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Abstract
Beame et al. [ITCS’18 & TALG’20] introduced and used the Bipartite Independent Set (BIS)
and Independent Set (IS) oracle access to an unknown, simple, unweighted and undirected graph
and solved the edge estimation problem. The introduction of this oracle set forth a series of works in
a short time that either solved open questions mentioned by Beame et al. or were generalizations of
their work as in Dell and Lapinskas [STOC’18 and TOCT’21], Dell, Lapinskas, and Meeks [SODA’20
and SICOMP’22], Bhattacharya et al. [ISAAC’19 & TOCS’21], and Chen et al. [SODA’20]. Edge
estimation using BIS can be done using polylogarithmic queries, while IS queries need sub-linear
but more than polylogarithmic queries. Chen et al. improved Beame et al.’s upper bound result for
edge estimation using IS and also showed an almost matching lower bound. Beame et al. in their
introductory work asked a few open questions out of which one was on estimating structures of
higher order than edges, like triangles and cliques, using BIS queries.

In this work, we almost resolve the query complexity of estimating triangles using BIS oracle.
While doing so, we prove a lower bound for an even stronger query oracle called Edge Emptiness (EE)
oracle, recently introduced by Assadi, Chakrabarty, and Khanna [ESA’21] to test graph connectivity.
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1 Introduction

Motivated by connections to group testing, to emptiness versus counting questions in
computational geometry, and to the complexity of decision versus counting problems, Beame
et al. introduced the Bipartite Independent Set (shortened as BIS) and Independent
Set (shortened as IS) oracles as a counterpoint to the local queries [18, 16, 19]. The BIS
query oracle can be seen in the lineage of the query oracles [24, 25, 23] that go beyond
the local queries. The local queries for a graph G = (V (G), E(G)) are: (i) degree query:
given u ∈ V (G), the oracle reports the degree of u in V (G); (ii) neighbour query: given
(u ∈ V (G)), the oracle reports the i-th neighbor of u, if it exists; otherwise, the oracle reports
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48:2 On the Complexity of Triangle Counting Using Emptiness Queries

null; (iii) adjacency query: given u, v ∈ V (G), the oracle reports whether {u, v} ∈ E(G).
There is another related query oracle RandomEdge query: the oracle reports an edge
uniformly at random when we query.1

Let us start by looking into the formal definitions of BIS and IS.

▶ Definition 1.1 (Bipartite Independent Set). Given disjoint subsets U, U ′ ⊆ V (G), a
BIS query answers whether there exists an edge between U and U ′ in G.

▶ Definition 1.2 (Independent Set). Given a subset U ⊆ V (G), a IS query answers
whether there exists an edge between vertices of U in G.

The introduction of this new type of oracle access to a graph spawned a series of works that
either solved open questions [12, 13] mentioned in Beame et al. or were generalizations [13, 8, 6].
Beame et al. used BIS and IS queries to estimate the number of edges in a graph [4, 5].
One of their striking observations was that BIS queries were more effective than IS queries
for estimating edges. This observation also fits in with the fact that IS queries can be
simulated in a randomized fashion using polylogarithmic BIS queries.2 Edge estimation
using BIS was also solved in [12] albeit in a higher query complexity than [4]. There were
later generalizations of the BIS oracle to estimate higher order structures like triangles and
hyperedges [13, 7, 6]. On the IS front, Beame et al.’s result for edge estimation using IS
oracle was improved in [11] with an almost matching lower bound and thereby resolving the
query complexity of estimating edges using IS oracle. One can observe the interest generated
in these (bipartite) independent set based oracles in a short span of time. The results are
summarized in Table 1: a cursory glance would tell us that commensurate higher order
queries were needed for estimating higher order structures (Tripartite Independent Set
(shortened as TIS) for counting triangles, Colorful Independence Oracle (shortened
as CID) for counting hyperedges) if polylogarithmic number of queries is the benchmark.
We provide the definitions of TIS and CID below.

▶ Definition 1.3 (Tripartite Independent Set (TIS) [7]). Given three disjoint subsets
A, B, C of the vertex set V of a graph G(V, E), the TIS oracle reports whether there exists
a triangle having endpoints in A, B and C.

▶ Definition 1.4 (Colorful Independence Oracle (CID) [9, 13]). Given d pairwise
disjoint subsets of vertices A1, . . . , Ad ⊆ U(H) of a hypergraph H (U(H) is the vertex set of
the hypergraph H) as input, CID query oracle answers whether m(A1, . . . , Ad) ̸= 0, where
m(A1, . . . , Ad) denotes the number of hyperedges in H having exactly one vertex in each Ai,
∀i ∈ {1, 2, . . . , d}.

Notice the use of number of disjoint subsets in the definition of TIS and CID. That is
why, we call TIS and CID as higher order query oracles than BIS and IS.

1.1 The open questions suggested by Beame et al. [4, 5]
For a work that has spawned many interesting results in such a short span of time, let us
focus on the open problems and future research directions mentioned in [4, 5].

1 Note that that, in RandomEdge query, the probability space is the set of all edges. So, it is not actually
a local query.

2 Let us consider an IS query with input U . Let us partition U into two parts X and Y by putting each
vertex in U to X or Y independently and uniformly at random. Then we make a BIS query with inputs
X and Y , and report U is an independent set if and only if BIS reports that there is no edge with one
endpoint in each of X and Y . Observe that we will be correct with at least probability 1/2. We can
boost up the probability by repeating the above procedure suitable number of times.
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Table 1 The whole gamut of results involving Local queries [17], BIS, IS and its generalizations.
† ∆ is the maximum number of triangles on an edge. ‡ Both these results estimate the number of
hyperedges in a d-uniform hypergraph, where d is treated as a constant. Here n, m and T denote the
number of vertices, edges and triangles in a graph G, respectively. Õ(·) and Ω̃(·) hide a multiplicative
factor of poly(log n, 1/ε) and 1/poly(log n, 1/ε), respectively.

Work Oracle used Structure Upper bound Any other
estimated Lower bound problem solved?

[19] Local edge Õ
(

n√
m

)
Approximating

Ω
(

n√
m

)
average distance.

[11] IS edge Õ
(
min

{√
m, n/

√
m

})
–

Ω̃
(
min

{√
m, n/

√
m

})
–

[4] BIS edge poly(log n, 1/ε) = Õ(1) Edge estimation
– using IS queries.

[7] TIS triangle poly(log n, ∆, 1/ε)† –
– –

[13], CID hyperedge poly(log n, 1/ε) = Õ(1) [13] resolved
[6] ‡ – Q2 in positive.

[14] Local triangle Õ
(

n

T 1/3 + min
{

m, m3/2

T

})
–

Ω
(

n

T 1/3 + min
{

m, m3/2

T

})
–

[2] Local+ triangle Õ
(

min
{

m, m3/2

T

})
Estimated number

Random Edge Ω
(

min
{

m, m3/2

T

})
of arbitrary subgraphs.

This work BIS triangle Õ
(

min
{

m√
T

, m3/2

T

})
–

Ω̃
(

min
{√

T , m3/2

T

})
–

Q1 Can we estimate the number of cliques using polylogarithmic number of BIS queries?
Q2 Can polylogarithmic number of BIS queries sample an edge uniformly at random?
Q3 Can BIS or IS queries possibly be used in combination with local queries for graph

parameter estimation problems?
Q4 What other oracles, besides subset queries, allow estimating graph parameters with a

polylogarithmic number of queries?

