
Approximating Red-Blue Set Cover and Minimum
Monotone Satisfying Assignment
Eden Chlamtáč #Ñ

Department of Computer Science, Ben-Gurion University of the Negev, Beer-Sheva, Israel

Yury Makarychev # Ñ

Toyota Technological Institute at Chicago (TTIC), IL, USA

Ali Vakilian # Ñ

Toyota Technological Institute at Chicago (TTIC), IL, USA

Abstract
We provide new approximation algorithms for the Red-Blue Set Cover and Circuit Minimum
Monotone Satisfying Assignment (MMSA) problems. Our algorithm for Red-Blue Set Cover achieves
Õ(m1/3)-approximation improving on the Õ(m1/2)-approximation due to Elkin and Peleg (where
m is the number of sets). Our approximation algorithm for MMSAt (for circuits of depth t) gives
an Õ(N1−δ) approximation for δ = 1

3 23−⌈t/2⌉, where N is the number of gates and variables. No
non-trivial approximation algorithms for MMSAt with t ≥ 4 were previously known.

We complement these results with lower bounds for these problems: For Red-Blue Set Cover, we
provide a nearly approximation preserving reduction from Min k-Union that gives an Ω̃(m1/4−ε)
hardness under the Dense-vs-Random conjecture, while for MMSA we sketch a proof that an SDP
relaxation strengthened by Sherali–Adams has an integrality gap of N1−ε where ε → 0 as the circuit
depth t → ∞.

2012 ACM Subject Classification Theory of computation → Approximation algorithms analysis;
Theory of computation → Circuit complexity

Keywords and phrases Red-Blue Set Cover Problem, Circuit Minimum Monotone Satisfying Assign-
ment (MMSA) Problem, LP Rounding

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2023.11

Category APPROX

Related Version Full Version: https://arxiv.org/abs/2302.00213

Funding Eden Chlamtáč : The work was done while the author was visiting and supported by TTIC.
Yury Makarychev: Supported by NSF awards CCF-1955173 and CCF-1934843.

1 Introduction

In this paper, we study two problems, Red-Blue Set Cover and its generalization Circuit
Minimum Monotone Satisfying Assignment. Red-Blue Set Cover, a natural generalization
of Set Cover, was introduced by Carr et al. [5]. Circuit Minimum Monotone Satisfying
Assignment, a problem more closely related to Label Cover, was introduced by Alekhnovich
et al. [2] and Goldwasser and Motwani [12].

▶ Definition 1. In Red-Blue Set Cover, we are given a universe of (k + n) elements U

partitioned into disjoint sets of red elements (R) of size n and blue elements (B) of size k,
that is U = R ∪B and R ∩B = ∅, and a collection of sets S := {S1, · · · , Sm}. The goal is
to find a sub-collection of sets F ⊆ S such that the union of the sets in F covers all blue
elements while minimizing the number of covered red elements.

© Eden Chlamtáč, Yury Makarychev, and Ali Vakilian;
licensed under Creative Commons License CC-BY 4.0

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2023).
Editors: Nicole Megow and Adam D. Smith; Article No. 11; pp. 11:1–11:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:chlamtac@cs.bgu.ac.il
https://www.cs.bgu.ac.il/~chlamtac/
https://orcid.org/0000-0002-0296-0107
mailto:yury@ttic.edu
https://home.ttic.edu/~yury/
https://orcid.org/0000-0003-3114-3947
mailto:vakilian@ttic.edu
https://ttic.edu/vakilian/
https://orcid.org/0000-0001-5049-7594
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2023.11
https://arxiv.org/abs/2302.00213
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

11:2 Approximating Red-Blue Set Cover and Minimum Monotone Satisfying Assignment

Besides Red-Blue Set Cover, we consider the Partial Red-Blue Set Cover problem in
which we are additionally given a parameter k̂, and the goal is cover at least k̂ blue elements
while minimizing the number of covered red elements.

▶ Definition 2. The Circuit Minimum Monotone Satisfying Assignment problem of depth t,
denoted as MMSAt, is as follows. We are given a circuit C of depth t over Boolean variables
x1, . . . , xn. Circuit C has AND and OR gates: all gates at even distances from the root
(including the output gate at the root) are AND gates; all gates at odd distances are OR
gates. The goal is to find a satisfying assignment with the minimum number of variables xi

set to 1 (true).

