a < ¢. Moreover f(z) = f(a) and f

—~

Case 3: Leta:ECandyED.LetyG

—

Since z and a aré Cantor numbers, it follows f(z) < f(a). Moreover f(y) = f(a) b
theorem 5.15. Hence f(z) < f(y). |
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Case 4: Let z E‘ﬁ'an'd“gj €C Letze (a,b) ¢ D. Now z < y implies b < y.
Since b and y are Cantor numbers, it follows f(b) < f(y). Moreover f(z) = f(b) by
theorem 5.15. Hence f(z) < f(y). O

Theorem 5.18. If f : [a,b] = R is monotonically increasing then

f is continuous if and only if for all y such that f(a) < y < f(b), there exist « € [a,b]
such that f(z) =y.

Proof. Assume f is continuous, then by the intermediate value theorem there exist an x
such that f(z) =y for all y € [f(a), f(b)].

Conversely, assume z € [a,d] such that f(z) = y, for all ¥ where f (a) <y<
f(b). Let ¢ > 0 and let ¥, and y; € [f(a), f(&)] such that f(a) < y1 <y < y2 < F(b)
where y — 1 < € and y» —y < €. Let 1 and z € [a,b] such that z; < z < 29, with

f(z1) =y, and f(z2) = . Let § = min{|z; — x|, |z2 — x|} then for all ¢ € (z — 6,z +6)

we have {¢ — 2| < 8. We want |f(c) — f(z)| < e

Case 1: 21 < ¢ < z implies f(z1) < f(c) < f(z).
Now f(z) — f(z1) = f(z) — f(c) + f(c) — f(z1): Sincef(z) — f(z1) < ¢ it follows
f(z) — f(c) + f(c) — f(z1) < €. Moreover, f(z)— f(c) 2 0 and f(c) — f{z1) > 0, implies
@) - fl) <e

Case 2: z < ¢ < o implies f(z) < f(c) < f(z2).
Now f(z2)—£ (@) = f(@2)—F(A)+F () F(a). Also f(z2)—f(a) < implies f(z2)—f(c)+
f(c) = f(z) < e. Moreover, f(z2) — f(c) > 0 and f(c) — f(z) > 0 implies f(c) — f(z) < ¢
Case 1 and 2 imply |f(c) — f(z)| < e. O

Corollary 5.19. The Cantor function is continuous.

Proof. Lety € [f(0), f(1)] this implies 0 < y < 1. It follows y = > 72, & where a; = 0 or
;=1 Letz=3 2, -2:,%, then = € C. It follows that for all y € [0, 1), there exist z € C

such that f(z) = y. Hence f is continuous by previous theorem. O

54 A Measurable Set that is not Borel

Let fi be the Cantor function, and define f by f(z) = fi1(z) + =.

‘The proof of the existence of a measurable set that is not Borel requires that f map the
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Cantor set onto a set of positive measure. But in order to show that f maps the Cantor
set onto a set of positive measure, we need to show that f is a homeomorphism of [0,1]
onto [0,2]. The proof follows.

Recall that a space X is compact if every open covering of X contains a finite
subcollection that also covers X [Mun00).

Theorem 5.20. f is a homeomorphism of [0,1] onto [0,2].

In order to prove this theorem we need the following result. Let f : X — Y
be a bijective continuous function. If X is compact and Y a metric space, then f is a
homeomorphism.
Proof. Let z,y € [0,1] such that z < y, then f(z) = fi(z) + z and f(y) = fi(y) +v.
Now fi(z) £ fi(y) since the Cantor function is monotonically increasing. Since < y,
it follows fi(z) + = < fi(y) + y. Hence { is one-to-one, since f is strictly increasing.

Now f; and the identity function are continuous. Since the sum of two contin-
uous functions is continuous, f is continuous.

Since f(0) = f1(0) +0 =0, f(1) = f1(1) + 1 = 2 and { is continuous, it follows
f takes all the values between [0,2]. Hence f is onto.

Since f : [0,1] — [0,2] is a bijective continuous function with [0,1] compact and

[0,2] a metric space, it follows from result above that f is a homeomorphism. O

Theorem 5.21. f maps the Cantor set onto a set of measure 1.

Proof. Recall D = [0,1] — C where an arbitrary open interval removed at the nth step
of the Cantor process is given by Dy, = (¥ 1= -} é;l + 2, Z;’;l g =

where g € 4, = {set of all functions from{1,2,...,n~ 1} to {0,2}}.

Hence D = UpZo{U,ea, Dng} U D1 where Dy = (3, 2).

Now f(Dn,) = {f1(z) + |z € Da,} and f1(Dn,) = {/1(&)ls € Dn,}. Since fy
is constant on each Dy, let fi(Dn,) = Cn,. Then f(Dn,) = f1(Dn,)+Dn, = Cpy +Dh,.
Hence m( f(Dng)) = m(Dp,) by the translation invariant property on m. Now f(D) =
Unez iU e, F(Dn )3V f (D1) is clear by definition. Also since Dy, and Dy, are disjoint
sets and f is one-to-one, f(Dy,) N f(Dm,) =0 if g # h or n # m.

Therefore,

m(f(D)) = m(Usla{Ugea, f(Dn,)}UF(D1)) = 521 Sgen, m(f(Dn))+m(f(D1)) =
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Yomes >gea, M(Dng) + m(Dy) = m’(D) 1 by the countable additivity property of
Lebesgue meastre. Now. [0;1] = DU'C and £([0;1]) = f(DUC) = £(D)U £(C) = [0,2].
Therefore, 2 = m([0,2]) = m(f(D) U f(C)) = m(f (D)) +m(f(C)) = 1+ m{f(C)).
Hence m(f(C)) = 1. El T |

£

Now we are ready to prdvé the existence of a measurable set that is not Borel.

Theorem 5.22. Let g = f~. There is o measurable set A such that g~ 1(A) is not

measurable. In particular, there exists a measurable set which is not a Borel set.

Proof. Note f(D) is measurable since f(D,,) and f(D;) are measurable and f(D) =

Une2{Ugea., f(Dr,)} U £(D1). Moreover, f(C) is measurable since f(C) = [0,2] - f(D).
f(C) measurable and m(f(C)) =1 imply there exists a nonmeasurable set A C f(C).

Let g = f~! . Now g is continuous and by theorem 5.3 it is measurable.

Let B = f~1{A) C C then B is measurable since m(B) < m(C) = 0. However,

—1(B) = f(B) = A is not measurable. It follows B is not a Borel set since the in-

verse image of a Borel set is measurable for measurable functions. [

The following is an example that shows that the composition of two measurable
functions may not be measurable. But first recall that the characteristic function of B
is defined as follows: Xp(z) =1ifz € B and Xp(z)=0if = ¢ B.

