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Abstract
Structural balance theory studies stability in networks. Given a n-vertex complete graph G = (V, E)
whose edges are labeled positive or negative, the graph is considered balanced if every triangle either
consists of three positive edges (three mutual “friends”), or one positive edge and two negative edges
(two “friends” with a common “enemy”). From a computational perspective, structural balance
turns out to be a special case of correlation clustering with the number of clusters at most two. The
two main algorithmic problems of interest are: (i) detecting whether a given graph is balanced, or
(ii) finding a partition that approximates the frustration index, i.e., the minimum number of edge
flips that turn the graph balanced.

We study these problems in the streaming model where edges are given one by one and focus
on memory efficiency. We provide randomized single-pass algorithms for: (i) determining whether
an input graph is balanced with O(log n) memory, and (ii) finding a partition that induces a
(1 + ε)-approximation to the frustration index with O(n · polylog(n)) memory. We further provide
several new lower bounds, complementing different aspects of our algorithms such as the need for
randomization or approximation.

To obtain our main results, we develop a method using pseudorandom generators (PRGs)
to sample edges between independently-chosen vertices in graph streaming. Furthermore, our
algorithm that approximates the frustration index improves the running time of the state-of-the-art
correlation clustering with two clusters (Giotis-Guruswami algorithm [SODA 2006]) from nO(1/ε2)

to O(n2 log3 n/ε2 + n log n · (1/ε)O(1/ε4)) time for (1 + ε)-approximation. These results may be of
independent interest.
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1 Introduction

Structural balance theory [21, 30, 35, 36] arises in the study of social relationships with
positive and negative relations. Positive links describe friendship/agreement and negative
links describe antagonism/disagreement. The theory dates back to work by Heider [35]. It
describes the stability of relations among three individuals – only two kinds of triangles are
stable: the ones where all three ties are positive, indicating mutual friendship; and the ones
with two negative ties and one positive tie, describing the folklore that “the enemy of your
enemy is your friend.” A network that is far from being balanced (i.e., with many unstable
triangles) accumulates stress which may lead to major re-arrangements of edges.

The structural balance theory appears in many application areas such as international
relations [7,43], biological networks [29,38], portfolio analysis in financial networks [33], Ising
model [14] in statistical physics, and online social media and opinion formation, dynamics,
and evolution [6,48–50] which bears itself on, for example, Facebook [47] and Twitter [40,51].

One fundamental question is to understand whether a network is close to being balanced
or not. In a complete signed graph where each pair of vertices is labeled positive or negative –
the focus of our study – , the Cartwright-Harary Theorem [21, 32] states that every balanced
network must have the nodes partitioned into (at most) two “camps”, inside each of which
the edges are all positive and between them the edges are negative. For graphs that are
not balanced, a natural measure to characterize its distance from total balance is the
frustration index, defined as the minimum number of edges whose negation of signs results in
balance [1, 8, 34, 53]. These questions can be distilled into the following algorithmic problems
(see Problem 1 and Problem 2 for the formal definitions):

Structural Balance Testing: Given a complete signed graph G, decide whether or not
it is balanced, namely, does not contain any imbalanced triangle.
Frustration-minimizing Partition: Given a complete signed graph G, find a partition
of vertices into two camps such that the minimum number of sign flips on the edges is
required for the resulting graph to be balanced.

The problems we consider are closely related to (min-disagreement) correlation clustering
where the goal is to partition the graph into clusters, so as to minimize the total number
of negative edges inside clusters and positive edges across the clusters [5, 13,24,25,28,31],
except that structural balance enforces the number of clusters to be two. Structural balance
testing is straightforward to solve in O(n2) time on n-vertex graphs: place an arbitrary vertex
and all its positive neighbors on one side of the bi-partition L, and its negative neighbors
on the other side R, and then verify. On the other hand, the classical work by Giotis
and Guruswami [31] on correlation clustering with two clusters implies the NP-hardness
of the frustration-minimizing partition. It further provides a PTAS with running time
nO(1/ε2) + n · (1/ε)O(1/ε4) for (1 + ε)-approximation of this problem. To our knowledge, this
is the state of the art for structural balance testing and frustration-minimizing partition.

Prior work primarily focused on running time of algorithms and assume unrestricted
access to the entire graph. In many modern applications of large-scale networks, however,
there are many other considerations to take into account. For instance, the algorithms may
only have limited access to and a memory much smaller than the input. One of the most
popular models capturing the above scenario is the graph streaming model. In this model,
the edges arrive one after another and the algorithm needs to process this stream “on-the-fly”
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with limited memory. The algorithm is allowed to make one or multiple passes over the
stream, and the memory is usually substianlly smaller than the (worst-case) input size, i.e.
Θ(n2). We focus on the single-pass setting and ask the following motivating question: How
well can we solve structural balance testing and frustration-minimizing partition problems in
the single-pass graph streaming setting?

The golden spots for streaming algorithms are (i) the polylog(n) memory regime, which
is polynomial to the memory that is necessary to represent a single edge, and (ii) the
Õ(n) := O(n · polylog(n)) memory regime – often referred to as the semi-streaming model.
We study structural balance in the graph streaming model in these parameter regimes.

1.1 Our Contributions
Structural balance testing. One way of testing structural balance of G is to check whether
the 2-lift of G associated with its edge signing is connected. Computing the 2-lift can be done
on-the-fly, and testing connectivity in the streaming model can be done with O(n log n) space.
This is already a quadratic improvement over the trivial algorithm with O(n2) space, and it is
also known that graph connectivity requires Ω(n log n) space in the streaming model. Is this
also the limit for structural balance testing? Our first result is a simple algebraic algorithm,
which stems from testing for complete bipartiteness of negative edges, that uses exponentially
improved space complexity. In the full version, we also provide a companion algorithm that,
while more complicated to describe, is combinatorial and introduces a technique that partially
derandomizes a vertex sketch we use where hash functions with limited-independence alone
do not suffice.

▶ Result 1 (Informal statement of Theorem 2). There is a single-pass randomized
algorithm that given a complete signed graph G in a graph stream, tests whether G is
balanced with probability at least 99

100 using O(log n) space.

Result 1 shows that structural balance testing can be done with high space efficiency –
note that Θ(log n) space is necessary to simply write down a single edge. As we elaborate
later, our algorithms in Result 1 are sketching-based algorithms that are randomized and
crucially use the fact that each edge of the graph appears precisely once in the stream. We
further complement our algorithms with two new lower bounds (Propositions 10 and 11)
that show the necessity of both conditions for obtaining any o(n)-space algorithm for this
problem. Additionally, a standard Ω(n log n) space lower bound for input graphs that are
not necessarily complete via a reduction from bipartiteness testing can be shown (see the
full version); the generalized problem and the o(n) space regime are thus incompatible.

Frustration-minimizing partition. Outputting the solution to frustration-minimizing parti-
tion already requires Ω(n) space, thus, as is standard, we focus on semi-streaming algorithms
for this problem. One can use cut sparsifiers and a variant of an argument by [3] (for correla-
tion clustering) to obtain an algorithm with Õ(n/ε2) space that can return the “frustration
value” of any bi-partition of vertices to within a (1 ± ε) factor. By enumerating over all
bi-partitions, then, we can find the frustration-minimizing one up to a (1 + ε)-approximation.
The problem with this approach is that the resulting algorithm takes exponential time (to
enumerate all bi-partitions), which is quite prohibitive, especially in large graphs1.

1 This scenario is not uncommon in the streaming model. For instance, the Tournament Feedback Arc
Set problem admits an “easy” exponential-time (1 + ε)-approximation semi-streaming algorithm [22]
that was improved very recently by [16] to a PTAS albeit with O(log n) passes over the stream; see [15]
for another example.

APPROX/RANDOM 2023
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To bypass this challenge, we present a “streamified” version of the correlation clustering
algorithm with two clusters of [31] (henceforth, the Giotis-Guruswami algorithm); namely,
an approach that allows us to collect just enough information from the stream to weakly
simulate (meaning not entirely faithfully) the Giotis-Guruswami algorithm in polynomial
time at the end of the stream.

▶ Result 2 (Informal statement of Theorem 7). There is a single-pass randomized
algorithm that given a complete signed graph in a graph stream, with high probabilitya

finds a partition of vertices with frustration value at most (1 + ε) factor of the frustration
index using Õ(n/ε2) space and polynomial (in n but not ε) time.
a Here, and throughout, with high probability means with probability at least 1 − 1/n.

Result 2 gives an efficient semi-streaming algorithm for (1 + ε)-approximation of the
frustration-minimizing partition problem, which is NP-hard to solve exactly. We further
show (Proposition 13) that even if we allow the streaming algorithm to use exponential (or
more) time, solving this problem exactly requires Ω(n2) space (the same as storing the entire
input). This fully rules out any non-trivial streaming algorithms for solving this problem
exactly.