Note that C computes a monotone function and the assignment of all ones is always a feasible
solution. Though the definitions of the problems are quite different, Red-Blue Set Cover and
MMSAt are closely related. Namely, Red-Blue Set Cover is equivalent to MMSA3.1 The
correspondence is as follows: variables x1, . . . , xn represent red elements; AND gates in the
third layer represent sets S1, . . . , Sm; OR gates in the second layer represent blue elements.
The gate for a set Sj is connected to OR gates representing blue elements of Sj and variables
xi representing red elements of Sj . It is easy to see that an assignment to x1, . . . , xn satisfies
the circuit if and only if there exists a sub-family F ⊆ S that covers all the blue elements,
and only covers red elements corresponding to variables xi which are assigned 1 (but not
necessarily all of them).

Background. Red-Blue Set Cover and its variants are related to several well-known prob-
lems in combinatorial optimization including group Steiner and directed Steiner problems,
minimum monotone satisfying assignment and ymmetric minimum label cover. Arguably, the
interest to the general MMSAt problem is mostly motivated by its connection to complexity
and hardness of approximation.

The Red-Blue Set Cover has applications in various settings such as anomaly detection,
information retrieval and notably in learning of disjunctions [5]. Learning of disjunctions over
{0, 1}m is one of the basic problems in the PAC model. In this problem, given an arbitrary
distribution D over {0, 1}m and a target function h∗ : {0, 1}m → {−1, +1} which denotes
the true labels of examples, the goal is to find the best disjunction f∗ : {0, 1}m → {−1, +1}
with respect to D and h∗ (i.e., f∗(x) computes a disjunction of a subset of coordinates of
x). The problem of learning disjunctions can be formulated as an instance of the (Partial)
Red-Blue Set Cover problem [4]: we can think of the positive examples as blue elements (i.e.,
h∗(x) = 1) and the negative examples as red elements (i.e., h∗(x) = −1). Then, we construct
a set Si corresponding to each coordinate i and the set Si contains an example x if the i-th
coordinate of x is equal to 1. Let C ⊂ {S1, · · · , Sm}. Then, the disjunction fC corresponding
to C, i.e., fC(x) :=

∨
Si∈C xi, outputs one on an example x if in the constructed Red-Blue

Set Cover instance, the element corresponding to x is covered by sets in C.
As we observe in Section 5, Red-Blue Set Cover is also related to the Min k-Union problem

which is a generalization of Densest k-Subgraph [8]. In Min k-Union, given a collection of
m sets S and a target number of sets k, the goal is to pick k sets from S whose union has
the minimum cardinality. Notably, under a hardness assumption, which is an extension of
the “Dense vs Random” conjecture for Densest k-Subgraph to hypergraphs, Min k-Union

1 Also observe that MMSA2 is equivalent to Set Cover.

E. Chlamtáč, Y. Makarychev, and A. Vakilian 11:3

cannot be approximated better than Ω̃(m1/4−ε) [9]. In this paper, we prove a hardness of
approximation result for Red-Blue Set Cover by constructing a reduction from Min k-Union
to Red-Blue Set Cover.

1.1 Related work
Carr et al. [5] formulated the Red-Blue Set Cover problem and presented a 2

√
m-

approximation algorithm for the problem when every set contains only one blue element.
Later, Elkin and Peleg [11] showed that it is possible to obtain a 2

√
m log(n + k) approxim-

ation in the general case of the problem. This remained the best known upper bound for
Red-Blue Set Cover prior to our work. No non-trivial algorithms for MMSAt were previously
known for any t ≥ 4.

On the hardness side, Dinur and Safra [10] showed that MMSA3 is hard to approximate
within a factor of O(2log1−ϵ m) where ϵ = 1/ log logc m for any constant c < 1/2, if P ̸= NP .
As was observed by Carr et al. [5], this implies a factor of O(2log1−ϵ m) hardness for Red-Blue
Set Cover as well. The hardness result holds even for the special case of the problem where
every set contains only one blue and two red elements.

Finally, Charikar et al. [7] gave a lower bound on a variant of MMSA in which the circuit
depth t is not fixed. Assuming a variant of the Dense-vs-Random conjecture, they showed
that for every ε > 0, the problem does not admit an O(n1/2−ε) approximation, where n is
the number of variables, and an O(N1/3−ε) approximation, where N is the total number of
gates and variables in the circuit.

Learning of Disjunctions. While algorithms for Red-Blue Set Cover return a disjunction
with no error on positive examples, i.e., it covers all “blue” elements, it is straightforward to
make those algorithms work for the case with two-sided error. A variant of the problem with
a two-sided error is formally defined as Positive–Negative Partial Set Cover [15] where the
author showed that a f(m, n)-approximation for Red-Blue Set Cover implies a f(m + n, n)-
approximation for Positive-Negative Partial Set Cover. Our result also holds for Partial
Red-Blue Set Cover and a c-approximation for Partial Red-Blue Set Cover can be used to
output a c-approximate solution of Positive-Negative Partial Set Cover.

