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Abstract

Self-assembly is the process of a collection of components combining to form an orga-

nized structure without external direction. DNA self-assembly uses multi-armed DNA

molecules as the component building blocks. It is desirable to minimize the material

used and to minimize genetic waste in the assembly process. We will be using graph

theory as a tool to find optimal solutions to problems in DNA self-assembly. The goal

of this research is to develop a method or algorithm that will produce optimal tile sets

which will self-assemble into a target DNA complex. We will minimize the number of tile

and bond-edge types needed to assemble a DNA complex with the same structure as the

trapezohedral graphs under different laboratory constraints.
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Chapter 1

Introduction

1.1 Introduction

Self-assembly is the process of a collection of components combining to form

an organized structure without external direction. DNA self-assembly uses multi-armed

DNA molecules as the component building blocks and this process has evolved since

Nadrian Seeman’s lab developed the process 40 years ago. It is desirable to minimize the

material used and to minimize genetic waste in the assembly process. In this paper, we

will be using graph theory as a tool to find optimal solutions to problems in DNA self-

assembly. The goal of this research is to develop a method or algorithm that will produce

optimal tile sets which will self-assemble into a target DNA complex. Since producing

synthetic DNA is costly, the goal is to minimize the number of tile and bond-edge types

needed to assemble a DNA complex with the same structure as trapezohedral graphs.

We will be studying trapezohedral graphs for our research to find minimal optimal tile

sets in different scenarios which will be described in Section 1.5. Figure 1.1 shows the

trapezohedral graph when n = 4 and n = 5, respectively.

1.2 DNA Self-Assembly

As mentioned in [EMPB+14], DNA self-assembly has several applications in the

area of nanotechnology, including for drug delivery and biomolecular computing. An

essential step in building the self-assembling nanostructure is designing the component

molecular building blocks, and moreover determining where in the final structure they
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Figure 1.1: An n-trapezohedral graph when n = 4 (left) and n = 5 (right).

will appear. Many structures being built are essentially graphs, so these design strategy

problems fall naturally into the realm of graph theory [EMP11].

1.3 Tools for DNA Self-Assembly

DNA is a molecule twisted into a shape that is known as a double helix. This

double helix consists of four nitrogen bases, adenine (A), thymine (T), guanine (G),

cytosine (C). Using Watson-Crick pairing, A forms a base pair with T and C forms a base

pair with G. Figure 1.2 shows how these bases pair with each other. Different techniques

Figure 1.2: Watson-Crick pairing [Bat].

have been developed using the Watson-Crick complementarity properties of DNA strands

to achieve self-assembly [EMP11]. There are many DNA self-assembly models but for
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our research we will be using the flexible tile model. A construction method for DNA

self-assembly uses k-armed branched junction molecules which are star-shaped molecules

whose centers form the vertices of the structure and the arms are multi strands of DNA

with one strand extending beyond the other [EMP11]. There is a longer strand which

forms a cohesive-end at the end of the arm that can bond to any other cohesive-end

with complementary Watson-Crick bases [EMP11]. In the flexible tile model, arms can

bond and reach in different directions; whereas rigid tiles have geometric constraints. The

cohesive-ends that have bonded with each other then form the edges of our graph. We

can see an 8-arm DNA branched junction molecule in Figure 1.3. A DNA complex is said

to be complete if it has no unmatched cohesive-ends.

Figure 1.3: 8-arm DNA branched junction molecule [WS07].

1.4 Definitions

The following definitions are consistent with those found in [EMPB+14], [EMJP19],

and [AEMH+].

Definition 1.1. Tile: A tile is a graph-theoretical representation of a flexible k-armed

branched DNA molecule as a vertex with k half-edges representing cohesive-ends.

Definition 1.2. Cohesive-end type: Cohesive-ends are distinguished by cohesive-end

types that are letter labels such that a cohesive-end labeled with an unhatted letter can

adjoin to a cohesive-end labeled with its complementary hatted label.
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Definition 1.3. Bond-edge type: The abstraction of a cohesive-end together with its

complementary cohesive-end.

Definition 1.4. Pot: A pot P is a collection of tile types such that for each cohesive-end

type that appears in any tile, its complement appears in some tile.

