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Abstract
Encodings are the main way to compare process calculi. By applying quality criteria to encodings
we analyse their quality and rule out trivial or meaningless encodings. Thereby, operational
correspondence is one of the most common and most important quality criteria. It ensures that
processes and their translations have the same abstract behaviour. We analyse probabilistic versions
of operational correspondence to enable such a verification for probabilistic systems.

Concretely, we present three versions of probabilistic operational correspondence: weak, middle,
and strong. We show the relevance of the weaker version using an encoding from a sublanguage of
probabilistic CCS into the probabilistic π-calculus. Moreover, we map this version of probabilistic
operational correspondence onto a probabilistic behavioural relation that directly relates source
and target terms. Then we can analyse the quality of the criterion by analysing the relation it
induces between a source term and its translation. For the second version of probabilistic operational
correspondence we proceed in the opposite direction. We start with a standard simulation relation
for probabilistic systems and map it onto a probabilistic operational correspondence criterion.
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1 Introduction

Encodings are used to compare process calculi and to reason about their expressive power.
Encodability criteria are conditions that limit the existence of encodings. Their main purpose
is to rule out trivial or meaningless encodings, but they can also be used to limit attention
to encodings that are of special interest in a particular domain or for a particular purpose.
These quality criteria are the main tool in separation results, saying that one calculus is not
expressible in another one; here one has to show that no encoding meeting these criteria
exists. To obtain stronger separation results, care has to be taken in selecting quality criteria
that are not too restrictive. For encodability results, saying that one calculus is expressible
in another one, all one needs is an encoding, together with criteria testifying for the quality
of the encoding. Here it is important that the criteria are not too weak.

In the literature various different criteria and different variants of the same criteria
are employed to achieve separation and encodability results (see e.g. [29] for an overview).
Unfortunately it is not always obvious whether the criteria used to obtain a result in a
particular setting do indeed fit to this setting. A way to formally analyse the quality of
encodability criteria was presented in [30]. They propose to map the criteria on conditions
on relations between source and target terms that in particular relate each source term
with its literal translation. This allows us to formally reason about encodability criteria,
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15:2 Probabilistic Operational Correspondence

to completely capture and describe their semantic effect, and to analyse side conditions of
combinations of criteria. We want to use this technique to define and analyse versions of
operational correspondence for probabilistic systems.

Intuitively, operational correspondence requires executions to be respected. It consists of
a completeness and a soundness part. The completeness condition requires that for all source
term executions there is one emulation in the target language such that the encoding of the
result in the source and the result in the target are related by some relation RT on the target
language. Intuitively, the completeness condition requires that any source term execution is
emulated by the target term modulo RT. Soundness requires that for all executions of the
target there exists some execution of the source such that again the results are related by
RT. Intuitively, soundness requires that whatever the encoded term can do is a translation
of some behaviour of the source term modulo RT.

To study and compare probabilistic languages we need probabilistic versions of operational
correspondence. In § 4 we start in the traditional way and use a particular encoding, that we
consider reasonable. We derive a version of probabilistic operational correspondence (PrOC)
that captures the way in that the encoding relates the behaviour of the source and the target
language. Concretely, we consider an encoding from a sublanguage of probabilistic CCS from
[7] into the probabilistic π-calculus of [38]. As result we obtain a weak version of PrOC.

In § 5 we then map the conditions in weak PrOC onto requirements of a relation between
source and target terms as proposed in [30]. Thereby we are able to show that weak PrOC
ensures that source terms and their literal translations are related by a probabilistic version
of coupled similarity ([27]).

For our second variant of PrOC we are interested in a stricter criterion that induces a
stricter simulation relation such as bisimulation. In § 6 we therefore reverse the ideas of
[30]. Instead of starting with a criterion that we map on conditions of a relation, we start
with an interesting relation and derive which variant of PrOC induces this relation. Since
bisimulation is often considered as the standard behavioural relation between processes, we
start with probabilistic barbed bisimulation. From this relation we derive a version of PrOC
that induces this relation between source terms and their translations. Finally, we also
present a strong version of PrOC and its correspondence to strong probabilistic bisimulation.

We conclude in § 7. The proofs and some additional material can be found in [33].

2 Process Calculi

A process calculus is a language L = (P, 7−→) consisting of a set of terms P – its syntax –
and its semantics defining reduction steps. The syntax of a process calculus is usually defined
by a context-free grammar defining operators. An operator of arity 0 is a constant. The
arguments that are again process terms are called subterms. A guard is an operator that
prevents the reductions of subterms until the guard is reduced first. In the languages we
consider, guards are action prefixes.

We assume that the semantics is given as an operational semantics consisting of inference
rules defined on the operators of the language [31]. For many process calculi, the semantics
is provided in two forms, as reduction semantics and as labelled transition semantics. We
assume that at least the reduction semantics 7−→ is given as part of the definition, because
its treatment is easier in the context of encodings. We consider probabilistic calculi, where a
process reduces in a step to a discrete probability distribution.

A (discrete) probability distribution over a set S is a mapping ∆ : S → [0, 1] with∑
P ∈S ∆(P ) = 1. Let D(S) ranged over by ∆, Θ, Φ denote the collection of all such

distributions over S. The support of ∆ is the set ⌈∆⌉ = {P | ∆(P ) > 0} of elements with
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a positive probability. We use P to denote the point distribution assigning probability 1
to state P and 0 to all other states in S. If

∑
i∈I pi = 1, pi ≥ 0, and ∆i is a probability

distribution for each i in some finite index set I, then
∑

i∈I pi ·∆i is a probability distribution
given by

(∑
i∈I pi · ∆i

)
(P ) =

∑
i∈I pi ·∆i(P ). We sometimes use {p1P1, . . . , pnPn} to denote

a distribution ∆ with ⌈∆⌉ = {P1, . . . , Pn} and ∆(Pi) = pi for all 1 ≤ i ≤ n.
A (reduction) step P 7−→ ∆ is a single application of the reduction relation 7−→ ⊆

P × D(P), where ∆ is called derivative. We lift 7−→ to a relation between distributions (see
e.g. [7] for a similar but stricter relation).

▶ Definition 1 (Reductions of Distributions). Let ∆ 7−→ Θ whenever
(a) ∆ =

∑
i∈I piPi, where I is a finite index set and

∑
i∈I pi = 1,

(b) for each i ∈ I there is a distribution Θi such that Pi 7−→ Θi or Θi = Pi,
(c) for some i ∈ I we have Pi 7−→ Θi, and
(d) Θ =

∑
i∈I pi · Θi.

