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Abstract
We prove that for some constant a > 1, for all k ≤ a,

MATIME[nk+o(1)]/1 ̸⊂ SIZE[O(nk)],

for some specific o(1) function. This is a super linear polynomial circuit lower bound.
Previously, Santhanam [29] showed that there exists a constant c > 1 such that for all k > 1:

MATIME[nck]/1 ̸⊂ SIZE[O(nk)].

Inherently to Santhanam’s proof, c is a large constant and there is no upper bound on c. Using
ideas from Murray and Williams [26], one can show for all k > 1:

MATIME[n10k2
]/1 ̸⊂ SIZE[O(nk)].

To prove this result, we construct the first PCP for SPACE[n] with quasi-linear verifier time:
our PCP has a Õ(n) time verifier, Õ(n) space prover, O(log(n)) queries, and polynomial alphabet
size. Prior to this work, PCPs for SPACE[O(n)] had verifiers that run in Ω(n2) time. This PCP
also proves that NE has MIP verifiers which run in time Õ(n).
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1 Introduction

Some of the most fundamental problems in complexity theory are proving circuit lower
bounds for uniform complexity classes. One such conjecture is that NP does not have
polynomial size circuits, which is a strong version of P ̸= NP. Very little is known on
such lower bounds. In particular, there are no known proofs that NEXP does not have
polynomial sized circuits! However, there are some closely related results that could be
loosely seen as relaxations.

One can strengthen NP slightly by giving the non-deterministic algorithm access to
randomness, as well as an extra bit of trusted advice. This gives the complexity class MA/1.
We can weaken polynomial sized circuits to circuits of fixed polynomial size: SIZE[nk] for
constant k.
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Santhanam [29] proved that for any constant k, MA/1 ̸⊆ SIZE[nk]. The MA/1 algorithm
runs in time nck for a large c > 1. In fact, inherently to Santhanam’s proof, there is no upper
bound on c (We will explain why when we describe Santhanam’s proof in Section 1.2.1). One
can use ideas from Murray and Williams [26] to get, for some explicit c with 2 < c < 10, the
result MATIME[nck2 ]/1 ̸⊂ SIZE[nk].

The goal of this paper is to prove a fine grained separation of MA/1 from fixed polynomial
size circuits, namely,

MATIME[nk+o(1)]/1 ̸⊂ SIZE[nk].

We believe that the gold standard for separations should be fine grained separations. Fine
grained separations are necessary for key results in complexity theory, e.g., Williams’ program
(See, e.g., [33]) and optimal derandomization [14].

Some fine grained separations are known, namely, hierarchy theorems that show that giving
algorithms more time allows them to solve more problems [18, 11]. Hierarchy theorems are
known for many complexity classes. While no hierarchy theorems are known for MA, they are
known for MA/1. Fortnow, Santhanam, and Trevisan showed that MA with a small amount
of advice can solve more problems when given more time [16]. Van Melkebeek and Pervyshev
showed that for any 1 < b < d, MATIME[nb]/1 ⊊ MATIME[nd]/1 [32]. In particular,
they imply that even MATIME[n2k]/1 is much larger than MATIME[nk+o(1)]/1.

1.1 Results
In this work, we give a fine grained separation for MA/1 and SIZE[nk]. We show that for
at least some k > 1, there is an MA protocol with one bit of advice whose verifier has time
almost nk such that any circuit solving the same problem also requires size nk. Formally:

▶ Theorem 1 (Fine Grained MA Lower Bound). There exists a constant a > 1, such that for
all k < a, for some f(n) = o(1),

MATIME[O(nk+f(n))]/1 ̸⊂ SIZE[O(nk)].

We stress that we give super linear polynomial lower bounds. Our result holds for some
k strictly greater than 1, even though we don’t know which k. This result removes the large
polynomial factor in the gap between the MA/1 time and the circuit size in Santhanam’s
result. It may be the case that a is small, like a = 1.0001. But in that case, we get the
following result for all k:

▶ Theorem 2 (MA Lower Bound for Small a). If the a from Theorem 1 is finite, then for all
k > 0, for some f(n) = o(1),

MATIME[O(nak+f(n))]/1 ̸⊂ SIZE[O(nk)].

This gives us a win-win scenario: if a is large, we get a strong result for a large range of
k, but if a is small we get a similar result for all k.

When we describe our proof we will explain why we only get separations for k < a for
an (unknown) a > 1 and not for all k > 1. For now we would like to stress that: (1) under
plausible complexity assumptions the upper bound a is in fact super-constant in n; (2) even
the case of a constant a > 1 as promised in our theorem is highly interesting, since it is
unknown how to prove that NP ̸⊆ SIZE[nk] for any k > 1.

Santhanam’s original proof uses an interactive protocol for PSPACE. To prove our
circuit lower bound, we replace the interactive protocol with a new, more efficient PCP.
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To get our fine grained results, we need a PCP for space S = O(n) and time T = 2O(n)

algorithms, where the verifier simultaneously has Õ(n) time and poly(log(n)) many queries.
Further, the PCP needs a prover that can compute any bit of the proof in Õ(n) space.
Notably, we do not need any bounds on the proof length.

The PCP given by Babai, Fortnow, and Lund in their proof that MIP = NEXP [4]
required Ω(log(T )) queries, while we want O(log(log(T ))) queries.

Holmgren and Rothblum in their work on delegated computation [20] improved on the
BFL PCP in several ways that can1 be used to give a PCP with verifier time Õ(n + log(T )).
Unfortunately, it still requires Ω(log(T )) queries.

Ben-Sasson, Goldreich, Harsha, Sudan, and Vadhan [5] gave a PCP that uses a constant
number of queries, but has verifier time poly(log(T )), while we need Õ(n + log(T )) verifier
time. Similar results were given by subsequent work [23, 8, 6].

The small space requirement for the prover is achieved by Holmgren and Rothblum [20].
In some PCPs, like the PCP in Ben-Sasson, Chiesa, Genkin, and Tromer’s work on the
concrete efficiency of PCPs [6], the prover requires space Ω(T ). In contrast, our result needs
prover space Õ(S + n).

A sufficiently efficient PCP was not known, so we construct a new PCP.

▶ Theorem 3 (Verifier Efficient PCP). Let S, T = Ω(n) be functions, and L be any language
computed by a simultaneous time T and space S algorithm. Let δ ∈ (0, 1/2) be a constant.
Then there is a PCP for L with:
1. Verifier time Õ(n + log(T )).
2. Query time Õ(log(T )).
3. O(log(n) + log(log(T ))) queries.
4. Alphabet Σ with log(|Σ|) = O(log(log(T ))).
5. Log of proof length Õ(log(T )).
6. Prover space Õ(S).
7. Perfect completeness and soundness δ.

We believe we can achieve a similar verifier time, query time and prover space while also
achieving constant number of queries and alphabet size. We do not need these improvements
for our main result, so we only prove this simpler result.

Only our prover requires the space bound for its efficient computation. If we remove this
space limitation, we get a similar PCP for nondeterministic algorithms.

▶ Theorem 4 (Verifier Efficient PCP for Nondeterministic Algorithms). Let T = Ω(n),
δ ∈ (0, 1/2) be a constant, and L ∈ NTIME[T ]. Then there is a PCP for L with:
1. Verifier time Õ(n + log(T )).
2. Query time Õ(log(T )).
3. O(log(n) + log(log(T ))) queries.
4. Alphabet Σ with log(|Σ|) = O(log(log(T ))).
5. Log of proof length Õ(log(T )).
6. Perfect completeness and soundness δ.