An example of a tile is seen in Figure 1.4. A tile contains a vertex with half

edges representing cohesive-ends. We can see in Figure 1.4 a 5-armed tile with five half-

edges, (i.e. â, a, a, b, ĉ). A pot P is a set of tiles. If we look at the graph G on the

left side in Figure 1.5, there exist two different tile types. We represent these tiles as,

t1 = {a4}, t2 = {â2, c, ĉ}. In the assembly process, a tile type may be used more than

once. The pot P that realizes G is P = {t1 = {a4}, t2 = {â2, c, ĉ}}.

Figure 1.4: A representation of a 5-armed tile [EMP11].

Figure 1.5: Graphs G and H [EMP11].
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If we look at graph H on the right side in Figure 1.5, we see that both graphs

are similar. We can represent G into H by using a directed graph. The cohesive-end

types will be edges going from a to â and c to ĉ. We used two bond-edge types, a and c,

and we used two tiles, t1 and t2, to construct G.

1.5 The Three Scenarios

The goal of this research is to assist the laboratories in being efficient in the

design of self-assembling DNA. Our problem becomes the following: Given a graph G,

what is the minimum number of tiles and bond-edge types that must be designed to

construct the target graph? We take into account the three scenarios below. These

scenarios correspond to how much genetic waste is permitted in the self-assembly process

[EMPB+14].

1. Scenario 1. We allow the possibility that graph-theoretical complexes of smaller

order (that is, complexes representing graphs with fewer vertices) than the target

graph could be created from the pot used to build the target graph.

2. Scenario 2. We allow the possibility that graph-theoretical complexes with the

same number of vertices as, but not isomorphic to, the target graph could be cre-

ated from the pot that builds the target graph, but require that no complexes with

fewer vertices can be created from the pot used to build the target graph.

3. Scenario 3. We require that no non-isomorphic complexes with a number of vertices

less than or equal to that of the target graph can be created from the pot used to

build the target graph.

We will denote Ti(G) where i = 1, 2, 3, representing the three scenarios to be the

minimum number of tile types needed to construct a graph G. Also, we will denote Bi(G)

where i = 1, 2, 3, representing the three scenarios to be minimum number of bond-edge

types needed to construct G.
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1.6 Properties of the Trapezohedral Graph

Recall that a graph G is a pair of sets (V,E), where V is a finite non-empty

set of elements called vertices, and E is a finite set of elements called edges, each of

which has two associated vertices. We can also write V (G) and E(G) to represent the

vertex and edge set of a graph G. The order, n, of a graph is the number of vertices

and the size, m, is the number of edges in the graph. Two vertices that are joined by an

edge are said to be adjacent. Two graphs, G and H, are said to be isomorphic if there

exists a bijection f : V (G) → V (H) such that u and v are adjacent in G if and only if

f(u) and f(v) are adjacent in H. An n-trapezohedron is a solid composed of interleaved

symmetric quadrilateral kites, n of which meet in a top vertex and n in a bottom vertex.

A n-trapezohedral graph is a skeleton of an n-trapezohedron. Since we are using the

family of trapezohedral graphs for this research, we need to understand a few of its graph

theoretical properties. The trapezohedral graphs are bipartite, Hamiltonian, perfect,

planar, and traceable [Wei]. The order of an n-trapezohedral graph is 2(n + 1) and the

size is 4n. Trapezohedral graphs can be drawn in a way so that there is an “outer” cycle

with two “central” vertices, (see Figure 1.1), so we may use the cycle graph properties

for this research. A cycle graph is a graph on n vertices containing a single cycle through

all vertices. Since trapezohedral graphs are bipartite, the bipartite graph properties may

be used as well. A bipartite graph is a graph G whose vertices can be divided into two

disjoint sets U and W , such that every edge of G joins a vertex of U to a vertex of W . It

is worth noting that a graph is bipartite if and only if all cycles are even length.

1.7 Goal for this Research

This research will oversee Scenarios 1 and 2 for the trapezohedral graph. As

mentioned, the results for the cycle graph may be used in this research since a cycle of

length 2n does exist in the trapezohedral graph, see Figure 1.1. A goal of this research

is to study the open question of whether there exist relationships between the pots of a

graph and known pots of subgarphs. Since all trapezohedral graphs are bipartite graphs,

results from bipartite graphs may be used as well. We will use a program from [AEMH+]

to check the condition of Scenario 2. The goal is to find an optimal solution for each of

the two scenarios. Since this area of research is still new, all results are original.
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Chapter 2 describes some known results we will use to answer our research

questions. Chapters 3 and 4 describe optimal pots for trapezohedral graphs in Scenarios

1 and 2, respectively.
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Chapter 2

Information about DNA

Self-Assembly

2.1 Preliminaries

The following propositions and definitions are from [EMPB+14] and [EMJP19].

