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Abstract
We study the complexity relationship between three models of unbounded memory automata: nu-
automata (ν-A), Layered Memory Automata (LaMA)and History-Register Automata (HRA). These
are all extensions of finite state automata with unbounded memory over infinite alphabets. We prove
that the membership problem is NP-complete for all of them, while they fall into different classes for
what concerns non-emptiness. The problem of non-emptiness is known to be Ackermann-complete
for HRA, we prove that it is PSPACE-complete for ν-A.
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1 Introduction

We study unbounded memory automata for words over an infinite alphabet, as introduced in
[13, 17]. Such automata model essentially dynamic generative behaviours, i.e., programs that
generate an unbounded number of distinct resources each with its own unique identifier (e.g.
thread creation in Java, XML). For a detailed survey, we refer the reader to [4, 15]. We focus,
in particular, on three formalisms, ν-automata (ν-A) [9, 5, 8], Layered Memory Automata
(LaMA) [4] and HRA for History-Register Automata [11]. All these models are extensions
of finite state automata with memory-storing letters. The memory for HRA is composed
of registers (that can store only one letter) and histories (that can store an unbounded
number of letters). Whereas the memory for the other two models consists of a finite set
of variables. Among the distinctive features of HRA, they can reset registers and histories,
and select, remove and transfer individual letters. In ν-A and LaMA, variables must satisfy
an additional constraint, referred to as injectivity, meaning that they cannot store shared
letters. Moreover, variables can be emptied (reset) but single letters cannot be removed. We
know that LaMA are more expressive than ν-A as the former are closed under intersection
while it is not the case for the latter ones.
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Figure 1 A classification of memory automata from [4]. Arrows represent strict language inclusion,
while dotted lines denote language incomparability. The formalisms studied here are in yellow.

We tackle two problems: membership and non-emptiness. From a practical point of
view, automata over infinite alphabets can be used to identify patterns in link-stream
analysis [5]. In such a scenario, the alphabet is not known in advance (open systems) and
runtime verification can help to recognize possible attacks on a network by looking for
specific patterns. This problem corresponds to checking whether a pattern (word) belongs
to a language (the membership problem). Concerning non-emptiness, this is the “standard”
problem to address while considering automata in general.

Fig. 1 depicts the unbounded memory automata known in the literature (to the best of our
knowledge). An implementation exists for ν-A and LaMA which includes an implementation
of the membership algorithm, but we have not found anything neither for Data Automata
(DA) nor Class Memory Automata (CMA). Both DA and CMA are incomparable classes wrt
to HRA, hence we chose not to consider them. Fresh-Register automata (FRA), ν-A, LaMA
and HRA are instead related from the expressiveness point of view. Given the similarities
between those formalisms, the existence of implementations and the lack of complexity results
we find it natural to consider these classes of automata.

Application-wise, ν-A, called resource graphs in [9], model the use of unbounded resources
in the π-calculus, aiming at minimizing them. Then, runtime verification on link-streams
was the initial motivation for the introduction of (timed)ν-A [5]. In subsequent works, LaMA
have been introduced to be able to construct the synchronous product, hence being able
to express the synchronization of resources. This entails the closure by intersection, which
is interesting when one wants to define a language of expressions, an extension of (timed)
regular expressions, which was proposed in the PhD thesis of Clément Bertrand [2].

For a precise discussion on the relations among these formalisms see [4], here we just
recall the hierarchy: cfr. Fig. 1. Apart from expressiveness, a number of questions concerning
complexity remains open. We know that checking whether the language recognized by an
HRA is empty or not (referred to as the non-emptiness problem) is Ackermann-complete [11].
But the question has not been addressed for ν-A and LaMA. For finite-memory automata
(FMA), it is known that membership (testing whether a word belongs to the language) and
non-emptiness are NP-complete [18]. Knowing whether a language is included in another is
undecidable for FMA when considering their non-deterministic version, but it is PSPACE-
complete for deterministic ones [16]. In [12] it is shown that the non-emptiness problem
for Variable Finite Automata (VFA) is NL-complete, while membership is NP-complete.
For FRA and Guessing-Register Automata (as they are called in [15]) we only know that
both problems are decidable but we do not know the accurate complexity class. Finally, for
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data-languages where data-words are sequences of pairs of a letter from a finite alphabet
and an element from an infinite set and the latter can only be compared for equality, the
non-emptiness problem for FMA is PSPACE-complete [10], for DA and CMA, membership
and non-emptiness are only shown to be decidable, but no complexity is given [7, 6].

Contributions. In this paper, we close some open problems on the complexity of membership
and non-emptiness. We first prove that testing membership for HRA, ν-A and LaMA is an
equivalent problem. Then we address complexity and show that the problem is NP-complete
with a reduction of 3-SAT to LaMA. Non-emptiness appears to be a much harder problem.
We show that the non-emptiness problem is PSPACE-complete for ν-A by reducing TQBF
(True Fully Quantified Boolean Formula) to ν-A.

The paper is organized as follows. The three formalisms are introduced and the main
differences are recalled quickly in Section 2. Section 3 presents the complexity of the
membership problem and Section 4 the non-emptiness one. Finally, Section 5 concludes with
some remarks. Proofs and additional material can be found in [3].

2 Formalisms

All three formalisms are generalizations of finite state automata with memory over an infinite
alphabet U . For all of them, configurations (q, M) are pairs of a state of the automaton
plus a memory context. A memory context assigns a set of letters to each identifier of the
memory, variable or history depending on the formalism under consideration.

▶ Definition 1 (Memory context). Given a finite set of memory identifiers or variables V

and an infinite alphabet U , we define a memory context M as an assignment: M : V → 2U

where M(v) ⊂ U is the finite set of letters assigned to v.