An immediate corollary of Theorem 4 is a more fine grained equivalence between MIP
and NEXP.

1 The PCP constructed by Holmgren and Rothblum was built to have no signalling soundness and has
many steps that take longer than Õ(log(T )) time to compute. Still, the basic elements of of their PCP
needed for a standard PCP are computable in Õ(n + log(T )) time.

APPROX/RANDOM 2023
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▶ Corollary 5 (Fine Grained Equivalence of MIP = NEXP). For any time constructable
function p(n) = Ω(n), language L ∈ NTIME[2Õ(p(n))] if and only if there is a two prover,
one round MIP protocol for L whose verifier runs in time Õ(p(n)).

Note this equivalence implies a hierarchy theorem for MIP since there are hierarchy
theorems for NTIME [11, 30, 34, 15].

A special case is MIP protocols for NE.

▶ Corollary 6 (NE Has Quasi-linear Time Verifiers). For any language L ∈ NE, there is a
two prover, one round MIP protocol for L whose verifier runs in time Õ(n).
Note this verifier time is nearly optimal since the verifier requires linear time to read its
entire input.

All previous PCPs fail to achieve such an efficient MIP verifier. If the original PCP
makes Ω(n) queries of size Ω(n), then it takes Ω(n2) time to send the queries even if we
allow more provers. And all previous PCPs with fewer queries require verifier time Ω(n2) to
either verify the response or compute the queries.

1.2 Proof Idea
1.2.1 MA Lower Bounds Using PCP
We first review Santhanam’s original proof.

Santhanam’s original result uses the fact that if PSPACE ⊂ P/poly, then PSPACE =
MA. This follows from the famous result that IP = PSPACE [31, 22]. The idea is that
if PSPACE ⊂ P/poly, then an MA protocol can guess a circuit computing any problem
in PSPACE. The prover in the interactive protocol for PSPACE is also computable in
PSPACE. So to solve any PSPACE problem in MA, the MA protocol first guesses the
circuit for a prover, then simulates the verifier using the circuit we guessed as the prover.

Using this, Santhanam’s original proof then considered two cases: either PSPACE ⊂
P/poly, or PSPACE ̸⊂ P/poly.

If PSPACE ⊂ P/poly, then we already know PSPACE = MA. Now we just need a
problem not computable by a size nk circuit. But there is a straightforward algorithm that
exhaustively finds a circuit of size larger than nk that computes a function that cannot be
computed by a smaller circuit. In fact, such an algorithm only requires space Õ(nk). So
PSPACE ̸⊂ SIZE[nk]. In this case, PSPACE = MA, so MA ̸⊂ SIZE[nk].

If PSPACE ̸⊂ P/poly, then we know a hard problem that is not in SIZE[nk], namely
any PSPACE complete problem. Let us take a PSPACE complete, downward self reducible
language, Y . Now Y may be too hard for MA to solve, but if we give it enough padding,
eventually the padded version of Y will be computable by size nk circuits. But for this
amount of padding, MA can pull the same trick it does in the PSPACE ⊂ P/poly case.
Namely, guess a circuit for Y and then simulate the IP protocol for Y . For some PSPACE
complete Y , the language itself is its proof and this works. The trick is to use just the right
amount of padding so it requires circuits of at least size nk, but not much larger. Santhanam
uses the single bit of advice in a clever way to figure out when there is just the right amount
of padding.

In either case, the time of this protocol is roughly the time of the verifier in the IP
protocol, plus the size of the prover circuit times the number of times the prover is queried.

There are two reasons the MA protocol could take polynomially more time than the size
of the circuits it wants to compute in the case PSPACE ⊂ P/poly. One is that the IP from
the original Santhanam result has polynomial verifier time and a polynomial time interaction
with the prover, making the verifier in the MA/1 protocol take polynomially longer than
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the circuit complexity of the problem being solved. By using a PCP, we get better results.
The other is that the prover circuit complexity could be large, depending on the circuit
size required for PSPACE (could be any polynomial when PSPACE ⊂ P/poly). This is
the reason there is no upper bound on the polynomial run time of the MA/1 protocol in
Santhanam’s proof. To avoid this issue we consider a finer case analysis.

We break the problem into three cases. For some SPACE[O(n)] complete language, X,
we have one2 of the following:
1. X /∈ P/poly.
2. X ∈ SIZE[n1+o(1)].
3. X ∈ SIZE[na+o(1)] \ SIZE[na−o(1)] for some a > 1.

The original proof only used the two cases X /∈ P/poly and X ∈ P/poly. The case
where X /∈ P/poly is completely unchanged. Note that this is the plausible case, and here
there is no constant upper bound a on k.

If X ∈ P/poly, we use our efficient PCP, Theorem 3, instead of the IP Santhanam uses.
With this substitution, the case where X ∈ SIZE[n1+o(1)] is almost unchanged from the
original proof. By separating this into it’s own case, we get tight bounds for all k in this case.

If X ∈ SIZE[na+o(1)] \ SIZE[na−o(1)] for some a > 1, then we use the same padding
technique we use if X /∈ P/poly, just using our new PCP. In this case, we can only do this
if for some k < a, we are trying to show MATIME[nk+o(1)]/1 ̸⊂ SIZE[nk−o(1)]. This is the
case where a is finite, but in this case, we can use Santhanam’s argument using our PCP to
get Theorem 2.

To see why k > a poses a difficulty, suppose SPACE[O(n)] ̸⊆ SIZE[o(n2)], but
SPACE[O(n2)] ⊆ SIZE[O(n2)]. Then to get a language requiring size n3 circuits, we
need to use a space n3 algorithm. But the prover for a space n3 language is a language
running on an input with length n3, and using space linear in its input length. Thus we
may need a size (n3)2 = n6 circuit for our prover. So the verifier takes time at least n6 to
even read the prover circuit, thus can’t run in time n3. See Item 2 in our open problems for
further explanation.

▶ Remark 7. We note our verifier in Theorem 1 is a RAM machine, not a standard Turing
Machine. This is because we know how to efficiently simulate a circuit on a RAM machine,
but not on a standard Turing Machine.

1.2.2 Verifier Efficient PCP
Now we explain the PCP we actually use in the MA protocol. We start with a PCP similar
to [20] and [4] that we refer to as our base PCP. This PCP has a verifier that runs in time
Õ(n + log(T )) and uses O(log(T )) queries. To reduce the number of queries, we use PCP
composition [3, 7, 13, 25, 12].

To perform PCP composition, we need a robust PCP. Loosely, a robust PCP is a
PCP so that when x /∈ L, for any proof, most sets of queries to that proof return not only a
rejected response, but a response that is far from any accepted response. To make our base
PCP robust, we use the aggregation through curves technique [2]. Now we briefly explain
how to use aggregation through curves to convert our base PCP into a robust PCP.

An honest proof for our base PCP is a single low degree polynomial. Suppose our base
PCP has q queries. To make our PCP robust, we first choose the randomness for the base
PCP, and another random point in the PCP proof. Then we find the degree q curve that

2 This is a trichotomy in an asymptotic sense: for every constant a, either X ∈ SIZE[O(na)] or it is not.
See Section 3.5 for details.