Proposition 2.1. For every graph G, B1(G) ≤ B2(G) ≤ B3(G) and T1(G) ≤ T2(G) ≤
T3(G)

Proposition 2.1 establishes bounds between the three scenarios for the minimum

number of bond-edge types and tile types.

Definition 2.2. The set of graphs realized by a pot P is called the output of P and is

denoted by O(P ).

We will use tools from linear algebra to determine the smallest order graph

realized by a pot. Given a pot P = {t1, . . . , tp}, let Ai,j be the number of cohesive-ends

of type ai on tile tj and Âi,j be the number of cohesive-ends of type âi on tile tj . Since

we are requiring complexes to be complete, the following proposition is a result from this

requirement.

Proposition 2.3. Let P = {t1, . . . , tp} be a pot. Then:

1. The total number of hatted cohesive-end types must equal the total number of un-

hatted cohesive-end types in a complete complex.
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2. If a graph G with n vertices may be constructed from the pot P , then there are non-

negative integers Nj where j = 1, . . . , p with
∑

j Nj = n and such that
∑

j Nj(Ai,j−
Âi,j) = 0 for all i. That is, the number of hatted cohesive-ends of each type used in

the construction of G must equal the number of unhatted cohesive-ends of the same

type that appear in the construction.

Now we can define the construction matrix and see how it is applied in Scenario

2.

Definition 2.4. Let P be a pot with p tile types labeled t1, . . . , tp and let zi,j be the

net number of cohesive-ends of type ai on tile tj, i.e., zi,j = Ai,j − Âi,j. Let ri be the

proportion of tile type ti used in the assembly process. We can make the following system

of equations:

r1z1,1 + r2z1,2 + · · ·+ rpz1,p = 0

...

r1zm,1 + r2zm,2 + · · ·+ rpzm,p = 0

r1 + r2 + · · ·+ rp = 1

The construction matrix of P , denoted by M(P ), is the corresponding augmented

matrix:

M(P ) =


z1,1 z1,2 . . . z1,p 0
...

...
...

zm,1 zm,2 . . . zm,p 0

1 1 . . . 1 1

 .

The following proposition is a result of the construction matrix and Proposition

2.3 [EMPB+14]:

Proposition 2.5. Let P = {t1, . . . , tp} be a pot. Then:

1. If a graph G of order n may be constructed from P using Nj tiles of type tj, then

(1/n)⟨N1, . . . , Np⟩ is a solution of the construction matrix M(P ).
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2. If ⟨r1, . . . , rp⟩ is a solution to the construction matrix M(P ), and there is a positive

integer n such that nrj ∈ Z ≥ 0 for all j, then there is a graph of order n that may

be constructed from P using nrj tiles of type tj.

3. The smallest order of a graph in O(P ) is mp = min{lcm{bj |rj ̸= 0 and rj = aj/bj},
where ⟨r1, . . . , rp⟩ is a solution to M(P )}, and where the minimum is taken over all

solutions to M(P ) such that rj ≥ 0 and aj/bj is in reduced from for all j.

Example 2.6. If we look at the pot in Figure 1.5, P = {t1 = {a4}, t2 = {â2, c, ĉ}}. In

this case we have:

z1,1 = 4, z1,2 = −2, z2,1 = 0, z2,2 = 0

and

M(P ) =


4 −2 0

0 0 0

1 1 1

 .

By doing reduced row echelon form, we get the following matrix:
1 0 1/3

0 1 2/3

0 0 0

 .

The solution for this matrix is ⟨13 ,
2
3⟩. As mentioned in [EMJP19], we can use the spec-

trum, which is the solution space of M(P ) and is denoted by S(P ). We can write the set

of all solutions to M(P ) as S(P ) = {1
r ⟨

r
3 ,

2r
3 ⟩|r ∈ Z+}. This means the smallest graph

we can build is a graph on three vertices, one vertex labeled t1 and two vertices labeled

t2. Hence one graph realized by P is in Figure 1.5 but we can also get a non-isomorphic

graph in which the cohesive-ends c and ĉ on t2 form a loop. Notice the pot P will also

realize graphs of order 3r which may or may not be connected.