Let f(z) = fi(z) + = where f; is the Cantor function. By theorem 5.22, there
exists a measurable set B such that f(B) is not measurable. Let g = f~! and h = Xp,
then (h o g)(z) = h(g(z)) = Xp(f !(z)). Note that Xp(f~'(z)) > § if and only if

~Yz) € B. Now {z|(hog)(z) > 5} = {z|XB(f (=) > 3} = {z|/~}=z) € B} =
{z|lz € f (B)} = f(B). It follows h o g is not measurable since f(B) is not measurable.
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Chapter 6

A Necessary and Sufficient
Condition for Riemann

Integrability

We are familiar with the deﬁnit‘ion that a function is Riemann integrable if its
upper and lower integral agree. In this chapter we will learn another way of classifying
a Riemann integrable function. We will prove that a function f is Riemann integrable
precisely when the set of points at which f is discontinuous has measure zero [Roy88).

Sections 6.1 through 6.4 contain the theorems necessary to prove this.

6.1 Properties of Measurable Functions

First we will prove that the supremum and the infimum of a sequence of mea-

surable functions is measurable, but we need the lemma below to do that.

Lemma 6.1. Let {f,} be a sequence of measurable functions. Let g = supfn, then

{z:9(z) > a} =UpLi{z: fnl2) > o}

Proof. Let E = {z : g(z) > o} and E, = {5 : fa(z) > a}. Let £; € E then g(z1) > c.
Since g(z1) = supfn(z1), supfn(z1) > a. It follows there exist N such that fy(z1) > o,
ie. 1 € {z: fn(z) > a} = En. Hence, E C |Up2, En.
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Let 1 € B, then fp(z;) > a. Since g = supfn, g(z1) > ful(z1) > o for all n.
Hence g(z1) > o implies z; € E. Hence {z : g(z). > o} = U {z: fulz) > a}. O

Lemma 6.2. Let {fn,} be a sequence of measurable functions then the supf, and the

inf fn are measurable.

Proof. We know from lemma. 6.1 that {z : g(z) > o} = ;2 {z : fa(#) > o}. Since
each fn is measurable and the countable union of measurable sets is measurable, g is

measurable. The proof for inf f, is done similarly. 0

Definition 6.3. A property is said to hold.almost everywhere (abbreviated a.e.) if the
set of points where it faz'_ls to hold is a set of measure zero.

Lemma 6.4. Jf f z's_a?_meaf’su‘i“able fdnction and .'f=g a.e., then g is measurable.

Proof. {z:g9(z) >a}={z: f(z)>a}—{z:9(z) Saand f(z) >a}U{z: f(z) <
and g(z) > o} is measurable since {z : f(z) > «} is measurable, {z : g(z} < a and
f(z) > o} and {z : f(z) < ¢ and g(z) $,a} are both measurable with measure zero and

measurable sets form a sigma algebra. O

Recall that a step function, ¢, is a linear combination of characteristic functions,
ie. =31 aiXg, + Z:-f:l b;X.,, where E;’s are intervals and e; € R [Rud87]). We will

show that every step function is measurable, but first we need the lemma below.

Lemma 6.5. Let h = aX; and g = bX{),where I is an interval and c € R, then h and

g are measurable.

Proof. For any r € R we have {z|h{z) >r} =TI ifa >r and {z|h(z) >r}=0ifa<r.
Moreover {z|g(z) > r} = cif b > r and {z|g(z) > r} = 0 if b < r. Clearly h and g are

measurable. [
Theorem 6.6. Every step function is measurable.

Proof. Let f be a step function, then f = > a; Xy, + ELLI);'X{C‘.} where I; =
(o, Bi), with I's disjoint and ¢; ¢ I; for all 4 and j. By lemma 6.5, we know each
a; Xy, and biX{c,-} is measurable. Now a1 Xy, + a2X), is measurable since the sum of

two measurable functions is measurable. Assume a1 X7 + a0 Xy, + -+ + an—1X1,_,
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is measurable. Now (a1 X7, + apXy, + -+ + an_1Xy,_,) + @ X[, is measurable since
(@1 X, +aeXr, +---+0a,1Xy,_,) and a, X, are measurable and the sum of two mea-
surable functions is measurable.

In a similar way we can show that b3 X1 +b2 X))+ - - +bk X ((,} is measurable.

Moreover f is measurable since f is the sum of two measurable functions. O

6.2 Extending Riemann Integration

The key to extending Riemann integration lies in proposition 6.11 which shows
that a bounded measurable function on a closed interval [a,b] and simple functions are
a natural extension of Riemann integrable functions on [a,b] and step functions. But in

order to prove proposition 6.11 we need the following.

Definition 6.7. The integral of a characteristic function is defined as follows [ Xp =
m(E).

Definition 6.8. Simple Function ¢ = 3 ;- , a;Xg, where E;’s are measurable sets.

Definition 6.9. The integral of a simple function is defined as follows [ Y, a;Xg, =
Z?:l aim(Ei)‘

Proposition 6.10. Let v and ¢ be simple functions
W) [(ap+19) =a[p+b [
b) If o > a.e., then [ 2> [

Proposition 6.11. Let f be defined and bounded on a measurable set B with mE finite.
In order that inf [, ¥(z)dx = sup [ p(z)dz for oll simple functions (x) > f(z) and

o(z) £ f(z), it is necessary and sufficient that f be measurable.

Proof. Assume f is measurable and bounded by M. We will first partition the range of f

as follows. Let By = {2 : EDM « r(0) < EM._p < k < n} and M = supger|f(2)l.

Now Ej’s are measurable, disjoint and have union E. Thus }>7;__, m(Ex) = m(E).
Create simple functions 4 and  on the sets Ej, such that ¢ < f < 9.

Let = W Xp, + S Xy |+ 4 BXp 4. 4 =2 xp

and Op = K"_—;mXEn + ﬂ”__jMXEn_l 4.0 4 Kﬁ__;lb_'[XEk_] NI (—n—T—ll)MX
It follows 1y, = L Y0 kXg, (%), and @, = L 302__ (k—1)Xp, (2).

Bn-1)*
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Now f'ﬁbn —Pn = f %(XEn +Xg,,+ XE-'n-H + XE_,)

=L ke Xp, =% [ Xy Be =Y [ Xp = Ym(E).

Moreover sup [ 4 > [ pn and inf [ < [, '

Also [ 4 > [y since ¢ < f-< 9. Hence [ > inf [¢ > sup [ > [ ¢n.

Since sup [ ¢ 2 [ n, then ¥m(E) = [p—[0n > [thn—sup [ ¢ 2inf [h—sup [ >
0 for all n. Hence inf [ ¢ = sup [ ¢.