APPROX/RANDOM 2023
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goes through all these points. Then we check if the proof, restricted to this curve, is a low
degree polynomial, and whether the base PCP would have accepted on this input. Since a
low degree polynomial is an error correcting code, this gives robustness.

One concern one might have with this robust PCP is that it actually requires Ω(log(T )2)
queries. We don’t need to actually calculate all of these query locations. Since we reduce the
actual number of queries with PCP composition, we only need to be able to calculate any
individual query location quickly. To find these query locations requires us to compute a
point on the degree q curve going through each of our q points our base PCP queries plus a
random point. In our base PCP, q = O(log(T )) and our proof has dimension O(log(T )). So
the naive way to compute this curve is to calculate each coordinate independently, which
would take time Õ(log(T )2).

To efficiently compute low degree curves through points, or to extrapolate a function
going through those points, we introduce the concept of time extrapolatable functions.

▶ Definition 8 (Extrapolatability). For any n, q, t > 0, and field F, we call Q : [q] → Fn “t

extrapolatable” (or time t extrapolatable) if there is a time t algorithm taking any v ∈ Fq,
that outputs∑

i∈[q]

viQ(i).

Equivalently, if we think of Q as outputting the columns of a matrix, then we say Q is
time t extrapolatable if one can multiply a vector with it in time t. An important property
of extrapolatable functions is that an extrapolation of an extrapolatable function can be
computed efficiently. This is where it gets its name.

Our base PCP is just a sum check and a few point checks. Each of these are time
Õ(log(T )) extrapolatable. Our robust PCP only queries locations easily computable given
the extrapolation of our base PCP query locations. Extrapolations of extrapolatable
functions are easy to compute, so we can easily compute the query locations of the robust
PCP.

We also introduce the concept an extrapolatable PCP (ePCP) as one where an honest
proof is a low degree polynomial, and the query locations after fixing a choice of randomness
are extrapolatable. We show that any ePCP can be extended into a robust PCP where the
query locations of that robust PCP can be computed efficiently.

1.3 Generalization And Sharpness
We actually prove a stronger result than Theorem 1 that is sharp. First, our MA protocol
is input oblivious: the message from Merlin is just a program for computing a PSPACE
complete language and doesn’t depend on the specific input, just its length. Second, the
hardness is against the model used in Merlin’s message. We used circuits, but we can describe
a randomized algorithm directly to save some polynomial factors.

We define input oblivious Merlin-Arthur time, OMATIME, the same way as Fortnow,
Santhanam, and Williams [17]. Input oblivious Merlin-Arthur are languages solvable with
untrusted advice, where the advice only depends on the input length. In our case, Merlin gets
to send a long, untrusted message for every input length, and Arthur also gets a single bit of
trusted advice. Note that Santhanam’s original proof implicitly also uses input oblivious MA.

The main property of circuits we use is that a randomized algorithm can efficiently
simulate it. We can instead use BPTIME[nk]/nk, that is, randomized algorithms running
in time nk with description length nk. This uses the same model of computation as our
verifier, allowing it to more efficiently simulate OMATIME.
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Using OMATIME instead of MATIME and BPTIME instead of SIZE, we can follow
the same proof as our main result to show:

▶ Theorem 9 (OMATIME Lower Bound Against BPTIME). There exists constant a > 1,
such that for all k < a, for some f(n) = o(1),

OMATIME[O(nk+f(n))]/1 ̸⊂ BPTIME[O(nk)]/O(nk).

This result is tight in the sense that for any function f(n), we have

OMATIME[f(n)]/1 ⊆ BPTIME[O(f(n))]/(f(n) + 1).

To get stronger results, we need to use nondeterminism that depends on the input. So one
could say our result is less about the power of nondeterminism, and more about the power
of trusted versus untrusted advice. Specifically: trusting advice doesn’t always buy (much)
time in the randomized setting, as long as we have some trusted advice.

Let us briefly outline what would need to change in our main proof to prove Theorem 9,
and justify why those changes would work.

First we need to make a class of randomized programs that act more like circuits. Consider
the class of programs, C, that contain randomized algorithms that work only a specific input
length. For any C ∈ C, we say C(x) is the random variable that simulates C on input x for
time |C|, and outputs what C does if C terminates in time |C|, and outputs 0 otherwise. See
that C behaves like circuits in the following important ways:
1. Given a program C ∈ C, a randomized algorithm can calculate the random variable C(x)

in time O(|C|).
2. For any function f(n) and language L ∈ BPTIME[f(n)]/f(n), for every n, there is a

Cn ∈ C such that |Cn| = O(f(n)) and with high probability Cn(x) = 1x∈L.

A few notes on using C in our proof, as opposed to circuits.
1. First, see that SPACE[O(nk)] ̸⊆ BPTIME[o(nk)]/o(nk). This follows using the same

exhaustive search type algorithm used for SIZE[o(nk)].
For any polynomial nk, there is a deterministic program, A, with length O(nk) running
in time O(nk), but is not computable with high probability by any program C ∈ C with
length o(nk). This follows from a simple counting argument: length nk deterministic
programs contain more than 2αnk functions for some constant α (just use some lookup
table), while there are only 2αnk length αnk programs.
Such an A can still be found by exhaustive search in space O(nk), since given C ∈ C, we
can space efficiently check every choice of randomness and calculate majority. This gives
us that

SPACE[O(nk)] ̸⊆ BPTIME[o(nk)]/o(nk).

2. Given that L ∈ BPTIME[f(n)]/f(n), then for any n, there is some advice (notably, a
program Cn ∈ C with size |Cn| ≤ f(n)) such that a randomized algorithm given that
advice can compute whether x ∈ L with probability 1 − ϵ in time O(f(n) log( 1

ϵ )).
This allows our verifier to efficiently compute a SPACE[O(n)] complete problem, L, in
time nearly f(n) if L ∈ BPTIME[f(n)]/f(n), given correct advice.

3. We also note that for some programs C ∈ C, for some inputs x, our program C evaluated
on x may answer one or zero with very close to half probability. That is, the syntax of C
does not only give bounded error randomized algorithms, just a randomized algorithm.
This is not an issue, because in the completeness case, there will be a program C that does
have bounded error the prover should provide. And in the soundness case, the soundness
of our PCP holds against any multi-prover strategy, even a randomized strategy. So no
program provided will convince the verifier with high probability.

APPROX/RANDOM 2023
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Finally, see that in all cases of our proof, Arthur only asks Merlin for a program computing
some SPACE[O(n)] complete problem. This advice does not depend on the specific input,
only on the input size.

2 Preliminaries

We assume some familiarity with basic complexity theory. See Arora and Barak’s book for
background [1]. In this paper, by algorithm, we mean algorithm on a RAM machine, and
by circuit, we mean a fan in 2 circuit with unbounded depth. A randomized algorithm is a
deterministic algorithm with an extra input for randomness. We will assume in this paper
that all time and space bounds for algorithms are sufficiently easily computable.

Now recall that MA is the complexity class of problems with polynomial sized certificates
that can be verified with bounded error by a randomized, polynomial time algorithm. This
is like NP with a randomized verifier. Then we define MATIME in an analogous way to
NTIME. Our results have perfect completeness, so we only define MATIME with perfect
completeness.