Answers to the above questions and a discussion
Only Q2 has been resolved till now in the positive [13] as can be observed from Table 1. At
its core, Q1 asks if a query oracle can step up, that is, if it can estimate a structure that is of
a higher order than what the oracle was designed for. The framing of Q1 seems that Beame
et al. expected a polylogarithmic query complexity for estimation of the number of cliques
using BIS. Pertinent to these questions, we also want to bring to focus a work [22] where
the authors mention that it seems to them that estimation of higher order structures will
require higher order queries (see the discussion after Proposition 23 of [22]). They showed
that Ω(n2/ log n) BIS queries are required to separate triangle free graph instances from
graph instances having at least one triangle. This lower bound follows directly from the
communication complexity of triangle freeness testing [3]. However, the full complexity of
triangle estimation using emptiness queries like BIS remains elusive. It seems to us that
the observations in [4, 5] and [22] about the power of BIS in estimating higher order

APPROX/RANDOM 2023
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structures stand in contrast. In this backdrop, we have almost resolved the lower bound for
estimating triangles using BIS queries, and our upper bound result show that even if BIS
can not estimate triangles using polylogarithmic queries but it is still more powerful than
Local + Random Edge queries on graph for estimating triangles (see Table 1). BIS has
an inherent asymmetry in its structure in the following sense – when BIS says that there
exists no edge between two disjoint sets, then BIS stands as a witness to the existence of two
sets of vertices having no interdependence, while a yes answer implies that there can be any
number of edges, varying from one to the product of the cardinality of the two sets, going
across the two sets. We feel that this property of BIS gives it its power, but on the other
hand, also makes it difficult to prove lower bounds. That is probably the reason why works
related to upper bound for BIS and its generalizations exist, whereas works on lower bound
were not forthcoming. Though not on BIS, the work of Chen et al. using IS queries gave
an interesting lower bound construction for IS oracle. Our work goes one step further in
being able to prove a lower bound for the BIS oracle which is much stronger than IS oracle.
We have almost resolved the open question Q1 by proving almost matching lower and upper
bounds involving BIS for estimating triangles.

1.2 A stronger oracle than BIS, our main result and its consequences
Now we define Edge Emptiness (shortened as EE) query oracle which is stronger than
both BIS and IS. The Edge Emptiness query is a form of a subset query [24, 25, 23] where
a subset query with a subset P ⊆ U asks whether P ∩ T is empty or not, where T is also a
subset of the universe U . The Edge Emptiness query operates with U being the set of all
vertex pairs in G, T being the set of edges E in G, and P being a subset of pairs of vertices
of V .

▶ Definition 1.5 (Edge Emptiness). Given a subset P ⊆
(

V (G)
2

)
, a EE query answers

whether there exists an {u, v} ∈ P such that {u, v} is an edge in G.

EE query is recently introduce by Assadi et al. [1].3 Note that BIS and IS queries can be
simulated by an EE query. 4 We prove our lower bound in terms of the stronger5 EE queries
that will directly imply the lower bound in terms of BIS. But we prove matching upper
bound in terms of BIS. Our main results are stated below in an informal setting. The formal
statements are given in Theorems 3.1 and A.1.

▶ Theorem 1.6 (Main lower bound (informal statement)). Let m, n, t ∈ N. Any (randomized)
algorithm that has EE query access to a graph G(V, E) with n vertices and Θ(m) edges,
requires Ω̃

(
min

{√
t, m3/2

t

})
EE queries to decide whether the number of triangles in G is

at most t or at least 2t.

▶ Theorem 1.7 (An upper bound (informal statement)). There exists an algorithm, that has
BIS query access to a graph G(V, E), finds a (1±ε)-approximation to the number of triangles
in G with high probabilility, and makes Õ

(
min

{
m√

T
, m3/2

T

})
BIS queries in expectaton.

Here m, n, T denote the number of vertices, edges and triangles in G.

3 Assadi et al. [1] named EE query as OR query in their paper.
4 Let us consider a BIS query with inpus A and B. Let P be the set of vertex pairs with one vertex from

each of A and B. We call EE oracle with input P , and report there is an edge having one vertex in
each of A and B if and only if the EE oracle reports that there exists an {u, v} ∈ P that forms an edge
in G. Similarly, we can simulate an IS query with input U by using an EE query with input P =

(
U
2

)
.

5 For an example to show how EE query can be powerful than that of BIS or IS, O(log log n) EE
queries [24] are enough to estimate the number of edges in a graph, as opposed to high query complexity
(compared to O (log log n)) when we have BIS or IS queries (See Table 1).
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Note that Edge Emptiness query is the strongest subset query on edges of the graph.
Informally speaking, our lower bound states that no subset query on edges can estimate
the number of triangles in a graph by using polylogarithmic queries. However, the results
of Bhattacharya et al. [6] and Dell et al. [13] imply that polylogarithmic TIS queries are
enough to estimate the number of triangles in the graph. Note that TIS query is also a
subset query on triangles in the graph. To complement our lower bound result, we also give
an algorithm (see Theorem 1.7) for estimating the number of triangles in a graph with BIS
queries that matches our lower bound. Here we would also like to mention that the number
of BIS queries our algorithm uses is less than that of the number of local queries [17] needed
to estimate the number of triangles in a graph. This implies that we are resolving Q3 in
positive in the sense that BIS queries are efficient queries for triangle estimation vis-a-vis
local queries [14] coupled with even random edge queries [2] (see Table 1).

1.3 Notations

Throughout the paper, the graphs are undirected and simple. For a graph G(V, E), V (G)
and E(G) denote the set of vertices and edges, respectively; |V (G)| = n, |E(G)| = m and
the number of triangles is T , unless otherwise specified. We use

(
V (G)

2
)

to denote the set of
vertex pairs in G. Note that E(G) ⊆

(
V (G)

2
)
. For P ⊆

(
V (G)

2
)
, V (P ) represents the set of

vertices that belong to at least one pair in P . The neighborhood of a vertex v ∈ V (G) is
denoted by NG(v), and |NG(v)| is called the degree of vertex v in G. Γ({x, y}) denotes the set
NG(x) ∩NG(y), that is, the set of common neighbors of x and y in G. If e = {x, y} ∈ E(G),
Γ(e) denotes the set of vertices that forms triangles with e as one of their edges. The induced
degree of a vertex v in Z ⊆ V (G) \ {v} is the cardinality of NG(v) ∩ Z. For X ⊆ V (G), the
subgraph of G induced by X is denoted by G[X]. Note that E(G[X]) = {{x, y} : x, y ∈ X}.
For two disjoint sets A, B ⊂ V (G), the bipartite subgraph of G induced by A and B is
denoted by G[A, B]. Note that E(G[A, B]) is the set of edges having one vertex in A and
the other vertex in B.

Throughout the paper, ε ∈ (0, 1) is the approximation parameter. When we say a is a
(1±ε)-approximation of b, then (1−ε)b ≤ a ≤ (1+ε)b. Polylogarithmic means poly (log n, 1/ε).
Õ(·) and Ω̃(·) hide a multiplicative factor of poly(log n, 1/ε) and 1/poly(log n, 1/ε), respectively.
We have avoided floor and ceiling for simplicity of presentation. The constants in this paper
are not taken optimally. We have taken them to let the calculation work with clarity. However,
those can be changed to other suitable and appropriate constants.

1.4 Paper organization

We start with the technical overview of our lower and upper bounds in Section 2.1 and
Section 2.2, respectively. The detailed lower and upper bound proofs are in Section 3 and
Appendix A, respectively. The missing proofs of Section 3 are presented in the full version of
the paper [10].

2 Technical overview

In this section, we discuss about the techniques and proof overview, The overview of the lower
bound is discussed in Section 2.1 and that of the upper bound is discussed in Section 2.2.

APPROX/RANDOM 2023
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A B

C D

BA

C D

C ′

G ∼ DY es G ∼ DNo

Figure 1 Illustration of G ∼ DYes and G ∼ DNo when t = Ω(m log n).

2.1 Overview for the proof of our lower bound (Theorem 1.6)
Let us consider m, n, t as in Theorem 1.6. We prove the desired bound for BIS (stated in
Theorem 1.6) by proving the lower bound is Ω̃

(
m3/2

t

)
when t ≥ km log n and Ω̃

(√
t
)

when
t < km log n for EE query access, where k is a suitably chosen constant. In this Section,
we discuss the overview of the proof when t ≥ km log n. The desired lower bound when
t < km log n can be proved by using a reduction from the case when t ≥ km log n. The main
intuition behind the lower bound is to “hide” a suitably generated vertex set such that a
large number of queries is necessary to detect such a vertex.