Now for the other direction, let f be some fixed bounded function. Suppose
a = supy<s [po(z) = infr<y [pw(z) where ¢ and 9 are simple functions. Hence for
all n there exist w, < f and ¢, > f such that [, > @ — % and fE Py < -I--;l;. Tt
follows fg 9~ fpon = [gin—n <(a+3)—(a~-}) =2

Let * = inf v, and ¢* = sup p,. Now 9* and ¢* are measurabrle and bounded
by lemma 6.2. Let g = ¥* — ¢*. We have that g > 0 and it i5 bounded and measurable.
Moreover g = " — ¢* < 9n — Pn. |

Suppose m({z : ¥*(z) — ¢*(z) > 0}) > 0 then there exist & > 0 such that
m({z : ¥*(z) — @*(z) > £}) > 0. Let By = {z : ¢*(z) — ¢*(z) > £} and = }+Xp,.
It follows ¢ < g since g = ¥* — * > —,1; for z € Ey. Moreover [ = ﬂkg’ﬁl > 0.
Hence supy,<y g ¢(x) > 0. Since g is measurable and bounded we have by part a that
supy<g [g 0(2) = infocy [p¥(@).

Let ¥ = 9n — pn. It follows ¥ > g and {9 = [(¥n — ¢n) < 2. Hence
infocy [p(z) < 2 for all n implies infy<y Jz¥(z) = 0. So we have sup [ ¢ > 0 and
inf f’t/) = 0 which contradicts sup [ ¢ = inf [ . Hence m({z : ¢*(z) —p*(z) > 0}) = 0.
It follows ¢* = ¢* a.e.. Now ¢* < f < 9* implies ¢* = f a.e.. Hence f is measurable.
0

As was shown in the proposition above, Lebesgue’s construction of the integral
is different from Riemann’s construction in that it partitions the range of the function
rather than the domain[Bur98).

Definition 6.12. If f is a bounded measurable function defined on o measurable set E
with mE finite, we.define the (Lebesgue) integral of f over E by [ f(z)dz = inf [, ¥(z)dz
for all simple functions ¥(x) > f(z).

Having defined the Lebesgue integral of a function f, we will show in the

next proposition that if f is Riemann integrable then the Riemann integral of f equals
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the Lebesgue intégra.l ‘of f: Recall tlfa;.t the upber Riemann integral of f is defined by
R{ j f(z)dz =inf [ : ¥(x)dz for all step functions ¥(z) > f(z). And the lower Riemann
integral of f is defined by R [ Z f(z)dz = sup [ : p(z)dz for all step functions () < f(z).
Hence a function f is Reima;m integrable on [a,b] if the upper integral is equal to the
lower integral. The Reimann int;:gral of f is denoted by R [ : [ (z)dz [Bar66).

Proposition 6.13. Let f be ¢ bounded function defined on [a,b]. If f is Riemann inte-
grable on fa,b], then it is measurable and.RIZf(a:)dm = fzf(a:)‘_dw.

Proof. Let f be a Riemann integrable function.

N0‘w we have that inf [ w21 P3P > inf [ o> J,.'z/)s':mple. Moreover sup [ o<f pter <
SUp f:,ogf Sostmple, and sup ftps_f (Pstmple <inf fxbzf ,ll)slmple.
Hence Supf(p"tep < Supfgosimple <inf f¢simple <inf J‘ wstep_

Since f is Riemann integrable, sup fv <f %P = inf f¢2 f %P and it follows

sup [ piimple — inf [ypsimple. Hence f is measurable. [

Proposition 6.13 shows that every Riemann integrable function is measurable.
However, the converse is not true. Consider the measurable set @ N [0,1). It follows

that f = Xgnpo,1) is measurable. However, f is not Riemann integrable since we have

Rf;f=1andRf}f=0.

6.3 Properties of Lebesgue Integration

Theorem 6.14. Given f > 0, bounded and measurable, Lebesgue integral of f is zero if

and only if f equals zero a.e..

Proof. Assume Ey = {z : f(z) > 0} then Eg = |02, {z : f(z) > L}.

Let By, = {z : f(z) > %} Suppose that m(Fp) > 0, then there exists N such that

m(En) > 0. Let on = % Xg, by design ¢ < f. Now [on = % [ X5y = p(m(En)) >

0. Since [ f = sup o< (z), where  is & simple function, it follows 0 < [on(z) <

Sup fvﬁf ¢(z) = [ f. Contradiction. Hence m(Ep) = m({z : f(z) > 0}) =0.
Conversely, let ¢ be a simple function such that ¢ < f and ¢ > 0. Let

0 = Y o, 0nXE, where a, > 0 and E, N E,, = @ for all n,m where n # m. Now

Jola) = [ 352, anXE, = Yooy anm(Ey). Since ¢ < f, then e, = ¢(z) < f(z) for
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z € E,. Hence B, C {z: f(z) > an}. Moreover, a, > 0 implies B, C {z: f(2) > an} c
{z: f(z) > 0}. Hence m(E,) C m({z: f(z) > a,}) C m({z : f(z) > 0}) by proposition
24. Since m({z: f ( ) > 0}) = 0, then m(E,) = 0 for all n. It follows | ¢(z) = 0. Hence
[ f=sup [, e(x) = [p(z) =0since ¢ is an arbitrary simple function below f. O

The following are some properties about bounded measurable functions defined

on a set of finite measure that will be used in later proofs.

Proposition 6.15. If f and g are bounded measurable functions defined on a set E of
finite measure, then:

i. [glaf+bg)=aff+b[gg.

i. If f=g a.e., then fE f= fE g.

w. If f<g a.e.;“;t}.zen fEf < ng.i"’ S

iv. If A and B are disjoint measurable sets of finite measure, then fAUB f= IA f+ fB f

Next we will prove the Boundéd Convergence Theorem, its proof uses the fol-

lowing proposition known as one of Littlewood’s theorems [Rud87].

Proposition, 6 16. Let E be a, measumble set ofﬁmte measure, and {fn} a sequence of
measurable functzons deﬁned on E Let f be a real-valubd function such that for each T in
E we have fn — f(z). Then given € > 0 and § > 0, there is o measurable set A C E with
mA < § and an integer N such that for all. m ‘¢ Aaend alln > N, |folz) — f(z)| <e

Proposition 6.17. Bounded Convergence Theorem (BCT): Let {fn} be a sequence of
measurable functions defined on a set E of finite measure, and suppose thal there is a
real number M such that |f,(z)| < M for oll n and all z. If f(z) = limfn(x) for each x
in E, then [y f = [glimfn = lim [ fa.