▶ Definition 10 (MATIME/1). For any function f : N → N, define MATIME[f(n)]/1
as the set of languages, L, such that there is a function b : N → {0, 1} and a time f(n)
randomized algorithm M taking four inputs, an input x, a random input r, a witness w, and
an advice bit such that

Completeness If x ∈ L and n = |x|, then there exists w with |w| ≤ f(n) such that

Pr
r

[M(x, r, w, b(n)) = 1] = 1.

Soundness If x /∈ L and n = |x|, then for every w,

Pr
r

[M(x, r, w, b(n)) = 1] < 1/2.

We let SIZE denote the class of languages with circuits of a given size.

▶ Definition 11 (SIZE). For any function f : N → N, SIZE[f(n)] is the class of languages,
L, where for each input length n, there is a circuit of size f(n) with n inputs computing L

for inputs of length n.
Further, SIZE[O(f(n))] is the class of languages, L, such that for some g(n) = O(f(n)),

we have L ∈ SIZE[g(n)]. Similarly for SIZE[o(f(n))].

In this paper, we will focus on time and space efficient, non-adaptive PCPs with perfect
completeness. Because we need to pay close attention to the amount of time it takes to make
a single query to the proof, we separate the algorithm for producing queries, Q, from the
algorithm for verifying the response, V . We also separate the function that gives all the
query locations for a choice of randomness, I, from the algorithm that gives a single one of
those query locations, Q.

So at a high level, a PCP protocol does the following:
1. Chooses a common random string, r.
2. Runs query function Q with randomness r for q(n) many times to get all query locations,

I.
3. Looks up all query locations, I, into a provided proof, π, to get proof window πI .
4. Runs verifier V with randomness r and proof window πI and outputs if V accepts.
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Now we formally define a PCP.

▶ Definition 12 (PCP). We say that a language L has a non-adaptive PCP, A, with perfect
completeness if there exists verifier V , prover P , index function I, and query function Q,
such that, for some alphabet Σ, δ ∈ [0, 1], and functions r, l, q : N → N:
1. I takes 2 inputs, an input of length n and randomness of length r(n), and outputs an

element of [l(n)]q(n). That is, I outputs q(n) indexes in a length l(n) string,
2. Q is an algorithm with three inputs, an input x of length n, randomness r of length r(n),

and an index i ∈ [q(n)] and outputs an element of [l(n)] such that Q(x, r, i) = I(x, r)i.
3. V is an algorithm with three inputs, an input of length n, randomness of length r(n), and

q(n) symbols from Σ, and outputs either accept or reject.
4. P is an algorithm that takes two inputs, an input of length n, and an index i ∈ [l(n)],

and outputs a symbol from Σ.

Completeness If x ∈ L and n = |x|, then there exists πx ∈ Σl(n) such that

Pr
r

[V (x, r, πx
I(x,r)) = 1] = 1,

and for every i ∈ [l(n)], P (x, i) = πx
i .

Soundness If x /∈ L then for every π′,

Pr
r

[V (x, r, π′
I(x,r)) = 1] ≤ δ.

Then we also say:
1. A has proof length l(n).
2. A has alphabet Σ.
3. A has soundness δ.
4. A uses q(n) queries.
5. A uses r(n) bits of randomness.
6. If V runs in time t(n), A has verifier time t(n).
7. If V runs in space s(n), A has verifier space s(n).
8. If P runs in space s′(n), A has prover space s′(n).
9. If Q is computable in time t′(n), A has query time t′(n).

3 Efficient PCP To Fine Grained Lower Bounds

We only give a detailed sketch here. The full version of our paper is available at [9].
Our analysis depends on the circuit complexity of some PSPACE complete problem. So

we start by choosing a SPACE[O(n)] complete problem. We use a version of SPACE TMSAT
(on page 83 of [1]).

▶ Definition 13 (Specific Problem). SPACE TMSAT is the language

{(M, x, 1n, 0∗) : Turing machine M accepts x using at most n space.}

Note: SPACE TMSAT ∈ SPACE[O(n)] and SPACE TMSAT is SPACE[O(n)] complete. The 0∗

is just there to make it explicit the language is paddable. In particular, this means that the
circuit complexity of SPACE TMSAT is non-decreasing.

▶ Lemma 14 (SPACE TMSAT Circuit Complexity is Non-Decreasing). If A′(n) is the size of the
minimum circuit solving SPACE TMSAT for inputs of length n, then A′(n) is non-decreasing.

APPROX/RANDOM 2023
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Proof. Let C be the circuit of size A′(n + 1) solving SPACE TMSAT for length n + 1 inputs.
Then to get a circuit for length n inputs, use C with an extra 0 hard coded into the last
input. The resulting circuit will be at most the size of C and solve length n inputs. Thus
A′(n + 1) ≥ A′(n). ◀

Then using Theorem 3, we can get a PCP for SPACE TMSAT by setting T = 2O(n) and
S = O(n). This can be turned into a PCP with a binary alphabet by replacing every query
for a symbol in Σ with O(log(n)) queries to the individual bits of that symbol.

▶ Corollary 15 (PCP for SPACE TMSAT). There is a PCP for SPACE TMSAT with:
1. Verifier time Õ(n).
2. Query time Õ(n).
3. poly(log(n)) queries.
4. Binary alphabet.
5. Log of proof length Õ(n).
6. Prover space Õ(n).
7. Soundness 1/2 and perfect completeness.

We prove three different MATIME/1 lower bounds that are based on three different
hard problems. Different ones work better in different parameter regimes. After constructing
them all, we show we always fall into some range of parameters so that we can get the lower
bounds of Theorem 1.

3.1 Implicitly Encoding Advice in Input Length
In each of our cases, we will use advice to find the size of some prover circuit. To do this, we
implicitly encode a number in the input length. If that implicitly encoded number describes
the size, our advice bit will be 1. Otherwise, the advice bit is 0.

For any input length n ∈ N, for some l ∈ N, we have n ∈ [2l, 2l+1). For such an l, there is
some m ∈ N such that n = 2l + m. This m, or equivalently this l, is our implicitly encoded
number. Because we will use this decomposition a lot, we will explicitly define some functions
that perform this decomposition.

▶ Definition 16 (Implicit Encoding In Input). For natural n ≥ 1, let l ≥ 0 be an integer so
that n ∈ [2l, 2l+1), and m ≥ 0 be an integer so that n = 2l + m. Then define µ(n) = m and
ρ(n) = l.

There is a simple interpretation of this m = µ(n) and l = ρ(n) in terms of the binary
representation of n. You can think of l as the length of the binary number, and m the binary
number after the top bit is removed.

3.2 SPACE TMSAT not in P/poly
In this case, we follow the proof in the original work [29] where PSPACE ̸⊂ P/poly. We
present the same arguments here with more precise parameters.

When PSPACE ̸⊂ P/poly, the circuit complexity of SPACE TMSAT for different input
sizes could change drastically and in a way that may be hard to analyze. This is an issue
because the PCP for SPACE TMSAT needs a prover with a longer input than the input being
verified, thus might require a much larger circuit.

Instead, we use a downward self reducible PSPACE complete language. Specifically, a
language that has a sound interactive protocol with queries the same length as its input and
whose prover is the language itself. We cite the result from Lemma 11 in [29]:
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▶ Lemma 17 (Same Size, Self Proving PSPACE Complete Language). There is a PSPACE-
complete language Y and a probabilistic polynomial-time oracle Turing machine M such that
for any input x:
1. M only asks its oracle queries of length |x|.
2. If M is given Y as oracle and x ∈ Y , then M accepts with probability 1.
3. If x /∈ Y , then irrespective of the oracle given to M , M rejects with probability at least

1/2.