The definition of accepted language common to the three formalisms is, as customary:

▶ Definition 2 (Accepted language). For an automaton A (LaMA, ν-A or HRA), the language
of A is the set of words recognized by A: L(A) = {w ∈ U∗ | (q0, M0) w=⇒

A
(qf , M) s.t. qf ∈ F},

where w=⇒
A

is the extension to sequences of transitions of u−→
A

.

2.1 n-Layered Memory Automata
We start with n-Layered Memory Automata (n-LaMA). The idea is that finite state automata
are enriched with n layers each containing a finite number of variables. Variables on the
same layer satisfy the injectivity constraint: variables on a given layer l ∈ [1, n] (denoted
vl) do not share letters of the alphabet: ∀v1 ̸= v2 ∈ V, M(vl

1) ∩ M(vl
2) = ∅. Upon reading a

letter, a transition can test if the letter is already stored in a set of variables and add a letter
to a set of variables. The non-observable transition (ε-transition) empties a set of variables.

▶ Definition 3 (n-LaMA). An n-LaMA A is defined by the tuple (Q, q0, F, ∆, V, n, M0), where:
Q is a finite set of states,
q0 ∈ Q and F ⊆ Q are respectively an initial state and a set of final states,
∆ is a finite set of transitions,
n is the number of layers, and V is a finite set of variables, denoted vl with l ∈ [1, n],
M0 : V 7→ 2U is an initial memory context.

CONCUR 2023
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q1 q2 q3 q4 q5 q6
♯ (X1, w) (Y 2, w) (X1, w) ♯

(X1, w), (Y 2, w)

Figure 2 A 2-LaMA Ap recognizing P(2) ∩ P(3) from Example 8.

A fresh letter at layer l, is a letter that is associated with no variable of this layer. The
set of transitions ∆ = ∆o ∪ ∆ε encompasses two kinds of transitions with ∆o the set of
observable transitions that consume a letter of the input and ∆ε the set of non-observable
transitions, that do not consume any letter of the input but can reset a set of variables.

▶ Definition 4 (Observable transition). An observable transition is a tuple of the form:
δ = (q, α, q′) ∈ ∆o where:

q, q′ ∈ Q are the source and destination states of the transition,
α : [1, n] → (V × {r, w}) ∪ {♯}, such that α(l) = (vl, x) for x ∈ {r, w} and for some
vl ∈ V indicates for each layer l which variable is examined by the transition.

Notice that only one variable per layer can be examined, and it is not possible to have
α(l) = (vk, x) with l ̸= k. The special symbol ♯ indicates that no variable is to be read or
written for a specific layer.
▶ Remark 5 (Any-letter transition). If ∀l ∈ [1, n], α(l) = ♯ (i.e., no variable is examined) then
the transition is executed consuming whatever letter is in input.

▶ Definition 6 (Non-observable transition). A non-observable transition is a tuple of the form
δε = (q, reset, q′) ∈ ∆ε where:

q, q′ ∈ Q are the source and destination states of δε,
reset ⊆ 2V is the set of variables reset (i.e., emptied) by the transition.

▶ Definition 7. The semantics of an n-LaMA A = (Q, q0, F, ∆, V, n, M0) is defined as:
An observable transition (q, α, q′) can be executed on an input letter u from memory
context M leading to M ′: (q, M) u−→

A
(q′, M ′) if for each α(l) ̸= ♯ such that α(l) = (vl, x):

if x = r, then u ∈ M(vl) and M ′(vl) = M(vl) ;
if x = w, then u is fresh for layer l and u is added to vl in the reached memory context:
M ′(vl) = M(vl) ∪ {u}.

All variables vl not labeled through α remains associated to the same letters : if α(l) = ♯

or α(l) = (vl
1, x) and vl

1 ̸= vl then M ′(vl) = M(vl).
A non-observable transition (q, reset, q′) can be executed from memory context M without
reading any input letter leading to M ′: (q, M) ε−→

A
(q′, M ′), where ∀vl ∈ reset : M ′(vl) = ∅

and otherwise M ′(vl) = M(vl).

▶ Example 8. Let P(p) = {u1 . . . us | ∀j, k > 0, j ̸= k, uj·p ̸= uk·p}, be the language
recognizing words where the letters at positions, which are multiples of p are all different
whereas the others are not constrained. Fig. 2 depicts a 2-LaMA for P(2) ∩ P(3).

2.2 ν-automata
ν-automata (ν-A) can be seen as a restricted version of LaMA with only one layer. Hence,
each variable is constrained under the injectivity property, and no letter can be stored in
more than one variable.
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▶ Definition 9 (ν-A). A ν-A is defined as a tuple (Q, q0, F, ∆, V, M0), where
Q is a finite set of states containing an initial state q0 ∈ Q and a set of final ones F ⊆ Q,
V is a finite set of variables that may initially be storing a finite amount of letters from
the infinite alphabet U , as specified by the initial memory context M0,
and ∆ is a finite set of transitions.

As before, ∆ = ∆o ∪ ∆ε where ∆o is the set of observable transitions and ∆ε is the set of
non-observable ones. Differently from LaMA, observable transitions are decoupled in read
and write transitions.

▶ Definition 10 (Observable transition). An observable transition can be of two kinds:
(q, v, r, q′) and (q, v, w, q′) (r for read and w for write) where q, q′ ∈ Q are the source and
destination states and v ∈ V .

▶ Definition 11 (Non-observable transition). A non-observable transition is a tuple of the
form δε = (q, reset, q′) ∈ ∆ε where: q, q′ ∈ Q are the source and destination states of δε,
reset ⊆ 2V is the set of variables reset by the transition.