Proof. Let ¢ = § > 0 then there exists N and A such that m(A) < e and |fr(z)—~f(z)| <€

forn > N and z € E — A by proposition 6.16. Now | [o(f — fa)| < [plf — fal =

Jgalf = fal+ fa|f — fnl. By design |f(z) - fa(z)| < € for n > N and & € E— A. Hence

Jynlf = fal < Jp_ne = m(B — A)e < m(B)e and [ |f = ful < 2M)m(4) < (2M)e

since |f — fn| < |f| + |fn)] £ 2M. Therefore, when n > N we have | [ f — fa] <
[m(E) + 2M), i.e. lim| [ f — fo| = Othat is lim [ fo = [ f. O
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6.4 A Necessary and Sufficient Condition for Riemann In-

tegrability

Definition 6.18. Upper and lower envelopes of a function. Let f be a real-valued function
defined on [e,b]. We definé the. lower envelope h of f to be the function h defined by
h(y) = sups>oinfle—yj<sf(z), and the upper envelope H by H(y) = infs>05up|e—y|<sf (z)-

In order to prove theorem 6.24 which states that a bounded function f on [a,b]
1s Riemann integrable if and only if the set of points at which f is discontinuous has
measure zero, it is sufficient to show the following. First we need to show that the upper
Riemann integral of f equals the Lebesgue integtal of the upper envelope of f (theorem
6.21); as well as the lower Riemann integral of f equals the Lebesgue integral of the
lower envelope of f (corollary 6.22). Second we need to show that H(z) = h(z) if and
only if f is continuous at z (theorem 6.23). We start by proving theorem 6.21, but we

need lemma 6.19 and 6.20 to prove it.

Lemma 6.19. Let f be a bounded function. If © is a step function such that ¢ > f then
w > H ezcept ot a finite number of points.

Proof. H(z) = in fs>05up|z—y<sf (¥) is the upper envelope.

Let ¢ = 30, ¢iX(gby) + diX{a;) + €iX{p,)- Suppose x € (ai,b:) then there
exists 65 such that (z — 6z, + &z) C (a;,b;). Now H(z) < supj_y(<sf(y) for any § <O0.
Also f(y) < ¢; for all y such that |z — y| < dg.

It follows sup|g—y|<s, F(¥) < SUP|z_y|<s,Ci- Therefore supjz_y<s, f(y) < .
Since H(x) < supjg_y|<sf(y), it follows H(z) < ¢;. Hence ¢ > H except for a finite

number of points. U

Note that ¢ | H means a decreasing sequence converging to H.

Lemma 6.20. Let f be a bounded function. There exists a sequence {ypn} of step func-

tions such that @ | H where {p,} is uniformly bounded.

Proof. Consider [a,b] C Ume[ﬂ,b] N(z, 71—1) By compactness of [a, b] there exists {Z1n, ... Trn}
such that [a,b] € Uf_; N (win, +). Without loss of generality we may assume {Z1n, ... Zgn} C
{Zim, . .- Tim} when m > n. Define p = E’;-‘zl supyeN(m'_n,%)f(y)XN(mm:‘_). Now, @, > H.



We want to show that lim ¢, (z) = H(z) for z € [a, b].

We have that for any = € [a,b] and n there exist s such that z € N(zim, &).
Since & € N(%in, L), there exist 6z, such that N(z,6z,) C N{zin, Ly.

Moreover supyen(z,sz.)f () < supy e N(#in,L) F(y). Note that 6z, < L ie. lim
6zn = 0. In particular, H(z) = limn—s008UPyeN(z,6z,)/ ()

Now there exists k and z;; such that ;13 <0z, and £ € N{zjx, ) C N{z,dz,).
Hence suPyeN(z,o0n)f () 2 5UPyen(ayy, 1) f (¥) = ¢i(z) and
SUPyeN (z,bzn) S (V) S SUPye (s, 1) f (Y) = ¥n(x). Therefore, p1(z) < supyen(s,sen)f(¥)
< @n(z). By design, ¢n(z) > @nt1(z), that is ¢, is a decreasing sequence. Conse-
quently, H(z) = lim supyen(zbz,)f (¥) = lim pn(z). And we have that |f(z)] < M
implies |, (z)| < M, i.e. @, is uniformly bounded. O

Theorem 6.21. Let f be a bounded function on [a,b] and let H be the upper envelope of
fthen fPH =R f.

Proof. By lemma 6.19 we have ¢ > H except for a finite number of points.
Hence ffH < f: ¢ which implies inf [¢2f H <inf waf  which in turn implies [ H <
mffgaz,f""' Now f:HS f:f since fff =inff¢2f<p.

By lemma 6.20 we have |¢n(z)| < M and H(z) = lim ¢n(z), then by BCT
[ H(z) = [lim @n(z) = lim [ @n(z). Since ¢, are decreasing, then we have lim [ o, (z) =
z'riffgon(m). Hence inf [ pn(z) > i”ffqoz-f‘fo = fff Hence [ H(z) = lim [ on(z) >
Jo f-

Therefore [* H < [°f and [ H(z) > {® f which implies [°H = R [* . O
Corollary 6.22. Let f be a bounded function on [a,b] and let h be the lower envelope of
fthen [Jh=R [, f.

Proof. Follows mutandis mutates from theorem above.

Theorem 6.23. Let f be a bounded function on [a,b] with H and h the upper and lower
envelope respectively. Then H(z) = h(z) if and only if f is continuous at z € [a, b).

Proof. Suppose H(z) = h(z) then infssosupjg_y<sf(¥) = sups>oinfiz—y<sf(y). 1t
follows for any § > 0 there exist § > 0 such that sup,_y<sf(y) < H(z) + § and

.oy cT
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i flemy)<s f(y) > H(z) — 5. 1t follows supjp_y|<sf(y) — inflz—y s (¥) <.
Now sup|,_y|<sf () — tnfiz—y|<sf () > | f(y)— (). Bence | f(y) - f(z)| < eon [z—y| <
é.

Conversely, suppose f is continuous at z € [a,b]. For all ¢ > 0 there exist
§ > 0 such that [z — y| < & implies |f(z) — f(y)| < €. It follows f(z) — e < fly) <
£(@) + ¢ Hence f(s) < H(z) = infasosupa_yjcsf) < £(5) + ¢ and f(z) > h(z) =
sups>vinfis_yi<sf () > () — ¢ implies £(2) — ¢ < h(a) < f(s) < H(o) < f(a) +e¢, for
all e > 0. Hence H(z) = f(z) = h(z). O

Theorem 6.24. A bounded function f on [a,b] is Riemann integrable if and only if the

set of points at which f is discontinuous has measure zero.

Proof. Assume f is Riemann integrable, then R [ f f=R{ : f; hence, [ : H=[ : h. Now
Rfff —Rf;f = [P(H —h) = 0. Since H —h > 0, by theorem 6.14, H — h is zero a.e.
Hence H(z) = h(z) a.e.. Then by theorem 6.23, f is continuous a.e.. This implies that
the set of points where f is discontinucus has measure zero.

Conversely, assume f is continuous a.e. then H(z) = h(z) a.e.. It follows
JH(z) = [h(z) . Hence R [ ab_ f=R f; f that is f is Riemann integrable. O

It can sometimes be extremely difficult to determine if & function is Riemann
integrable using the usual definition of Riemann integration. For situations like this,
theorem 6.24 provides us with a powerful and easier method to determine if a function
is Riemann integrable. Let’s look at an example.

First, note that the characteristic function of an open set is discontinuous at
precisely the boundary of that open set. So if the boundary of the set has measure zero,

then the characteristic function is Riemann integrable.