Let P 7−→ and ∆ 7−→ denote the existence of a single step from P or ∆. We write
P 7−→ω if there is some ∆ such that P 7−→ ∆ and ∆ 7−→ω, where ∆ 7−→ω if ∆ has an infinite
sequence of steps. Let Z=⇒ be the reflexive and transitive closure of 7−→ on distributions and
let P Z=⇒ ∆ if ∆ = P or P 7−→ Z=⇒ ∆.

To reason about environments of terms, we use functions on process terms called contexts.
More precisely, a context C([·]1, . . . , [·]n) : Pn → P with n holes is a function from n terms
into one term, i.e., given P1, . . . , Pn ∈ P, the term C(P1, . . . , Pn) is the result of inserting
P1, . . . , Pn in the corresponding order into the n holes of C.

Assume a countably-infinite set N of names. Let N = {n | n ∈ N } and τ /∈ N . Let
fn(P ) denote the set of free names in P . A substitution σ is a finite mapping from names to
names defined by a set {y1/x1, . . . , yn/xn} = {y1, . . . , yn/x1, . . . , xn} = {ỹ/x̃} of renamings,
where the x1, . . . , xn are pairwise distinct. The application P{ỹ/x̃} of a substitution on a
term is defined as the result of simultaneously replacing all free occurrences of xi by yi for
i ∈ {1, . . . , n}, possibly applying α-conversion to avoid capture or name clashes. For all
names in N \ {x1, . . . , xn} the substitution behaves as the identity mapping. We naturally
extend substitution to distributions.

For the last criterion of [15] (see Section 3), we need a special constant ✓, called success(ful
termination). Therefore, we add ✓ to the grammar of a language without explicitly mentioning
it. Success is used as a barb to implement some form of (fair) testing, where P↓✓ if P

has an unguarded occurrence of ✓, ∆↓✓ if there is some P with ∆(P ) > 0 and P↓✓, and
P⇓✓ = ∃∆. P Z=⇒ ∆ ∧ ∆↓✓.

Languages can be augmented with (a set of) relations R ⊆ P2 on their processes. If
R ⊆ B2 is a relation and B′ ⊆ B, then the relation R↾B′ = {(x, y) | x, y ∈ B′ ∧ (x, y) ∈ R}
denotes the restriction of R to the domain B′.

Following [7], we lift relations R ⊆ P2 to a relation R ⊆ D(P)2 on distributions.

▶ Definition 2 (Relations on Distributions, [7]).
Let R ⊆ P2 and let ∆, Θ ∈ D(P). Then (∆, Θ) ∈ R if
(a) ∆ =

∑
i∈I piPi, where I is a finite index set and

∑
i∈I pi = 1,

(b) for each i ∈ I there is a process Qi such that (Pi, Qi) ∈ R, and
(c) Θ =

∑
i∈I piQi.

An important property of this lifting operation is that it preserves reflexivity and transit-
ivity, i.e., if R is reflexive/transitive then so is R. The case of transitivity is shown in [7].
The case of reflexivity can be found in the technical report ([33]).

CONCUR 2023
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3 Encodings and Quality Criteria

Let LS = ⟨PS, 7−→S⟩ and LT = ⟨PT, 7−→T⟩ be two process calculi, denoted as source and
target language. An encoding from LS into LT is a function J·K : PS → PT. We often use
S, S′, . . . and T, T ′, . . . to range over PS and PT, respectively.

We naturally extend the encoding function to distributions, i.e., for all distributions ∆ in
the source language and all T in the target language: J∆K(T ) =

∑
S∈{S∈PS |JSK=T } ∆(S).

Let φJ·K : N → N k be a renaming policy, i.e., a mapping from a name to a vector of
names that can be used by encodings to split names and to reserve special names, such that
no two different names are translated into overlapping vectors of names. We use projection
to obtain the respective elements of a translated name, i.e., if φJ·K(a) = (a1, a2, a3) then
φJ·K(a).2 = a2. Slightly abusing notation, we sometimes use the tuples that are generated by
the renaming policy as sets. We require e.g. φJ·K(a) ∩ φJ·K(b) = ∅ whenever a ̸= b.

To analyse the quality of encodings and to rule out trivial or meaningless encodings, they
are augmented with a set of quality criteria. One such set of criteria that is well suited for
separation as well as encodability results between traditional processes calculi, i.e., calculi
without probabilities, was proposed in [15]. It turns out that for probabilistic systems as
defined above the only criterion that needs to be adapted is operational correspondence.
Accordingly, we inherit the remaining criteria from [15]:
Compositionality: For every operator op with arity n of LS and for every subset of names

N , there exists a context CN
op([·]1, . . . , [·]n) such that, for all S1, . . . , Sn with fn(S1) ∪ . . . ∪

fn(Sn) = N , it holds that Jop (S1, . . . , Sn)K = CN
op(JS1K, . . . , JSnK).

Name Invariance w.r.t. a Relation RT ⊆ P2
T: For every S ∈ PS and every substitution σ,

it holds that JSσK ≡α JSKσ′ if σ is injective and (JSσK, JSKσ′) ∈ RT otherwise, where σ′

is such that φJ·K(σ(a)) = σ′(φJ·K(a)
)

for all a ∈ N .
Divergence Reflection: For every S, JSK 7−→ω implies S 7−→ω.
Success Sensitiveness: For every S, S⇓✓ iff JSK⇓✓.

Compositionality ensures that encodings are of practical relevance by enforcing that they
can be implemented compositionally, i.e., by an algorithm that proceeds on the syntax and
does not need to analyse the source term to compute its translation. However, the formulation
of compositionality is rather strict, i.e., it rules out practically relevant translations. Note
that the best known encoding from the asynchronous π-calculus into the Join Calculus in [11]
is not compositional, but consists of an inner, compositional encoding surrounded by a fixed
context – the implementation of so-called firewalls – that is parameterised on the free names
of the source term. In order to capture this and similar encodings we relax the definition of
compositionality.
Weak Compositionality: The encoding is either compositional or consists of an inner, com-

positional encoding surrounded by a fixed context that can be parameterised on the free
names of the source term or information that are not part of the source term.

Precisely, we use this relaxation to capture process definitions that are a relevant part of the
source language CCSp but that are not contained in source terms.

A behavioural relation RT on the target is assumed for name invariance and operational
correspondence. RT needs to be success sensitive, i.e., (T1, T2) ∈ RT implies T1⇓✓ iff T2⇓✓.

Operational correspondence is arguably the most important of the five criteria in [15],
since it compares the behaviour of source terms and their translations (though only the
combination with success sensitiveness ensures that this requirement is not trivial). It
consists of a soundness and a completeness condition. Completeness requires that every
computation of a source term can be emulated by its translation. Soundness requires that
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every computation of a target term corresponds to some computation of the corresponding
source term. Different variants of operational correspondence are used in the literature (see
e.g. [30, 29]). In particular, the following three variants are often used for encodings between
process calculi without probabilities.