There is still one missing piece in obtaining “truly efficient” semi-streaming algorithms
for our problem. As stated earlier, the Giotis-Guruswami algorithm that Result 2 builds
on has running time (roughly) nO(1/ε2) even ignoring any streaming aspects2, which makes
this algorithm quite impractical. Our final contribution remedies this state of affairs. By
building on our weak simulation of the Giotis-Guruswami algorithm in Result 2, we design
an improved offline (non-streaming) algorithm for frustration-minimizing partition with
nearly-linear running time for any fixed ε > 0 (note that the input is of size Θ(n2) in this
problem over a complete signed graph).

▶ Result 3 (Informal statement of Theorem 9). There is a randomized (classical) algorithm
that given a complete signed graph, with high probability, finds a partition of vertices with
frustration value at most (1+ε) factor of the frustration index in Õ(n2/ε2+n·(1/ε)O(1/ε4))
time.

Result 3 presents the first improvement after two decades over the Giotis-Guruswami
algorithm for frustration-minimizing partition and correlation clustering with two fixed
clusters outside of graph streaming models, which can be of independent interest. Moreover,
the algorithm in Result 3 can also be used in Result 2, improving the running time to
nearly-linear for any constant ε > 0 in the semi-streaming model.

Our algorithmic results combined with our new lower bounds (in Section 5) collectively
complete the picture of streaming and efficient algorithms for structural balance testing and
frustration-minimizing partition problems.

1.2 Our Techniques
Structural balance testing. The lower bounds in Propositions 10 and 11 show that any o(n)-
space algorithm for testing structural balance has to be randomized and, more importantly,
uses the fact that it sees the sign between every pair of vertices exactly once. This motivates

2 A simple modification of the Giotis-Guruswami algorithm and a slightly more careful analysis actually
reduces the running time of their algorithm to roughly O(n100 + n · (1/ε)O(1/ε4)) (see the analysis in
Section 4). While this is faster than the original nO(1/ε2) bound, it is still quite far from being practical.
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us to consider sketching-based algorithms that are based on collecting aggregate statistics
of large subsets of edges in the graph when seeing them in the stream (without having to
store explicit information). We proceed by proving the following structural result (stated
informally): (i) In any balanced graph, for any set S of odd size, there is an even number of
pairs of vertices in S with a negative sign (easy direction); (ii) Conversely, in any unbalanced
graph, a constant fraction of odd-size sets S (of certain cardinality) have an odd number of
negatively-signed pairs inside (hard direction).

This result naturally suggests the following algorithm (stated with some oversimplification):
sample an odd-size set S of vertices uniformly at random at the beginning of the stream and
count the number of negative edges in the stream with both endpoints in S. In the balanced
case, this number will be even, while in the unbalanced case, it has a non-trivial chance of
being odd.

There is a serious challenge in making this strategy work: determining S and therefrom
which edges should be counted requires Ω(n) space to store the random bits. We surmount
this by observing that the function for the parity of “−” edges in a sampled set S can
be viewed as a degree-2 polynomial with one variable per vertex. As such, we turn from
sampling vertices to using PRGs for low-degree polynomials based on sums of small bias
generators so that O(log(n)) truly random bits and O(log(n)) extra space suffice to generate
pseudorandom bits whose 0-set on the polynomial is in proportion with that of truly random
bits. In the full version, we also give an alternative combinatorial algorithm (in contrast with
the abovestated algebraic algorithm) which is interesting in its own right, especially from a
techniques standpoint.

Frustration-minimizing partition. Our algorithm in Result 2 is obtained via “streamify-
ing” the Giotis-Guruswami algorithm [31]. Their algorithm considers the high versus low
frustration index cases separately where the high frustration index scenario means at least
a constant fraction of all pairs needs to flip sign. Among these, the first part has a simple
solution in [31] which already lends itself to a semi-streaming algorithm immediately. Our
main technical ingredient in Result 2 lies in addressing the low frustration index case. For
simplicity of exposition, in the following, we assume ε is a constant.

The Giotis-Guruswami algorithm in the low frustration index case is as follows. Sample
O(log n) vertices S and enumerate all nO(1) bi-partitions of S. Then, for every bi-partition
(SL, SR), perform a merging operation followed by a switching operation: In merging, every
vertex v ∈ V \ S is assigned in parallel to the side of (SL, SR) that creates less frustration for
v, i.e., the number of negative edges of v to this side plus its positive edges to the opposing
side is minimized. Let (L, R) be the resulting bi-partition of vertices. In switching, each
vertex v ∈ V in parallel is re-assigned to the side of (L, R) with the least frustration. The
analysis of [31] is as follows: for the bi-partition (SL, SR) of S that is consistent with the
optimal solution, (i) after merging, most vertices are in the “correct” side of (L, R) already,
namely, they are consistent with the optimal bi-partition, and (ii) after switching, the vertices
already consistent with the optimal solution do not change side, and the rest of vertices are
moved to the side that only induce a small additive cost. The key reasoning behind both
steps is that in the low frustration-index case, most vertices have a “clear” preference toward
which side of the optimal bi-partition they should reside.

To simulate the Giotis-Guruswami algorithm via a semi-streaming algorithm, we can
sample the set S at the beginning of the stream and store all Õ(n) edges incident on it during
the stream. The merging phase can now be easily implemented as it relies only on the edges
connected to S. The switching phase, on the other hand, requires checking every edge in

APPROX/RANDOM 2023
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the graph and thus cannot be faithfully implemented in o(n2) space. We instead develop a
way to approximately implement this step, by sampling O(log n) edges per vertex and using
them to estimate the frustration of each vertex in the switching phase. This allows us to
still classify the majority of vertices the same as that of the Giotis-Guruswami algorithm
except for the ones with no clear preference between bi-partitions of the optimal solution.
An extra argument here ensures that this step does not increase the cost too much and this
new solution is still a (1 + ε)-approximation, leading to our semi-streaming algorithm.

The ideas above also allow us to significantly improve the running time of the Giotis-
Guruswami algorithm even outside of graph streaming models. The most time-consuming
step of that algorithm is the need to enumerate all bi-partitions of the sampled set S of
size O(log n). We preface the sampling step of the set S by sampling a smaller set T of size
only O(log log n), enumerate only over (log n)O(1) bi-partitions of T , and use those to find an
approximate optimal bi-partition of the set S. We then follow a similar strategy as above to
simulate the Giotis-Guruswami algorithm, by showing that even though the bi-partition of
the set S is no longer truly optimal, the extra error occurred by the approximation, does not
propagate too much in the merging and switching step – in other words, these operations
are “robust” enough to handle even an approximately optimal bi-partition of S, not a truly
optimal one.

Lower Bounds. Most of our lower bounds are based on reductions from known problems
in communication complexity such as Index or Equality. The exception is our lower bound
in Proposition 11 which shows that, perhaps counter-intuitively, when a stream contains
copies of an edge more than once, solving structural balance testing becomes impossible in
o(n) space. We show this lower bound by presenting a new 3-party communication problem
which is a mixture of the Index and Set Intersection problems. Roughly speaking, in this
new problem, we also provide the information about the hidden index of the Index problem
to all players, but in a way that to find this index, they will need to solve an instance of the
Set Intersection problem. We then borrow an idea from [9,10] that allows us to argue that
a low-communication protocol cannot even change the distribution of the hidden index by
much. We then combine this with standard information-theoretic arguments to show that
the Index problem the players need to solve remains hard as the distribution of its hidden
index has not been altered too much.

1.3 Related Work
By slightly relaxing structural balance to allow triangles with three negative ties as in [30],
the frustration-minimizing partitions becomes fully equivalent to the correlation clustering
problem (without any constraint on the number of clusters). More recently, motivated by
similar considerations as in our paper, there has been a flurry of results on this problem
in modern models of computation such as sublinear-time, streaming, or massively parallel
algorithms [3, 11,17, 18, 26,27]. In particular, for the single-pass streaming setting, the very
recent state-of-the-art result by [23] obtains a (3 + ε)-approximation correlation clustering
in O(n/ε) space and polynomial time. Our result shows that we can obtain a better
approximation when the number of clusters is two. Furthermore, [18] independently observes
a (1 + ε)-approximation algorithm for correlation clustering in exponential time using cut
sparsifiers, which is similar to our observation in Lemma 8.

In a general graph (not necessarily complete), structural balance means that all cycles
must contain an even number of negative edges. The problem of minimizing frustration index,
phrased in the literature as the Balanced Subgraph problem [37], is MaxSNP-hard [45,52]
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and even NP-hard to approximate within any constant factor assuming Khot’s Unique
Games Conjecture [39]. On the positive side, this problem admits a polynomial time
O(

√
log n)-approximation [2] and an O(log k)-approximation [12] when the frustration index

is k. Readers can refer to [37] for further details about applications in practice. None of
these algorithms consider space constraints or the streaming setting.