1
'2'.
It follows X1y is discontinuous precisely at Bd(D(%)). Now Bd(D(3)) = C(3). Since

m(C(3)) = 3, XD(%) is not Riemann integrable on [0,1].

Consider D(%) which is the open set of the generalized cantor set when & =
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Chapter 7

Convergence Theorems and

Applications

One of the great advantages of the Lebesgue integral over the Riemann inte-
gral lies in the facilitation of limit operations. Recall that in Riemann integration a
sequence of functions {f,} need to converge uniformly for the following equation to be
true lim [ fy = [limfi. That is, if limf), = f uniformly on [a,b], then lim f: fi(z)dz =
f. ‘f flz)dz = f: limfy(z)dz [Rud87]. We will see in this chapter that the Lebesgue
integral is more powerful and has greater applications than the Riemann integral.

In chapter 6, we were introduced to the Lebesgue integral for bounded functions
on sets of finite measure. We also proved the Bounded Convergence Theorem (BCT)
which says that if we have a sequence of bounded measurable functions {f,}, on a set F
of finite measure and-if limf, = f, then'lim [ fa(z)dz = [ f(z)dz = [ limfn(z)dz.

We first extend the definition of integral from sets of finite measure to sets of
arbitrary measure. We do that in two stages. The first one extends the definition of

integral for nonnegative functions. '

Definition 7.1. The integral of a nonnegative function: If f is a nonnegative measurable
function defined on a measurable set E, we define fEf = Supp<y fE h, where h is a
bounded measurable function such that Ep = {z : h(z) # 0} and m(Ep) < co.

Definition 7.2. A nonnegative measurable function f defined on a measurable set E is

integrable if [ f < oo.
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Theorem 7.3. Faitou’s Lemma: If {f,} is a sequence of nonnegative measurable func-

tions and fo(z} — f(z) a.e. on a set E, then [, f < lim [ fn.

Proof. We will use BCT to prove Fatou’s Lemma. Let h < f such that h is bounded
and [ph = [p h with By C E and m(E) < 00. Let hn(z) = min{h(z), fa(z)} < h(z).
Hence b, is measurable, bounded and vanishes outside . In order to use BCT we need
lim Ay, (z) to exist for all z € Ey,. ‘

Claim h(z) = lim h,(z).

Proof of claim. Case one: h(z) = f(z). We have limf,(z) = f(z) and h,(z) =
min{ fu(z),h(z)} = min{fr(z), f(z)}. Given € > 0 there is N such that |f(z)~f(z)| < ¢
for n > N. Hence f(z} — € < fo(z) < f(z) + ¢ implies f(z) — e < hn(z) < f(z) + € for
n > N. Hence lim hyn(z) = f(z) = h(z).

Case two: h(z) < f(z). Let 2¢ = f(x) — h(z). There is N such that f(z) —€ < fo(z) <
f(z) + € for n > N, since limf,(2) = f(x). In particular, A(z) < f(z) — e < fn(z) for
n > N. Hence hy(z) = h(z) for n > N.

Apply BCT, we tget that fEh= fEh h = lim ,fEh hn = lim {p hs. Moreover,
ha(z) < fn(z) implies fghn < [g fa, Which in turn implies lim [ hn < lim [5 fo. By
design lim [, by = lim [ph,. Hence, [ph = lz'meh < lim [p fn. That is [ph <
lim [ fn. In particular, Je f g f = sup Jg! h < lzm f 5 fn where h < f and h is bounded and

vanishes outmde a set of ﬁmte measure IZI

!

Theorem 7.4. Mongtone Convergence Theorem(MCT): Let {fn} be an increasing se-
quence of nonnegativé measurable functions, and let f = limf, ae. Then [f =

lim [ fn.
Note that by h, T h we mean an increasing sequence converging to h.
Theorem 7.5. Fatou’s lemma is equivalent to the Monotone Convergence Theorem.

Proof. Assume 0 < fy and limfn(z) = f(z) imply [ f < lim [ f». Let hn T A, where
hy > 0. By Fatou’s lemma, 0 < [(h— hy) < lim [(h — hn) = lim [ b + lim [ (—hy) =
[h—Tim [ h, since lim [ h = [h and lim [(—hn) = —lim [ hy. This implies [h >
lim [ hn. Moreover by Fatou’s { h < Lim [ hy,. Hence we must have [ h = lim [ hs,.
Conversely, suppose 0 < f, 1 f then lim [ fo = [ f. Let 0 < hy such that
limhn(z) = h(z). Let fo(z) = infr>nhi(z) < hn(z). Since fr 1 h then by MCT [h =
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tim [ fy. In particular, f, < h, implies lim [ f, = lim [ fn < lim [ h,. Hence, [h-<
lim [ by, O L

Next, we carry out the second stage of the extension of the definition of integral
from sets of finite measure to sets of arbitrary measure. We do that by defining the

integral over a set of arbitrary measure for a function that is not necessarily nonnegative.

Definition 7.6. By the positive part f* of a function f we mean the function f+ =
f Vv O0; that is, ft(z) = maz{f(x),0}. Similarly, we define the negative part f~ by
f~ = (—f) V0. If fis measurable, so. are f* and f~ . We have f = f* — f~ and
L= Fr+f '

Definition 7.7. A measurable function f is said to be integrable over E if f+ and f~
are both integrable over E. In this case we define [ f = [p ft— [z F~.

Theorem 7.8. Let f be @ function defined on a measurable set E. Then f is integrable
on E if and only if |f| is integrable.

Proof. If f is integrable on E then both f* and f~ are integrable on E by definition.
Conversely if [ |f| is finite, so are [, f* and [, f~.0 '

Theorem 7.9. Lebesgue Dominated Convergéence Theorem: Let g be integrable over E
and let {f,} be a sequence of measurable functions such that |f,| < g on E for almost
all z in E we have f(z) = limfn(z). Then (5 f = lim [5 fo.

Proof. Our objective is to show lim [ fo = [ f =Tim [ f5.

By hypothesis, |fﬂ] <gand [pg <oo.Let hp =g — f, and h = g — f. Note
0 < g—|fa|- Hence h,, > 0. Moreover, limh,(z) = lim(g(z) — fo(z)) = g(z) —lim fr(z) =
g9(z) — f(=). ‘
By Fatou’s lemma we have [ g— [f = fg—f = [h < lim [ hy and lim [ hn =
limfg—fn="Umlfg— [fu] = lim[g+lm(—[fs) = [g—lim [ fan It follows
Jo—[f<[g—tim[ fn Hencelim [ fn < [ f.