The idea for the lower bound of Ω̃
(

m3/2

t

)
when t ≥ km log n

We prove by using Yao’s method [21]. There are two distributions DYes and DNo (as
described below) from which G is sampled satisfying P (G ∼ DYes) = P (G ∼ DNo) = 1/2.
Note that, for each G ∼ DYes ∪ DNo, |V (G)| = n = Θ(

√
m),6 and |E(G)| = Θ(m) with a

probability of at least 1− o(1). But the number of triangles in each G ∼ DNo is at least two
factor more than that of the number of triangles in any G ∼ DYes, with a probability of at
least 1− o(1).
DYes: The vertex set V (G) (with |V (G)| = Θ(

√
m)) is partitioned into four parts A, B, C, D

uniformly at random. Vertex set A forms a biclique with vertex set B and vertex set C

forms a biclique with vertex set D. Then every vertex pair {x, y}, with x ∈ A ∪B and
y ∈ C, is added as an edge to graph G with probability Θ

(√
t

m3/2

)
;

DNo: The vertex set V (G) (with |V (G)| = Θ(
√

m)) is partitioned into four parts A, B, C, D

uniformly at random. Vertex set A forms a biclique with vertex set B and vertex set C

forms a biclique with vertex set D. Then every vertex pair {x, y}, with x ∈ A ∪B and

6 Without loss of generality, we assume that
√

m is an integer. The proof can be extended to any graph
having n ≥

√
m vertices and m edges by adding n −

√
m isolated vertices.
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y ∈ C, is added as an edge to graph G with probability Θ
(√

t
m3/2

)
. Then each vertex

of C is sampled with probability Θ
(

t
m3/2

)
. Let C ′ be the sampled set. Each vertex of C ′

is connected to every vertex of A ∪B with an edge;
See Figure 1 for an illustration of the above construction. The constants, including k, in the
order notations above are suitably set to have the following:
When G ∼ DYes: The number of triangles in each graph is at most t, with a probability of

at least 1− o(1);
When G ∼ DNo: |C ′| = Θ

(
t

m

)
with a probability of at least 1− o(1). Hence, the number

of triangles in each G ∼ DNo is at least 2t, with a probability of at least 1− o(1).

Now, consider a particular EE query with input P ⊆
(

V (G)
2

)
. Here, we divide the

discussion into two parts, based on |P | ≤ τ and |P | > τ , where τ = Θ(log2 n) is a threshold.
If we query with the number of vertex pairs more than the threshold, chances are more we
will not be able to distinguish between G ∼ DYes and G ∼ DNo. When |P | > τ , we can
show that there exists a vertex pair {x, y} ∈ P such that {x, y} is an edge in G, with a
probability of at least 1− o(1), irrespective of whether G ∼ DYes or G ∼ DNo. Intuitively,
this is because the number of vertices and edges in G are Θ(

√
m) and Θ(m), respectively.

So, EE queries with input P ⊆
(

V (G)
2

)
such that |P | > τ will not be useful to distinguish

whether G ∼ DYes or G ∼ DNo.
We prove the desired lower bound by proving Ω̃

(
m3/2

t

)
EE queries are necessary to

decide whether G ∼ DYes or G ∼ DNo with a probability of at least 2/3. Note that C ′ = ∅
when G ∼ DYes. So, the number of EE queries needed to decide whether G ∼ DYes or
G ∼ DNo, is at least the number of EE queries needed to touch at least one vertex of C ′ when
G ∼ DNo. Here, by touching at least a vertex of C ′, we mean V (P ) ∩ C ′ ̸= ∅. As we have
argued that only EE query with input P ⊆

(
V (G)

2
)

with |P | ≤ τ can be useful, the probability
that we touch a vertex in C ′ with such a query is at most p = O

(
C′

√
m
· τ

)
= O

(
t log2 n
m3/2

)
.

Hence the number of EE queries to touch at least a vertex of C ′, is at least 1/p, that is,
Ω̃

(
m3/2

t

)
.

To let the the above discussion work, when G ∼ DNo, |C ′| = Θ
(

t
m

)
must be at least

Ω(log n). But |C ′| = Θ
(

t
m

)
with a probability of at least 1 − o(1). Because of this, we

take t ≥ km log n in the above discussion. The formal statement of the lower bound, when
t ≥ km log n, is given in Lemma 3.2 in Section 3. What we have discussed here is just
an overview, the formal proof of Lemma 3.2 is much more invloved and delicate, which is
presented in Section 3.1.

As we have already mentioned, the desired lower bound of Ω̃
(√

t
)

when t < km log n

can be proved by a reduction from the case when t ≥ km log n. The formal statement of
the lower bound, when t < km log n, is given in Lemma 3.3 in Section 3, and the proof is
presented in Section 3.2.

2.2 Overview for our upper bound (Theorem 1.7)
We establish the upper bound claimed in Theorem 1.7 by giving two algorithms that report
a (1± ε)-approximation to the number of triangles in the graph:

(i) Triangle-Est-High(G, ε) that makes Õ
(

m3/2

T

)
BIS queries;

(ii) Triangle-Est-Low(G, ε) that makes Õ
(

m+T√
T

)
BIS queries.

Informally speaking, our final algorithm Triangle-Est calls Triangle-Est-High(G, ε)
and Triangle-Est-Low(G, ε) when T = Ω(m) and T = O(m), respectively. Observe
that, if Triangle-Est knows T within a constant factor, then it can decide which one to

APPROX/RANDOM 2023
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use among Triangle-Est-High(G, ε) and Triangle-Est-Low(G, ε). If Triangle-Est
does not know T within a constant factor, then it starts from a guess L =

(
n
3
)
/2 and

makes a geometric search on L until the output of Triangle-Est is consistent with L.
Depending on whether L = Ω(m) or L = O(m), Triangle-Est decides which one among
Triangle-Est-High(G, ε) and Triangle-Est-Low(G, ε) to call. This guessing technique
is very standard by now in property testing literature [19, 14, 15, 2]. Another point to note
is that we do not know m. However, we can estimate m by using poly(log n) BIS queries
(see Table 1). An estimate of m will perfectly work for us in this case.

Algorithm Triangle-Est-High(G, ε)

Algorithm Triangle-Est-High is inspired by the triangle estimation algorithm of Assadi
et al. [2], where we have Adjacency, Degree, Random neighbor and Random Edge
queries. Please see Appendix A.2 for formal definitions of these queries. Note that the
algorithm by Assadi et al. can be suitably modified even if we have approximate versions
of Degree, Random neighbor and Random Edge queries. Also refer Appendix A.2
for formal definitions of approximate version of the above queries. By Corollary A.8, Õ(1)
BIS queries are enough to simulate the approximate versions of Degree and Random
neighbor, with a probability of at least 1− o(1). By Proposition A.7, approximate version
of Random Edge queries can also be simulated by Õ(1) BIS queries, with a probability
of at least 1 − o(1). Putting everything together, we get Triangle-Est-High(G, ε) for
triangle estimation that makes Õ(1) BIS queries. The formal statement of the corresponding
triangle estimation result is given in Lemma A.2, and algorithm Triangle-Est-High(G, ε)
is described in Appendix A.2.

Algorithm Triangle-Est-Low(G, ε)

This algorithm is inspired by the two pass streaming algorithm for triangle estimation by
McGregor et al. [20]. Basically, we show that the steps of McGregor et al.’s algorithm
can be executed by using Õ

(
m+T√

T

)
BIS queries. To do so, we have used the fact that,

given any X ⊆ V (G), all the edges of the subgraph induced by X can be enumerated
by using Õ (|E(G[X])|) BIS queries (see Proposition A.4 for the formal statement). The
formal statement of the corresponding triangle estimation result is given in Lemma A.3, and
algorithm Triangle-Est-Low(G, ε) is described in Appendix A.3 along with its correctness
proof and query complexity analysis.