▶ Definition 12. The semantics of a ν-A A = (Q, q0, F, ∆, V, M0) is defined as:
An observable transition (q, v, x, q′) reading input letter u can be executed from memory
context M leading to M ′: (q, M) u−→

A
(q′, M ′) if for each v:

if x = r, then u ∈ M(v) and M ′(v) = M(v);
if x = w, then u is fresh in M and u is added to v in the reached memory context:
M ′(v) = M(v) ∪ {u}.

All other variables v1 ̸= v, remains associated to the same letters M ′(v1) = M(v1).
A non-observable transition (q, reset, q′) ∈ ∆ε can be executed from memory context M

leading to M ′: (q, M) ε−→
A

(q′, M ′) without reading any input letter, where ∀v ∈ reset :
M ′(v) = ∅ and otherwise M ′(v) = M(v).

▶ Remark 13. Analogously to LaMA, we consider any-letter transitions, denoted by (q, ♯, q′)
with ♯ ̸∈ U , which are enabled whenever a letter is read and the memory context of the target
configuration is the same as the origin’s one.

Notice that any-letter transitions do not alter the expressive power of ν-A nor the
complexity of its problems. Indeed, it is a sort of macro that can be encoded by a set of
transitions searching for the presence of a letter or its freshness over the whole set V . To do
so, one needs as many reading transitions as variables to allow the firing with any letter in
memory. For fresh letters, one needs a transition writing in an extra variable, which is reset
immediately after.

2.3 History-Register Automata
HRA are automata provided with a finite set H of histories, i.e., variables storing a finite
subset of letters of the infinite alphabet U . To simplify the presentation, we consider
HRA defined only with histories and no registers. The latter does not provide additional
expressiveness [11]. An essential distinction between HRA and LaMA or ν-A is that different
histories are allowed to store the same letter (i.e., there is no injectivity constraint). Thus,
an observable transition is annotated with the exact set of histories that should contain the
letter read to enable it. This entails that for each observable transition the whole memory
has to be explored while LaMA allow ignoring some layers using symbol ♯ (this can be crucial
while implementing the formalisms2).

2 Implemented in tool available at https://github.com/clementber/MaTiNA/tree/master/LaMA
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qow qew qer qor

∅/O

∅/E

E/O

O/E

E/O

O/E

Figure 3 Example of an HRA Ah.

▶ Definition 14 (HRA). A History-Register Automata is defined as a tuple of the form
A = (Q, q0, F, ∆, H, M0) where Q is the set of states, q0 the initial one, F the set of final
ones, ∆ the set of transitions, H a finite set of histories and M0 the initial memory context.
The set of transitions ∆ = ∆o ∪ ∆ε are of the form:

(q, Hr, Hw, q′) ∈ ∆o where Hr, Hw ⊆ H (for read and write), which is an observable
transition and
(q, H∅, q′) ∈ ∆ε where H∅ ⊆ H, which is a non-observable transition.

An observable transition (q, Hr, Hw, q′) is enabled if letter u is present in exactly all the
histories in Hr and not present in H \ Hr. After the transition, u is present only in the
histories in Hw. Notice that this allows moving an input letter from one set of histories to
another, or even forgetting it if Hw = ∅. This is not possible in ν-A and LaMA. Finally, if
Hr = ∅ then the input letter has to be fresh (absent from every history).

▶ Definition 15. The semantics of an HRA A = (Q, q0, F, ∆, H, M0) is defined as:
an observable transition (q, Hr, Hw, q′) is enabled for memory context M when reading
letter u ∈ U : (q, M) u−→

A
(q′, M ′) if u ∈ M(hr) ⇔ hr ∈ Hr and ∀hw ∈ Hw : M ′(hw) =

M(h) ∪ {u} and ∀h ̸∈ Hw: M ′(h) = M(h) \ {u};
a non-observable transition (q, H∅, q′) is enabled for any memory context M and allows
to move from configuration (q, M) to (q′, M ′): (q, M) ε−→

A
(q′, M ′), where all the histories

in H∅ have been reset in M ′.

▶ Example 16. Fig. 3 depicts an HRA that, with an initially empty memory context,
recognizes the language

{u1u2 . . . un | ∃k < n, ∀i, j ∈ [1, k], ui = uj ⇔ i = j,

∀m ∈]k, n], ∃p < m, up = um, p mod 2 ̸= m mod 2, ̸ ∃q ∈]p, m[, um = uq}

The two transitions looping between states qow and qew allow us to recognize words where
the first k letters are all different from each other. Letters are stored in histories O (odd) and
E (even) to remember the parity of the position they are read at. The transitions between
states qer and qor allow us to recognize words whose suffix is only composed of repetitions of
the k first letters, with the additional constraint that they can only occur at a position with
opposed parity wrt the previous occurrence. Thus, if a letter was read for the last time at an
even position, it is stored in history E and can only be read in an odd position. Once it is
read, it is transferred to the O history to remember it can only be read at an even position
the next time.
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3 Complexity of the membership problem

We know that each ν-A can be encoded into a LaMA and respectively each LaMA can be
encoded into an HRA both recognizing the same language [4]. The encoding from LaMA to
HRA is exponential in the number of layers, hence we know that the complexity of problems
for HRA gives an upper bound to the complexity of the same problem for LaMA and ν-A.
In this section, we show that the complexity of the membership problem (i.e., given an
automaton A and a word w decide whether w ∈ L(A)) falls in the same class for these
three automata models. To do so, we show that the membership problem for LaMA can be
simulated using ν-A, and the same can be done for HRA using LaMA.