▶ Definition 3 (Operational Correspondence, Non-Probabilistic).
An encoding J·K is strongly operationally corresponding w.r.t. RT ⊆ P2

T if it is:
Strongly Complete: ∀S, S′. S 7−→ S′ implies (∃T. JSK 7−→ T ∧ (JS′K, T ) ∈ RT)
Strongly Sound: ∀S, T. JSK 7−→ T implies (∃S′. S 7−→ S′ ∧ (JS′K, T ) ∈ RT)

J·K is operationally corresponding w.r.t. RT ⊆ P2
T if it is:

Complete: ∀S, S′. S Z=⇒ S′ implies (∃T. JSK Z=⇒ T ∧ (JS′K, T ) ∈ RT)
Sound: ∀S, T. JSK Z=⇒ T implies (∃S′. S Z=⇒ S′ ∧ (JS′K, T ) ∈ RT)

J·K is weakly operationally corresponding w.r.t. RT ⊆ P2
T if it is:

Complete: ∀S, S′. S Z=⇒ S′ implies (∃T. JSK Z=⇒ T ∧ (JS′K, T ) ∈ RT)
Weakly Sound: ∀S, T. JSK Z=⇒ T impl. (∃S′, T ′. S Z=⇒ S′ ∧ T Z=⇒ T ′ ∧ (JS′K, T ′) ∈ RT)

S S′

JSK

JS′K

T T ′

J·K

J·K

RT

The first variant requires a strong correspondence between source and target term steps, i.e.,
a source term step is emulated by exactly one target term step and vice versa. The second
variant allows for the emulation of a single source term step by a sequence of target term
steps. With this variant encoding functions may use things like pre- and post-processing
steps. The last variant additionally allows for intermediate states, i.e., target terms that
are not directly related to the encoding of any source term but that are in between two
such source term encodings [27, 28, 17]. Such an intermediate state is depicted by T on the
right. Intermediate states often result from partial commitments: The decision on which
step is performed for a single source term step is split into two or more partial decisions in a
sequence of target term steps, where each decision already rules out some of the alternatives
that existed in the source for this step but does not rule out all alternatives.

4 PrOC for a Reasonable Encoding

The quality criteria of encodings should rule out trivial and meaningless encodings but they
should capture good encodings. Accordingly, we start with an intuitively reasonable encoding
(from CCSp into πp) and derive a version of PrOC that captures how this encoding translates
the behaviour of source terms. Then we analyse the quality of our new criterium by mapping
it on a relation between source and target terms in Section 5.

Our source language, probabilistic CCS, is introduced in [7] as a probabilistic extension of
CCS [21]. We omit the operator for non-deterministic choice from [7], because its summands
are not necessarily guarded, whereas our target language has only guarded choice. Thus,
ignoring this operator simplifies the task of finding an encoding. Since for the design
of encodability criteria the consideration of non-determinism and unguarded choices is

CONCUR 2023



15:6 Probabilistic Operational Correspondence

orthogonal to the consideration of probabilities, it is safe to neglect this operator here. The
versions of PrOC we discover in the following can deal with combinations of non-determinism
and probabilities. We denote the resulting calculus as CCSp. Let u, v, . . . range over the set
of actions Act = N ∪ N ∪ {τ}.

▶ Definition 4 (Syntax of CCSp). The terms PC of CCSp are given by:

P ::= u.
⊕
i∈I

piPi | P1 | P2 | P \ A | P [f ] | C⟨x̃⟩

where A ⊆ N and f : N → N is a renaming function.

The probabilistic choice operator u.
⊕

i∈I piPi is guarded by an action u and offers branches
with probabilities, where pi > 0 is the probability of branch i with

∑
i∈I pi = 1. We write⊕

i∈1..n piPi as p1P1 ⊕ . . . ⊕ pnPn for a finite index set I. The process P1 | P2 implements
parallel composition, in P \ A the names in A are restricted, and P [f ] behaves like P where
each a ∈ N is replaced by f(a). For simplicity, we assume that for all f the set {x | f(x) ̸= x}
is finite. Each process constant C has a definition C

def= (x̃)P , where P ∈ PC and x̃ collect
all names in P that are not restricted. Then C⟨ỹ⟩ behaves as P with ỹ replacing x̃.

As described in [33], we use a reduction semantics obtained from the labelled semantics
in [7] by a rule that maps every τ -labelled step to a reduction step. Due to lack of space, we
only highlight the rules for choice and communication here and refer to [33] for the rest.

ProbChoiceCCSp

∆(P ) =
∑

{pi | i ∈ I ∧ Pi = P}
u.

⊕
i∈I piPi

u−−→ ∆
ComLCCSp

P1
a−−→ ∆1 P2

a−−→ ∆2

P1 | P2
τ−−→ ∆1 | ∆2

where (∆1 | ∆2)(P ) =
{

∆1(P1) · ∆2(P2) , if P = P1 | P2

0 otherwise
.

Our target language, the probabilistic π-calculus (πp), is introduced in [38], as a probabil-
istic version of the πI-calculus [32], where output is endowed with probabilities.

▶ Definition 5 (Syntax of πp). The terms Pπ of πp are given by:

P ::= x ⊕i∈I piini(ỹi).Pi | xΦi∈Iini(ỹi).Pi | P | P | (νx)P | 0 | !x(ỹ).P

The probabilistic π-calculus assigns probabilities to output. The process x ⊕i∈I piini(ỹi).Pi

is a probabilistic selecting output, where pi ∈ [0, 1] for all i ∈ I and
∑

i∈I pi = 1. The
term xΦi∈Iini(ỹi).Pi is a branching input, which does not attach probabilities to the single
events. For branching/selection labels, the index i is the branch of the label. We write
x(ỹ).P and x(ỹ).P for single outputs or inputs and x (p1in1 (ỹ1) .P1 ⊕ . . . ⊕ pninn (ỹn) .Pn)
and x (in1 (ỹ1) .P1 & . . . & inn (ỹn) .Pn) for finite indexing sets I = {1, . . . , n} in ⊕i∈I and
Φi∈I . The process P | Q is a parallel composition, (νx)P is a restriction, and !x(ỹ).P is a
replicated input. We sometimes omit empty sequences of arguments () as well as dangling 0,
i.e., a stands for a().0.