3 Lower bound for estimating triangles using Edge Emptiness queries

In this Section, we prove the main lower bound result as sketched in Theorem 1.6; the formal
theorem statement is stated below. As mentioned earlier, the lower bound proofs will be for
the stronger query oracle EE. This will imply the lower bound for BIS.

▶ Theorem 3.1 (Main lower bound result). Let m, n, t ∈ N be such that 1 ≤ t ≤ m3/2

2 .
Any (randomized) algorithm that has EE oracle access to a graph G(V, E) must make
Ω̃

(
min

{√
t, m3/2

t

})
EE queries to decide whether the number of triangles in G is at most t

or at least 2t with a probability of at least 2/3, where G has n ≥ 4
√

m vertices and Θ (m)
edges.

We prove the above theorem by proving Lemmas 3.2 and 3.3, as stated below. Note that
Lemmas 3.2 and 3.3 talk about the desired lower bound when the number of triangles in the
graph is large (Ω(m log n)) and small (O(m log n)), respectively.
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▶ Lemma 3.2 (Lower bound when there are large number of triangles). Let m, n, t ∈ N be such
that t ≥ m log n

8 . Any (randomized) algorithm that has EE oracle access to a graph G(V, E)
must make Ω̃

(
m3/2

t

)
EE queries to decide whether the number of triangles in G is at most t

or at least 2t with a probability of at least 2/3, where G has n ≥ 4
√

m vertices, Θ (m) edges.

▶ Lemma 3.3 (Lower bound when there are small number of triangles). Let m, n, t ∈ N be
such that t < m log n

8 . Any (randomized) algorithm that has EE oracle access to a graph
G(V, E) must make Ω̃

(√
t
)

EE queries to decide whether the number of triangles in G is at
most t or at least 2t with a probability of at least 2/3, where G has n ≥ 4

√
m vertices and

Θ (m) edges.

We first show Lemma 3.2 in Section 3.1, and then Lemma 3.3 in Section 3.2. Note that the
proof of Lemma 3.3 will use Lemma 3.2.

3.1 Proof of Lemma 3.2
Without loss of generality, assume that

√
m is an integer. We prove for the case when

n = 4
√

m. But, we can make the proof work for any n ≥ 4
√

m by adding n− 4
√

m isolated
vertices. Note that t ≥ m log n

8 here. We further assume that t ≤ m3/2

128 , and m = Ω(log2 n).
Otherwise, the stated lower bound of Ω̃

(
m3/2

t

)
trivially follows as Ω̃(·) hides a multiplicative

factor of 1
poly(log n) .

We use Yao’s min-max principle to prove the lower bound. To do so, we consider two
distributions DYes and DNo on graphs where

Any graph G ∼ DYes ∪ DNo has 4
√

m vertices;
Any graph G ∼ DYes ∪ DNo has Θ(m) edges with a probability of at least 1− o(1);
The number of triangles in any graph G ∼ DYes is at most t with a probability of at least
1− o(1), and any graph G ∼ DNo has at least 2t triangles with a probability of at least
1− o(1).

Note that, if we can show that any deterministic algorithm that distinguishes graphs from
DYes and DNo, with a probability of at least 2/3, must make Ω̃

(
m3/2

t

)
EE queries, then we

are done with the proof of Lemma 3.2.

3.1.1 The (hard) distribution for the input, its properties, and the proof
set up

DYes: A graph G ∼ DYes is sampled as follows:
Partition the vertex set V (G) into 4 parts A, B, C, D, by initializing A, B, C, D as
empty sets, and then putting each vertex in V (G) into one of the parts uniformly at
random and independent of other vertices;
Connect each vertex of A with every vertex of B with an edge to form a biclique. Also,
connect each vertex of C with every vertex of D with an edge to form another biclique;
For every {x, y} where x ∈ A ∪ B and y ∈ C, add edge {x, y} to G with probability√

t
16m3/2 .

DNo : A graph G ∼ DNo is sampled as follows:
Partition the vertex set V (G) into 4 parts A, B, C, D, by initializing A, B, C, D as
empty sets, and then putting each vertex in V (G) into one of the partitions uniformly
at random and independent of other vertices;
Connect each vertex of A with every vertex of B with an edge to form a biclique. Also,
connect each vertex of C with every vertex of D with an edge to form another biclique;
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For every {x, y} where x ∈ A ∪ B and y ∈ C, add edge {x, y} to G with probability√
t

16m3/2 .
Select C ′ ⊆ C by putting each x ∈ C into C ′ with a probability of at least 32t

m3/2 ,
independently, and then, add each edge in {x, y : x ∈ A ∪B, y ∈ C ′} to G.

The following observation establishes the number of vertices, edges, and the number of
triangles in the graphs that can be sampled from DYes ∪DNo. The proof uses large deviation
inequalities and is presented in the full version of the paper.

▶ Observation 3.4 (Properties of the graph G ∼ DYes ∪ DNo).
(i) For G ∼ DYes∪DNo, the number of vertices in G is 4

√
m. Also,

√
m
2 ≤ |A| , |B| , |C| , |D| ≤

2
√

m holds with a probability of at least 1 − o(1), and the number of edges in G is
Θ(m) with a probability of at least 1− o(1);

(ii) If G ∼ DYes, then there are at most t triangles in G with a probability of at least
1− o(1),

(iii) If G ∼ DNo, 8t
m ≤ |C

′| ≤ 64t
m with a probability of at least 1− o(1), and there are at

least 2t triangles in G with a probability of at least 1− o(1).

The following remark is regarding the connection between graphs in DYes and that in
DNo. This will be used later in our proof, particularly in the proof of Claim 3.12.

▶ Remark 1 (A graph G′ ∼ DNo can be generated from a graph G ∼ DYes). Let us first
generate a graph G ∼ DYes. Select C ′ ⊆ C by putting each x ∈ C into C ′ with a probability
of at least 32t

m3/2 , and then, add each edge in {x, y : x ∈ A ∪B, y ∈ C ′} to G to generate G′,
then (the resulting graph) G′ ∼ DNo.

The following observation says that a {x, y} ∈
(

V (G)
2

)
(with some condition) forms an edge

with a probability of at least a constant. It will be used while we prove Claim 3.11.

▶ Observation 3.5 (Any vertex pair {x, y} is an edge in G with constant probability). Let
{x, y} ∈

(
V (G)

2
)
, and we are in the process of generating G ∼ DYes ∪ DNo. Let at most one

of x and y has been put into one of the parts out of A, B, C and D. Then {x, y} is an edge
in G with probability at least 1

4 .

The above observation follows from the description of G ∼ DYes ∪ DNo – each vertex in
V (G) is put into one of the parts out of A, B, C, D uniformly at random, each vertex of A is
connected with every vertex in B, and each vertex of C is connected with every vertex in D.

In order to prove Lemma 3.2, by contradiction, assume that there is a randomized
algorithm that makes q = o

(
m3/2

t
1

log2 n

)
EE queries and decides whether the number of

triangles in the input graph is at most t or at least 2t, with a probability of at least 2/3.
Then there exists a deterministic algorithm ALG that makes q EE queries and decides the
following (when the input graph G ∼ DYes∪DNo be such that both G ∼ DYes and G ∼ DNo
holds with probability 1/2) –

PG∼DNo(ALG(G) reports NO)− PG∼DYes(ALG(G) reports NO) ≥ 1
3 − o(1).

(Here PG∼DNo(E) and PG∼DYes(E) denote the probability of the event E under the conditional
space G ∼ DNo and G ∼ DYes, respectively.) Hence, we will be done with the proof of
Lemma 3.2 by showing the following lemma.
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▶ Lemma 3.6 (Lower bound on the number of EE queries when G ∼ DYes ∪ DNo). Let the
unknown graph G be such that G ∼ DYes and G ∼ DNo hold with equal probabilities. Consider
any deterministic algorithm ALG that has EE access to G, and makes q = o

(
m3/2

t
1

log2 n

)
EE queries to G. Then

PG∼DNo(ALG(G) reports NO)− PG∼DYes(ALG(G) reports NO) ≤ o(1).