Simulating the membership for LaMA in ν-automata. The idea is to represent an n-LaMA
as a product of n ν-A, one for each layer. The main limitation is that having just one layer
makes the injectivity constraint stronger. Indeed, it is not possible to trivially treat a same
letter stored on different layers. To cope with this difficulty, we rename the word under
consideration, replacing consistently each letter with a sequence of new ones - one per layer
of the LaMA: i.e., for an n-LaMA the letter u ∈ w is replaced by the letters u1, ..., un where
all the ui are different in order to have the letters belonging to different layers all distinct
from each other. This renaming is always possible as the alphabet U is infinite. For example,
for the word aba, a consistent renaming, for a 2-LaMA, could produce a1 a2 b1 b2 a1 a2.

▶ Definition 17 (Renaming). ξn : U → Un is a renaming function that given a letter u ∈ U
generates a new sequence of n letters u1 . . . un with for all i ̸= j ∈ [1, n] ui ̸= uj and such
that if u1 ̸= u2 then for all i, j ∈ [1, n], ui

1 ̸= uj
2. ξn(u1 . . . um) = u1

1 . . . un
1 . . . u1

m . . . un
m is its

pointwise extension to words .

Let A = (Q, q0, F, ∆, V, n, M0) be an n-LaMA and w = u1 . . . um ∈ U∗. We know that
w ∈ L(A) if and only if there is a finite sequence of transitions such that for some Mf ,
(q0, M0) w=⇒

A
(qf , Mf ) with qf ∈ F . It is then possible to construct a ν-A that accepts ξn(w),

which simulates the recognition process of the n-LaMA over the word w. To do so, we encode
every observable transition of A into a sequence of transitions successively simulating the
constraints applied to variables of each layer. Moreover, we apply the renaming function ξn

to the initial memory context. In order to simplify the notations, in the following, we denote
by x⌊k the projection onto the k-th element of tuple x, e.g., (a, b, c)⌊2 = b.

▶ Definition 18 (Encoding of a memory context). Let M be the memory context over the
set of variables V over n layers, then ∀vl ∈ V , its renaming through ξn, is defined as
JMKξ(vl) = {ξn(u)⌊l | u ∈ M(vl)}.

▶ Definition 19 (Encoding of a LaMA). Let A = (Q, q0, F, ∆, V, n, M0) be an n-LaMA, then
the ν-A JAKξ = (Q′, q′

0, F ′, ∆′, V ′, M ′
0) is the encoding of A through the renaming ξn, where:

Q′ = Q ∪ Qo and the set of states Qo = {ql
δ | δ = (q, α, q′) ∈ ∆, l ∈ [2, n]} is used by the

sequence of transitions simulating each observable transition of A, q0
′ = q0 and F ′ = F ;

V ′ = V is the set of variables of A flattened on one layer;
M0

′ = JM0Kξ is the initial memory context of A renamed in case it is not initially empty;
∆′ = ∆′

o ∪∆ε where ∆ε is the set of all non-observable transitions of A, and ∆′
o contains

the encoding of every observable transition δ = (q, α, q′) of A, which is a sequence of
transitions with q1

δ = q and qn+1
δ = q′ such that

∆′
o = {(ql

δ, vl, x, ql+1
δ ) | δ = (q, α, q′) ∈ ∆, l ∈ [1, n], α(l) = (vl, x)}

∪ {(ql
δ, ♯, ql+1

δ ) | δ = (q, α, q′) ∈ ∆, l ∈ [1, n], α(l) = ♯}.

CONCUR 2023
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Notice that the language accepted by the encoded ν-A JAKξ of a LaMA A is an over-
approximation of the language accepted by A: ξ(L(A)) ⊆ L(JAKξ). They are equal only
when the LaMA has one layer (i.e., n = 1). Nonetheless, this construction may be used to
test the membership of a word w to L(A). The proof is a simple induction on the length of
the derivation of w and ξn(w) [3].

▶ Theorem 20. Let A be an n-LaMA. w ∈ L(A) if and only if ξn(w) ∈ L(JAKξ).

Simulating the membership for HRA in LaMA. This section presents how to solve the
membership problem for HRA using LaMA. The difference in expressiveness between HRA
and LaMA comes from the ability of HRA of removing letters from histories when they are
read. We resort to an encoding of words where each letter is duplicated and annotated with
a number representing how many occurrences of that letter have been encountered so far. In
detail, the first copy of the letter keeps the information on the number of occurrences of the
letter seen so far and the second one the number of occurrences including the present one.

▶ Example 21. Take w = abaca then the encoded word is w′ = a0a1 b0b1 a1a2 c0c1 a2a3

The idea behind the encoding of observable transitions is to use the first copy to check
the presence and absence of the letter in every variable (simulating the role of Hr) while
the second one (that is always fresh) can be used to simulate writing and removal (hence
simulating Hw). More precisely, once we add an annotated letter to a variable, the encoded
automaton will ensure that the variable always stores the last seen occurrence of that letter.
Thus, removing a letter from a history consists in not storing the last seen occurrence of
the letter in the corresponding encoded variable. Clearly, all the letters annotated with a
number smaller than the current one will not be used in any of the transitions, representing
a form of garbage.

We consider a renaming function ζi : U → U2 which replaces u by a pair of letters
ui−1ui for any i ∈ N+. Then, we define the encoding of words ζ : U∗ → U∗ as follows
ζ(u1 . . . um) = ζiu1

(u1) . . . ζium
(um) where each iuj is the number of occurrences of uj seen

in the prefix u1 . . . uj . Notice that when considering the word up to letter uj , ζiuj
(uj)⌊2 is

always a new letter (e.g., a fresh letter with respect to those in ζ(u1 . . . uj)).