2.2 Background Information for Scenario 1

In Scenario 1, we allow the possibility for complexes of smaller order to be

created from a pot that builds our target graph. We will discover pots with the fewest

number of tile and bond-edge types. Now we will define a few terms that will help us

in Scenario 1. The valency sequence of G is the sequence of vertex degrees of G without



11

repeats and the length of the sequence is denoted by av(G). The even-valency sequence is

the sequence of even degrees and the length of the sequence is denoted by ev(G). The odd-

valency sequence is the sequence of odd degrees and the length of the sequence is denoted

by ov(G). The following theorem, corollary, and propositions are from [EMPB+14]. The

following theorem gives us bounds on the minimum number of tile types in Scenario 1.

Theorem 2.7. For all G, av(G) ≤ T1(G) ≤ ev(G) + 2ov(G).

The following corollary tells us how many bond-edge types are needed for any

graph G in Scenario 1,

Corollary 2.8. B1(G) = 1, for all G.

2.3 Background Information for Scenario 2

In Scenario 2, we allow the possibility that complexes the same order as, but

not isomorphic to, the target graph could be created from the pot that builds the target

graph G, but require that no smaller complexes can be built from the pot. We will look

for pots P with the least tile or bond-edge types such that G ∈ O(P ). The following

theorem is from [EMPB+14]. The theorem describes a relationship between the minimum

number of tiles and bond-edge types in a graph G in Scenario 2.

Theorem 2.9. If G is a graph with n > 2 vertices, then B2(G) + 1 ≤ T2(G).

In Scenario 2, we explored the cycle graph properties in the hopes of finding a

minimal optimal pot for the trapezohedral graph. From [EMPB+14], we find B2(Cn) =⌈
n

2

⌉
and T2(Cn) =

⌈
n

2

⌉
+ 1. It is currently an open question if there are any kinds of

relationships of pots of graphs G and pots of subgraphs H.

In the trapezohedral graph, only an even cycle appears in the graph. The pot

of for an even cycle is:

P even =

{
t1 = {a21}, ti = {âi−1, ai} for i = 2, . . . ,

⌈
n

2

⌉
, t⌈n/2⌉+1 = {â2⌈n/2⌉}

}
(2.1)

Example 2.10. In Figure 2.1, we have a cycle graph on 8 vertices.

If we were to apply Equation 2.1 on 8 vertices, we will get the following pot,

P =

{
t1 = {a21}, t2 = {â1, a2}, t3 = {â2, a3}, t4 = {â3, a4}, t5 = {â24}

}
.
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Figure 2.1: A cycle graph on 8 vertices [EMPB+14].

Now by using Definition 2.4, we are able to build the construction matrix:

M(P ) =



2 −1 0 0 0 0

0 1 −1 0 0 0

0 0 1 −1 0 0

0 0 0 1 −2 0

1 1 1 1 1 1


.

By using the program from [AEMH+], we get a unique matrix solution, ⟨18 ,
1
4 ,

1
4 ,

1
4 ,

1
8⟩. The spectrum is S(P ) = {1

r ⟨
r
8 ,

r
4 ,

r
4 ,

r
4 ,

r
8⟩|r ∈ Z+}. This means the smallest graph

we can build is a graph of order eight, one vertex labeled t1, two vertices labeled t2, two

vertices labeled t3, two vertices labeled t4, and one vertex labeled t5. Hence, we get the

graph in Figure 2.1.
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Chapter 3

Trapezohedral Graph Under

Scenario 1

Before we start, there are a few things to point out. In both scenarios, we will

consider the trapezohedral graph when n ≥ 4. Looking at the n-trapezohedron in a

three-dimensional space we realize n must be at least equal to three. For n = 3, this is

the cubic graph and a pot P has been found in all scenarios [AEMH+]. In Scenario 1,

we will be using corollaries and theorems from Section 2.2 to help build our pot. As a

reminder, we allow the possibility that complexes of smaller order than the target graph

could be created from the pot used to build the target graph.

Lemma 3.1. If G is a trapezohedral graph, then B1(G) = 1.

Proof. B1(G) = 1 follows directly from Corollary 2.8.

Theorem 3.2. If G is a trapezohedral graph, then T1(G) = 2.

Proof. Theorem 2.7 determines the minimum and maximum number of tile types needed.