The important feature of language Y is that for an input x, the prover for x is the same
language Y , and queries to the prover have the same length as x. This means Y , and the
prover for Y , have the same circuit. Then if PSPACE ̸⊂ P/poly, then the polynomial
overhead of the proof protocol grows much more slowly than the difficulty of Y . So a padded
version of Y can be used as our language in this case. A proof sketch is in Appendix A, full
proofs are in the full version [9].

▶ Lemma 18 (Bound if PSPACE does not have Polynomial Sized Circuits). If SPACE TMSAT /∈
P/poly, then for any k > 0, and some f(n) = o(1):

MATIME[O(nk+f(n))]/1 ̸⊂ SIZE[O(nk)].

3.3 SPACE TMSAT in Almost Linear Size
The idea in this case is to use a brute force, small space algorithm that finds a problem not
in a fixed polynomial size. In particular, for circuit size S(n), the brute force algorithm uses
space O(S(n)) to compute some function with minimum circuit size Θ(S(n)). Then we want
to simulate the PCP from Corollary 15 to prove the output of this algorithm. Since the
PCP is efficient, the prover for this algorithm does not use much more space than the brute
force algorithm itself.

If SPACE TMSAT has almost linear sized circuits, the prover doesn’t require much larger
circuits than the space of the prover. Finally, our PCP is efficient, so the time of the MA
verifier isn’t much more than the size of the prover circuit. So the MA protocol doesn’t
require much more time then the size of the circuit it proves the output of.

If SPACE TMSAT requires larger circuits, say quadratic circuits, then the size of the prover
circuits would be quadratically larger than the input length of the prover. That is, the prover
circuit would be quadratically larger than the circuit it is trying to prove. This would give
quadratic overhead for the MA verifier time over the size of the circuit it verifies. So this
construction only works well enough when SPACE TMSAT has almost linear sized circuits.

So this gives a proof when SPACE TMSAT has almost linear sized circuits. A proof sketch
is in Appendix A, full proofs are in the full version [9].

▶ Lemma 19 (Bound if SPACE TMSAT has Size n1+o(1)). If for some g(n) = o(1) and some
non-decreasing function A(n) = n1+g(n) we have SPACE TMSAT ∈ SIZE[O(A(n))], then for
any k > 0, there is an f(n) = o(1) such that:

MATIME[O(nk+f(n))]/1 ̸⊂ SIZE[O(nk)].

3.4 SPACE TMSAT in Polynomial Size, but not Almost Linear
This is the “bad” case, where we can’t prove the result for every constant k, only for k < a.
This is the most complicated case, requiring us to both pad the input to get the correct
problem difficulty, and use advice to get the size of the circuits for the prover. The idea is to
solve SPACE TMSAT on a padded version of the input using our PCP. So we need the advice
to tell us three things:

APPROX/RANDOM 2023
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1. Some m so that SPACE TMSAT on length m inputs requires circuits of size ω(nk).
2. Further, we need SPACE TMSAT on length m inputs to require circuits of size near ma.

This keeps the prover from requiring circuits too much larger than SPACE TMSAT on length
m inputs does.

3. How big the circuit for the prover in Corollary 15 needs to be.

Similar to the previous cases, this advice will come implicitly from the input length, and
the single advice bit will be 1 if and only if the input length encodes valid advice. A skectch
is in Appendix A. For full details, see the full version [9].

▶ Lemma 20 (Bound if SPACE TMSAT has size na+o(1)). Suppose for some function h(n) with
|h(n)| = o(1) and for some constant a > 1, for some function A(n) we have A(n) = na+h(n).
Then if A(n) is non-decreasing and we have SPACE TMSAT ∈ SIZE[O(A(n))]\SIZE[o(A(n))],
then for any k < a, for some f(n) = o(1),

MATIME[O(nk+f(n))]/1 ̸⊂ SIZE[O(nk)].

3.5 Altogether
Altogether, these three cases imply Theorem 1. More details can be found in the full
version [9].

▶ Theorem 1 (Fine Grained MA Lower Bound). There exists a constant a > 1, such that for
all k < a, for some f(n) = o(1),

MATIME[O(nk+f(n))]/1 ̸⊂ SIZE[O(nk)].

Proof. First, we will find the best polynomial approximation of the circuit complexity of
SPACE TMSAT. So define set

S = {a ∈ R : SPACE TMSAT ∈ SIZE[O(na)]}.

If S = ∅, then there is no constant a such that SPACE TMSAT ∈ SIZE[O(na)]. Then
SPACE TMSAT /∈ P/poly, so we use Lemma 18.

So suppose S ≠ ∅. One can show that SPACE TMSAT requires linear size circuits since it
depends on all inputs. Thus for any a < 1, we know that SPACE TMSAT /∈ SIZE[O(na)], that
is a /∈ S. So 1 is a lower bound for S.

Then the set S is nonempty and has a lower bound. So S has an infimum, a, so
that for any constant ϵ > 0, we have SPACE TMSAT ∈ SIZE[O(na+ϵ)], but SPACE TMSAT /∈
SIZE[O(na−ϵ)]. This implies that for some h(n) with |h(n)| = o(1) and A(n) = na+h(n) that
SPACE TMSAT ∈ SIZE[O(A(n))] \ SIZE[o(A(n))].

If a = 1, we use Lemma 19. If a > 1, we use Lemma 20. ◀

To prove Theorem 2, we use a proof similar to Lemma 19. See the full paper [9] for
details.

4 PCP Sketch

We give a brief overview of the PCP proof. A full proof is available at [9].
Our overall protocol constructs an extrapolatable PCP by observing that a simple BFL

style PCP is extrapolatable. Then this can be turned into an rPCP with an efficient query
function. Finally we can compose this with a decodable, BFL style PCP with a very fast
verifier.
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4.1 Extrapolatable PCPs

We start by showing some lemmas about extrapolatability that make the definition easy to
work with. Notably, if 2 functions are extrapolatable, so is their concatenation. This allows
us to show components of a PCP are extrapolatable individually to get an extrapolatable
PCP.

▶ Lemma 21 (Extrapolatability Combination). For integers n, q, q′, t, t′ > 0, and field F, if
p : [q] → Fn is t extrapolatable, and p′ : [q′] → Fn is t′ extrapolatable, then g : [q + q′] → Fn

is O(t + t′ + n log(F)) extrapolatable where

g(i) =
{

p(i) i ≤ q

p′(i − q) i > q
.

Of course, extrapolatability’s main purpose is to allow efficient extrapolation.

▶ Lemma 22 (Efficient Polynomials From Extrapolatability). For any n, q, t > 0, field F
where |F| > q, and t extrapolatable Q : [q] → Fn, there is a time O(t + qpolylog(|F|))
algorithm computing the value of a degree q − 1 polynomial, g, such that for all i ∈ [q] we
have g(i) = Q(i).

Now we introduce extrapolatable PCPs and show they imply robust PCPs with fast
query functions. Extrapolatable PCPs are PCPs whose proofs are low degree functions,
only require soundness against proofs that are low degree functions, and whose query location
function is extrapolatable.

In our notation, the query function Q returns a single query location of the verifier V on
a choice of randomness, whereas I returns every query location for a choice of randomness.
Query function, Q, needs to be extrapolatable, but index function, I, is more convenient for
defining completeness and soundness. See standard PCPs, Definition 12, for reference.