2 Preliminaries

Notation. Throughout, we use G = (V, E = E+ ∪ E−) to denote a complete signed graph
with |V | = n vertices, where E+ is the set of “+” edges and E− is the set of “−” edges. We
further use G+ = (V, E+) and G− = (V, E−) to denote the graph restricted to the “+” and
“−” edges. Note that E+ and E− are always disjoint and |E+ ∪ E−| =

(
n
2
)
. For any set

S ⊆ V of vertices, G[S] denotes the induced subgraph of G on S.
For two sets of vertices S, T ⊂ V , we use E(S, T ) to denote the set of edges (both “+”

and “−”) with one endpoint in S and the other in T . Analogously, we use E(v, S) to denote
the set of edges (both “+” and “−”) with one endpoint v and the other in S. Furthermore,
E+(S, T ) (resp. E−(S, T )) refers to the set of “+” (resp. “−”) edges with one endpoint in S

and the other in T , and E+(v, S) (resp. E−(v, S)) refers to the set of “+” (resp. “−”) edges
with one endpoint v and the other in S. In particular, N+(S) = E+(S, V \ S) and similarly,
N+(v) = E+(v, V ) (N−(S) and N−(v) defined in the same manner).

When the context involves more than one graph (say G and H), we add a subscript to
make the notation clear as to which graph is being referred to (for example, EG(S, T ) and
EH(S, T )).

2.1 Problem Definition
In this paper, we consider (strong) structural balance. A complete signed graph G =
(V, E+ ∪ E−) is said to exhibit structural balance property (in short, is balanced) if every
triangle has an even number of “−” edges. An equivalent characterization of structural
balance shown in [21] is that there exists a bi-partition of the vertices into S and T , S ∩T = ∅
and S ∪ T = V , such that every edge with both endpoints in S (or T ) is labelled “+”, and
every edge connecting S to T is labelled “−”. Inspired by this, the notion of frustration
index [1, 34,53] captures how far a graph is from structural balance.

▶ Definition 1 (Frustration Index). Let G = (V, E+ ∪ E−) be a complete signed graph, and
let (L, R) be a bi-partition of V . Then the frustration of G with respect to L, R is

frust(G, L, R) =
∣∣E+(L, R)

∣∣ +
∣∣E−(L)

∣∣ +
∣∣E−(R)

∣∣.
When the context is clear, we use the notation frust(G, L) instead of frust(G, L, R). The
frustration index frust(G) is the minimum of frust(G, L, R) over all possible bi-partitions
(L, R) of V .

Frustration can be equivalently defined using “disagreement” notation:

frust(G, L, R) = 1
2

∑
v∈V

Dis(v, L, R).

We use Dis(v, S, T ) to count the disagreement of edges incident to v with respect to S, T .
For example, when v ∈ S, we have Dis(v, S, T ) = |E−(v, S)| + |E+(v, T )|. When T = V \ S,
we may write Dis(v, S) instead of Dis(v, S, V \ S).

Now we are ready to formally define our problems.

APPROX/RANDOM 2023
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▶ Problem 1 (Structural Balance Testing). Given a complete signed graph G = (V, E+ ∪ E−),
decide if there is a partition (L, R) of V such that

If (u, v) ∈ E+, then u and v are both contained in L or both contained in R;
If (u, v) ∈ E−, then either u is in L and v is in R, or vice versa.

In other words, the answer is “YES” if and only if the graph is balanced.

▶ Problem 2 (Frustration-minimizing Partition). Given a complete signed graph
G = (V, E+ ∪ E−), find a partition (L∗, R∗) of V such that

(L∗, R∗) = arg min
(L,R):

L∪R=V
L∩R={}

frust(G, L, R).

In other words, the partition (L∗, R∗) minimizes the frustration.

3 Structural Balance Testing in Logarithmic Space

We formally present our main algorithm for structural balance testing (Problem 1) – a
randomized algorithm that uses only O(log n) bits and returns whether the graph is balanced
with high (constant) probability.

▶ Theorem 2 (Formalization of Result 1). There is a randomized single-pass algorithm Bal-
anceTester that solves Problem 1 with O(log n) bits of space and the following guarantees:

If input graph G is balanced, BalanceTester always outputs Balanced;
If input graph G is not balanced, BalanceTester outputs NotBalanced with probab-
ility at least 99

100 .

A few remarks on Theorem 2 are in order. First, it is not hard to design a deterministic
algorithm that uses Õ(n) space to test whether the graph is balanced – for completeness,
such an algorithm can be found in the full version of this paper. However, by our lower
bound in Proposition 10, any single-pass streaming algorithm for structural balance testing
with o(n) memory has to be randomized. Furthermore, we remark that the O(log n) memory
is asymptotically optimal since it is the number of bits that is necessary to store even a single
edge. Finally, since the error is one-sided, we can boost the success probability to 1 − 1

n by
running the algorithm O(log n) times, which results in O(log2 n) overall space complexity.

We now proceed to the design and analysis of our algorithm. In what follows, we assume
our graph contains at least n ≥ 3 vertices, as the structural balance is always satisfied
otherwise.

3.1 A Sample-and-Test Lemma for “−” Edges
The idea behind our algorithm starts as follows. If we focus on “−” edges, our task can
be framed as testing if the graph G− = (V, E−) is a complete bipartite graph. To this end,
observe that if we sample a set S of an odd number of vertices, and count the number of “−”
edges in G[S], the parity will always be even when G− is complete bipartite. With a slightly
more involved analysis, we can show that if G− is not complete bipartite, then by sampling
S uniformly at random, the number of “−” edges in G[S] is odd with constant probability.
As such, we can use the parity of such a counter as a signal of the structural balance of the
graph.

We now formalize the above intuition. In particular, in the following lemma, we design
the S-sampler and state its properties.
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▶ Lemma 3 (S-sampler Lemma). For a given complete signed graph G = (V, E), let S ⊆ V

be a subset of vertices sampled with the following S-sampler:
1. Pick a fixed vertex vn arbitrarily.
2. Sample each vertex in v ∈ V \ {vn} independently with probability 1

2 to get S′.
3. If |S′| is odd, let S = S′; otherwise, let S = S′ ∪ {vn}.

Then, the following statements are true:
1. If G is balanced, the induced subgraph G[S] always has an even number of “−” edges;
2. If G is not balanced, the induced subgraph G[S] has an odd number of “−” edges with

probability at least 1
4 , over the randomness of sampling S.

The main idea to prove Lemma 3 is by observing that the parity of “−” edges counted
by our S-sampler is in fact captured by a degree-2 polynomial over F2. The observation can
be formalized as the following lemma.

▶ Lemma 4. Let Xi ∈ {0, 1} be the indicator random variable for whether vertex vi is
sampled by S-sampler. Define the following polynomial with (n − 1) variables over F2:

P ∗(X) =
∑

i,j<n

(vi,vj)∈E−

XiXj +
∑
i<n

(vi,vn)∈E−

Xi

1 +
n−1∑
j=1

Xj

. (1)

Then, the polynomial P ∗(X) = |E−(G[S])| over F2, which is the parity of number of negative
edges induced by the sample set S.

Proof. Note that Eq (1) is essentially obtained by substituting Xn = 1 +
∑n−1

j=1 Xj , and
counting a “−” edge (vi, vj) if both vi and vj are sampled. If the number of sampled vertices
other than vn is odd, we have

∑n−1
j=1 Xj = 1, which implies Xn = 0 over F2; otherwise, if

the number of sample vertices other than vn is even, we have
∑n−1

j=1 Xj = 0, which implies
Xn = 1 over F2. Therefore, the polynomial P ∗ exactly captures the sampling process of the
S-sampler. Finally, if the total number of “−” edges is odd, the polynomial P ∗ evaluates to
1, and vice versa. ◀

As we will see shortly, Lemma 4 is also crucial to run our streaming algorithm for the
S-sampler by storing limited number of random bits. To show that the S-sampler gives a
useful signal for whether the graph is balanced, we show that the polynomial P ∗ in Eq (1)
gives a useful signal. We first show that P ∗ is identically 0 if and only if G is balanced.

▶ Lemma 5. The polynomial P ∗ in Eq (1) is identically 0 if and only if G is balanced.

Proof. Suppose first that G is balanced. Then either G− is empty, or it is a complete
bipartite graph. Let S be the sample from S-sampler. In the first case, the number of “−”
edges in G[S] is always 0. In the second case, let L and R be the bi-partition of G−, and let
A = L ∩ S and B = R ∩ S. The number of “−” edges in G[S] is |A| · |B|, which is an even
number since one of |A| and |B| is even (recall that |S| is odd). By Lemma 4, P ∗ is thus
identically 0 when G is balanced.
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Suppose, on the other hand, that G is not balanced. Then there is a triangle (vi, vj , vk)
with an odd number of “−” edges. If i, j, k ̸= n, setting Xi = Xj = Xk = 1 and Xℓ = 0 for
ℓ ̸= i, j, k yields P ∗(X) = 1. If on the other hand, say, k = n, then setting Xi = Xj = 1
and Xℓ = 0 for ℓ ̸= i, j yields P ∗(X) = 1. Hence P ∗ is not identically 0 when G is not
balanced. ◀

Next, we give a lemma on the fraction of assignments that are non-zero on the polynomial
P ∗, which gives us a lower bound for the success probability to capture an odd number of
“−” edges when G is imbalanced. We note that the lemma is standard in the coding theory
community (e.g. [46]), but we state a proof here for completeness.