Since av(G) = 2, then T1(G) ≥ 2 for all n. Let P =

{
t1 = {a, â2}, t2 = {an}

}
. Then

2n(A1,1 − Â1,1) + 2(A1,2 − Â1,2) = 0; that is, 2n(−1) + 2(n) = 0. All of the cohesive-ends

are matched and the number of unhatted cohesive-ends is equal to the number of hatted

cohesive-ends. From Figure 3.1, we see G ∈ O(P ). Thus, T1(G) = 2.

Below is a directed trapezohedral graph using the pot P from Scenario 1 for any

n ≥ 4.



14

a

a a

aa

a

a

a

a

a

aa

aa

a

a

Figure 3.1: An n-trapezohedral graph using P from Scenario 1.
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Chapter 4

Trapezohedral Graph Under

Scenario 2

In Scenario 2, we allow the possibility that non-isomorphic complexes of the

same order but no smaller complexes than the target graph G may be realized by the

pot. We will look for pots P with the least tile or bond-edge types such that G ∈ O(P ).

We will use theorems and propositions from Section 2.3 to help us with our pot in Scenario

2. Looking at the trapezohedral graph, we can see a subgraph within our graph is the

cycle graph. We explore the idea of using the cycle subgraph to find a pot in Scenario 2.

If we look at a trapezohedral graph when n = 4, then we obtain a cycle subgraph

on 8 vertices. By using pot P from Equation 2.1, we have the following pot for the cycle

subgraph,

P ′ =

{
t1 = {a2}, t2 = {â, b}, t3 = {b̂, c}, t4 = {ĉ, d}, t5 = {d̂2}

}
.

Now, adding a tile type to P ′ that represents the “central” vertices, and adding

edges from the 8-cycle to the central vertices, we have the following pot,

P =

{
t1 = {a2, â}, t2 = {â2, b}, t3 = {â, b̂, c}, t4 = {â, ĉ, d}, t5 = {â, d̂2}, t6 = {a4}

}
.

Note the pot P still uses only four bond-edge types. Using Definition 2.4, we
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are able to build the construction matrix:

M(P ) =



1 −2 −1 −1 −1 4 0

0 1 −1 0 0 0 0

0 0 1 −1 0 0 0

0 0 0 1 −2 0 0

1 1 1 1 1 1 1


.

The spectrum is S(P ) = { 1
16r ⟨9r − 37t, 2r + 6t, 2r + 6t, 2r + 6t, r + 3t, t⟩|r ∈

Z+, t ∈ Z ∩ [−r
3 , 9r37 ]}. By using the program from [AEMH+], the smallest order graph

is 10 and the ratio of tile types is ⟨ 1
10 ,

1
5 ,

1
5 ,

1
5 ,

1
10 ,

1
5⟩. This means the smallest graph we

can build is a graph on ten vertices, one vertex labeled t1, two vertices labeled t2, two

vertices labeled t3, two vertices labeled t4, one vertex labeled t5, and two vertices labeled

t6. Hence, the trapezohedral graph in Figure 4.1 is realized by P .

a

a a

aa

b

c

d

b

a

aa

aa

d

c

Figure 4.1: An 4-trapezohedral graph using P from Scenario 2.

Although the pot P from above does realize G, we will show it is not the optimal

pot in Scenario 2. In fact, the following theorem shows that two bond-edge types is

sufficient for all n-trapezohedral graphs when n ≥ 4.

Theorem 4.1. Let n be odd. If G is a n-trapezohedral graph, then B2(G) = 2.

Proof. Assume B2(G) = 1 and let P be a pot with exactly one bond-edge type where

G ∈ O(P ). If we look at the “outer” cycle of a trapezohedral graph, we notice all
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vertices are of degree three. Here, there are only four possible tile types which are

t1 = {a3}, t2 = {a2, â}, t3 = {a, â2}, and t4 = {â3}. Notice t1 and t4 are not both in P

since they are complements of each other as well as t2 and t3; that is, the two tile types

may realize a graph of order two. If using t1 and t3 in P for the “outer” cycle then P can

realize a graph of order four which is not permitted in Scenario 2. We can say the same

if t2 and t4 are both in P . Since the case in which t4 ∈ P is analogous, we may assume

without loss of generality that t1 ∈ P . Then either t2 ∈ P or t3 ∈ P since an edge on the

“outer” cycle must be labeled by a and â. Without loss of generality, since we eliminated

the case where t1, t3 ∈ P then we can assume t2 ∈ P . The “central” vertex must be

labeled by t3 = {aj , âk} ∈ P where 0 ≤ j < k ≤ n and j + k = n in order for there to be

no unmatched cohesive-ends. But then a graph of order (k− j) + 1 can be realized using

(k − j) copies of t2 and one copy of t3. Since k ≤ n, then k − j + 1 ≤ n+ 1 < 2(n+ 1).