▶ Definition 23 (Extrapolatable PCP). We say a non-adaptive PCP, A, for language L with
verifier V , prover P , individual query function Q, and index function I is an extrapolatable
PCP (ePCP) if for some m and d:
1. For some field F, A uses alphabet F.
2. The proof length is |F|m.

That is, any proof, π, can be viewed as a function π : Fm → F.

Low Degree Completeness If x ∈ L and n = |x|, then there exists a polynomial πx : Fn → F
of degree at most d such that Prr[V (x, r, πx(I(x, r))) = 1] = 1, and for every i ∈ [l(n)],
we have P (x, i) = πx

i .
Low Degree Soundness If x /∈ L then for every polynomial π′ : Fn → F of degree at most d

has Prr[V (x, r, π′(I(x, r))) = 1] ≤ δ.

Further, we say A has:
1. Extrapolation time t(n) if for any x, r, the function Qx,r(i) = Q(x, r, i) is time t(n)

extrapolatable.
2. Degree d and m variables.
3. Low degree soundness δ.
4. Perfect low degree completeness.
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The main application of an ePCP is a convenient primitive in constructing efficient
robust PCPs (rPCP). Robust PCPs are a standard primitive in the literature and are
commonly used in PCP composition [3, 7, 13, 25, 12]. This conversion of ePCP to rPCP
is where all the low degree testing is performed. But low degree test queries are simple lines
so are easy to compute. Note that our rPCPs constructed from an ePCP uses the same
proof, so if the ePCP prover is efficient, so is the rPCP prover. See the full paper [9] for a
proof.

▶ Theorem 24 (ePCP gives efficient rPCP). For any language L with an ePCP, A, with
1. Verifier time t(n).
2. Verifier space s(n).
3. Extrapolation time t′(n).
4. Randomness r(n).
5. Degree d(n) and m(n) variables.
6. q(n) queries.
7. Alphabet F where |F| > 10q(n)d(n).
8. Prover P .
9. Low degree soundness 0.1.

10. Perfect low degree completeness.
Language L has an rPCP, B, with
1. Verifier time O(t(n) + |F|3polylog(|F|)).
2. Verifier space O(s(n) + log(|F|)).
3. Randomness r(n) + O(m(n) log(|F|)).
4. Query time O(t′(n) + (q(n) + m(n))polylog(|F|)).
5. O(|F|) queries.
6. Prover P with perfect completeness.
7. Soundness at most 0.99.

4.2 Constructing our Extrapolatable PCP
Our ePCP is a BFL [4] style PCP. We start by converting our algorithm into a cellular
automata so that it has very uniform, local constraints, similar to the Cook-Levin theorem
[10, 21], or what was done in [20]. In particular, the constraints can be described by a simple
polynomial of the computation history of the cellular automata.

Then our ePCP will ask for a multilinear extension of the computation history, a low
degree polynomial encoding the constraint function of that computation history, and a sum
check [22] style proof verifying that constraint is always satisfied. Then the verifier just needs
to check the computation history is consistent with the input, the constraint polynomial is
consistent with the computation history polynomial, and the sum check of the constraint
polynomial succeeds. All low degree testing is handled in the conversion from an ePCP to
an rPCP.

Now we verify that a variation on standard sum check [22, 4] is extrapolatable. Since
ePCPs only need soundness against low degree proofs, our base ePCP only needs to perform
constantly many queries besides the sum check. So the check sum is the most difficult thing
to prove the extrapolatability of.

▶ Lemma 25 (Sum Check Queries Are Extrapolatable). For any variable number n ∈ N, degree
d ∈ N, field F with |F| > max{d, n} + 1, and randomness r, the query location function, Qr,
used in the sum check protocol for a degree d and n variable function are O(ndpolylog(|F|))
extrapolatable.
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The proof is straightforward and comes from a close observation of the specific sum check
query locations.

We need a low space prover to use in our MA lower bounds. Creating the computation
history itself takes about as much space as the original algorithm. Multilinear extensions
can be done straightforwardly in small space if one only needs one symbol, or does not care
about time.

▶ Lemma 26 (Multilinear Extensions Require Low Space). Suppose function G : {0, 1}n →
{0, 1} is computable in space S. Then the multilinear function g consistent with G on Boolean
inputs is computable in space O(n log(|F|) + S).

Similarly, individual symbols from the constraint polynomial can be computed in small
space from the multilinear extension of the computation history. The sum check proof is
essentially partial linearizations of the constraint polynomial, so can also be done in small
space.

4.3 Decodable PCP
After that, we use a similar PCP for the decodable inner PCP (dPCP), and apply a
standard robust, decodable PCP composition [12]. Essentially only two changes need to be
made to get our dPCP. First we need to only check consistency of the computation history
with the explicit input (and not the implicit input). Second, we need to do an additional
query to an implicit input to decode from it. This does not require any new tricks.

Finally, we do a standard PCP composition of a robust PCP with a decodable PCP
to do query reduction. We note that we can not do the standard trick of having the outer
rPCP output a circuit that the inner dPCP proves the output of as that circuit description
would be too large for a verifier to compute. Instead this must be done implicitly, similar to
[5]. We also note that to keep the space of the inner PCP prover small requires the space of
the outer PCP prover, the space of the outer query function, and the space of the outer
PCP verifier to be small.

4.4 Fine Grained MIP = NEXP
We note that the low space and deterministic algorithm requirements were only to keep
the prover space low. Dropping the prover space requirement and using the same proof
gives Theorem 4. Then using Theorem 4, one can use a standard technique to get 1

polylog(n)
error, 2 query PCP. Combining this with a repetition theorem [28, 19, 27] gives the 2 query,
constant error MIP stated in Corollary 5.

5 Open Problems

There are several ways we would like to improve the circuit lower bounds.

1. Remove the advice bit.
We still had to use advice, a limitation from the original Santhanam result. It would be
nice if we could get lower bounds on MA with no non-uniformity.

2. Prove tight bounds for all k.
Another limitation of our circuit lower bound is that it does not prove this tight bound
for all k > 1, just for some k.
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The major barrier is in the case that SPACE[n] algorithms may require super linear,
but polynomial, sized circuits. Then the circuit size required for any given space may
change in a strange way. For example, suppose for some a > 1

SPACE[n] ⊆ SIZE[O(na)] \ SIZE[o(na)].

What we would like, but this does not obviously imply, is that for all b > 1:

SPACE[nb] ⊆ SIZE[O(nab)] \ SIZE[o(nab)].

While a padding argument shows SPACE[nb] ⊆ SIZE[O(nab)], it does not show that
SPACE[nb] ̸⊆ SIZE[o(nab)].

3. Make lower bound more frequent.
We only prove that infinitely often this lower bound occurs, but it may have even super
exponential gaps between input sizes where the circuit lower bound holds. Murray
and Williams [26] gave a refinement of the Santhanam circuit lower bounds, that is
incomparable to ours, which gives circuit lower bounds that holds for input lengths only
polynomially far apart.

4. Prove exponential lower bounds for MAEXP.
A similar problem is to prove exponential circuit lower bounds for the exponential version
of MA, known as MAEXP. The best circuit lower bounds known for MAEXP are
“half-exponential” by Miltersen, Vinodchandran, and Watanabe [24]. Loosely, a function
is half exponential if that function composed with itself is exponential.