Structural congruence ≡ is defined, similarly to [22], as the smallest congruence containing
α-equivalence ≡α that is closed under the following rules:

P | 0 ≡ P P | Q ≡ Q | P P | (Q | R) ≡ (P | Q) | R (νx)0 ≡ 0
(νxy)P ≡ (νyx)P (νx)(P | Q) ≡ P | (νx)Q if x /∈ fn(P )

We lift structural congruence to distributions, i.e., ∆1 ≡ ∆2 if there is a finite index set I

such that ∆1 =
∑

i∈I piPi, ∆2 =
∑

i∈I piQi, and Pi ≡ Qi for all i ∈ I.
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r
x.

⊕
i∈I

piPi

zπp

CCSp
= x.(νzi)

(
zi ⊕i∈I piini. JPiK

πp
CCSp

| zi

)
r

x.
⊕

i∈I
piPi

zπp

CCSp
= x ⊕i∈I piini. JPiK

πp
CCSp

r
τ.

⊕
i∈I

piPi

zπp

CCSp
= (νzτ )

(
zτ ⊕i∈I piini. JPiK

πp
CCSp

| zτ

)
JP | QKπp

CCSp
= JP Kπp

CCSp
| JQKπp

CCSp

JP \ AKπp
CCSp

= (νA) JP Kπp
CCSp

JP [f ]Kπp
CCSp

= JP Kπp
CCSp

{ranf /domf }
JC⟨ỹ⟩Kπp

CCSp
= C(ỹ)

J✓Kπp
CCSp

= ✓

where for each f the

ranf = y1, . . . , yn and domf = x1, . . . , xn are vectors of names such that
{x1, . . . , xn} = {x | f(x) ̸= x} and f(xi) = yi for all 1 ≤ i ≤ n.

Figure 1 Inner Encoding.

Again we refer to [33] or [38] for the semantics of πp and highlight the rule for selection.

Selectπp x ⊕i∈I piini(ỹi).Pi

{
xini⟨ỹi⟩−−−−−→

pi

Pi

}
i∈I

We observe that in [38] the semantics is given as a Segala automaton. To obtain a reduction
semantics with steps into probability distributions, we add the following rule:

Redπp

P

{
τ−−→
pi

Qi

}
i∈I

∆(R) =
∑

{pi | Qi = R}

P 7−→ ∆

An encoding from CCSp into πp has to deal with the following challenge: Probabilistic
choice in CCSp can have output, input, and τ guards, but in πp all summands of a probabilistic
choice have to be output guarded. The input guarded choice operator in πp has no probabilities
and the τ is not part of the syntax. Therefore, the encoding of a probabilistic choice in CCSp
is split into three cases depending on its guard and the probabilistic selecting output of the
target language is used in each of these cases to assign the probabilities.

We use the renaming policy φL·Mπp
CCSp

to reserve the names zi (for input guarded probabilistic
choice) and zτ (for τ -guarded probabilistic choice). Moreover, we translate process constants
C into channel names C and use the renaming policy to keep these channel names C distinct
from source term names. Precisely, we assume that |φL·Mπp

CCSp
(n)| = 1 for all n ∈ N and that

φL·Mπp
CCSp

(n) ∩ {zi, zτ , C | C is a process constant} = ∅ for all n ∈ N . In the following, in order
to increase readability, the indication of the renaming policy is omitted, i.e., we assume
zi ̸= n ≠ zτ and n ̸= C for all source term names n and all process constants C and write n

instead of φL·Mπp
CCSp

(n).1 in the translation.

▶ Definition 6 (Encoding L·Mπp
CCSp

/J·Kπp
CCSp

from CCSp into πp). The encoding of S ∈ PC with

the process definitions C1
def= (x̃1).S1, . . . , Cn

def= (x̃n).Sn consists of the outer encoding L·Mπp
CCSp

,
where LSMπp

CCSp
is

(νC1, . . . , Cn)
(
JSKπp

CCSp
| !C1(x̃1). JS1K

πp
CCSp

| . . . | !Cn(x̃n). JSnKπp
CCSp

)
and the inner encoding J·Kπp

CCSp
is given in Figure 1.

CONCUR 2023



15:8 Probabilistic Operational Correspondence

The encoding of a probabilistic choice is split into three cases. For input guards a single
input on x is used, to enable the communication with a potential corresponding output.
Then a probabilistic selecting output on the reserved name zi composed in parallel with a
matching input is used to encode the probabilities. The sequence of these two communication
steps on x and zi emulates the behaviour of a single communication step in the source.

The encoding of an output-guarded probabilistic choice is straightforward, as it is
translated using the probabilistic selecting output.

For the guard τ , an output-guarded probabilistic choice in parallel to a single input on
the reserved name zτ is used.

The application of a renaming function is encoded by a substitution. A call C⟨ỹ⟩ is
encoded by an output, where the corresponding process definitions are translated into
replicated inputs and placed in parallel by the outer encoding. The remaining translations
are homomorphic.

We are looking for a variant of operational correspondence with probabilities that captures
the way in that our encoding emulates source term steps. By Definition 6, the emulation of a
communication step consists of a sequence containing two target term steps. Accordingly, we
are looking for a variant of operational correspondence that permits a sequence of target term
steps to emulate a single source term step as in the second and third case of Definition 3.

▶ Example 7. Consider S = x.
( 3

4 P ⊕ 1
4 Q

)
| x.

( 1
2 R ⊕ 1

2 S
)

in CCSp without process defini-
tions. By the semantics of CCSp, S 7−→ ∆S =

{ 3
8 (P | R), 3

8 (P | S), 1
8 (Q | R), 1

8 (Q | S)
}

. By
Definition 6, LSMπp

CCSp
= JSKπp

CCSp
and:

JSKπp
CCSp

= x
(

3
4 in1. JP Kπp

CCSp
⊕ 1

4 in2. JQKπp
CCSp

)
|

x.(νzi)
(

zi

(
1
2 in1. JRKπp

CCSp
⊕ 1

2 in2. JSKπp
CCSp

)
| zi

)
By the semantics of πp, LSMπp

CCSp
can perform exactly one maximal sequence of steps, namely

LSMπp
CCSp

7−→ ∆T 7−→ ∆′
T , where:

∆T =
{

3
4

(
JP Kπp

CCSp
| (νzi)

(
zi

(
1
2 in1. JRKπp

CCSp
⊕ 1

2 in2. JSKπp
CCSp

)
| zi

))
,

1
4

(
JQKπp

CCSp
| (νzi)