Now let hy = g+ fr, and h* = g+ f. Note 0 < g+|f,|. Hence hy, > 0. Moreover,”
limb (z) = lim{g(z) + fa(2)) = g(2) + limfa(z) = 9(@) + /(@)

By Fatou’s lemma we have [ g+ [ f = [g+f = [ h* < lim [ h; and lim [ k}, =
tim [ g+ fo = bm([f g+ [ fo] = lim [ g+lim [ fo = [ g+lim [ fn. It follows [ g+ [ f <
Jg+lim [ fn. Hence [ f < lim { fa.
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Clearly lim [ fo < lim [ fn. Hence lim [ fo = [ f = lim [ f» which implies
lim f fn exists and [ f =lim [ f,. O
7.1 Applications

Example 7.10. An ezample of o function having an improper Riemann integral without

possessing a Lebesgue integral.

Let f = 3>, (__,tEX(n—l,n)- Then we have Rfloof = limyooR lef =
im0 3 ooy L”:ll =32, L_—;ﬁ which converges . Hence the improper Riemann

integral exists.

Now f is integrable if and only if |f| is integrable by theorem 7.7. Moreover,
floo'fl = floo E?:l l(_;rlL) lX(ﬂ-—l,n) = floo Zfﬂ %X(n—l,n)‘ Let fr = Zﬁ:l %X('n,—l,n)
then limfr(z) = |f(z)| and frsa(z) > fi(z). Hence by MCT [[°|f| = lim [ f; =

lim 3 L =% L which diverges. Therefore, f is not Lebesgue integrable.

Example 7.11. If the Lebesgue and improper Riemann integral of a function ezist, then

they are equal.

Suppose f possesses an improper Riemann integral such that f is integrable on
the domain.

Case 1: limy,e+R [P f =R [’ f.
Let {z} | c. Define fr, = (f)X(q, ). It follows |f5| < |f] and limfn(z) = f(z} on ¢ <
z < b. Hence by Lebesgue Dominated Convergence Theorem R f : f=limpseo f:fn f=
limnooo [, cb fn = fcb limfn, = [ Cb f. Hence the improper integral equals the Lebesgue

integral. All other cases follow mutandis mutates.

Example 7.12. An ezample of a sequence of nonnegative Riemann integrable functions

that increase monotonically to o bounded function that is not Riemann intfegrable.

Let {r;} be the enumeration of rational numbers in [0,1]. Let ¢n = X2 -

By design ¢n < @nt1. Moreover lim on = Xgnpp,1)- Now Rfol wn =0 for all n.
However, fol Xorp,= 1 and fol Xgnp,y= 0. Hence, Xgnj,y) is not Riemann
integrable on [0,1]. This example clearly shows that the convergence theorems are theo-

rems for the Lebesgue integral.
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Example 7.13. Consider a sequence of functions whose improper Riemann integrals
converge. It is much easier to oblain the convergence with the Lebesgue Dominated Con-

vergence Theorem, than to do it with the usual definition of improper Riemann integral.

Let us find the limpooo f§° 255 )dz. Let fa(z) = 3220 then |fp(z)] =

sin(e® 1 1
l1+n:1:2)l < T+nz? S T+z2 g(z).
Now let g(z) = 1-4—1552 then f;° ‘ﬁlzfdm = %, that is g(z) is integrable on

[0,00). Note f, is dominated by g on [0,00). Moreover, limpeofn(z) = 0 for all
z € [0,00). Hence by Lebesgue Dominated Convergence Theorem limn oo fy- fn =
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Chapter 8

General Measure Theory

8.1 From Outer Measure to a Measure

In this section, we give the general procedure for obtaining a countably additive

measure from an outer measure.

Definition 8.1. An outer measure u* is a nonnegative extended real-valued set function
defined on all subsets of a space X with the following properties:

i prd=0. '

i. AC B — p*A < u*B, called monotonicity

. B C U2, Bi— p*E <Y o2, u*B;, called countable subadditivity

Definition 8.2. A set E is said to be measurable with respect to p* if for every set A
we have p*(A) = p*(AN E) + p*(AN E°).

We will need the following lemma to prove theorem 8.4.

Lemma 8.3. Let A be any set and {E,} be o finite sequence of disjoint measurable sets.
Then u*(AN (UL, Ei]) = S, p* (AN E).

Proof. Clearly true for n=1. Assume it is true for n-1 sets F;. Now the E;’s are disjoint
sets so (AN (UYL, B)) NE, = AN E, and (AN (UL, B:)) N (En)° = An (UM Ei).

Now for E,, a measurable set, we have u*(AN (UL, E:)) = p*((An(Uj=y Bi)) N En) +
e (AP(Us EINES) = (ANE)+ 1 (AN(UESD E) = (AN + S0 (AN E)

by assumption for n — 1 sets . [J
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Theorem 8.4. The class B of p*— measurable sets is o o— algebra. If Tt is pu* restricted

to B, then It is countably additive.

Note that to pfove that a set E is mé‘a;'sura.ble we only need to show that for
every A we have p*(4) > p*(ANE)+p* (AN E°) since p* is subadditive.When p*A = oo
the inequality is clearly true, so we only need to show it for sets A with p*A finite; that
is p* A < oo.

Proof. First we will show that B is an algebra of sets. Clearly the empty set is measurable.
Now if £ € B then for each set A, p*A = p*(ANE) = p*(AN E°); since this definition is
symmetric in E and E€, E€ is measurable whenever Eis. If E5, F; € Band AN(E,UE,) €
P(X), we have p* (AN (BLU Eg)) = p*((AN (B U Ey)) N E1) + p* ((AN(EL U Ey)) N EY)
= p*(ANEy) +p*(AN(EaNEY)). Hence p*(ANE) = p*(AN(E1UE,)) —u* (AN(E2NES)).

Now p*(A) = p* (AN Eq) + p*(AN Ef) and by substituting for pr(ANE)) we
get p*(A) = p* (AN (Fy UEy)) — p* (AN (B, N ES)) + p* (AN ES).

Now we just need p*(AN (Ey U E»)°) = p* (AN ES) — p*(AN (E2 N ES)) which becomes
ut (AN (BS N BS)) = (AN BS) — p*(AN (B 1 ES)).

Moreover Ey € B and AN Ef € P(X) imply p*(ANEf) = p*((ANE$) N Ey) +
w*((AN ES) N ES) which gives us what we needed. Hence p*(A4) = p*(AN (B U Ey))+
w* (AN (B U E)%); that is 1 U Ey € B . We have shown that B is an algebra.

Now we will show that B is a sigma algebra. Let {E;} be a sequence of measur-
able sets. Need to show E = | J;° E; is also measurable. Without loss of generality we may
assume F;NE; = 0 when ¢ # 7. We know p*(4) = p*(An(UL, E:))+ p*(AN(UL, E:)°)
for all n since B is an algebra.