▶ Lemma 6. Let P (x1, x2, . . . , xn) be a polynomial over F2 with degree at most 2. If P

is not identically 0, then there is a set X, with cardinality at least 2n−2, such that x ∈ X

implies P (x) = 1.

Proof. We may assume that P is multilinear since P̄ (x) = P (x) for all x ∈ {0, 1}n, where P̄

is the linearization of P (i.e. all monomials of the form x2
i are replaced with xi).

If P is of degree 1 or less, the claim holds by using the Schwartz-Zippel lemma.Suppose
then that P is of degree 2. Up to a reordering of variables, xn−1xn is a term of P with
coefficient 1. Let a be a fixed assignment of xk to {0, 1} for all k ∈ [n−2]. Then P (a, xn−1, xn)
is a multilinear degree 2 polynomial Q(xn−1, xn) with the term xn−1xn having coefficient 1.
Checking over all 8 possible polynomials that Q may take, we see that each of them has at
least one assignment a′ of xn−1, xn to {0, 1} such that Q(a′) = 1. This completes the proof
since there are 2n−2 possible assignments a. ◀

Finalizing the proof of Lemma 3. By Lemma 4 and Lemma 5, if G is balanced, the poly-
nomial P ∗ is identically 0, which means the S-sampler always finds an even number of “−”
edges. Otherwise, if G is not balanced, P ∗ is not 0. Therefore, by Lemma 6, the S-sampler
finds an odd number of “−” edges with probability at least 1

4 . ◀

By Lemma 3, to test the structural balance of a complete signed graph, it suffices to
implement the S-sampler and count the number of negative edges. However, while the counter
takes O(log n) space, it is not immediately clear how the S-sampler can be implemented with
a small space in the streaming setting. In particular, since we need to sample each vertex
independently, the trivial solution requires Ω(n) memory to store the random bits (for each
vertex). We address this issue in the next step.

3.2 Simulating the S-sampler in Streaming with O(log n) Space

We tackle this issue by using the fact that our S-sampler is a degree-2 polynomial (Lemma 4).
We may consequently use a PRG that fools degree-2 polynomials (see [20, 41, 44] for con-
structions). More concretely, there exists a PRG that takes O(log n) truly random bits,
and generates n pseudorandom bits with O(log n) extra space per bit so that a degree-2
polynomial cannot distinguish a truly random input from a pseudorandom input to within a
small constant error.

Using this, we design an O(log n)-memory algorithm as follows.
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A streaming algorithm to test structural balance.
Run 100 independent copies of the following S-sampler simulation:

1. Maintain O(log n) truly random bits and a counter.
2. For each arriving “−” edge (u, v) ∈ E−:

a. Generate the pseudorandom bits for vertices u and v (name the bits Xu and
Xv) with a PRG for degree 2 polynomials with ε = 1

20 (see [20,41,44]).
b. If both Xu = 1 and Xv = 1, increase the counter by 1.

3. By the end of the stream, if the parity of the counter is odd, return 1; otherwise,
return 0.

If any of the copies of S-sampler simulation returns 1, report Not Balanced;
otherwise, report Balanced.

Analysis of the space complexity. The truly random bits and the counter take O(log n)
bits of space. Furthermore, for each “−” edge, the PRG generates the pseudorandom bits
for Xu and Xv with O(log n) bits of extra space since ε = 1

20 . The space for this purpose
can be re-used across different edges. Each copy of the S-sampler simulation therefore takes
O(log n) space to implement. Finally, since we run 100 independent copies in parallel, the
final algorithm take O(log n) space.

Analysis of correctness. By Lemma 3, if the graph is balanced, the S-sampler simulation
always returns 0. On the other hand, if the graph is imbalanced and we sample with truly
random bits Un−1, it holds from Lemma 3 that Pr(P ∗(Un−1) = 1) ≥ 1

4 since P ∗ is a valid
implementation of the S-sampler. By the guarantees of the PRG g : {0, 1}O(log n)→(n−1), we
have

| Pr(P ∗(g(Uℓ)) = 1) − Pr(P ∗(Un−1) = 1)| ≤ 1
20 ,

where Uℓ are O(log n) truly random bits, the seed for the PRG. We hence have Pr(P ∗(g(Ul)) =
1) ≥ 1

4 − 1
20 = 1

5 . As such, the probability for no copy to return 1 is at most ( 4
5 )100 < 1

100 , as
desired.

4 Semi-streaming Frustration-minimizing Partition in Poly-Time

In this section, we consider Problem 2 of finding, in the semi-streaming model, a partition of
a complete signed graph that is as close to structurally balanced as possible. More specifically,
we want to divide the set of vertices into two parts and minimize the number of “−” edges
contained in either part and “+” edges connecting the two parts.

Giotis and Guruswami [31] showed that Problem 2 is NP-hard. In the streaming setting,
we show that any algorithm that gives the exact optimal frustration-minimizing partition
(or computes the optimal frustration index) requires Ω(n2) memory (see Proposition 13).
In view of this, we settle for finding a partition that approximates one which is as close to
structurally balanced as possible. This section shows how to adapt the correlation clustering
algorithm with two clusters in [31] to the semi-streaming model. We leave the technical
details to the full version of the paper and, here, highlight the ingredients that make up the
following result.
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▶ Theorem 7 (Formalization of Result 2). There is an algorithm that, given a complete signed
graph G = (V, E+ ∪ E−) and ε ∈ (0, 1), with high probability finds a partition (L, R) of V

where

frust(G, L) ≤ (1 + ε) · frust(G).

Moreover, the algorithm uses O
(

n · log4(n/ε)
ε6

)
space, a single pass over the stream and has

running time of O

(
( n

ε )2 · log3 n + n log n ·
( 1

ε

)O(ε−4)
)

.

4.1 Evaluating Frustration
The first key ingredient is a tool for determining frust(G, L) for an arbitrary L ⊆ V , subject
to the memory constraints of the semi-streaming setting. We turn to the idea of cut sparsifiers
(see [4,19,42]), which store a sparse representation of G which approximately answers the
cut queries for all S ⊆ V : what is the size of E(S, V \ S)?

▶ Lemma 8. Let G = (V, E+ ∪ E−) be a complete signed graph. There is a single-pass
streaming algorithm using O

(
n log3 n/ε2)

space and O
(
n2 log2 n

)
time that, for any ε ∈ (0, 1),

with high probability produces an oracle that, when given L ⊆ V , returns frustε(G, L) in
O

(
n log n/ε2)

time where

(1 − ε)frust(G, L) ≤ frustε(G, L) ≤ (1 + ε)frust(G, L).

Our construction of the “frustration sparsifier” in Lemma 8 follows from a standard
application of cut sparsifiers, and the fact that the portion of frustration contributed to by
the “−” edges in each side can be estimated indirectly by looking at “+” edges crossing the
cut.

Frustration Sparsifier for G = (V, E+ ∪ E−) and ε ∈ (0, 1):
Let H = (V, EH , wH) be an ε

2 cut sparsifier for G′ = (V, E+).
Return frustε(G, ·) which, when given L ⊆ V , computes

wH(L, V \ L)︸ ︷︷ ︸
≈|E+(L,V \L)|

+
∣∣E−∣∣ − (|L| · |V \ L| − wH(L, V \ L))︸ ︷︷ ︸

≈|E−(L)|+|E−(V \L)|

.

The proof of Lemma 8 can be found in the full version of this paper.
Observe as an aside that frustration sparsifiers alone give us a single-pass algorithm that

uses Õ(n) space which, however, runs in exponential time: construct a frustration sparsifier
with parameter ε, enumerate over all partitions of V , and return the one which gives the
smallest estimated frustration.