▶ Definition 22 (Encoding of an HRA). Let A = (Q, q0, F, ∆o ∪ ∆ε, {h1, . . . hn}, M0) be an
HRA, its encoding into an n-LaMA is JAKζ = (Q′, q′

0, F ′, ∆′, V ′, n, M ′
0) where:

Q′ = Q ∪ Qo and the set of states Qo = {qδ | q ∈ Q, δ = (q, Hr, Hw, q′) ∈ ∆} is used by
the sequence of transitions simulating each observable transition of A;
q′

0 = q0 and F ′ = F ;
V ′ = {hl, ωl | l ∈ [1, n]} and for each layer l ∈ [1, n], hl plays the role of history hl and
ωl is used to check the absence of letters in hl.
M ′

0(hl) = {ζ1(u)⌊1 | u ∈ M0(hl)} and M ′
0(ωl) = ∅ for all l ∈ [1, n] meaning that M ′

0 is as
M0 with all letters renamed with ζ1 and empty for all extra variables;
∆′ = ∆′

ε ∪ ∆′
o with

∆′
ε = {(q, {hl | hl ∈ H∅}, q′) | (q, H∅, q′) ∈ ∆ε}, is the direct translation of the

ε-transitions in A.
∆′

o = {(q, αHr
, qδ), (qδ, αHw

, q′) | δ = (q, Hr, Hw, q′) ∈ ∆o} with for all l ∈ [1, n]

αHr
(l) =

{
(hl, r) if hl ∈ Hr

(ωl, w) if hl ̸∈ Hr
and αHw

(l) =
{

(hl, w) if hl ∈ Hw

♯ if hl ̸∈ Hw

the first simulating the guard part of the observable transition and the second the
writing/relocation.
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Figure 4 The 2-LaMA JAhKζ , encoding of the HRA Ah from Example 16.

▶ Example 23. Fig. 4 depicts the encoding applied to the HRA of Example 16. Given the
word w = abcabb and its renaming ζ(w) = a0a1b0b1c0c1a1a2b1b2b2b3, we present how the
encoding works. Ah has two histories: H = {O, E}, thus the set of variables V of JAhKζ

is {O1, ω1} on layer 1 and {E2, ω2} on layer 2. Let (qow, M∅) be the initial state for both
automata, with M∅ the memory context where all variables/histories are empty.

When reading the first letter a in Ah, only transition (qow, M∅) a−−→
Ah

(qew, M1) is enabled as
a is not stored in any of the histories in M∅, as a consequence, a is added to O in M1. In JAhKζ ,
this transition is encoded with the sequence (qow, M∅) a0

−−−−→
JAhKζ

(q′
ow, M ′) a1

−−−−→
JAhKζ

(qew, M ′
1).

The first transition when reading a0, checks if a0 is absent from both O1 and E2 using ω1

and ω2 with the injectivity constraint. When reading a1 the transition q′
ow → qew writes the

letter in O1. Note that a0 is still stored in ω1 and ω2, but it will never be read again (as the
renaming ζ always increases the index of letters).

Then, when Ah read the first occurrence of b, the only enabled transition is (qew, M1) b−−→
Ah

(qow, M2), where b is stored in E is M2. And when reading c the only transition enabled is
(qow, M2) c−−→

Ah

(qew, M3) with O storing both a and c while E only stores b. In JAhKζ , this

sequence of transitions is encoded by enabling the sequence of transitions (qew, M ′
1) b0

−−−−→
JAhKζ

(q′
ew, M ′′

1 ) b1

−−−−→
JAhKζ

(qow, M ′
2) c0

−−−−→
JAhKζ

(q′
ow, M ′′

2 ) c1

−−−−→
JAhKζ

(qew, M ′
3). With M ′

2 storing b1 in E2

and M ′
3 storing c1 in O3 in addition to a1. This is the only sequence of transition that can

be enabled as b0 was not stored in O1 in the state (qew, M ′
1) and c0 was not stored in E2 in

(qow, M ′
2).

When reading the second occurrence of a, the only enabled transition is (qew, M3) a−−→
Ah

(qor, M4) where a is transferred from O to E in M4. In JAhKζ this is encoded by the sequence
of transitions (qew, M ′

3) a1

−−−−→
JAhKζ

(q′′
ew, M ′′

3 ) a2

−−−−→
JAhKζ

(qor, M ′
4). The first transition is the only one

enabled in configuration (qew, M ′
3) as a1 is already stored in O1, thus it would be impossible

to write it in ω1 to enable the transition to q′
ew. In M ′

4, the letter a2 is stored in E2 along
with b1, while a1 is still stored in O1 but will never be read again in ζ(w), so it can be
ignored. This is how the transfer mechanism is encoded in this construction.

Reading bb, the last two letters of w, will enable in Ah the sequence (qor, M4) b−−→
Ah

(qer, M5)

transferring b from E to O in M5 and then enabling (qer, M5) b−−→
Ah

(qor, M6) transferring

b back from O to E in M6. In JAhKζ , this is encoded by reading the letters b1b2b2b3 and
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q0 qf

(Xi, w)

(Xi, w)

(a) The gadget for the existentially
quantified variable xi.

q0 qf

(L1
j , r)

(L2
j , r)

(L3
j , r)

(b) The 3SAT clause gadget for Cj = (L1
j ∨ L2

j ∨ L3
j ).

Figure 5 Gadgets used for showing NP-hardness of the membership problem.

enabling the loop of transition between states qor, q′
or, qer and q′

er. Looking if the previous
occurrence of b, here b2 (resp. b3), is stored in E2 (resp. O1) by reading in the variable.
Also checking if it is absent from O1 (resp. E2) by writing in the ω of the same layer. Then
writing the next occurrence of b, here b3 (resp. b4), in O1 (resp. E2) to encode its transfer.