Another open problem is to give a PCP whose verifier time matches ours with only
quasilinear proof length. Known PCPs with proof length Õ(T ) have verifier time Ω(n +
log(T )2). We suspect ideas from theorem 2.6 in [5]3 (which extends the results of [7] from
NP to NEXP) may give a PCP with verifier time near Õ(n + log(T )) while giving a proof
of length T 1+o(1). But it would not have proof length Õ(T ) = Tpolylog(T ). We stress that
close analysis of the verifier time for the PCP of [5] has not been performed, and that PCP
is much more complex than ours.
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A MA Circuit Lower Bound Proofs

In this section, we sketch the proofs of the main lemmas of Section 3. Full proofs are available
in the full version [9].

▶ Lemma 18 (Bound if PSPACE does not have Polynomial Sized Circuits). If SPACE TMSAT /∈
P/poly, then for any k > 0, and some f(n) = o(1):

MATIME[O(nk+f(n))]/1 ̸⊂ SIZE[O(nk)].

Proof. The idea is to take length m inputs to Y , pad them up to length n inputs so that Y

on length m inputs requires, and has, circuits of size just slightly larger than nk. Then as
long as n grows much faster than m, the overhead of the interactive protocol verifier will be
small and we only need to focus on prover overhead, which is around nk since the circuit for
Y is the prover for Y .

First, I claim that, since Y /∈ P/poly, for some g(n) = ω(1), we have Y /∈ SIZE[O(ng(n))].
If this was not true, then Y must have circuits of size nk for some k upper bounding the
best choice of g(n).
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Now we define our language, W , in MATIME[nk+f(n)]/1 but not in SIZE[O(nk)]. For
any input size, n, using Definition 16, let m = µ(n) and l = ρ(n). Let our advice bit be 1 if
both:
1. Y on length m inputs has circuits with size nk log(n). This makes sure there is a fast

prover for Y .
2. And Y on length m inputs does not have circuits of size mg(m). This makes sure m grows

much more slowly than n.
Then x ∈ W for some x with |x| = n if and only if the advice bit is 1 and for some y ∈ Y

with |y| = m we have x = y1n−m.
Let a > 0 be the constant so that the verifier (M in Lemma 17) for Y ’s interactive protocol

runs in time O(na). Define the MA protocol as follows. If the trusted advice bit is one, Merlin
gives Arthur a length nk log(n) circuit. Then Arthur simulates the interactive protocol for Y

on y using the circuit from Merlin as the prover. This protocol runs in time O(mank log(n)).
By assumption we have mg(m) < nk log(n), which one can show implies m < nf ′(n) for some
f ′(n) = o(1). Thus the MA/1 protocol runs in time O(nf ′(n)nk log(n)2) = nk+f(n) for some
f(n) = o(1).

By choice of g(m), for infinitely many m, the second condition is satisfied and g(m) > k+1.
For such m, the smallest choice of n = 2l + m where Y on length m inputs has circuits of
size nk log(n) can not have circuits of size (n/2)k log(n/2). For such n, language W does not
have circuits of size O(nk), but does have an MA protocol running in time nk+f(n). ◀

▶ Lemma 19 (Bound if SPACE TMSAT has Size n1+o(1)). If for some g(n) = o(1) and some
non-decreasing function A(n) = n1+g(n) we have SPACE TMSAT ∈ SIZE[O(A(n))], then for
any k > 0, there is an f(n) = o(1) such that:

MATIME[O(nk+f(n))]/1 ̸⊂ SIZE[O(nk)].

Proof. The proof proceeds in five steps.
1. Find a language L ∈ SPACE[nk log(n)2] \ SIZE[nk log(n)/10]. In particular, for every

input length n, language L has circuits of size nk log(n) but not nk log(n)/10.
2. Reduce L to SPACE TMSAT and use Corollary 15. In particular, find a circuit, Cn, for the

prover in an MA protocol for L on length n inputs.
3. Define our advice bit to implicitly give an upper bound for the size of Cm for some m

within a factor of 2 of n. Then we define W to be length m elements of L, padded to
length n.

4. Show that infinitely often the advice bit is 1 and W does not have small circuits.
5. Show that W has an efficient MA protocol.

With that outline in mind, let us begin the proof.

1. Find a language L ∈ SPACE[nk log(n)2] \ SIZE[nk log(n)/10].
From the non-uniform hierarchy (in Arora and Barak [1, Theorem 6.22]), there is a
language L ∈ SIZE[nk log(n)] \ SIZE[nk log(n)/10]. In particular, for every n, language
L on length n has circuits size nk log(n) but not size nk log(n)/10. A brute force search
can then find and simulate such a circuit using space O(nk log(n)2).

2. Reduce L to SPACE TMSAT and use Corollary 15.
Since M only uses space g(n) = Õ(nk), we know x ∈ L if and only if (M, x, 1g(n), 0) ∈
SPACE TMSAT. We know SPACE TMSAT on length Õ(nk) inputs has a PCP protocol from
Corollary 15 that uses polylog(n) many length Õ(nk) queries to a space Õ(nk) prover,
P , where each query can be calculated by a time Õ(nk) algorithm, Q, and the results
from P are verified by a time Õ(nk) verifier, V .
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Now we reduce the prover P to SPACE TMSAT so we can use that SPACE TMSAT ∈
SIZE[O(n1+g(n))] to get a circuit for P . A length Õ(nk) query, q, to P can be con-
verted into a length Õ(nk) input, q′, for SPACE TMSAT by providing the algorithm for
P and Õ(nk) 1s. Call the circuit for SPACE TMSAT on length |q′| inputs Cn. Since
SPACE TMSAT ∈ SIZE[O(n1+g(n))], we know Cn has size (Õ(nk))1+g(n) = nk+g′(n) for
some g′(n) = o(1).

3. Define our advice bit.
Now an MA protocol can guess Cn, but we may not be able to compute how large Cn

needs to be. The function g′(n) may be hard to compute. So we use advice.
Let l = ρ(n), m = 2l and t = µ(n) so that n = m + t. Then let the advice bit be 1 if
a. Circuit Cm has size mk2t.
b. For any natural t′ less than t, circuit Cm does not have size mk2t′ .

This condition allows us to use the smallest t possible for a given m.
Then x ∈ W for some x with |x| = n if and only if the advice bit is 1 and for some
y ∈ SPACE TMSAT with |y| = m we have x = y1n−m.

4. Show W does not have small circuits.
First see that for every large enough l, for m = 2l, there will be one t such that this
advice bit is 1. That is for some t < m, Cm has size mk2t. Otherwise, Cm would have
exponential size, but it only has almost linear size. Then for the minimum such t, the
advice bit will be one. So infinitely often, the advice bit will be 1.
When the advice bit is 1, the language W on length n = m + t inputs is equal to L

on length m inputs. Language L on length m inputs does not have circuits of size
mk log(m)/10. See by choice of m that 2m > n, so nk = o(mk log(m)/10). Thus infinitely
often, W does not have size nk circuits. Thus W /∈ SIZE[O(nk].