4.2 A Polynomial Time Algorithm: Streamification of Giotis-Guruswami
Algorithm

The next key ingredient is a simulation of the Giotis-Guruswami algorithm [31]. For the
remainder of this section, let frust(G) = γn2 where γ is not necessarily a constant. We are
particularly interested in the case when γ ≤ ε/1004, which is the case of the Giotis-Guruswami
algorithm which is non-trivial to simulate.
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When there is no constraint on space usage, the Giotis-Guruswami algorithm works by
sampling Θ(log n) vertices (called the sample S) and trying every partition (SL, SR) of S.
SL and SR are taken to be subsets of L and R respectively, where (L, R) is a partition
of V . For each such partition (SL, SR), there should be a clear local choice for whether a
vertex v should be assigned to L or to R by choosing the smaller of Dis(v, SL + v, SR)3 and
Dis(v, SL, SR + v) respectively; we do this for all unsampled vertices, and refer to this step
of the algorithm as merging. The algorithm then tries to further refine the solution quality
by marking each vertex that improves the frustration when moved from L to R or vice versa,
keeping every other vertex fixed. All marked vertices are then moved to the other part. The
process of marking vertices and moving them after all have been marked is referred to as the
switching step.

As it turns out, the correctness of the Giotis-Guruswami algorithm still holds with a
small error introduced by graph sparsification. This is crucial as it allows us to design space
efficient streaming algorithms by simply maintaining a cut sparsifier during the stream, and
performing the Giotis-Guruswami procedure in the end. More concretely, only once the
sparse representations of the input stream have been obtained (i.e. a single pass over the
stream has been completed), do we then start iterating over every partition (SL, SR) of S,
and in each iteration merging, switching, and storing the best resulting (L, R) seen so
far. Merging is easily ported to the streaming setting; we just need to store the Θ(n log n)
edges incident to S. The way switching is adapted, on the other hand, is less trivial; we
store a sparse representation of the input graph by sampling Θ

(
(1/ε2) log n

)
neighbors for

each vertex. Finally, determining the (approximate) best partition seen through all iterations
can be done by using a frustration sparsifier.

Streamification of [31] for G = (V, E+ ∪ E−) and ε ∈ (0, 1), when γ ⪅ ε:
1. Sample 100 log n vertices uniformly at random. Call this set S.
2. Sample 1003 · log n

ε2 vertices uniformly at random for each vertex v. Call these sets Nv.
3. Read through the stream of (signed) edges and

Store edges incident to S. Call this graph GS .
Store edges joining v and Nv for all v. Call this graph GN .
Store frustε/10(G, ·), a frustration sparsifier of G.

4. For every partition (SL, SR) of S

(Merging)
For every v ∈ V \ S, assign v to L if DisGS

(v, SL + v, SR) < DisGS
(v, SL, SR + v),

and R otherwise.
SL is assigned to L and SR is assigned to R.

(Switching)
Mark v ∈ L if DisGN

(v, L + v, R − v) > DisGN
(v, L − v, R + v) and mark v ∈ R

similarly (flip the inequality).
Switch assignments of all marked vertices from L to R or vice versa.

Keep (L, R) if frustε/10(G, L) is the smallest seen so far.
5. Return (L, R).

3 In this section, we use the following notation: For any set S and any vertex v, S + v denotes S ∪ {v}
and S − v denotes S \ {v}.
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The roles of merging and switching are roughly explained as follows. When (SL, SR) is
congruent with how S would be partitioned in an optimal solution, merging assigns most
vertices to L and R in the same way they would have been assigned in said optimal solution.
These vertices do not change assignment when switching. The remaining vertices may have
lots of disagreement with their current assignment in spite of having lots of agreement with
SL or SR. Switching rectifies this, minimizing the disagreement of these vertices with a
large number of vertices (the ones that stay put, mentioned earlier).

We leave the proofs to the full version of the paper. Suffice to say, the core technical
work here is in the analysis showing that weakly simulating switching in the way we have
still yields a correct algorithm.

4.3 Looking at Exponentially Fewer Candidate Partitions

Observe that the first two ingredients yield an algorithm with Θ(n101) running time, where
the inefficiency stems from having to iterate over all partitions of a sample of size 100 log n.
The last key ingredient completes Theorem 7 by instead iterating over all partitions of a
sample of size 100 log log n, building from this a partition of size O(log n) via an independent
sample (we call this step mini-merging), and thereafter running merging and switching.

This gives us Theorem 7, and also Theorem 9 by running the algorithm in an offline
setting regardless of it being a streaming algorithm.

▶ Theorem 9 (Formalization of Result 3). There is a randomized algorithm that, given a
complete signed graph G = (V, E+ ∪ E−), and for any ε ∈ (0, 1), with high probability returns
a partition (L, R) of V where

frust(G, L) ≤ (1 + ε) · frust(G).

Moreover, the algorithm has runtime O
(

n2 log3 n
ε2 + n log n · (1/ε)O(ε−4))

.

To the best of our knowledge, this is the first algorithm for Problem 2 and 2-correlation
clustering that is nearly-linear in the input. A little more formalism is supplied in Appendix A,
but much of the details are left to the full version of the paper.

5 Space Lower Bounds

In this section, we state space lower bounds that complement our algorithmic results.
Any p-pass deterministic streaming algorithm solving Problem 1 requires Ω

(
n
p

)
space.

Any single-pass randomized algorithm solving Problem 1 on a complete signed multi-graph,
where edges are allowed to repeat twice, requires Ω(n) space.
Any single-pass randomized streaming algorithm solving Problem 2 exactly, or that
outputs the exact frustration index, requires Ω

(
n2)

space.
Combined with our upper bounds in Theorem 2 and Theorem 7, our results convey the
following message: (i). It is possible to test structural balance with a very high space
efficiency by taking advantage of the arrive-once inputs and randomness, and both aspects
are necessary; and (ii). It is possible to achieve a (1 + ε)-approximation in Õ(n) space and
polynomial time for any constant ε. In contrast, the exact solution requires almost all the
input to be stored.
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5.1 Structural Balance Testing by Deterministic Algorithms
We first present space lower bound for deterministic streaming algorithms. The formal
statement of the lower bound is as follows.

▶ Proposition 10. Any deterministic p-pass algorithm for Problem 1 requires Ω
(

n
p

)
bits of

space. In particular, any deterministic single-pass algorithm requires Ω(n) bits of space.

The proof of our deterministic lower bound uses a reduction from EQUALITY, which is
known to require Ω

(
n
p

)
bits of communication over p rounds. More can be found in the full

version.

5.2 Structural Balance Testing by Randomized Algorithms with
Multi-edges

The second lower bound is the most interesting from a technical standpoint. It shows that
we need to use Ω(n) space if the inputs are complete signed graphs with multi-edges. We
assume that the signs of the multi-edges between the same pair of vertices are consistent: if
e1 between (u, v) is “+”, a second edge e2 between (u, v) also has to be “+”. The definition
of structural balance still holds by checking one of the edges between each vertex pair.

The formal statement of our lower bound is as follows.

▶ Proposition 11. Any single-pass streaming algorithm that correctly tests structural balance
with probability at least 99

100 on complete signed multi-graphs with sign-consistent multi-edges
has to use a memory of Ω(n) bits.

On the high level, the plan to prove Proposition 11 is a reduction from INDEX. The
standard INDEX problem is described as follows: Alice holds a string x ∈ {0, 1}N , Bob holds
an index i∗ ∈ [N ], and the two players want to learn the value of xi∗ .

In a first attempt at a reduction, the two players are initially given 2N + 2 vertices, with
each bit xj corresponding to two vertices uj and vj and two special vertices s and t. Alice
creates two empty sets A and B, and for each input bit xj , j ∈ [N ], Alice puts uj to A and vj

to B if xj = 0, and vj to A and uj to B if xj = 1. Then, for every vertex except ui∗ and vi∗ 4,
Alice adds “+” edges from s to the vertices in A and from t to vertices in B. Furthermore,
for each pair of vertices both inside A or B, Alice adds a “+” edge; and for vertex pairs such
that u ∈ A and v ∈ B, Alice adds a “−” edge. On the other end, Bob completes the graph
by adding “+” edges to (s, ui∗) and (t, vi∗) and “−” edges to (s, vi∗) and (t, ui∗). Now, if
xi∗ = 0, the resulting graph is balanced; otherwise, the graph is unbalanced since vi∗ is in A.

While the plan sounds nice, it does not work. Careful readers may have already found the
problem: Alice does not know which vertices correspond to ui∗ and vi∗ ; and if she somehow
infers it, the problem becomes easy as she can output xi∗ without any communication. As
such, for the above idea to work, we need to somehow “hide” the index to the holder of the
string, but give them the ability to create graphs that leave everything but xi∗ .

To the above end, we introduce the following version of Leave-One INDEX.

▶ Problem 3 (Leave-One INDEX). Consider a communication problem between 3 players,
namely Alice, Bob, and Charlie. Both Alice and Bob hold the same string x ∈ {0, 1}N , and
Charlie holds an index i∗ ∈ [N ]. Furthermore, Alice holds S ⊂ [N ] and Bob holds T ⊂ [N ],
such that S ∪ T = [N ] \ {i∗}. The communication goes in the order of Alice, Bob and Charlie,
and the players want to output xi∗ .