(
zi

(
1
2 in1. JRKπp

CCSp
⊕ 1

2 in2. JSKπp
CCSp

)
| zi

))}
∆′

T =
{

3
8

(
JP Kπp

CCSp
| JRKπp

CCSp
| 0

)
, 3

8

(
JP Kπp

CCSp
| JSKπp

CCSp
| 0

)
,

1
8

(
JQKπp

CCSp
| JRKπp

CCSp
| 0

)
, 1

8

(
JQKπp

CCSp
| JSKπp

CCSp
| 0

)}
We observe that L∆SMπp

CCSp
≡ ∆′

T and in particular that the distributions ∆S and ∆′
T have

the same probabilities. However, the distribution ∆T is not that obviously related to LSMπp
CCSp

or L∆SMπp
CCSp

. ◀

We already ruled out strong operational correspondence as defined in Definition 3. The
other two versions differ in whether they allow for intermediate states. Another look at
Example 7 tells us that intermediate states make sense. ∆T is a finite probability distribution
with two cases: the case containing JP Kπp

CCSp
with probability 3

4 and the case containing
JQKπp

CCSp
with probability 1

4 , but neither S nor ∆S have cases with these probabilities. In the
second variant of operational correspondence in Definition 3 without intermediate states, we
would need to find a relation RT that relates ∆T either to LSMπp

CCSp
or ∆′

T . Such a relation RT
is difficult or at least not intuitive, since it has to relate states with different probabilities. It
is easier to allow for intermediate states. So, we want to build a weak version of operational
correspondence (third case of Definition 3) with probabilities.
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As discussed above, we need to require that the resulting distribution in the source has
the same probabilities as the resulting distribution in the target term sequence. Moreover, it
makes sense to require that for all matching cases, i.e., all branches with the same probability,
the encoding of the respective source term and the respective target term are related by RT.
Definition 2 allows us to formalise this by comparing the distributions with RT. This leads
to the version of probabilistic operational correspondence below denoted as weak probabilistic
operational correspondence.

▶ Definition 8 (Weak Probabilistic Operational Correspondence). An encoding J·K : PS → PT
is weakly probabilistic operationally corresponding (weak PrOC) w.r.t. RT ⊆ P2

T if it is:
Probabilistic Complete:

∀S, ∆S . S Z=⇒ ∆S implies
(
∃∆T . JSK Z=⇒ ∆T ∧ (J∆SK, ∆T ) ∈ RT

)
Weakly Probabilistic Sound: ∀S, ∆T . JSK Z=⇒ ∆T implies(

∃∆S , ∆′
T . S Z=⇒ ∆S ∧ ∆T Z=⇒ ∆′

T ∧ (J∆SK, ∆′
T ) ∈ RT

)
Every source term step is emulated by one or two target term steps modulo ≡ (the

standard structural congruence on the target language). We prove in [33] that this holds
for all source term steps and that the encoding satisfies weak PrOC. Weak compositionality
holds by definition. Name invariance follows from the strict use of the renaming policy and
because the encoding does not introduce free names. Divergence reflection results from weak
probabilistic operational soundness. Finally, weak probabilistic operational correspondence
and the homomorphic translation of success ensure that L·Mπp

CCSp
is success sensitive.

▶ Theorem 9. The encoding L·Mπp
CCSp

satisfies weak compositionality, name invariance, weak
probabilistic operational correspondence w.r.t. ≡, divergence reflection, and success sensitive-
ness.

To ensure that weak PrOC is a meaningful criterion, we use the technique for analysing
encodability criteria presented in [30]. Therefore, weak PrOC is mapped on requirements on
a relation between source and target terms.

5 Analysing Weak Probabilistic Operational Correspondence

To analyse the quality of the criterion weak PrOC in Definition 8, we follow the technique
presented in [30] and map this criterion on requirements of a behavioural relation between
source and target. Thus, an encoding that satisfies this criterion relates source terms and
their translations in the target modulo the respective behavioural relation. This transfers
the task to analyse the quality of weak PrOC to the quality of the behavioural relation it is
mapped on. As such relations are a well researched area, this allows us to formally reason
about the underlying version of operational correspondence.

In [30] the relation between different versions of operational correspondence and beha-
vioural relations is shown. Therefore, requirements are derived such that an encoding is
operational corresponding w.r.t. the considered variant of operational correspondence iff
a behavioural relation with these requirements exists that relates source terms with their
translations. The derived relation describes how similar the behaviour of the source term is
to its translation and, thus, tells us about the quality of the criterion.

Among the versions of operational correspondence considered in [30] weak PrOC is closest
to weak operational correspondence in Definition 3. The corresponding result relates weak
operational correspondence and correspondence similarity.

CONCUR 2023
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▶ Lemma 10 (Weak Operational Correspondence, [30]). J·K is weakly operationally corres-
ponding w.r.t. a preorder RT ⊆ P2

T that is a correspondence simulation iff
∃RJ·K.

(
∀S. (S, JSK) ∈ RJ·K

)
∧RT = RJ·K↾PT ∧

(
∀S, T. (S, T ) ∈ RJ·K → (JSK, T ) ∈ RT

)
∧RJ·K

is a preorder and a correspondence simulation.

Remember that a preorder is a binary relation that is reflexive and transitive. The
relation RJ·K (here and in all of the following results) is a set of pairs over the disjoint union
of source and target terms. Correspondence similarity is a simulation relation in between
bisimilarity and coupled similarity, that was derived in [30] to exactly capture the nature of
weak operational correspondence.

▶ Definition 11 (Correspondence Simulation, [30]). A relation R is a (weak reduction)
correspondence simulation if for each (P, Q) ∈ R:

P Z=⇒ P ′ implies ∃Q′. Q Z=⇒ Q′ ∧ (P ′, Q′) ∈ R
Q Z=⇒ Q′ implies ∃P ′′, Q′′. P Z=⇒ P ′′ ∧ Q′ Z=⇒ Q′′ ∧ (P ′′, Q′′) ∈ R

Two terms are correspondence similar if a correspondence simulation relates them.

To obtain a result similar to Lemma 10 for weak PrOC, we use Definition 2 to lift the
definition of correspondence similarity to probability distributions.

▶ Definition 12 (Probabilistic Correspondence Simulation). A relation R is a (weak) probab-
ilistic (reduction) correspondence simulation if for each (P, Q) ∈ R:

P Z=⇒ ∆ implies ∃Θ. Q Z=⇒ Θ ∧ (∆, Θ) ∈ R
Q Z=⇒ Θ implies ∃∆′, Θ′. P Z=⇒ ∆′ ∧ Θ Z=⇒ Θ′ ∧ (∆′, Θ′) ∈ R

Two terms are probabilistic correspondence similar if a probabilistic correspondence simulation
relates them.

To use probabilistic correspondence similarity, we have to show that the lifting operation
in Definition 2 preserves the property of being a probabilistic correspondence simulation
(at least for preorders). A relation R on distributions is a probabilistic correspondence
simulation if it satisfies Definition 11 with distributions instead of processes.