Next, we define an augmented EE oracle (EE∗ oracle). EE∗ is tailor-made for the graphs
coming from DYes ∪ DNo. Moreover, it is stronger than EE, that is, any EE query can be
simulated by a EE∗ query. We will prove the claimed lower bound in Lemma 3.6 when we
have access to EE∗ oracle. Note that this will imply Lemma 3.6.

Before getting into the formal description of EE∗ oracle, note that the algorithm (with
EE∗ access) maintains a four tuple data structure initialized with ∅. With each query to
EE∗ oracle, the oracle updates the data structure and returns the updated data structure to
the algorithm. Note that the updated data structure is a function of all previously made
EE∗ queries, and it is enough to answer corresponding EE queries.

3.1.2 Augmented Edge Emptiness oracle (EE∗)
Before describing the EE∗ query oracle and its interplay with the algorithm, first we present
the data structure (EQ, V (EQ) , e, ℓv) that the algorithm maintains with the help of EE∗

oracle. The data structure keeps track of the following information.

Information maintained by (EQ, V (EQ) , e, ℓv)

EQ is a subset of
(

V (G)
2

)
that have been seen by the algorithm till now, V (EQ) is the set

of vertices present in any vertex pair in EQ.
e :

(
V (EQ)

2
)
→ {0, 1} such that e({x, y}) = 1 means the algorithm knows that {x, y} is an

edge in G, e(x, y) = 0 means that {x, y} is not an edge in G.
ℓv : V (EQ)→ {A, B, C, C ′, D}, where

ℓv(x) =


A, x ∈ A

B, x ∈ B

C, x ∈ C \ C ′

C ′, x ∈ C ′

D, x ∈ D

Intuitively speaking, unless the algorithm knows about the presence of some vertex in C ′, it
cannot distinguish whether the unknown graph G ∼ DYes or G ∼ DNo. So, we define the
notion of good and bad vertices, along with good and bad data structures. This notion will
be used later in our proof.

▶ Definition 3.7 (Bad vertex). A vertex x ∈ V (EQ) is said to be a bad vertex if ℓv(x) = C ′.
(EQ, V (EQ) , e, ℓv) is said to be good if there does not exist any bad vertex in V (EQ).

EE∗ oracle and its interplay with the algorithm
The algorithm initializes the data structure (EQ, V (EQ) , e, ℓv) with EQ = ∅, V (EQ) = ∅.
So, e and ℓv are initialized with trivial functions with domain ∅. At the beginning of each
round, the algorithm queries the EE∗ oracle with a subset P ⊆

(
V (G)

2
)

deterministically.
Note that the choice of P depends on the current status of the data structure. Now, we
explain how EE∗ oracle responds to the query and how the data structure is updated.
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(1) If |P | ≤ τ = 25 log2 n, the oracle sets EQ ← EQ ∪ P , and changes V (EQ) accordingly.
The oracle also sets the function e and ℓv as per their definitions, and then it sends the
updated data structure to the algorithm.

(2) Otherwise (if |P | > τ), the oracle finds a random subset P ′ ⊆ P such that |P ′| = τ. The
oracle checks if there is a pair {u, v} ∈ P ′ such that {u, v} is an edge. If yes, then the
oracle responds as in (1) with P being replaced by P ′. If no, the oracle sends the data
structure corresponding to the entire graph along with a Failure signal.7

Owing to the way EE∗ oracle updates the data structure after each EE∗ query, we can
make some assumptions on the inputs to the EE∗ oracle, as described in Remark 2. It will
actually be useful when we prove Claim 3.11.

▶ Remark 2 (Some assumptions on the EE∗ query). Let (EQ, V (EQ) , e, ℓv) be the data
structure just before the algorithm makes EE query with input P , and let

(
E′

Q, V
(
E′

Q

)
, e′, ℓ′

v

)
be the data structure updated by EE∗ oracle after the algorithm makes EE∗ query with
input P . Without loss of generality, we assume that

(i) P is disjoint from
(

V (EQ)
2

)
. It is because EE∗ maintains whether {x, y} is an edge or

not for each {x, y} ∈
(

V (EQ)
2

)
;

(ii) When x, z ∈ V (EQ), there does not exist {x, y} and {y, z} in P . It is because the oracle
updates the data structure in the same way in each of the following three cases when
x, z ∈ V (EQ) – (i) {x, y} and {y, z} are in P , (ii) {x, y} ∈ P and {y, z} /∈ P , and (iii)
{x, y} /∈ P and {y, z} ∈ P . By the description of EE∗ oracle and its interplay with
the algorithm, in all the three cases, the updated data structure (E′

Q, V
(
E′

Q

)
, e′, ℓ′

v)
contains labels of all the three vertices x, y, z along with the information whether {x, y}
and {y, z} form edges in G or not. So, instead of having both {x, y} and {y, z} in P

with x, z ∈ V (EQ), it is equivalent to have exactly one among {x, y} and {y, z} in P .

In the following observation, we formally show that EE∗ oracle is stronger than that of
EE. Then we prove Lemma 3.9 that says that Ω

(
m3/2

t
1

log2 n

)
EE∗ queries are necessary to

distinguish between G ∼ DYes and G ∼ DNo. Note that Lemma 3.9 will imply Lemma 3.6.

▶ Observation 3.8 (EE∗ is stronger than EE). Let G ∼ DYes ∪ DNo. Each EE query to G

can be simulated by using an EE∗ query to G.

Proof. Let us consider an EE query with input P ⊆
(

V (G)
2

)
. We make a EE∗ query with

the same input P , and answer the EE query as follows depending on whether |P | ≤ τ or
|P | > τ .
|P | ≤ τ : The EE∗ oracle updates the data structure and let (E′

Q, V
(
E′

Q

)
, e′, ℓ′

v) be the
updated data structure. It contains the the information about each {x, y} ∈ P whether
it forms an edge in G or not. So, from (E′

Q, V
(
E′

Q

)
, e′, ℓ′

v), the EE query with input P

can be answered as follows: there exists an edge {x, y} ∈ P with {x, y} ∈ E(G) if and
only if e′({x, y}) = 1.

|P | > τ : In this case, the EE∗ oracle finds a random subset P ′ ⊆ P such that |P ′| = τ . It
checks if there is an {x, y} ∈ P ′ such that {x, y} is an edge. If yes, the updated data
structure contains the the information about each {x, y} ∈ P ′ whether it forms an edge.
In this case, we can report that there exists an {x, y} ∈ P such that {x, y} is an edge
in G. If there is no {x, y} ∈ P ′ such that {x, y} is an edge, then (by the description of

7 We later argue that Failure signal is sent with a very low probability.
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EE oracle and its interplay with the algorithm) the EE∗ oracle sends the data structure
corresponding to the entire graph. Obviously, we can report whether there exists an
{x, y} ∈ P such that {x, y} ∈ E(G) or not.

Hence, in any case, we can report the answer to EE query with input P . ◀

We are left with proving the following technical lemma. As noted earlier, this will imply
Lemma 3.6.

▶ Lemma 3.9 (Lower bound on the number of EE∗ queries when G ∼ DYes ∪ DNo). Let the
unknown graph G be such that G ∼ DYes and G ∼ DNo hold with equal probabilities. Consider
any deterministic algorithm ALG∗ that has EE∗ access to G, and makes q = o

(
m3/2

t
1

log2 n

)
EE∗ queries to G. Then

PG∼DNo(ALG∗ (G) reports NO)− PG∼DYes(ALG∗ (G) reports NO) ≤ o(1).