4 The construction is in fact not possible as we will see in the next paragraph; it is here to explain the
intuition.
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The sets of S and T create some “flexibility” for Alice and Bob to infer the index. Indeed,
if S ∩ T = ∅, the problem becomes easy as Bob can learn Alice’s bits from a message that
simply encodes which bits are missing5. Nevertheless, we prove (see Appendix B) that the
worst-case communication complexity of the Leave-One INDEX problem is still Ω(N). The
formal lower bound is as follows.

▶ Lemma 12. Any (possibly randomized) one-way communication protocol for the Leave-One
INDEX defined in Problem 3 that outputs xi∗ correctly with probability at least 99

100 requires
Ω(N) bits of communication.

Figure 1 shows how Alice, Bob, and Charlie can use the previously mentioned (wrong)
idea to get a (now) correct reduction of Leave-One Index to testing structural balance, where
the multi-edges occur from the intersection S ∩ T of Alice’s and Bob’s sets.

Figure 1 An illustration of the reduction from Leave-One Index.

5.3 Frustration-minimizing Partition by Exact Algorithms

Finally, we show that any single-pass streaming algorithm that solves the frustration index
exactly has to store almost the entire graph.

▶ Proposition 13. Any single-pass streaming algorithm that solves Problem 2 exactly or
returns the optimal frustration index value requires Ω

(
n2)

bits of space.

Proposition 13 goes through communication complexity again. This time, our reduction
is from INDEX (a matrix variant thereof) which is hard under the one-way communication
regime. Details are to be found in the full version.

5 In particular, there is a simple protocol with 1 bit of communication when S ∩ T = ∅: Alice takes XOR
of all bits in x[S], and send it to Bob. Bob takes XOR of all bits in x[T ] he will learn the XOR of
x[S ∪ T ]. Bob then compares the XOR of x vs. the XOR of all bits in x[S ∪ T ] to learn xi∗



V. Ashvinkumar, S. Assadi, C. Deng, J. Gao, and C. Wang 58:17

References
1 Robert P. Abelson and Milton J. Rosenberg. Symbolic psycho-logic: A model of attitudinal

cognition. Behavioral Science, 3(1):1–13, 1958.
2 Amit Agarwal, Moses Charikar, Konstantin Makarychev, and Yury Makarychev. O(

√
log n)

approximation algorithms for min UnCut, min 2CNF deletion, and directed cut problems. In
Proceedings of the thirty-seventh annual ACM symposium on Theory of computing – STOC
’05, New York, New York, USA, 2005. ACM Press.

3 Kook Jin Ahn, Graham Cormode, Sudipto Guha, Andrew McGregor, and Anthony Wirth.
Correlation clustering in data streams. In Francis R. Bach and David M. Blei, editors,
Proceedings of the 32nd International Conference on Machine Learning, ICML 2015, Lille,
France, 6-11 July 2015, volume 37 of JMLR Workshop and Conference Proceedings, pages
2237–2246. JMLR.org, 2015.

4 Kook Jin Ahn and Sudipto Guha. Graph sparsification in the semi-streaming model. In Susanne
Albers, Alberto Marchetti-Spaccamela, Yossi Matias, Sotiris E. Nikoletseas, and Wolfgang
Thomas, editors, Automata, Languages and Programming, 36th Internatilonal Colloquium,
ICALP 2009, volume 5556 of Lecture Notes in Computer Science, pages 328–338. Springer,
2009. doi:10.1007/978-3-642-02930-1_27.

5 Nir Ailon, Moses Charikar, and Alantha Newman. Aggregating inconsistent information:
ranking and clustering. In Harold N. Gabow and Ronald Fagin, editors, Proceedings of the
37th Annual ACM Symposium on Theory of Computing, pages 684–693. ACM, 2005.

6 Claudio Altafini. Dynamics of opinion forming in structurally balanced social networks. PloS
one, 7(6):e38135, 2012.

7 T Antal, P L Krapivsky, and S Redner. Social balance on networks: The dynamics of friendship
and enmity, 2006.

8 Samin Aref, Andrew J Mason, and Mark C Wilson. A modeling and computational study of
the frustration index in signed networks. Networks, 75(1):95–110, January 2020.

9 Sepehr Assadi, Yu Chen, and Sanjeev Khanna. Polynomial pass lower bounds for graph
streaming algorithms. In Proceedings of the 51st Annual ACM SIGACT Symposium on Theory
of Computing, STOC 2019, Phoenix, AZ, USA, June 23-26, 2019., pages 265–276, 2019.

10 Sepehr Assadi and Ran Raz. Near-quadratic lower bounds for two-pass graph streaming
algorithms. In Sandy Irani, editor, 61st IEEE Annual Symposium on Foundations of Computer
Science, FOCS 2020, pages 342–353. IEEE, 2020. doi:10.1109/FOCS46700.2020.00040.

11 Sepehr Assadi and Chen Wang. Sublinear Time and Space Algorithms for Correlation
Clustering via Sparse-Dense Decompositions. In Mark Braverman, editor, 13th Innovations in
Theoretical Computer Science Conference (ITCS 2022), volume 215 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 10:1–10:20, Dagstuhl, Germany, 2022. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.ITCS.2022.10.

12 Adi Avidor and Michael Langberg. The multi-multiway cut problem. Theor. Comput. Sci.,
377(1):35–42, May 2007.

13 Nikhil Bansal, Avrim Blum, and Shuchi Chawla. Correlation clustering. Mach. Learn.,
56(1-3):89–113, 2004. doi:10.1023/B:MACH.0000033116.57574.95.

14 Francisco Barahona. On the computational complexity of Ising spin glass models. Journal of
Physics A: Mathematical and General, 15(10):3241–3253, 1982.

15 MohammadHossein Bateni, Hossein Esfandiari, and Vahab S. Mirrokni. Almost optimal
streaming algorithms for coverage problems. In Proceedings of the 29th ACM Symposium on
Parallelism in Algorithms and Architectures, SPAA 2017, pages 13–23, 2017.

16 Anubhav Baweja, Justin Jia, and David P. Woodruff. An efficient semi-streaming PTAS for
tournament feedback arc set with few passes. In Mark Braverman, editor, 13th Innovations in
Theoretical Computer Science Conference, ITCS 2022, volume 215 of LIPIcs, pages 16:1–16:23.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2022.

APPROX/RANDOM 2023

https://doi.org/10.1007/978-3-642-02930-1_27
https://doi.org/10.1109/FOCS46700.2020.00040
https://doi.org/10.4230/LIPIcs.ITCS.2022.10
https://doi.org/10.1023/B:MACH.0000033116.57574.95


58:18 Efficient Streaming Algorithms for Structural Balance

17 Soheil Behnezhad, Moses Charikar, Weiyun Ma, and Li-Yang Tan. Almost 3-approximate
correlation clustering in constant rounds. In 63rd IEEE Annual Symposium on Foundations of
Computer Science, FOCS 2022, pages 720–731. IEEE, 2022. doi:10.1109/FOCS54457.2022.
00074.

18 Soheil Behnezhad, Moses Charikar, Weiyun Ma, and Li-Yang Tan. Single-pass streaming
algorithms for correlation clustering. In Nikhil Bansal and Viswanath Nagarajan, editors,
Proceedings of the 2023 ACM-SIAM Symposium on Discrete Algorithms, SODA 2023, pages
819–849. SIAM, 2023. doi:10.1137/1.9781611977554.ch33.

19 András A. Benczúr and David R. Karger. Approximating s-t minimum cuts in Õ(n2) time.
In Gary L. Miller, editor, Proceedings of the Twenty-Eighth Annual ACM Symposium on the
Theory of Computing, pages 47–55. ACM, 1996. doi:10.1145/237814.237827.

20 Andrej Bogdanov and Emanuele Viola. Pseudorandom bits for polynomials. SIAM J. Comput.,
39(6):2464–2486, 2010. doi:10.1137/070712109.

21 Dorwin Cartwright and Frank Harary. Structural balance: a generalization of Heider’s theory.
Psychol. Rev., 63(5):277–293, September 1956.

22 Amit Chakrabarti, Prantar Ghosh, Andrew McGregor, and Sofya Vorotnikova. Vertex ordering
problems in directed graph streams. In Proceedings of the 2020 ACM-SIAM Symposium on
Discrete Algorithms, SODA 2020, pages 1786–1802, 2020.

23 Sayak Chakrabarty and Konstantin Makarychev. Single-pass pivot algorithm for correlation
clustering. keep it simple! arXiv preprint arXiv:2305.13560, 2023.

24 Moses Charikar, Venkatesan Guruswami, and Anthony Wirth. Clustering with qualitative
information. In Proceedings of the 44th Symposium on Foundations of Computer Science
(FOCS 2003), pages 524–533, 2003.