So the graph has a smaller order than G which is not permitted in Scenario 2. Thus,

B2(G) ≥ 2. The following pot can realize a graph G in Scenario 2 using two bond-edge

types:

Podd = {t1 = {a2, b̂}, t2 = {â2, b̂}, t3 = {bn}}. (4.1)

To see that nothing smaller can be made from this pot, note that

M(Podd) =


2 −2 0 0

−1 −1 n 0

1 1 1 1


has a unique solution of the form ⟨ n

2(1+n) ,
n

2(1+n) ,
1

1+n⟩. Since n is odd then n
2(1+n) is in

reduced form. By Proposition 2.5, the smallest order graph is 2(1+n) which is the order

of G.

Corollary 4.2. Let n be odd. If G is a n-trapezohedral graph, then T2(G) = 3.

Proof. Since B2(G) = 2 then B2(G) + 1 ≤ T2(G). So 3 ≤ T2(G). The pot in Theorem

4.1 has exactly three tile types, therefore T2(G) = 3.

The pot in Equation 4.1 will not work when n is even because a graph of a

smaller order will be realized by Podd. For example, let n = 4, then the solution to the

construction matrix will be ⟨25 ,
2
5 ,

1
5⟩. A graph of order five can be realized when n = 4

but our target graph is of order ten. As a result, we will need a new pot when n is even.
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b
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b b
b

b

b

Figure 4.2: An n-trapezohedral graph using Podd from Scenario 2.

Theorem 4.3. Let n be even. If G is a n-trapezohedral graph, then B2(G) ≤ 3 and

T2(G) ≤ 4.

Proof. The following pot P can realize a graph G in Scenario 2 using three bond-edge

types and four tile types:

Peven = {t1 = {a2, b}, t2 = {â2, c}, t3 = {b̂n}, t4 = {ĉn}}. (4.2)

To see that nothing smaller can be made from this pot, note that

M(Peven) =


2 −2 0 0 0

1 0 −n 0 0

0 1 0 −n 0

1 1 1 1 1


has a unique solution of the form ⟨ n

2(1+n) ,
n

2(1+n) ,
1

2(1+n) ,
1

2(1+n)⟩. By Proposition

2.5, the smallest order graph is 2(1 + n) which is of the order G. Therefore B2(G) ≤ 3

and T2(G) ≤ 4.

When n is even then B2(G) ≥ 2 by the proof of Corollary 4.2 and thus, T2(G) ≥ 3

by Theorem 2.9. Therefore, when n is even, 2 ≤ B2(G) ≤ 3 and 3 ≤ T2(G) ≤ 4. The

question of equality for B2(G) and T2(G) in the even case remains open.
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a
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bc

a

a

a

a

a
b c

bc

a

Figure 4.3: An n-trapezohedral graph using Peven from Scenario 2.

In both the case when n is even and n is odd, we again notice that the optimal

pot for the trapezohedral graph is independent from the optimal pot for a cycle graph.

While some results use cycle subgraphs to help find optimal pots [GS23], this strategy

does not work for all graphs with a cycle subgraph. Thus, in general, there may be no

relationship between optimal pots for a graph G and a subgraph H.
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Chapter 5

Conclusion

This paper explored modeling the DNA self-assembley of complexes with the

same structure as the n-trapezohedral graph using flexible k-armed tiles. With a goal of

minimizing lab costs, we found optimal pots of tiles in Scenarios 1 and 2. The difference

between these scenarios is a question of how much byproduct would a lab want to allow

in the assembly process. In Scenario 2, we found an optimal pot of tiles in the case that

n is odd, but this pot can construct a smaller order graph if n is even. In the case that n

is even, we have a pot of tiles that will realize the n-trapezohedral graph but it remains

to be shown if the number of bond-edge types and tile types can each be reduced by

one. In general, relationships between optimal pots for subgraphs and graphs is an open

question, but our work found that is it possible for T2(G) < T2(H) and B2(G) < B2(H)

where H is a proper subgraph of G. We leave finding an optimal pot in Scenario 3 as an

open question.
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