3.1.3 Proof of Lemma 3.9
For clarity of explanation, we first describe ALG∗ as a decision tree. Then we will prove
Lemma 3.9.

Decision tree view of ALG∗

Each internal node of T is labeled with a nonempty subset
(

V (G)
2

)
and each leaf node is

labeled with YES or NO;
Each edge in the tree is labeled with a data structure (EQ, V (EQ) , e, ℓv);
The algorithm starts the execution from the root node r by setting r as the current node.
Note that for the root node r, EQ = V (EQ) = ∅ and e and ℓv are the trivial functions.
As the algorithm ALG∗ is deterministic, the first EE∗ query is same irrespective of the
graph G ∼ DYes ∪ DNo that we are querying. By making that query, we get an updated
data structure from the oracle and let {r, u} be the edge that is labeled with the updated
data structure. Then ALG∗ sets u as the current node.
If the current node u is not a leaf node in T , ALG∗ makes a EE∗ query with a subset
P ⊆

(
V (G)

2
)
, where P is determined by the label of the node u. Note that P satisfies the

condition described in Remark 2. The oracle updates the knowledge structure and ALG∗

moves to a child of u depending on the updated data structure;
If the current node u is a leaf node in T , report YES or NO according to the label of u.

Now, we define the notion of good and bad nodes in T . The following definition is inspired
from Definition 3.7.

▶ Definition 3.10 (Bad node in the decision tree). Let u be a node of T and (EQ, V (EQ) , e, ℓv)
be the current data structure. u is said to be good if there does not exist x in V (EQ) such
that ℓv(x) = C ′. Otherwise, u is a bad node.

If G ∼ DYes, then ALG∗ will never encounter a bad node. In other words, when ALG∗

reaches a bad node of the tree T , then it can (easily) decide G ∼ DNo. However, the inverse
in not true. From this fact, consider two claims (Claims 3.11 and 3.12) about the traversal
of the decision tree T when the graph G ∼ DYes ∪DNo. These claims will be useful to show
Lemma 3.9. Intuitively, Claim 3.11 says that the probability of reaching a bad node is very
low when G ∼ DNo. Claim 3.12 says that the probability to reach any particular good node
is more when G ∼ DYes as compared to that of when G ∼ DNo.
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▶ Claim 3.11 (Probability of reaching a bad node is very low when G ∼ DNo). Let G ∼ DNo.
Then the probability that ALG∗ reaches a bad node of the decision tree is o(1). That is,

PG∼DNo(ALG∗ reaches a bad node) = o(1).

▶ Claim 3.12 (A technical claim to prove Lemma 3.9). For any good node in the decision tree
T , the following holds:

PG∼DNo(ALG∗ reaches v) ≤ PG∼DYes(ALG∗ reaches v).

The proofs of Claims 3.11 and 3.12 are non trivial and are in the full version due to paucity
of space.

Now, we will prove Lemma 3.9.

Proof of Lemma 3.9. Let LNo denote the set of leaf nodes of the decision tree T that are
labeled NO. Also, let Lg ⊆ LNo be the set of leaf nodes that are good and labeled as NO.

PG∼DNo(ALG∗ (G) reports NO)

≤
∑

v∈LNo

PG∼DNo(ALG∗ (G) reaches u)

=
∑

u∈Lg

PG∼DNo(ALG∗ (G) reaches u) +
∑

u∈LNo\Lg

PG∼DNo(ALG∗ (G) reaches u)

≤
∑

u∈Lg

PG∼DNo(ALG∗ (G) reaches u) + PG∼DNo(ALG∗ (G) reaches a bad node)

≤
∑

u∈Lg

PG∼DYes(ALG∗ (G) reaches u) + o(1) (By Claims 3.11 and Claims 3.12 )

≤ PG∼DYes(ALG∗ (G) reports NO) + o(1) ◀

3.2 Proof of Lemma 3.3

We assume that t = ω(log7 n). Otherwise, as Ω̃(·) hides a multiplicative term of 1
poly(log n) ,

the stated lower bound is trivial. Assume, for a contradiction, that there is an algorithm A
for t < m log n

8 such that
it has EE oracle access to a graph G1(V1, E1) with Θ(

√
m) vertices and Θ(m) edges;

makes o
(√

t 1
log3.5 n

)
EE queries;

decides whether the number of triangles in G1 is at most t or at least 2t with a probability
of at least 2/3.

Now we give an algorithm A′ for
it has EE oracle access to a graph G2(V2, E2) with 4

√
t/ log n vertices and 8t/ log n edges,

that is, t = |E2| log n
8 ;

makes o
( √

t
log3.5 n

)
= o

(
|E2|3/2

t
1

log2 n

)
EE queries;

decides whether the number of triangles in G2 is at most t or at least 2t with a probability
of at least 2/3.
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Description of A′ using A

Let the unknown graph be G1 = G2 ∪ G′ such that V (G1) = V (G2) ⊔ V (G′) and
E(G1) = E(G2) ⊔E(G′), where G′ is a graph having Θ(

√
m− t/ log n) vertices (disjoint

from V (G2)), Θ
(√

(m− 8t/ log n)
)

edges, and no triangles.8 The number of vertices
and edges in G1 are Θ(

√
m) and Θ(m), respectively. Also, the number of triangles in G1

is same as in G2;
As an EE query to G1 can be answered using one EE query to G2, we can consider
having EE query access to graph G1;
We run algorithm A assuming G1 as the unknown graph;
We report the output of A as the output of A.

The correctness of A′ follows from the correctness of A. The number of queries made by
the algorithm A′ is o

(√
t 1

log3.5 n

)
. Recalling that A works on graph G2(V2, E2) satisfying

t = |E2| log n
8 and by Lemma 3.2, algorithm A′ does not exist as such an algorithm requires

at least Ω
(

|E2|3/2

t
1

log2 n

)
EE queries, which is Ω

( √
t

log3.5 n

)
.

Hence, we are done with the proof of Lemma 3.3.

4 Conclusion

We touched upon two open questions of Beame et al. [5] in this paper. We resolved the query
complexity of triangle estimation when we have a Bipartite Independent Set oracle
access to the unknown graph when T = Ω(m). But the query complexity of triangle counting
remain illusive when T = o(m) though we believe that our upper bound of Õ(m/

√
T ) BIS

queries is tight in this regard. It is also interesting if our upper bound can be improved when
T = o(m).
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A Upper bound for estimating triangles using BIS

In this Section, we prove Theorem 1.7, which is formally stated as follows:

▶ Theorem A.1 (Upper bound matching the lower bound in Theorem 3.1). There exists
an algorithm Triangle-Est(G, ε) that has BIS query access to a graph G(V, E) having n

vertices, takes a parameter ε ∈ (0, 1) as input, and reports a (1± ε)-approximation to the
number of triangles in G with a probability of at least 1−o(1). Moreover, the expected number
of BIS queries made by the algorithm is Õ

(
min{ m√

T
, m3/2

T }
)

, where m and T denote the
number of edges and triangles in G, respectively.

In order to prove the above theorem, we first prove Lemmas A.2 and A.3.

▶ Lemma A.2 (Upper bound when the number of triangles is large). There exists an algorithm
Triangle-Est-High(G, ε) that has BIS query access to a graph G(V, E) having n vertices,
ε ∈ (0, 1) as input, and reports a (1± ε)-approximation to the number of triangles in G with
a probability of at least 1 − o(1). Moreover, the expected number of BIS queries made by
the algorithm is Õ

(
m3/2

T

)
, where m and T denote the number of edges and triangles in G,

respectively.

▶ Lemma A.3 (Upper bound when the number of triangles is small). There exists an algorithm
Triangle-Est-Low(G, ε) that has BIS query access to a graph G(V, E) having n vertices,
ε ∈ (0, 1) as input, and reports a (1± ε)-approximation to the number of triangles in G with
a probability of at least 1 − o(1). Moreover, the expected number of BIS queries made by
the algorithm is Õ

(
m+T√

T

)
, where m and T denote the number of edges and triangles in G,

respectively.