Notice that, as before, the language recognized by JAKζ is actually larger than L(A).
▶ Remark 24. In [11], HRA are presented with a set of registers able to store only one letter at
a time. Their content is overwritten whenever a letter is written into it. The authors proved
that HRA using only histories are as expressive as the ones using both histories and register.
However, the construction presented to remove registers is exponential in their number. This
is caused by the need of decoupling the overwriting into two phases, first, one uses the content
to verify if an observable transition is enabled and then erases the content of histories. The
exponential construction comes from the fact that to keep the languages equivalent, for each
phase, one can use only one observable transition. Instead, to show membership we do not
need to prove the equivalence of languages and the construction in Definition 22, already
splits transitions into these two phases, using two observable transitions. Hence, it can be
extended to registers avoiding the exponential cost.

▶ Theorem 25. Let A be an HRA. w ∈ L(A) if and only if ζ(w) ∈ L(JAKζ).

Complexity. The two previous encodings give polynomial reductions of the membership
problem from HRA to LaMA and from LaMA to ν-A. Therefore, there is a polynomial
reduction of the problem for HRA to ν-A. The expressiveness results from [4] give a linear
construction from ν-A to LaMA and an exponential construction, in the number of layers,
from LaMA to HRA. As ν-A are 1-LaMA, the same construction can be used to translate a
ν-A into an HRA of polynomial size. This implies an equivalence of complexity class of the
membership problem for ν-A and HRA, as well as for ν-A and LaMA. By transitivity, we get
the same equivalence between LaMA and HRA. Next, we show that the membership problem
for LaMA is NP-complete. For the hardness part, this is shown by resorting to a reduction
from the 3SAT problem, while the completeness part follows by observing what would be the
cost of executing a word on an automaton. Fig. 5 depicts the intuition behind the encoding
of a 3SAT instance. The idea is that the gadget in Fig. 5a chooses non-deterministically
the truth assignment of Xi or Xi and the one in Fig. 5b checks that this assignment indeed
satisfies the given clauses.

▶ Theorem 26. The membership problem for LaMA is NP-complete.

Hence we can conclude that:

▶ Corollary 27. The membership problems for ν-A, LaMA and HRA is NP-complete.
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As a direct consequence and looking at the expressiveness hierarchy in Fig. 1 we can also
give a complexity class for the membership problem in FRA. Indeed, since FMA can be
encoded into FRA [19], we can deduce NP-hardness, and completeness follows from their
encoding into LaMA [4].

▶ Corollary 28. The membership problem for FRA is NP-complete.

4 Complexity of the non-emptiness problem

The non-emptiness problem consists in deciding whether the language accepted by an
automaton is non-empty, or in other words checking if there is a path from the initial
configuration to a final configuration. As mentioned before, in [11], it has been shown
that deciding the non-emptiness for HRA is Ackermann-complete. Still, the complexity for
non-emptiness is known neither for LaMA nor for ν-A. We start with the non-emptiness
Problem for ν-A. We show that the problem is PSPACE-complete. To do so, we reduce
the TQBF problem (true fully quantified Boolean formula) to ν-A non-emptiness. TQBF is
known to be PSPACE-complete (Meyer-Stockmeyer theorem [1]).

▶ Lemma 29. The non-emptiness problem is PSPACE-hard for ν-A.

Proof. Let νNEP be the short for non-emptiness Problem for ν-A.
We show that TQBF can be reduced to νNEP. Let Q1x1 . . . Qnxn(C1 ∧ . . . ∧ Cm), be a

fully quantified Boolean formula, where each Qi ∈ {∀, ∃} and each Cj is a clause comprising
at most n literals (xi or xi). We assume that literals in clauses are ordered according to
the order of variable declarations and at most one literal per variable is present. To encode
TQBF in ν-A we consider:

for each existentially quantified xi, variables Xi and Xi, and the gadget depicted in
Fig. 5a, used in the proof of Theorem 26;
for each universally quantified xi, variables Xi, Xi and X̃i, and the gadget depicted in
Fig. 6a. Variable X̃i is used as a flag to indicate that all possible truth assignments of xi

have been considered. The initial transition of the gadget initializes variable Xi to 1i.
The dashed automaton connected between states q1 and q2, handling other variables and
the clauses, is constructed recursively. The looping part starting in state q2 writes letter
2i into variable X̃i, which is used after browsing once again the dashed part to reach the
final state qf . After this, variable Xi is reset and then variable Xi is initialized to 1i to
consider the other truth assignment of xi. From state q5 to q1 all the variables for xj ,
with j from i + 1 to n are reset to reinitialize their truth assignments;
for each clause Cj , a clause gadget depicted in Fig. 6b. It tests literals one after the
other and takes the oblique transition for the first which makes the clause satisfied, which
means that the remaining literals are just read up to the end of the clause, which is
satisfied if qf is reached.

In order to construct the ν-A A encoding the instance of TQBF we connect first the
clause gadgets by merging the final state of a clause gadget with the initial state of the next
one. Let C be the resulting automaton. Then, we connect to C the gadgets for variable
declarations starting from the nth, i.e., the last in the order of declarations. If the variable
is under an existential quantifier, we connect the existential variable gadget in front of the
automaton obtained so far by merging its final state with the initial state of C. If the variable
is under a universal quantifier, we connect the corresponding gadget by merging the initial
state of C with state q1 of the gadget, and the final state of C with state q2 of the gadget.
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q0 q1 variables clauses q2
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(Xi, w)

(X̃i, w)
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reset({Xj , Xj , X̃j | j > i})

(a) The gadget for universally quantified variable xi.
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(b) The gadget for TQBF clause Cj = (Lj1 ∨ . . . ∨ Ljk ).

Figure 6 Gadgets used for showing NP-hardness of the emptiness problem for ν-A.

We connect this way, i.e., following the inverse order of declarations, the gadgets for all the
remaining variable declarations. The initial state of the first declared variable gadget is the
initial state of A and the unique state qf of the final construction is the unique final state of
A. Finally, the input word w is obtained recursively for each TQBF instance by the function
input(ϕ) defined in Algorithm 1. The construction of the word follows the intuition given
above (for the construction of the automaton), that is: it unfolds the loops generating the
letters needed at each step.