▶ Lemma 13 (Preservation of the Correspondence Property).
If the preorder R is a probabilistic correspondence simulation then so is R.

With the probabilistic version of correspondence similarity we can adapt Lemma 10 to
weak PrOC.

▶ Theorem 14 (Weak PrOC). J·K is weakly probabilistically operationally corresponding w.r.t.
a preorder RT ⊆ P2

T that is a probabilistic correspondence simulation iff
∃RJ·K.

(
∀S. (S, JSK) ∈ RJ·K

)
∧RT = RJ·K↾PT ∧

(
∀S, T. (S, T ) ∈ RJ·K −→ (JSK, T ) ∈ RT

)
∧RJ·K

is a preorder and a probabilistic correspondence simulation.

To prove this theorem, we have to construct (for the if-case) a relation RJ·K from RT.
Therefore, we use t(r(RT ∪ {(S, JSK) | S ∈ PS})), where t and r denote transitive and reflexive
closure. Then we show that in both directions the respective properties imply each other. In
particular, we establish the relation between weak PrOC and the definition of probabilistic
correspondence simulation, i.e., completeness of weak PrOC in Definition 8

∀S, ∆S . S Z=⇒ ∆S −→
(
∃∆T . JSK Z=⇒ ∆T ∧ (J∆SK, ∆T ) ∈ RT

)
is mapped on the first condition of Definition 12

P Z=⇒ ∆ −→
(
∃Θ. Q Z=⇒ Θ ∧ (∆, Θ) ∈ R

)
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and weak soundness of weak PrOC

∀S, ∆T . JSK Z=⇒ ∆T −→
(
∃∆S , ∆′

T . S Z=⇒ ∆S ∧ ∆T Z=⇒ ∆′
T ∧ (J∆SK, ∆′

T ) ∈ RT
)

is mapped on the seconded condition of Definition 12:

Q Z=⇒ Θ −→
(
∃∆′, Θ′. P Z=⇒ ∆′ ∧ Θ Z=⇒ Θ′ ∧ (∆′, Θ′) ∈ R

)
The condition ∀S, T. (S, T ) ∈ RJ·K −→ (JSK, T ) ∈ RT is necessary to ensure (with the remain-
ing properties) that the encoding satisfies weak PrOC in the “only if”-case of Theorem 14.
Although the formulation of weak PrOC and probabilistic correspondence simulation are
quite close, to prove that they are related is technically challenging. We have to show that the
properties of the involved relations are preserved when we lift the relations on distributions
with Definition 2 and that the probabilistic version of the correspondence similarity exactly
captures the probabilistic nature of weak PrOC.

The property ∀S. (S, JSK) ∈ RJ·K allows us to conclude from pairs of target terms in RT
and RJ·K on pairs of a source and a target term. This is necessary to prove that the encoding
satisfies weak PrOC in the “only if”-case, but also ensures that RJ·K is a relation that relates
source terms with their literal translations. From Theorem 9 and Theorem 14 we can thus
conclude that the encoding L·Mπp

CCSp
from CCSp into πp relates a source term S ∈ PC and its

literal translation LSMπp
CCSp

by a probabilistic correspondence simulation.
As derived in [30], weak operational correspondence does not directly map to a well-known,

i.e., standard, kind of simulation relation, but is linked to the new relation correspondence
simularity. Correspondence simularity is in between the standard simulation relations coupled
similarity (see e.g. [27, 3]) and bisimilarity (see e.g. [23]).

Coupled similarity is strictly weaker than bisimilarity. As pointed out in [27], in contrast
to bisimilarity it allows for intermediate states in simulations: states that cannot be identified
with states of the simulated term. Each symmetric coupled simulation is a bisimulation.

▶ Definition 15 (Coupled Simulation). A relation R is a (weak reduction) coupled simu-
lation if both (∃Q′. Q Z=⇒ Q′ ∧ (P ′, Q′) ∈ R) and (∃Q′. Q Z=⇒ Q′ ∧ (Q′, P ′) ∈ R) whenever
(P, Q) ∈ R and P Z=⇒ P ′. Two terms are coupled similar if they are related by a coupled
simulation in both directions.

Just as coupled similarity, correspondence similarity allows for intermediate states that
result e.g. from partial commitments, but in contrast to coupled similarity these intermediate
states are not necessarily covered in the relation. Correspondence similarity is obviously
strictly weaker than bisimilarity, but as shown in [30] it implies coupled similarity. The same
holds for the probabilistic variants of correspondence similarity and coupled similarity, where
probabilistic coupled similarity is the adaptation of coupled similarity to distributions using
Definition 2.

▶ Definition 16 (Probabilistic Coupled Simulation). A relation R is a (weak) probab-
ilistic (reduction) coupled simulation if we have both

(
∃Θ. Q Z=⇒ Θ ∧ (∆, Θ) ∈ R

)
and(

∃Θ. Q Z=⇒ Θ ∧ (Θ, ∆) ∈ R
)

whenever (P, Q) ∈ R and P Z=⇒ ∆. Two terms are prob-
abilistic coupled similar if they are related by a probabilistic coupled simulation in both
directions.

For each probabilistic correspondence simulation R there exists a probabilistic coupled
simulation R′ such that ∀ (P, Q) ∈ R. (P, Q) , (Q, P ) ∈ R′.

CONCUR 2023
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Intuitively, coupled similarity (and also probabilistic coupled similarity) is the strict-
est standard simulation relation that allows for intermediate states. Accordingly, that a
weak probabilistically operationally corresponding encoding ensures that a source term is
probabilistic coupled similar to its literal translation is indeed an interesting property (see
e.g. [27, 3] for the relevance of coupled similarity). This proves that our version of weak PrOC
is meaningful. As described in [30], the combination with the criteria divergence reflection
and success sensitiveness further strengthens the induced relation between source and target,
i.e., we obtain a divergence reflecting, success sensitive, probabilistic correspondence (or
coupled) simulation to relate source terms and their literal translations.

Weak operational correspondence is very flexible and allows us to encode source term
concepts that have no direct counterpart in the target. As discussed in [27, 17, 29], relating
source terms and their literal translations by a bisimulation does not allow for intermediate
states, i.e., for bisimulation we need stricter encodability criteria as discussed next.

6 (Strong) Probabilistic Operational Correspondence

In this section we proceed in the opposite direction. We start with a standard simulation
relation and derive a version of PrOC that induces such a relation between source terms and
their translations. Often bisimilarity (see e.g. [23]) is considered as the standard relation
between processes. Accordingly, we start from a probabilistic version of bisimilarity, namely
probabilistic barbed bisimilarity as introduced and analysed in [7].