25 Shuchi Chawla, Konstantin Makarychev, Tselil Schramm, and Grigory Yaroslavtsev. Near
optimal LP rounding algorithm for correlation clustering on complete and complete k-partite
graphs. In Rocco A. Servedio and Ronitt Rubinfeld, editors, Proceedings of the Forty-Seventh
Annual ACM on Symposium on Theory of Computing, STOC 2015, pages 219–228. ACM,
2015.

26 Flavio Chierichetti, Nilesh N. Dalvi, and Ravi Kumar. Correlation clustering in mapreduce.
In Sofus A. Macskassy, Claudia Perlich, Jure Leskovec, Wei Wang, and Rayid Ghani, editors,
The 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
KDD ’14, pages 641–650. ACM, 2014.

27 Vincent Cohen-Addad, Silvio Lattanzi, Slobodan Mitrovic, Ashkan Norouzi-Fard, Nikos Parot-
sidis, and Jakub Tarnawski. Correlation clustering in constant many parallel rounds. In Marina
Meila and Tong Zhang, editors, Proceedings of the 38th International Conference on Machine
Learning, ICML 2021, volume 139 of Proceedings of Machine Learning Research, pages 2069–
2078. PMLR, 2021. URL: http://proceedings.mlr.press/v139/cohen-addad21b.html.

28 Vincent Cohen-Addad, Euiwoong Lee, and Alantha Newman. Correlation clustering with
Sherali-Adams. CoRR, abs/2207.10889, 2022.

29 Bhaskar DasGupta, German Andres Enciso, Eduardo Sontag, and Yi Zhang. Algorithmic
and complexity results for decompositions of biological networks into monotone subsystems.
Biosystems., 90(1):161–178, July 2007.

30 James A Davis. Clustering and structural balance in graphs. Human relations, 20(2):181–187,
1967.

31 Ioannis Giotis and Venkatesan Guruswami. Correlation clustering with a fixed number of
clusters. In Proceedings of the Seventeenth Annual ACM-SIAM Symposium on Discrete
Algorithm, SODA ’06, pages 1167–1176, 2006.

32 Frank Harary. On the notion of balance of a signed graph. Michigan Math. J., 2(2), January
1953.

33 Frank Harary. Signed graphs for portfolio analysis in risk management. IMA Journal of
Management Mathematics, 13(3):201–210, 2002.

https://doi.org/10.1109/FOCS54457.2022.00074
https://doi.org/10.1109/FOCS54457.2022.00074
https://doi.org/10.1137/1.9781611977554.ch33
https://doi.org/10.1145/237814.237827
https://doi.org/10.1137/070712109
http://proceedings.mlr.press/v139/cohen-addad21b.html


V. Ashvinkumar, S. Assadi, C. Deng, J. Gao, and C. Wang 58:19

34 Frank Harary. On the measurement of structural balance. Behavioral Science, 4(4):316–323,
2007.

35 Fritz Heider. Attitudes and cognitive organization. J. Psychol., 21:107–112, January 1946.
36 Fritz Heider. The Psychology of Interpersonal Relations. Psychology Press, 1982.
37 Falk Hüffner, Nadja Betzler, and Rolf Niedermeier. Separator-based data reduction for signed

graph balancing. J. Comb. Optim., 20(4):335–360, November 2010.
38 Giovanni Iacono, Fahimeh Ramezani, Nicola Soranzo, and Claudio Altafini. Determining the

distance to monotonicity of a biological network: a graph-theoretical approach. IET Syst.
Biol., 4(3):223–235, May 2010.

39 Subhash Khot. On the power of unique 2-prover 1-round games. In Proceedings of the
thiry-fourth annual ACM symposium on Theory of computing, STOC ’02, pages 767–775, New
York, NY, USA, May 2002. Association for Computing Machinery.

40 Funda Kivran-Swaine, Priya Govindan, and Mor Naaman. The impact of network structure on
breaking ties in online social networks: unfollowing on twitter. In Proceedings of the SIGCHI
conference on human factors in computing systems, pages 1101–1104. ACM, 2011.

41 Shachar Lovett. Unconditional pseudorandom generators for low degree polynomials. Theory
Comput., 5(1):69–82, 2009. doi:10.4086/toc.2009.v005a003.

42 Andrew McGregor. Graph stream algorithms: a survey. SIGMOD Rec., 43(1):9–20, 2014.
doi:10.1145/2627692.2627694.

43 Michael Moore. An international application of Heider’s balance theory. Eur. J. Soc. Psychol.,
8(3):401–405, July 1978.

44 Joseph Naor and Moni Naor. Small-bias probability spaces: Efficient constructions and
applications. SIAM J. Comput., 22(4):838–856, 1993. doi:10.1137/0222053.

45 Christos Papadimitriou and Mihalis Yannakakis. Optimization, approximation, and complexity
classes. In Proceedings of the twentieth annual ACM symposium on Theory of computing,
STOC ’88, pages 229–234, New York, NY, USA, January 1988.

46 Ron M. Roth. Introduction to coding theory. Cambridge University Press, 2006.
47 Christopher Sibona. Unfriending on facebook: Context collapse and unfriending behavi-

ors. In 2014 47th Hawaii International Conference on System Sciences, pages 1676–1685.
ieeexplore.ieee.org, January 2014.

48 Jiliang Tang, Yi Chang, Charu Aggarwal, and Huan Liu. A survey of signed network mining
in social media. ACM Computing Surveys (CSUR), 49(3):1–37, 2016.

49 Andreia Sofia Teixeira, Francisco C Santos, and Alexandre P Francisco. Emergence of social
balance in signed networks. In Complex Networks VIII, pages 185–192. Springer International
Publishing, 2017.

50 Haotian Wang, Feng Luo, and Jie Gao. Co-evolution of opinion and social tie dynamics towards
structural balance. In Proceedings of the ACM-SIAM Symposium on Discrete Algorithms
(SODA’22), pages 3362–3388, January 2022.

51 Bo Xu, Yun Huang, Haewoon Kwak, and Noshir Contractor. Structures of broken ties:
Exploring unfollow behavior on twitter. In Proceedings of the 2013 Conference on Computer
Supported Cooperative Work, CSCW ’13, pages 871–876, 2013. doi:10.1145/2441776.2441875.

52 Mihalis Yannakakis. Edge-Deletion problems. SIAM J. Comput., 10(2):297–309, May 1981.
53 Thomas Zasĺavsky. Balanced decompositions of a signed graph. J. Combin. Theory Ser. B,

43(1):1–13, August 1987.

A Offline Solution to Problem 2 (More Details)

Here we present an offline algorithm for solving Problem 2 when γ < ε/1004 (which is an
important part leading to Theorem 9), which can be transferred to the semi-streaming setting
with superficial modification.
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Nearly-Linear Time EPTAS solving Problem 2 for G = (V, E+ ∪ E−) and ε ∈
(0, 1), when γ < ε/1004:
1. Sample 2000 log n vertices uniformly at random from V . Call this set S and let

GS = (V, E(S) ∪ E(S, V \ S)).
2. Sample 100 log log n vertices uniformly at random from S. Call this set S′, the

seed-set, and let GS′ = (V, E(S′) ∪ E(S′, V \ S′)).
3. Sample 1003 · log n

ε2 vertices uniformly at random for each vertex v. Call these sets
Nv and let GN = (V,

⋃
v E(v, Nv)).

4. Construct frustε/10(G, ·), a frustration sparsifier of G.
5. For every partition (S′

L, S′
R) of S′

(Mini-merging on S′)
For every v ∈ S\S′, assign v to SL if DisGS′ (v, S′

L + v, S′
R) < DisGS′ (v, S′

L, S′
R + v),

and SR otherwise.
S′

L is assigned to SL and S′
R is assigned to SR.

(Merging on S)
For every v ∈ V \ S, assign v to L if DisGS

(v, SL + v, SR) < DisGS
(v, SL, SR + v),

and R otherwise.
SL is assigned to L and SR is assigned to R.

(Switching)
Mark v ∈ L if DisGN

(v, L + v, R − v) > DisGN
(v, L − v, R + v) and mark v ∈ R

similarly (flip the inequality).
Switch assignments of all marked vertices from L to R or vice versa.

Keep (L, R) if frustε/10(G, L) is the smallest seen so far.
6. Return (L, R).

B Proof of Lemma 12

In the proof of the communication complexity for the standard INDEX problem, the intuition
is that the first player (Alice) has no knowledge of i∗ other than knowing it is uniformly
distributed (in the particular hard distribution). As such, the problem can only be solved if
a sufficiently large number of bits are communicated. However, in the Leave-One INDEX
problem (Problem 3), the first two players (Alice and Bob) might be able to learn where
exactly i∗ is by comparing their sets of indices S and T . In Problem 3, by the promise that
i∗ ̸∈ T , Bob can learn the distribution of i∗ better than uniform even without communication.