Algorithm 1 Function to generate the word accepted by TQBF automaton.
1: function input(ϕ) ▷ ϕ = Q1x1 . . . Qnxn C1 . . . Cm

2: ∀i ∈ [1, n] : init(xi) = 1i

3: ∀i ∈ [1, n] : end(xi) = 2i

4: ∀j ∈ [1, m] : wj ▷ contains exactly one 1i for each xi or xi present in clause Cj

5: if ϕ = ∅ then return ϵ

6: else if ϕ = ∃xi ϕ′ then return init(xi).input(ϕ′)
7: else if ϕ = ∀xi ϕ′ then return init(xi).input(ϕ′).end(xi).init(xi).input(ϕ′).end(xi)
8: else if ϕ = Ci ϕ′ then return wi.input(ϕ′)

Example: for the TQBF instance ∃x1 ∀x2 ∀x3 ∃x4((x1 ∨ x4) ∧ (x2 ∨ x3 ∨ x4)), Fig. 7
represents a general construction schema of the corresponding ν-A, and the input word is
1112131411141213142313141114121314232212131411141213142312131411141213142322.

Note that every gadget of the automaton is deterministic, except for the existential
variable gadget. The size of A is polynomial in the size of the TQBF expression. The length
of the word generated by Algorithm 1 is in Ω(2n) but it is not a parameter of the construction
of A. Clearly, only a word generated by Algorithm 1 (or a consistent renaming) can be
accepted by A starting with an empty memory context. Such a word can be accepted if and
only if there is a solution to the TQBF instance. ◀
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init(x1) init(x2) init(x3) init(x4) C1 C2 end(x3) end(x2)
end(x3)

reset(x3)init(x3)

reset(x4) end(x2)

reset(x2)

init(x2)

reset(x3, x4)

Figure 7 Schema of construction for TQBF instance ∃x1 ∀x2 ∀x3 ∃x4 ((x1 ∨ x4) ∧ (x2 ∨ x3 ∨ x4)).

It remains to show that the non-emptiness problem for ν-A is in PSPACE. This accounts
for showing that if the language recognized by an ν-A is non-empty then it contains a
word whose size together with the length of the transition path needed to accept it, are
exponentially bounded with respect to the size of the ν-A. To this aim, we “build” a finite
state machine (FSM) characterizing an abstraction of the state space of the ν-A.

If one can choose the letters to read, the idea is that observable transitions that write a
letter in a variable are never blocking. Since the alphabet is infinite there is always a fresh
letter that can be added, which we call a token. Instead, observable transitions that read a
letter from a variable are blocking, in the sense that concerned variables must contain at least
a letter (that we call a key). The first step towards the construction of the FSM is to build a
canonical ν-A such that a word accepted by the canonical automaton will also be accepted by
the initial ν-A A and each word accepted by A will have a corresponding canonical version.
Consider a ν-A A = (Q, q0, F, ∆, V, M0), its canonical version cano(A) = (Q, q0, F, ∆, V, M ′

0)
is an ν-A over the alphabets K and T , where:

K ⊂ U , such that |K| = |V |, is the set of keys kv, each of them being associated with
a variable v ∈ V . If M0(v) ̸= ∅, we select kv in M0(v). Also, if M0(v) = ∅, we select kv

such that ∀v′ ∈ V, kv ̸∈ M0(v′). The presence of a key in a variable v denotes the fact
that v is non-empty.
T = {t1, t2, . . .} ⊂ U , K ∩T = ∅, is an infinite set containing letters called tokens intended
to be used only once, which are never stored in memory. Hence, no letter in T is present
in the initial memory context of A, ∀v ∈ V : M0(v) ∩ T = ∅.
For each v ∈ V , the initial memory context M ′

0(v) of cano(A) is either empty if M0(v) = ∅,
or if M0(v) ̸= ∅, it only contains its key kv.

Notice that a word w is accepted by cano(A) if the following conditions hold:
1. w ∈ (K ∪ T )∗, and if ti ∈ T appears in w then it occurs at most once,
2. let (q0, M ′

0) w=====⇒
cano(A)

(qf , Mf ) with qf ∈ F be the accepting path for w then for each

intermediate configuration (q, M) in the path and for each kv ∈ K either kv ∈ M(v) or
for all v′ ∈ V , kv /∈ M(v′).

Observe that cano(A) is actually the same automaton as A but over a subset of the
alphabet U and where for each v ∈ V , M ′

0(v) ⊆ M0(v), hence it is easy to conclude that the
language of cano(A) is included in the one of A.

▶ Lemma 30. Let A and cano(A) be a ν-A and its canonical version. If a word w ∈
L(cano(A)) then w ∈ L(A).

We want to show that the language accepted by a ν-A A is empty if and only if the
language accepted by cano(A) is empty. The if part is the most involved and is the content
of the following lemma.
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▶ Lemma 31. Let A be a ν-A and cano(A) and its canonical version. If w ∈ L(A) then
there exists w′ ∈ L(cano(A)).