Then by lemma 8.3, p*(A) = 3 7 u*(ANE;)+ p*(AN(UL, E;)°) > zz_l i
E)+ p(An (U2, Ei)°) for all n; hence p*(A4) > Y00, (AnE)+ p(AN(UR,

Now Y ;2. p*(ANE;) 2 p*(AN (U2, Ei)) by subadditivity; therefore u*(A4) > u (A n
(U2, E))+ w* (AN (U2, Ei)¢). Also by subadditivity of p* we have the inequality in
the other direction. Hence, we must have p*(A) = p*(AN E) + p* (AN E°).

Next we will show that 7z is countably additive for a sequence {E,} €B of
pairwise disjoint sets, that is Z(UE;) = > ZE;, where [T is u* restricted to B.

When measure is infinite, Z(UE;) > 3" 7(E;) since B(UE;) = oo > 3l E;)
Now when the measure is finite, we will first show finite additivity of 7. Let Ey and E,

be disjoint measurable sets. Since E is measurable, we have (E; U Es) = G((E; UE2)N
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E)) + E((E1 U Ep) N ES) = w(E)) + Z(E2). It follows that (U= B = ?:1 1(E;) by
induction. Hence T is finitely additive.

Now E(U2, Ei) = “(Uz- E;) + B2ty Bi). By finite additivity of the outer

measure, we have Z(U, By) = Yk, B(B:) + B(UR sy B)- This implies, (U, B) >
iy T(E;) for all n; ‘hence ,u(U 1Ei) 2 i, E(E;). Now by countable subadditivity
we have (U2, B) < 232, A(By). Hence (U, B) = £, A(Ey). O

8.2 From a Measure on an Algebra to a Measure on a o-

algebra Containing the Algebra

Definition 8.5. By a measure on an algebra we mean a nonnegative extended real-valued
set function p defined on an algebra A of sets such that:

i. (@) =0.

. If {A;} is a disjoint sequence of sets in A whose union is also in A,

then u(U32, Ai) = 321 .

ii. If {As} is a disjoint sequence of sets in A then u(UJi=; Ai) = Y 1=y pA; follows from

(i) above.

We will use the measure on the algebra to construct an outer measure p*, then
by filtering (i.e. applying the Caratheodory’s test) we will get the u*-measurable sets.
This is similar to the process in chapter 1 where we started with the lengths of intervals
and used this to construct Lebesgue outer measure, and then by using the Caretheodory
process we ended up with Lebesgue measurable sets.

Hence we will show that if we start with a measure on an algebra A of sets ,
we may extend it to a measure defined on a sigma algebra B containing 4 [Bar66]. By
convention unless otherwise stated we assume all sets are contained in X, that is X is
the underlying set on which the algebra is defined. Note that 0 as well as X are in the
algebra.

The following lemma shows that the measure on the algebra is countably sub-
additive.

Lemma 8.6. If A€ A and if {A;} is any sequence of sets in A such that A C |J;2, A,
then puA < 330, ph;.
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Proof. Set B, = AN A, N AS_, ... AS. Since each B, C A we have | 02, B, C A.
Moreover B, C A} Now A C U;°=1 B,, since'for each = € A there exist m such that if
% € Ay and z € A7 for n <m, then z € By,. Hence A = |J;, By Since A € A, then
~1Bne A L

Now since the B 's are dls_]omt and in the algebra then by property 2 of the
me1 Bn) = 2 opey #Ba. Moreover each 4, =
B, U (B N Ay) by constructlon Hence By, and (Bj N Ap) are in A and they are
disjoint. It follows that’ ,u,An = (Bn U (Bc n A )) = pBy + p(BE N A,) by property 3
of measure on an algebra. Since u(B,‘; N Ap) > 0, we have yA, > pB, which implies

O LBAR 2 1,u.Bn—-uAEl ,."6

measure on an algebra we get pd = ,u(U

Definition 8.7. We deﬁne u*E = mf Zz_l udi, where {A; } ranges over all sequences
from A, where A is an algebra of sets, such that E C |J2

2—1

The next corollary shows that p* agrees with the measure on the elements in

the algebra.
Corollary 8.8. IfAec A, u*4A = pA.

Proof. Let A € A and A C |J;2; A;, where {A;} is any sequence of sets is A, then
pA < 372, uA; by lemma 8.6. Moreover, we can create a disjoint sequence of sets in
A such that |52, B, = A. Hence p(US%, Br) = 30, 4By = pA < [P, pu4; for all
sequences from A such that A C |2, Ai. It follows Y o2 | uB, = inf )y o, pAi = p*A
that is uA = p*A.0

In the next lemma, we will verify that the extension p* of u is in fact an outer

measure, as described in definition 8.1.
Lemma 8.9. The set function p* is an outer measure.

Proof. If 0 €A, then u*(@) = p(@) = 0 by corollary 8.8. Let A C B then for alle > 0
there exist B C |2, A; with A; € A such that 32, u(A;) < p*(B) + e. Moreover
A C B c 2, A, implies p*(A) < 3772, u(A;). Hence p*(A) < p*(B) +cforalle > 0.
Therefore u*(A) < p*(B).

Next we will show that u* is countably subadditive. Suppose E C |Ji2; E;
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Case 1: If 32, 4u*(E;) = oo then p*(E;) < 302, w*(B)) = o0
Case 2: If 32, pu*(E;) < oo then for all € > 0 there exist {As;;} such that
E; C Uply Ain with Aip €A and 307, 0% (Ain) < p*(B) + £
By design E C U2, B < U, (U2, Ain)-
Hence (B) < S22 (350, m(dw)) < S35 (B) + £) = S50 (B +
g = Lo B (E;) +esince €2 L =e.
Since p*(E) < Y752 u*(E;) + € for all € > 0, we have p*(E) < 32, p*(E:). O

Lemma 8.10. If A €A, then A is measurable with respect to p*.

Proof. Let E be an element of the power set of X.

For all € > 0 there exist {A;} with A; € A such that E C |J2, 4; and p*(E) +
€ > >0, pA;. Note A; = (A;NA) U (A;N AC) implies u(A4;) = p{A; N A) + u(A; N A°) by
finite additivity of u. Now 3772, u(4;) = 372, u(A; N A) + Y052, p(A; N A°). Moreover
Liimy (A A) > p* (U2 (A N A)) and 352, p*(4; 0 A%) > p* (U2, (4: N A)) by
subadditivity of yu*.

In particular, EN A C U72,(4;: N A) and BN A° C [J2,(4; N A°) imply
p(ENA) < p(UR (4N A)) and p*(E N A% < p* (U2 (4 N A%). It follows
BB N A)+ (BN A9 < (U (e ) bt (U4 (41 49) < SR 40 (4501 4)
+ 3R uH (AN A% =30 uA; Now u*(B) + e > Yoy mA;s; hence, p*E+e > p*(EN

A)+p*(ENA®) foralle > 0. It follows u*E > p *(ENA)+p*(ENAS). Moreover, u*E <
#(ENA)+p*(ENA°) by subad'dit"iv‘itx,of_u*. Therefore u*E = p*(ENA)+ p*(ENA°).
0 : .