▶ Definition 17 (Probabilistic Barbed Bisimulation, [7]). An equivalence R is a probabilistic
barbed bisimulation if for each (P, Q) ∈ R:

P 7−→ ∆ implies ∃Θ. Q Z=⇒ Θ ∧ (∆, Θ) ∈ R
for each atomic action a, if P↓a then Q⇓a

Two terms are probabilistic barbed bisimilar if a probabilistic bisimulation relates them.

Here P↓a if P
a−−→ ∆, and ∆↓a if P↓a for all P ∈ ⌈∆⌉ with a ∈ N ∪ N . Moreover,

P⇓a = ∃∆. P Z=⇒ ∆ ∧ ∆↓a and ∆⇓a = ∃∆′. ∆ Z=⇒ ∆′ ∧ ∆′↓a. We use this notion of barbs
on our source language CCSp. Accordingly, barbs ·↓a are defined via labelled steps. The
versions of operational correspondence that we considered so far do not use labelled but
only reduction steps. This is because the treatment of labels in encodings can be difficult.
For instance the labels in Mobile Ambients ([5]) are technically and conceptionally very
different from the labels in the Join-calculus ([11]) and both kinds of labels are technically
and conceptionally very different from labels in CCS or the π-calculus. The consideration of
labelled steps is only meaningful if the considered source and target language use similar
kinds of labels. Because of that, operational correspondence usually considers reduction steps
only. If the languages have similar notions of barbs, success sensitiveness can be replaced by
barbed sensitiveness to establish this connection. We remove the condition on barbs.

▶ Definition 18 (Probabilistic Bisimulation). A relation R is a probabilistic (reduction)
bisimulation if for each (P, Q) ∈ R:

P Z=⇒ ∆ implies ∃Θ. Q Z=⇒ Θ ∧ (∆, Θ) ∈ R
Q Z=⇒ Θ implies ∃∆. P Z=⇒ ∆ ∧ (∆, Θ) ∈ R

Two terms are probabilistic bisimilar if a probabilistic bisimulation relates them.

In comparison to Definition 17 we also replace P 7−→ ∆ by P Z=⇒ ∆, remove the
condition of R being an equivalence, and add the symmetric case of the first condition. These
adaptations have little consequence on the derived relation, but provide a structure more
closely related to operational correspondence.
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Note that the above notion of probabilistic bisimulation without barbs is trivial. However,
also operational correspondence is a trivial encodability relation unless we combine it with
success sensitiveness. We discuss the combination with success or barbs below.

We want to derive a version of PrOC for probabilistic bisimilarity. As we learnt in
Section 5, the first condition

P Z=⇒ ∆ −→ ∃Θ. Q Z=⇒ Θ ∧ (∆, Θ) ∈ R

for the left part of pairs has to be linked with completeness. Since it is identical to the first
condition of probabilistic correspondence simulation in Definition 12 we can link it to the
same version of completeness:

∀S, ∆S . S Z=⇒ ∆S −→
(
∃∆T . JSK Z=⇒ ∆T ∧ (J∆SK, ∆T ) ∈ RT

)
The second condition

Q Z=⇒ Θ −→ ∃∆. P Z=⇒ ∆ ∧ (∆, Θ) ∈ R

of Definition 18 is simpler than the second condition of probabilistic correspondence simulation
in Definition 12. The part that allows for intermediate states is missing. Thus, we link it to
a similarly simplified version of soundness:

∀S, ∆T . JSK Z=⇒ ∆T −→
(
∃∆S . S Z=⇒ ∆S ∧ (J∆SK, ∆T ) ∈ RT

)
We denote the result as probabilistic operational correspondence or shortly as PrOC.

▶ Definition 19 (Probabilistic Operational Correspondence). An encoding J·K : PS → PT is
probabilistic operationally corresponding (PrOC) w.r.t. RT ⊆ P2

T if it is:
Probabilistic Complete:

∀S, ∆S . S Z=⇒ ∆S implies
(
∃∆T . JSK Z=⇒ ∆T ∧ (J∆SK, ∆T ) ∈ RT

)
Probabilistic Sound:

∀S, ∆T . JSK Z=⇒ ∆T implies
(
∃∆S . S Z=⇒ ∆S ∧ (J∆SK, ∆T ) ∈ RT

)
Of course we have to formally establish the described connection between probabilistic

bisimilarity and PrOC.

▶ Theorem 20 (PrOC). J·K is probabilistically operationally corresponding w.r.t. a preorder
RT ⊆ P2

T that is a probabilistic bisimulation iff
∃RJ·K.

(
∀S. (S, JSK) ∈ RJ·K

)
∧RT = RJ·K↾PT ∧

(
∀S, T. (S, T ) ∈ RJ·K −→ (JSK, T ) ∈ RT

)
∧RJ·K

is a preorder and a probabilistic bisimulation.

The proof of Theorem 20 is as challenging as the proof of Theorem 14 but fortunately we
can reuse the main proof strategy.

In the same way, we can also link strong probabilistic bisimilarity and a strong version of
PrOC. We obtain strong probabilistic bisimilarity by considering only single steps.

▶ Definition 21 (Strong Probabilistic Bisimulation). A relation R is a strong probabilistic
(reduction) bisimulation if for each (P, Q) ∈ R:

P 7−→ ∆ implies ∃Θ. Q 7−→ Θ ∧ (∆, Θ) ∈ R
Q 7−→ Θ implies ∃∆. P 7−→ ∆ ∧ (∆, Θ) ∈ R

Two terms are strong probabilistic bisimilar if a strong probabilistic bisimulation relates them.

Strong probabilistic operational correspondence is obtained in a similar way from PrOC
by considering only single steps.

CONCUR 2023
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▶ Definition 22 (Strong Probabilistic Operational Correspondence). An encoding J·K : PS → PT
is strongly probabilistic operationally corresponding (strong PrOC) w.r.t. RT ⊆ P2

T if it is:
Strongly Probabilistic Complete:

∀S, ∆S . S 7−→ ∆S implies
(
∃∆T . JSK 7−→ ∆T ∧ (J∆SK, ∆T ) ∈ RT

)
Strongly Probabilistic Sound:

∀S, ∆T . JSK 7−→ ∆T implies
(
∃∆S . S 7−→ ∆S ∧ (J∆SK, ∆T ) ∈ RT

)
Finally, we establish the connection between strong PrOC and strong probabilistic

bisimilarity in Theorem 23. The proofs of Theorem 20 and Theorem 23 can be found in [33].