Proof. Let w = u1 . . . un ∈ L(A). Then there exists an accepting path (q0, M ′
0) w=⇒

A
(qf , Mf )

with qf ∈ F and intermediate configurations (qi, Mi)i≥0. Depending on those intermediate
configurations we build a new word w′ = u′

1 . . . u′
n and the corresponding path in cano(A)

accepting w′. For each configuration (qi, Mi), the construction maintains an invariant:
∀v ∈ V, M ′

i(v) = {kv} if and only if Mi(v) ̸= ∅. The proof proceeds by induction:
Base case: By construction the initial configuration of cano(A) satisfies the invariant.
Inductive step: We examine the transition (qi, Mi)

δi−→
ui

(qi+1, Mi+1). By inductive hypo-

thesis, we know that there exists a sequence of transitions (q0, M ′
0)

u′
1...u′

i−1======⇒
cano(A)

(qi, M ′
i) such

that ∀v ∈ V, M ′
i(v) = {kv} if and only if Mi(v) ̸= ∅. We prove there is a letter u′

i leading
to the configuration (qi+1, M ′

i+1) satisfying this property, through δi (by construction A

and cano(A) are defined on the same set of transitions), we list all possible cases:
- δi = (qi, reset, qi+1): then ui = u′

i = ε and δi will lead to a configuration with
M ′

i+1(v) = ∅ if v ∈ reset or M ′
i+1(v) = M ′

i(v) otherwise. Hence satisfying the
invariant.

- δi = (qi, v, r, qi+1): then Mi(v) ̸= ∅ otherwise the transition could not be enabled, so
u′

i = kv and by inductive hypothesis M ′
i(v) = {kv}. Since the memory context does

not change for both automata, the invariant is satisfied;
- δi = (qi, v, w, qi+1): if Mi(v) = ∅, then u′

i = kv, and kv will be written in variable v

in M ′
i+1 satisfying the invariant.

If Mi(v) ̸= ∅, then u′
i = ti ∈ T is a token and M ′

i(v) = M ′
i+1(v) since tokens are not

stored in memory. By inductive hypothesis we know that M ′
i(v) = {kv} and as δi is a

writing transition, then Mi+1 ̸= ∅, satisfying the invariant.
From the previous construction, it follows immediately that w′ ∈ L(cano(A)). ◀

Observe that, when reading a word w ∈ L(cano(A)), we only need to store the letters
belonging to K. Indeed, tokens in T may occur only once in w. This entails that tokens can
only enable a write observable transition, while for read transitions keys are sufficient. Hence,
in practice, tokens do not need to be added to the memory context. Hence the number of
different configurations in cano(A) is bounded by |Q| · 2|K| as:

we have |Q| states that can be encoded on log|Q| bits, and
there are 2|K| possibilities to store the presence or not in the memory of letters in K (2
possibilities per letter encoded on 1 bit since each kv can only be stored in v), so in total
we need |K| bits.

This shows that the number of configurations is finite. On top of this, as remarked above,
transitions over letters in T do not add constraints on the memory context and they can be
ignored. Hence the alphabet is now finite and we can reduce the non-emptiness of FSM to
the non-emptiness problem of ν-A.

▶ Lemma 32. The non-emptiness problem for ν-A is in PSPACE

Proof. Given a ν-A A = (Q, q0, F, ∆, V, M0), its canonical form has at most |Q|2|K| con-
figurations. The state space of cano(A) could be constructed as an FSM by merging all
transitions of A writing a token from T going from state q to q′ into a unique transition. This
way, the FSM would have O(|∆|2|K|) transitions as each configuration (q, M ′) of cano(A)
has at most as many outgoing transitions as q in A. A formal definition of the construction
is in [3].
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Moreover, if the underlying FSM is non-empty it implies that there is a sequence of at
most O(|∆|2|K|) transitions from an initial state of A to one of its accepting state. Recall that
finding a path between two vertexes/states in a graph (V, E) is a problem called PATH which
is NL-complete [1]. The algorithm for PATH, in logarithmic space, could be adapted to find
whether there exists a sequence of transitions from an initial state of A to an accepting state.
Since this sequence of transitions is exponential in the size of A, we prove that the problem
is in NPSPACE for ν-A. Since PSPACE=NPSPACE [1] we show that the non-emptiness
problem for ν-A is in PSPACE.

The PATH algorithm adapted to our problem memorizes a state of A, the memory context
of cano(A) and a counter on O(log(|∆|)+ |K|) bits. Each time that the counter is augmented
by one, a transition starting in the memorized state will be chosen randomly and applied as
follows: if this transition is a reset, then the state is updated and the memory is reset. If this
transition is a write, then the state is updated and the corresponding key is added to the
memory (if not already present). If the transition is a read then either the key is not in the
memory and the algorithm halts and rejects or the state is updated. As soon as an accepting
state is reached then the algorithm halts and accepts. If the counter reaches its maximum
then the algorithm halts and rejects. Note that the FSM is not actually constructed in this
algorithm, but only one of its paths is explored dynamically. ◀

▶ Theorem 33. The non-emptiness problem for ν-A PSPACE-complete.

Proof. By Lemmata 29 and 32. ◀

5 Conclusions

We have discussed the complexity of membership and non-emptiness for three formalisms
ν-A, LaMA and HRA. We showed that concerning the membership problem, all three kinds
of automata fall in the NP-complete class. Non-emptiness is more delicate. We proved that
the non-emptiness problem for ν-A is PSPACE-complete.

For LaMA, we know the lower bound and the upper bound of the complexity class of
the non-emptiness problem. As a consequence of Theorem 33 and from the expressiveness
results in [4], the complexity is PSPACE-hard. However, it is a strict lower bound as we are
able to construct a LaMA where the shortest accepted word is of size in O(22n) with n the
number of variables. In our previous work [4], we showed an exponential encoding of LaMA
into HRA for which the non-emptiness problem is shown to be Ackermann-complete in [11].
This also gives us the Ackermann class membership. As one of the reviewers suggested, we
believe that we could adapt to LaMA the proof in [11] to show that the problem is actually
Ackermann-complete.

As for future work, apart from formally showing the Ackermann-completeness of the
non-emptiness problem for LaMA, we plan to address other expressiveness issues of LaMA.
Indeed the number of layers seems to create a hierarchy of expressiveness and complexity.
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