Our plan to prove Lemma 12 is to conduct a case analysis on whether the communication
between Alice and Bob somehow “solves” the problem. To be precise, we separate the cases
based on whether Alice’s message significantly changes the distribution of i∗ from Bob’s
perspective. If such a case happens, then we can use a result from [10] to show that the
communication between Alice and Bob has to be Ω

(
ε2N

)
. On the other hand, if the message

from Alice does not tell Bob a lot about the distribution of i∗, a large number of bits are still
required for the communication between Bob and Charlie since there are constant fraction
of coordinates where i∗ still looks almost uniform. The latter bound cannot be obtained
directly by a reduction since i∗ is already not uniform from Bob’s perspective. Nevertheless,
we can adapt the information-theoretic proof for INDEX to get the desired lower bound in a
standard manner.
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We now formalize the above intuition. Let ΠA,B be the random variable for the message
between Alice and Bob, and ΠB,C be the random variable for the message between Bob
and Charlie. Furthermore, let X be the random variable for the string being held by Alice
and Bob, and let I be the random variable for i∗. For the choice of the set T , we use T ′

to denote the realization. Conditioning on the first message ΠA,B = πA,B and Bob’s local
inputs X, T , we let IB := I | X, T, ΠA,B be the random variable for i∗ from Bob’s internal
perspective after message πA,B . We slightly abuse notation and let these random variables
also represent their distributions.

As promised, the first case we are going to show is the communication lower bound
between Alice and Bob if the distribution of i∗ that Bob learns is ε-far from his prior
knowledge. Formally, we define the notation of ε-learn as follows.

▶ Definition 14. Let πA,B be the message of a randomized one-way communication protocol.
We say that Bob ε-learns i∗ if after the message πA,B, in expectation, the distribution of i∗

from Bob’s perspective is more than ε-far from the distribution he knows from his own input
in the total variation distance, i.e.

E[∥I | ΠA,B , X, T − I | X, T∥TVD] > ε,

where the expectation is over the randomness of X, T and ΠA,B.

The notion of ε-learn was first developed by [9,10]. As such, we can prove a communication
lower bound for Bob to ε-learn i∗.

▶ Lemma 15. Any such protocol πA,B for Bob to ε-learn i∗ has to use Ω
(
ε2 · N

)
bits of

communication between Alice and Bob.

Proof. We prove the lemma by a direct reduction from [10], which address the set intersection
problem. The definition of the problem and the communication complexity is as follows.

▶ Proposition 16 ([10]). The Set-Intersection is a two-player game between Alice and Bob.
The two players are given A ⊆ [m] and B ⊆ [m], respectively, with the promise that there
exists a unique element e∗ such that e∗ = A∩B. The goal is to find the target element e∗ after
one-way communication. Let E be the distribution of e∗, it is known that any communication
protocol that achieves

E[∥E | Π, B − E | B∥TVD] > ε

has to use a communication of Ω
(
ε2m

)
bits, where the expectation is over the randomness of

B and the protocol’s randomness Π. In particular, the communication lower bound applies to
the following distribution.

A hard distribution for Set-Intersection.
Sample two disjoint sets of coordinates A′ and B′ of size N/4 − 1 each uniformly at
random from [N ].
Sample an element e∗ uniformly at random from [N ]\(A′ ∪B′), and let A := A′ ∪{e∗},
B := B′ ∪ {e∗}.

The result of Proposition 16 can be generalized to back-and-forth communication if we allow
Alice or Bob to ε-learn the distribution. However, for the purpose of our reduction, the
one-way version suffices. The reduction from Set-Intersection to the communication between
Alice and Bob in Lemma 12 is as follows.
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Inputs: Alice holds A ⊆ [m], Bob holds B ⊆ [m], A ∩ B = e∗.

A communication protocol PROT for Lemma 12 that ε-learns the index i∗ as
in Lemma 15.
1. Alice creates a set S′ = [m] \ A.
2. Bob creates a set T ′ = [m] \ B.
3. Alice runs PROT, sends to Bob. Bob uses the distribution for i∗ as the distribution

for e∗.

To prove the correctness of the reduction, we only need to show that a). S′ and T ′ are
valid inputs for PROT and b). i∗ = e∗. It is straightforward to verify these conditions: we
know that an element is not covered by S′ ∪ T ′ if and only if both A and B cover it, which is
exactly e∗. Therefore, the desired lower bound is established. ◀

Lemma 15 implies that with o(N) bits of communication it is impossible for Bob to gain
knowledge of the distribution of I that is significantly different from what he already knows.
We now observe that with the input X and T , and conditioning on Alice’s message does not
significantly change Bob’s distribution, Bob’s distribution of I is close to uniform on the
[N ] \ T coordinates.

▷ Claim 17. Conditioning on the event that Bob does not ε-learn i∗, the distribution of i∗

that Bob learns from T and Alice’s message πA,B is at most ε-far from uniform in expectation
over the supports of [N ] \ T , i.e.,

E
T,ΠA,B

[∥I | T, ΠA,B − U([N ] \ T )∥TVD] ≤ ε.

Proof. We first show that without Alice’s message, the distribution I of Bob restricted to
[N ] \ T is uniform. This is a simple observation: with the promise that i∗ ̸∈ T , Bob can safely
discard all coordinates therein. Since the string x is independent of i∗, Bob does not learn
anything from x. As such, Bob’s distribution remains uniform on the [N ] \ T coordinates.

We now condition on the fact that Bob does not ε learn i∗. As such, there is

E
X,T,ΠA,B

[∥I | X, T, ΠA,B − U([N ] \ T )∥TVD]

≤ E
X,T,ΠA,B

[
∥I | X, T − U([N ] \ T )∥TVD + ∥IB − I | X, T∥TVD

]
(triangle inequality)

≤ E
X,T,ΠA,B

[0 + ∥I | ΠA,B , X, T − I | X, T∥TVD] ≤ ε,

where the last inequality directly comes from our assumption of no ε-learning.
Finally, note that the choice of i∗ is independent of X (whether or not conditioning on

ΠA,B). Therefore, we have

E
X,T,ΠA,B

[∥I | X, T, ΠA,B − U([N ] \ T )∥TVD]

= E
T,ΠA,B

[∥I | T, ΠA,B − U([N ] \ T )∥TVD]

≤ ε,

as desired. ◁
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We now use the result of Claim 17 to prove the communication complexity conditioning
on Bob does not ε-learn i∗. To continue, we insist that the distribution T where T ′ is sampled
from always produces size-t sets. As such, we can establish the following lemma.

▶ Lemma 18. Suppose the players sample from a distribution T to ensure the size of the
set given to Bob is always t. Conditioning on the event that Bob does not ε-learn i∗, any
communication protocol such that Charlie correctly outputs xi∗ with probability at least 1 − δ

requires at least (1 − H2(δ) − 2ε) · (N − t) bits of communication.

On a high level, the proof of Lemma 18 uses a strategy that is similar to the information-
theoretic proof of INDEX, but it controls the entropy on the coordinates outside T . The
sketch of the proof is as follows. By Fano’s inequality, for Charlie to output xi∗ correctly with
probability at least 1 − δ, there has to be H(XI | ΠA,B , ΠB,C , T, I) ≤ H2(δ). Using Claim 17,
we can prove that if Bob does not ε-learn i∗, the “uncertainty” of XI – measured by the
entropy – is still comparable to the entropy of XI restricted to the [N ] \ T coordinates, i.e.,

H(XI | ΠA,B , ΠB,C , T, I) ≥ 1
N − t

· H
(
X[N ]\T | ΠA,B , ΠB,C , T

)
− 2ε.

Therefore, we can apply Fano’s inequality to lower bound the mutual information between
X[N ]\T and the information revealed by the protocol, i.e., (ΠA,B , ΠB,C), which in turn gives
us the lower bound on the number of bits to communicate. We leave the proof of Lemma 18
to the full version.

Finalizing the proof of Lemma 12. For completeness, we construct the hard distribution of
Problem 3 as follows.

A hard distribution for Problem 3.
1. Sample A and B according to the hard distribution for Set-Intersection prescribed in

Proposition 16.
2. Let S = [N ] \ A, and T = [N ] \ B. Sample X from {0, 1}N uniformly at random.
3. Give (X, S) to Alice, (X, T ) to Bob, and i∗ to Charlie.

Observe that in the above distribution, for any choice of T ′, there is t = |T ′| = 3
4 · N .

Furthermore, it agrees with the hard distribution of Proposition 16 through the reduction in
Lemma 15.

If Bob ε-learns i∗ for ε = 1
100 , then the communication lower bound is already Ω

(
N2)

(by
Lemma 15). Therefore, we condition on the case when Bob does not (1/100)-learns i∗. As
such, let us conditioning on the event that E

[
∥IB − I | X, T∥TVD

]
≤ 1

100 ; and by Lemma 18,
to make up the success probability of 99

100 , the protocol needs to send a message of length at
least (1 − H2( 1

100 ) − 2/100) · (N − t) = Ω(N) bits, as desired. ◀
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