▶ Theorem 23 (Strong PrOC). J·K is strongly probabilistically operationally corresponding
w.r.t. a preorder RT ⊆ P2

T that is a strong probabilistic bisimulation iff
∃RJ·K.

(
∀S. (S, JSK) ∈ RJ·K

)
∧RT = RJ·K↾PT ∧

(
∀S, T. (S, T ) ∈ RJ·K −→ (JSK, T ) ∈ RT

)
∧RJ·K

is a preorder and a strong probabilistic bisimulation.

If (strong) bisimilarity is the standard reference relation, i.e., if we usually do not record
differences between terms that cannot be observed by (strong) probabilistic bisimilarity, then
an encoding that ensures that source terms and their translations are (strongly) probabilistic
bisimilar strongly validates the claim that the target language is at least as expressive as the
source language. In this sense PrOC and strong PrOC are strict but also very meaningful
criteria.

Again the combination with the criteria divergence reflection and success sensitiveness
further strengthens the induced relation between source and target (see [30]), i.e., we obtain
a divergence reflecting, success sensitive, (strong) probabilistic bisimulation to relate source
terms and their literal translations.

As discussed above, the consideration of labels and barbs is difficult in the context of
encodings unless the source and target language have very similar notions of labels and
barbs. In our source language CCSp, labels are of the form x or x, whereas by [38] our
target language πp uses labels of the form xini⟨ỹi⟩, xini⟨ỹi⟩, x⟨ỹ⟩, and x⟨ỹ⟩. The main
difference are the transmitted values and variables for reception. However, for all terms that
are created by our encoding function L·Mπp

CCSp
in Definition 6, i.e., all terms in ∆T such that

LSMπp
CCSp

Z=⇒ ∆T for some source term S, all visible labels are of the form xini⟨⟩ or xini⟨⟩.
Labels of the form x⟨ỹ⟩ and x⟨ỹ⟩ are used to emulate the unfolding of recursion but the
respective channel names Ci are restricted, i.e., not visible. Moreover, CCS-like barbs, i.e.,
barbs without values or variables, are often also used for variants of the π-calculus.

This observation allows us to define a suitable notion of barbs for our target language

πp
1. Let P↓x if P

{
xini⟨⟩−−−−→

pi

Ti

}
i∈I

, P↓x if P

{
xini⟨⟩−−−−→

pi

Ti

}
i∈I

, and ∆↓a if P↓a for all P ∈ ⌈∆⌉

with a ∈ N ∪ N . Moreover, P⇓a = ∃∆. P Z=⇒ ∆ ∧ ∆↓a and ∆⇓a = ∃∆′. ∆ Z=⇒ ∆′ ∧ ∆′↓a.
Note that our encoding L·Mπp

CCSp
does not translate an input on x to a step with label xini⟨⟩

but with label φL·Mπp
CCSp

(x)ini⟨⟩, i.e., we should not forget the renaming policy. Accordingly
we compare the reachability of a barb n in the source, i.e., S⇓n, with the reachability of
the translated barb φL·Mπp

CCSp
(n) in the translation, i.e., LSMπp

CCSp
⇓φ

L·M
πp
CCSp

(n). With these notions

of barbs on the source and target language, we can show that our encoding L·Mπp
CCSp

is barb
sensitive.

1 Remember that the semantics of πp is given as a Segala automaton, i.e., P

{
αi−−→
pi

Ti

}
i∈I

means that for

every i ∈ I the term P can do a step to Ti with label αi and probability pi (see [38, 33]).
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▶ Lemma 24 (Barb Sensitiveness, L·Mπp
CCSp

/J·Kπp
CCSp

).
For every S and all n ∈ N ∪ N , S⇓n iff LSMπp

CCSp
⇓φ

L·M
πp
CCSp

(n).

If we combine, as described in [30], barb sensitiveness with PrOC, we obtain that all
source terms S are related to JSK by a probabilistic barbed bisimulation as described in
Definition 17. However, since our encoding L·Mπp

CCSp
satisfies only weak PrOC and not PrOC,

S and LSMπp
CCSp

are related by a probabilistic barbed correspondence (or coupled) simulation.

7 Conclusions

We provided three notions of probabilistic operational correspondence:
1. Weak Probabilistic Operational Correspondence (weak PrOC), where single source term

steps can be translated by sequences of target term steps and intermediate states in the
translation are possible.

2. Probabilistic Operational Correspondence (PrOC), where single source term steps can be
translated by sequences of target term steps but intermediate states are forbidden.

3. Strong Probabilistic Operational Correspondence (strong PrOC), where a single source
term step has to be translated to a single target term step.

We proved that strong PrOC induces a strong probabilistic bisimulation between source
terms and their literal translations, i.e., strong PrOC is a very strict criterion that ensures a
close connection between the source and target language. In contrast weak PrOC induces a
probabilistic correspondence (or coupled) simulation between source terms and their literal
translations. This allows for pre- and post-processing steps in the encoding and even for
intermediate states, i.e., for more flexibility in the creation of encoding functions.

Related Work. There are several papers such as e.g. [4, 24, 14, 15, 13, 12, 36, 37, 16, 25,
26, 29, 30] that study quality criteria for encodings in the traditional setting. As far as we
know, there are no studies of quality criteria for encodings between probabilistic systems.

Probabilistic versions of bisimulation for process calculi are studied e.g. in [18, 20, 34, 1,
2, 7]. Encodings between concrete probabilistic process calculi are studied e.g. in [35, 19].
They argue for the quality of the specific presented encodings but do not derive quality
criteria for encodings in general. For instance [35] compares two versions of the probabilistic
π-calculus (one with mixed choice and one with only separate choice). Since the two versions
of the considered language are close, they prove the quality of their encoding by showing a
direct correspondence between labelled steps of the respective source and target language.
Essentially they prove a labelled variant of weak PrOC. However, as discussed above the
consideration of labels in encodings is difficult, because different languages usually have very
different notions of labels. Because of that, we use reduction steps and barbs or success for
our general formulation of quality criteria. Moreover, since [35, 19] do not present general
quality criteria for encodings, they also do not discuss the quality of such criteria.

We are focusing on encodings between process calculi. Instead [38] connects the probabil-
istic π-calculus and event structures. Therefore, they show an operational correspondence
between the semantics of the π-calculus and event structures (see Theorem 6.3 in Section 6.2
of [38]). Their formulation of operational correspondence is basically a variant of strong
PrOC in Definition 22.

Further Work. Our original motivation to study versions of PrOC steamed from quantum
based systems. As probabilistic versions of simulation relations are essential for studying
quantum based systems (see e.g. [10, 9, 8, 6]), this work supports the development of formal
methods for quantum based systems.
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