Our final algorithm Triangle-Est(G, ε) (as stated in Theorem A.1) is a combination
of Triangle-Est-High(G, ε) and Triangle-Est-Low(G, ε). Informally, Triangle-Est
(G, ε) calls Triangle-Est-High(G, ε) and Triangle-Est-Low (G, ε) when T = Ω(m) and
T = O(m), respectively. Observe that, if Triangle-Est knows T within a constant factor,
then it can decide which one to use among Triangle-Est-High(G, ε) and
Triangle-Est-Low(G, ε). If Triangle-Est does not know T within a constant factor,
then it starts from a guess L =

(
n
3
)
/2 and updates L by making a geometric search until

the output of Triangle-Est is consistent with L. Depending on whether L = Ω(m)
or L = O(m), Triangle-Est decides which one among Triangle-Est-High(G, ε) and
Triangle-Est-Low(G, ε) to call. This guessing technique is standard in the property
testing literature. It has been used several times in the literature (for example in [19, 14],
generalized in [15], and used directly in [2]). So, we explain Triangle-Est-High(G, ε) and
Triangle-Est-Low(G, ε) assuming a promised lower bound on L, and the respective query
complexities will be in terms of L instead of T .

Another important thing to observe is that to execute the above discussed steps of
algorithm Triangle-Est(G, ε) must know m. But we note that an estimate of m will be
good enough for our purpose, and that can be estimated by using Õ(1) BIS queries (see
Table 1).

In Appendix A.1, we discuss some properties of BIS and some tasks it can perform. These
properties will be useful while describing our Triangle-Est-High(G, ε) and
Triangle-Est-Low(G, ε), and proving Lemma A.2 and Lemma A.3, in Section A.2 and
Section A.3, respectively.
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A.1 Some preliminaries about BIS
Let G(V, E) be the unknown graph to which we have BIS query access. One can compute the
exact number of edges using Õ(|E(G)|) queries [5] deterministically. Also, we can estimate
the number of edges in graph G [5, 6, 13] and sample an edge from G almost uniformly [13],
with a probability of at least 1− o(1), and making Õ(1) BIS queries. Here, we would like
to note that, all three results we mentioned above hold for induced subgraphs as well as
induced bipartite subgraph, as formally described below. Those will be used when we design
our upper bounds in Appendix A.2 and A.3.

▶ Proposition A.4 (Exact edge estimation using BIS [5]). There exists a deterministic
algorithm that has BIS query access to an unknown graph G(V, E) with n vertices, takes X ⊆
V (G) (alternatively, two disjoint subsets A, B) as input, makes Õ(|E(G[X])|) (alternatively,
Õ(|E(G[A, B])|)) BIS queries, and reports all the edges in E(G) (alternatively, E(G[A, B])).

▶ Proposition A.5 (Approximate edge estimation using BIS [6, 13]). There exists an algorithm
that has BIS query access to an unknown graph G(V, E) with n vertices, takes X ⊆ V (G)
(alternatively, two disjoint subsets A, B) and a parameter ε ∈ (0, 1) as inputs, makes Õ(1)
BIS queries, and reports a (1± ε)-approximation to |E(G[X])| (alternatively, |E(G[A, B])|),
with a probability of at least 1− o(1).

To state the next proposition, we need the following definition.

▶ Definition A.6 (Approximate uniform sample from a set). For a nonempty set X and
ε ∈ (0, 1), getting a (1±ε)-approximate uniform sample from X means getting a sample from
a distribution on X such that the probability of getting x ∈ X lies in [(1−ε)/ |X| , (1+ε)/|X|].

▶ Proposition A.7 (Approximate edge sampling using BIS [13]). There exists an algorithm
that has BIS query access to an unknown graph G(V, E) with n vertices, takes X ⊆ V (G)
(alternatively, two disjoint subsets A, B) and a parameter ε ∈ (0, 1) as inputs, makes Õ(1)
BIS queries, and reports a (1± ε)-approximate uniform sample from E(G[X]) (alternatively,
E(G[A, B]), with a probability of at least 1− o(1).

Observe that the following corollary follows from Propositions A.4, A.5 and A.7, by taking
A = {v} and B = Z, where v ∈ V (G) and Z ⊆ V (G) \ {v}.

▶ Corollary A.8 (BIS query can extract useful information about the neighborhood of a given
vertex).
(i) Entire neighbourhood of a vertex using BIS: There exists a deterministic algorithm

that has BIS query access to an unknown graph G(V, E) with n vertices, takes v ∈ V (G)
and Z ⊆ V (G) \ {v} as input, makes Õ(|NG(v) ∩ Z|) BIS queries, and reports all the
neighbors of v in Z.

(ii) Approximate degree using BIS: There exists an algorithm that has BIS query access
to an unknown graph G(V, E) with n vertices, takes v ∈ V (G), Z ⊆ V (G) \ {v} and
ε ∈ (0, 1) as inputs, makes Õ(1) BIS queries, and reports a (1 ± ε)-approximation to
|NG(v) ∩ Z|, with a probability of at least 1− o(1).

(iii) Finding an approximate random neighbor of a vertex using BIS: There exists an alg-
orithm that has BIS query access to an unknown graph G(V, E) with n vertices, takes
v ∈ V (G), Z ⊆ V (G) \ {v} and ε ∈ (0, 1) as inputs, makes Õ(1) BIS queries, and reports
a (1± ε)-approximate uniform sample from the set NG(v) ∩ Z, with a probability of at
least 1− o(1).
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A.2 Algorithm Triangle-Est-High and proof of Lemma A.2

Algorithm Triangle-Est-High is inspired by the triangle estimation algorithm of Assadi
et al. [2] 9 when we have the following query access to the unknown graph.

Adjacency Query: Given vertices u, v ∈ V (G) as input, the oracle reports whether (u, v)
is an edge or not;

Degree Query: Given a vertex u ∈ V (G) as input, the oracle reports the degree of vertex
u in G;

Random Neighbor Query: Given a vertex u ∈ V (G), the oracle reports a neighbor of u

uniformly at random if the degree of u is nonzero. Otherwise, the oracle reports a special
symbol ⊥;

Random Edge Query: With this query, the oracle reports an edge from the graph G

uniformly at random.

The number of queries to the oracle made by Assadi et al.’s algorithm [2] is Õ
(

m3/2

L

)
,

where m denotes the number of edges and L is a promised lower bound on the number of
triangles in G. Also, note that, the triangle estimation algorithm by Assadi et al. [2] can be
suitably modified even if we have approximate versions of Degree, Random Neighbor
and Random Edge queries, as described below.

Apx Degree Query: Given a vertex u ∈ V (G) and ε ∈ (0, 1) as input, the oracle reports
a (1± ε)-approximation to the degree of vertex u in G;

Apx Random Neighbor Query: Given a vertex u ∈ V (G) and ε ∈ (0, 1) as input, the
oracle reports a (1 ± ε)-approximate uniform sample from NG(u) if the degree of u is
nonzero. Otherwise, the oracle reports a special symbol ⊥;

Apx Random Edge Query: Given ε ∈ (0, 1), the oracle reports a (1 ± ε)-approximate
uniform sample from E(G).

From Corollary A.8, Õ(1) BIS queries are enough to simulate Apx Degree Query
and Apx Random Neighbor Query, with a probability of at least 1 − o(1). Also, by
Proposition A.7, Apx Random Edge Query can be simulated by Õ(1) BIS queries, with a
probability of at least 1− o(1). Moreover, a BIS query can trivially simulate an Adjacency
Query. Combining these facts with the fact that the triangle estimation algorithm by Assadi
et al. [2] can be suitably modified even if we have approximate versions of Degree, Random
Neighbor and Random Edge queries, we are done with the proof of Lemma A.2.