5. Show W has an efficient MA protocol.
If the advice bit is 0, this is trivially true. For n = 2l + t so that the advice bit is 1 and
m = 2l, either
t = 0: Then Cm has size nk = O(mk+g′(m)).
t ≥ 1: Then Cm has size mk2t but not mk2t−1. Since Cm does have circuits of size

mk+g′(m), we have mk2t = O(mk+g′(m)).
In either case, an MA protocol can guess Cm with a circuit with size O(mk+g′(m)).
Then an MA protocol for x = y1n−m and an advice bit of 1 can verify if y ∈ L by
first guessing a circuit for Cm, then using it as the prover in the PCP protocol from
Corollary 15.
The MA verifier needs to calculate polylog(m) queries with Q, run Cm on each of those
queries, and run V on those results. Since Cm has size O(mk+g′(m)), and Q and V run in
time Õ(mk+g′(m)), calculating all query locations, running Cm on each of those locations,
and V on those outputs takes time

polylog(m)(Õ(mk) + O(mk+g′(m))) + Õ(mk)

=Õ(mk+g′(m)).

Finally, since m < n, for some f(n) = o(1), the MA verifier runs in time nk+f(n).
The MA protocol is complete and sound since the PCP is. Thus

W ∈ MATIME[O(nk+f(n))]/1. ◀
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▶ Lemma 20 (Bound if SPACE TMSAT has size na+o(1)). Suppose for some function h(n) with
|h(n)| = o(1) and for some constant a > 1, for some function A(n) we have A(n) = na+h(n).
Then if A(n) is non-decreasing and we have SPACE TMSAT ∈ SIZE[O(A(n))]\SIZE[o(A(n))],
then for any k < a, for some f(n) = o(1),

MATIME[O(nk+f(n))]/1 ̸⊂ SIZE[O(nk)].

Proof. We want to solve a smaller instance of SPACE TMSAT that requires circuits of size
nk log(n), and we also need advice to tell us the size of circuits needed to prove SPACE TMSAT.
The advice for this will come implicitly from the input length.

For input x of length n, (using ρ and µ from Definition 16) let l = ρ(n), l′ = ρ(µ(n)), and
t = µ(µ(n)) so that n = 2l + 2l′ + t. We want to solve SPACE TMSAT on length 2l′ inputs,
so we let m := 2l′ . Then n = 2l + m + t and our language will solve length m inputs for
SPACE TMSAT using prover circuits of size (2l)k2t. Our advice bit will tell us when 2l, m and
t are appropriate.

So then m is the input length to SPACE TMSAT we want to solve, 2l is how much padding
is needed to make length m problems the right difficulty, and (2l)k2t is the size of the circuits
needed for our PCP prover.

The proof proceeds in 4 steps.
1. Define circuits Cm that prove SPACE TMSAT for length m inputs using our PCP and our

theorem assumptions on circuits for SPACE TMSAT.
2. Define when the advice bit should be 1.
3. Show infinitely often the advice bit is 1 and W /∈ SIZE[O(nk)].
4. Show that W has an efficient MA protocol.

Now following this outline:
1. Define circuits Cm that prove SPACE TMSAT for length m inputs.

Then SPACE TMSAT on length m inputs has a PCP protocol with verifier time Õ(m),
log of proof length Õ(m), and prover space Õ(m). Then the prover for SPACE TMSAT on
length m inputs can be reduced to a circuit for SPACE TMSAT with length Õ(m) inputs.
Then SPACE TMSAT on length Õ(m) inputs has a circuit, Cm, of size at most Õ(m)a+h(m).
So for some h′(m) = o(1), we have |Cm| ≤ ma+h′(m).

2. Define when the advice bit should be 1.
Since SPACE TMSAT /∈ SIZE[o(A(n))], for some c1 > 0, for some infinite set, U ′, for all
n′ ∈ U ′, language SPACE TMSAT on length n′ inputs does not have circuits with size
c1A(n′).
Let the advice bit be 1 if and only if each of the following hold:
a. SPACE TMSAT on length m inputs does not have circuits with size at most c1A(m/2).

This restricts us to m where the circuits for SPACE TMSAT require size near our upper
bound. This limits how much bigger Cm needs to be than the circuits for SPACE TMSAT
on length m inputs.

b. SPACE TMSAT on length m inputs does not have a circuit with size (l − 1)(2l−1)k.
c. SPACE TMSAT on length m inputs does have a circuit with size l(2l)k.
d. Circuit Cm has size (2l)k2t.
e. Either t = 0, or Cm does not have size (2l)k2t−1.
Then x ∈ W for some x with |x| = n if and only the advice bit is 1 and for some
y ∈ SPACE TMSAT with |y| = m we have x = y1n−m.

3. Now we will argue that infinitely often the advice bit is 1 and W does not have circuits
with size O(nk). See the full version [9] for full details. We do this in a few steps:
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First restrict our focus to m large enough and where SPACE TMSAT on length m inputs
requires circuits of size at least c1A(m/2). This will be the set of input lengths, U .
Since m can be any power of 2 and A is monotone, as long as A is tight, we can always
find an infinite set of m = 2l′ such that SPACE TMSAT on length m inputs requires
circuits of size A(m/2).
For each m ∈ U , find appropriate l and t.
Take the smallest l so that SPACE TMSAT on length m inputs does have a circuit of
size l(2l)k. Note that l > l′ = log(m), since SPACE TMSAT on length m inputs does not
have circuits with size mk log(m) since k < a.
Let t be the smallest t such that Cm has size (2l)k2t. Since we know Cm has poly
sized circuits, we know that some t < m achieves this.
Now for n = 2l + m + t, the advice bit is 1 and language SPACE TMSAT on length n

inputs does not have circuits with size O(nk).

4. Show that

W ∈ MATIME
[
nk+f(n)

]
/1.

If the advice bit is 0, this is trivial. Otherwise, assume for n the advice bit is 1.
When the advice bit is 1, we know Cm has size at most (2l)k2t and either
t = 0: Then Cm has size (2l)k = O(nk).
t ≥ 1: Then Cm does not have size (2l)k2t−1 by choice of t. Circuit Cm has size ma+h′(m).

Further, SPACE TMSAT on length m inputs does not have circuits with size c1A(m/2)
since the advice bit is 1, but it does have circuits with size l(2l)k. Together this implies
that

c1A(m/2)2t−1

l
<ma+h′(m)

2t <
2
c1

lma+h′(m)

A(m/2) .

Then one can show that 2t = mo(1). So for some f ′(n) = o(1) we have (2l)k2t =
nk+f ′(n).

The verifier for SPACE TMSAT can be simulated in time Õ(m), and the poly(log(m))
queries to the prover can be simulated in time

poly(log(m))S(2l)2t = nk+f(n)

for some f(n) = o(1). Thus

W ∈ MATIME
[
nk+f(n)

]
/1. ◀


	1 Introduction
	1.1 Results
	1.2 Proof Idea
	1.2.1 MA Lower Bounds Using PCP
	1.2.2 Verifier Efficient PCP

	1.3 Generalization And Sharpness

	2 Preliminaries
	3 Efficient PCP To Fine Grained Lower Bounds
	3.1 Implicitly Encoding Advice in Input Length
	3.2 SPACE TMSAT not in P/poly
	3.3 SPACE TMSAT in Almost Linear Size
	3.4 SPACE TMSAT in Polynomial Size, but not Almost Linear
	3.5 Altogether

	4 PCP Sketch
	4.1 Extrapolatable PCPs
	4.2 Constructing our Extrapolatable PCP
	4.3 Decodable PCP
	4.4 Fine Grained MIP = NEXP

	5 Open Problems
	A MA Circuit Lower Bound Proofs