Theorem 8.11. (Caratheodory) Let i be a measure on an algebra A and pu* the outer
measure induced by u. , Then the restriction E:éf u* to the p*-measurable sets is an

extension of u to a o-algebra containing A.

Proof. Let ¢ be a measure on an algebra A, then the induced outer measure p*, on a
set E, is defined as follc‘)"avs ,u*E:‘ =inf ) 2, nA;, where {A;} ranges over all sequences
from A, such that E C | J;2, A;.
Now define a set E to be measurable with respect to p* if for every set A we have
pH(A) = (AN B) + p* (AN E9).

By theorem 8.4 the class B of u"-measurable _sef:s is a o-algebra, and when 7 is

u* restricted to B then 7 is countably additive.



44

Now by corollary 8.8, we have that if A € .A, then u*A = pA; that is, the outer
measure is an -extension of the measure on the algebra.

Also by lemma 8.10, we have that if 4 € A, then A is p* measurable; that is,
everything in the algebra is measurable. Hence the o— algebra contains the algebra. So

we have 77 is an extension of y to a o— algebra containing A. O

8.3 F¥From a Semi-algebra to a Measure on an Algebra

Definition 8.12. We say that o collection C of subsets of X is a semi-algebra of sets if
the intersection of any two sets in C is again in C and the complement of any set in C is

e finite disjoint union of sets in C. )
E !\_ L 'ﬁl:'. ‘, _-x:‘-:'-‘!;‘i.

In this sectlon we will see that if we start W1th a semi-algebra and a nonnegative

set function defined on the semlualgebra then we can extend this set function to a measure

on the algebra generated by ‘the semi- algebra [Roy88].

Proposition 8.13. Let C be a semz algebm of sets and p a nonnegative set function
defined on C wzth _u((?)) = 0. Then.pu has a unique _extension to a measure on the algebra
A generated by C zf the follounng condztzons are satzsﬁed v

i. IfasetcinC is t‘he union of a finite disjoint collection {c¢;} of the sets in C, then
pe =3 pe;. ' a

. If a set ¢ in C is the unio_n;of'a”‘ceﬁntable disjoint collection {c;} of sets in C, then
pe < 30 pe;.

To prove proposition 8.13, we will start by defining fi(A) = 37, p(e;) where
A=~ ¢ with ¢; €C. We will show that i is a measure on the algebra generated by
the semi-algebra, i.e. [ is an extension of z on the algebra generated by the semi-algebra.

We begin by showing that % is a well defined function on A (lemma 8.14 and 8.15).
Lemma 8.14. If A = UL, ¢ = UL 1cl"'sz with ¢;, d; €C then 3 i) p(ci) = D00, puld;).

Proof. Note ¢, = (Up; ¢i) Nex = (Ujey d5) Nex = Uz (dj Nex).

In particular, (d; Ncx) € C for each j implies, by (i) of proposition 8.13,
that p(ck) = Z;’;I p(d; N ¢x). Similarly one can show u(d;) = 337 (ci N d;). Hence,
Yim ule) =32 (Z_T:l uldjNe)) = 251 (i u(d; N i) = Tjky pldy). O
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Lemma 8.15. If JT, d‘“” UL, 57 with ¢;,d; €C then Zmlu (d5) = 3222, nle).

Proof. d; = | Ji2,(ciNd;) implies, by (ii) of proposition 8.13, that p(d;) < 3572, pleindy).
It follows 370 ) p(d;) < 370, (2 ples N dJ)) '

In particular, UjZ;(ci N dj) = ¢ 1mphes, by (i) of proposition 8.13, that
E;-’;l p{ci Ndj) = p{c;). Hence we must have 3572, u(d;) < Ez_l ule).

Moreover, (Uj d; — Ui, e) V(Ui c,,) (Ur (d NNz ) VUi @)
= U ~, d; implies dy, = (U LN (N )N dk)) Uz_1 c, N dg). Now by property
(i) pldr) > >0img (e N dg) for all n. Hence, 3 pi) p(di) > Sim; (X, ule Ndi))
= T (Cheiplendy)) = X8, ple) since p(e) = e, plc; N dy). Therefore,
Zk L1 #(dr) 2 202, p(e:) which implies Y550, p(dy) = 302, p(e;). O

In lemma 8.16 we will show everything in A is a finite union of disjoint elements
of C.

Lemma 8.16. If A={Jj_, ¢; where ¢; € C then A=, d?isj where d; € C.

Proof. Let A = |J;_; ¢i. Define a; = ¢y, a2 = ca[c§, az = c3[1c§[¢§ then it follows
@n = cnf1Ch—1 [ c§. By design A Uiz :hsj Since C is a semi-algebra, for each i
we have a; = ¢;(Nc§_; - [cf = —1 bf;&j' and b;; €C. Hence A = |J} 1(U dsz)_ a

Next we will show that if a countable union of disjoint sets in the algebra happen

to be in the algebra, then 2 is countably additive.
Theorem 8.17. If A= U2, AT with A, Aj € A then id = 332, fA;.
Proof. A = U5, c f”’ where ¢; € C and 4; = U}, d;!::” where dj; € C by lemma

8.16. In particular, [J5, "7 = 721 (Ul’_l d;i:‘” ) which implies by lemma 8.15 that

nA = Ez’:l M(Ci) = ijl (Ziil H(djt)) = j=1 ﬁAj- o
Corollary 8.18. If A =%, A% with A; € A then A = Y1, iAs.

Proof. A = |J2 Adm with Ay, = 0 for m > n. Hence by theorem 8.17 pA =

i=1

Z;il BA; = Ej=l pA; since [i(0) = 0. O

We have thus shown that z is a measure on A.
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An example of a semialgebra are the intervals. The length of the intervals is a
nonnegative set function that meets the criteria of propositioq 8.13. Hence we can extend
the length function to a measure on the algebra generated by the intervals. Moreover,
by the Caratheodory process we can extend -the measure on the algebra to a sigma
algebra containing the algebra which is countably additive. We call the elements of this
sigma algebra Lebesgue measurable séts, and the measure on this sigma algebra is called

Lebesgue measure. By design the Lebesgue measure of an interval will be its length.
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Chapter 9

Conclusion

The procedure that Lebesgue used to define his Lebesgue measure can be gen-
eralized to create new measures. Starting with a semialgebra C defined on a set X, we
can define a measure x4 on C. We can extend this measure to the algebra generated by C.
‘Then we can define an outer measure p* with respect to C . Now, everything in the power
set of X has an outer measure. Since we want to have countable additivity, we filter the
sets in the power set of X by applying the Caratheodory process. The sets obtained after
filtering form a sigma algebra which contains the semialgebra and the algebra. Moreover
the outer measure restricted to this sigma algebra is countably additive. Once a measure
has been obtained we can define a new theory of integration based on that measure. It
is interesting to note that one of the new integrals developed called the Henstok integral

bases its theory of integration on Riemann instead of Lebesgue.
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