A.3 Algorithm Triangle-Est-Low and the proof of Lemma A.3

Algorithm Triangle-Est-Low is inspired by the streaming algorithm for triangle counting
by McGregor et al. [20]. Algorithm Triangle-Est-Low extracts a subset of edges by
making BIS queries in a specific way as explained below. Later, we discuss that those sets of
edges will be enough to estimate the number of triangles in G.

9 Actually, they have given an algorithm for estimating the number of copies of any given subgraph of
fixed size.
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Generating a random sample S ⊆ V (G) and exploring its neighborhood

Algorithm Triangle-Est-Low adds each vertex in V (G) to S with probability Õ
(

1√
L

)
.

Recall Corollary A.8 (i). For each v ∈ S, we find all the neighbors of v (the set NG(v))
by making Õ(|NG(v)|) BIS queries. Let ES be the set of all the edges having at least one
end point in S, that is, ES = {(v, w) : v ∈ S and w ∈ NG(v)}. After finding ES , we do
the following. For each v ∈ S, we find all the edges in the subgraph induced by NG(v) by
using Õ (|E(G[NG(v)])|) BIS queries. This is again possible by Corollary A.8 (i). Note
that |E(G[NG(v)])| is the number of edges in the subgraph of G induced by NG(v). Let E′

S

be the set of all edges present in the subgraph induced by NG(v) for some v ∈ S, that is,
E′

S =
⋃

v∈S

E(G[NG(v)]). Later, we argue that the number of BIS queries that we make to

generate ES and E′
S is bounded in expectation.

Apart from S, ES and E′
S , Triangle-Est-Low extracts some more required edges by

making BIS queries, as explained below.

Generating F , a set of (1 ± O(ε))-approximate uniform sample from E(G), and
exploring the subgraphs induced by sets NG(v) ∩ V (F ) for each v ∈ V (F )

Algorithm Triangle-Est-Low calls the algorithm corresponding to Proposition A.7, for
Õ

(
m√

L

)
times. By this process, we get a set F of (1±O(ε))-approximate uniform sample

from E(G), with a probability of at least 1− o(1). Note that |F | = Õ
(

m√
L

)
, and the number

of BIS queries we make to generate F is Õ
(

m√
L

)
. Let V (F ) be the set of vertices present in

at least one edge in F . For each vertex v ∈ V (F ), we find all the edges in the subgraph of G

induced by NG(v)∩V (F ), by using Õ (|E(G[NG(v) ∩ V (F )])|) BIS queries (see Corollary A.8
(i)). Note that |E (G[NG(v) ∩ V (F )])| is the number of edges in the subgraph of G induced
by NG(v) ∩ F . Let EF be the set of all the edges that are present in subgraphs induced
by NG(v) ∩ V (F ) for some v ∈ V (F ), that is, EF =

⋃
v∈V (F )

E(G[NG(v) ∩ V (F )]). Later we

show that the expected number of BIS queries needed to find F and EF is bounded.
In algorithm Triangle-Est-Low, BIS queries are made only to generate S, ES , E′

S , F

and EF . After these sets are generated, no more BIS queries are made by the algorithm.
We formally prove the query complexity of Triangle-Est-Low. But, first, we show that
S, ES , E′

S , F and EF can be carefully used to estimate T , the number of triangles in G.

Connection with streaming algorithm for triangle counting by McGregor et al. [20]

(Estimating the number of triangles from S, ES , E′
S , F and EF )

McGregor et al. [20] gave a two-pass algorithm that estimates the number of triangles in
a graph G when the edges of G arrive in an arbitrary order. Moreover, the space complexity
of their algorithm is Õ

(
m√

L

)
. Note that their algorithm assumes a lower bound L on the

number of triangles in the graph. The high level sketch of their algorithm is as follows:
Generate a subset X of V (G) by sampling each vertex in V (G) with probability Õ

(
1√
L

)
;

In the first pass, the edges having at least one vertex in X is found, and let it be EX .
Also, in the first pass, a subset of edges Y is generated by sampling each edge with
probability Õ

(
1√
L

)
;

In the second pass, for each edge e = {x, y} in the stream, their algorithm finds the
vertices in X with which e forms a triangle. Also, for each edge, e = {x, y} in the stream,
their algorithm finds the pairs of edges in Y that forms a triangle with e. Let Z be the
set of useful edges in the second pass, that is, the set of edges that either forms a triangle
with a vertex in X or forms a triangle with two edges in Y .
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Note that their algorithm does not talk about the set Z. We are introducing it for our
analysis. Executing the two passes described above is straightforward. They have proved
that performing two passes as described is good enough to estimate the number of triangles
in the graph.

Now, we compare the information maintained by our algorithm with the information
maintained by McGregor et al.’s algorithm. S and ES in our algorithm Triangle-Est-Low
follows the same probability distribution as that of X and EX , respectively, in McGregor et
al.’s algorithm. Recall that F is a set of Õ

(
m√

L

)
(1 ± ε)-approximate sample from E(G)

with a probability 1− o(1). But Y in McGregor et al.’s algorithm is generated by sampling
each edge with probability Õ

(
1√
L

)
. But observe that the total variation distance between

the probability distributions of F and Y is o(1).
Before discussing about E′

S and EF in our algorithm Triangle-Est-Low, consider the
following observation about the set Z. Note that we have defined Z while describing the
second pass of McGregor et al.’s algorithm.

▶ Observation A.9. Consider X, EX , and Y generated by the first pass of McGregor et al.’s
algorithm. Let E′

X be the edges in the subgraph induced by NG(v) for some v ∈ X, and let
EY be the set of edges in the subgraph induced by NG(v) ∩ V (Y ). Here V (Y ) denotes the
set of vertices present in at least one vertex of Y . Then for each edge e /∈ E′

X ∪EY , there is
neither a vertex in X with which e forms a triangle in G nor there are two edges in Y with
which e forms a triangle in G. Then the set of useful edges Z is E′

X ∪ EY .

By the above observation, E′
S and EF in our algorithm Triangle-Est-Low are essentially

enough for maintaining the information and executing the same steps as that of the second
pass of McGregor et al.’s algorithm.

Putting everything together, algorithm Triangle-Est-Low outputs a (1± ε)-approximation
to the number of triangles in the graph.

Query complexity analysis

The set S can be generated without making any BIS queries. The number of BIS queries we
make to find the set ES is at most

∑
v∈S

Õ(|NG(v)|), which in expectation is

E

[∑
v∈S

Õ(|NG(v)|)
]

=
∑

v∈V (G)

Pr(v ∈ S) · Õ(|NG(v)|) = Õ
(

m√
L

)
.

The number of BIS queries we make to find the set E′
S is at most

∑
v∈S

Õ (|E(G[NG(v)])|).

Note that |E(G[NG(v)]| is Tv, that is, the number of triangles having v as one of the vertex.
So, the expected number of BIS queries we make to find E′

S is at most

E

[∑
v∈S

Õ(Tv)
]

=
∑

v∈V (G)

Pr(v ∈ S) · Õ(Tv) = Õ
(

T√
L

)
.

The number of BIS queries we make to find the set F is Õ(|F |) = Õ
(

m√
L

)
The number of BIS queries to generate EF is at most

∑
v∈V (F )

Õ (|E(G[NG(v) ∩ V (F )])|).

Observe that an edge {x, y} is present in EF if there exists a z ∈ V (G) such that {x, y, z}

APPROX/RANDOM 2023



48:22 On the Complexity of Triangle Counting Using Emptiness Queries

forms a triangle in G and {x, z} and {y, z} are in F . So, the probability that an edge {x, y}
is in E(G[NG(v) ∩ V (F )] is at most |Γ({x, y})| · Õ

( 1
L

)
, where Γ({x, y}) denotes the set of

common neighbors of x and y in G. So, the expected number of BIS queries to enumerate
all the edges in EF is at most∑

{x,y}∈E(G)

Õ
(
|Γ({x, y}|)√

L

)
= Õ

(
T√
L

)
.

Hence, the expected number of BIS queries made by the algorithm is Õ
(

m+T√
L

)
.
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