Awasthi et al. [4] designed an O(n1/3+α)-approximation for any constant α > 0. While
the proposed algorithm of Awasthi et al. is an agnostic learning of disjunctions (i.e., the
solution is not of form of disjunctions), employing an approximation algorithm of Red-Blue
Set Cover, produces a disjunction as its output (i.e., the algorithms for Red-Blue Set Cover
are proper learners).

Geometric Red-Blue Set Cover. The problem has been studied extensively in geometric
models. Chan and Hu [6] studied the setting in which R and B are sets of points in R2 and
S is a collection of unit squares. They proved that the problem still remains NP-hard in
this restricted instance and presented a PTAS for this problem. Madireddy and Mudgal [13]
designed an O(1)-approximation algorithm for another geometric variant of the problem,
in which sets are unit disks. The problem has also been studied in higher dimensions with
hyperplanes and axis-parallel objects as the sets [3, 14, 1].

1.2 Our Results
In this paper, we present new approximation algorithms for Red-Blue Set Cover, MMSA4,
and general MMSAt. Additionally, we offer a new conditional hardness of approximation
result for Red-Blue Set Cover. We also discuss the integrality gap of a basic SDP relaxation
of MMSAt strengthened by Sherali–Adams when t→∞.

APPROX/RANDOM 2023

11:4 Approximating Red-Blue Set Cover and Minimum Monotone Satisfying Assignment

We start by describing our result for Red-Blue Set Cover.

▶ Theorem 3. There exists an O(m1/3 log4/3 n log k)-approximation algorithm for Red-Blue
Set Cover where m is the number of sets, n is the number of red elements, and k is the
number of blue elements.

As we demonstrate later, our algorithm also works for the Partial Red-Blue Set Cover.
Our approach partitions the instance into subinstances in which all sets have a bounded
number of red elements, say between r and 2r, and each red element appears in a bounded
number of sets. Utilizing the properties of this partition, we show that we can always find a
small collection of sets that preserves the right ratio of red to blue elements in order to make
progress towards an Õ(m1/3)-approximation algorithm.2 Then, by applying the algorithm
iteratively until all blue elements are covered, we obtain the guarantee of Theorem 3. In each
iteration, our analysis guarantees the feasibility of a local LP relaxation for which a simple
randomized rounding obtains the required ratio of blue to red vertices.

Now we describe our results for the MMSA problem.

▶ Theorem 4. There exists an Õ(N1/3)-approximation algorithm for MMSA4, where N is
the total number of gates and variables in the input instance.

Our algorithm for MMSA4 is inspired by our algorithm for MMSA3, though due to the
complexities of the problem, the algorithm is significantly more involved. In particular, there
does not seem to be a natural preprocessing step analogous to the partition we apply for
Red-Blue Set Cover, and so we need to rely on a higher-moment LP relaxation and a careful
LP-based partition which is built into the algorithm.

▶ Theorem 5. Let t ≥ 4. Define δ = 1
3 · 2

3−⌈t/2⌉. There exists an Õ(N1−δ)-approximation
algorithm for MMSAt where N is the total number of gates and variables in the input instance.

Our algorithm for general MMSAt applies a recursion on the depth t, with our algorithms
for Red-Blue Set Cover and MMSA4 as the basis of the recursion. Each recursive step relies
on an initially naive LP relaxation to which we add constraints as calls to the algorithm for
smaller depth MMSA reveal new violated constraints.

We complement our upper bound for Red-Blue Set Cover with a hardness of approximation
result.

▶ Theorem 6. Assuming the Hypergraph Dense-vs-Random Conjecture, for every ε > 0, no
polynomial-time algorithm achieves better than O(m1/4−ε/ log2 k) approximation for Red-Blue
Set Cover where m is the number of sets and k is the number of blue elements.

To show the hardness, we present a reduction from Min k-Union to Red-Blue Set Cover that
preserves the approximation up to a factor of polylog(k). Then, the hardness follows from
the standard conjectured hardness of Min k-Union [9]. In our reduction, all elements of the
given instance of Min k-Union are considered as the red elements in the constructed instance
for Red-Blue Set Cover and we further complement each set with a sample size of O(log k)
(with replacement) from a ground set of blue elements of size k. We prove that this reduction
is approximation-preserving up to a factor of polylog(k).

2 Here, we abuse the Õ notation to hide polylog factors of n, k.

E. Chlamtáč, Y. Makarychev, and A. Vakilian 11:5

Organization. In Section 2, we restate Red-Blue Set Cover and introduce some notation.
In Section 3, we present our algorithm for Red-Blue Set Cover. We adapt this algorithm for
Partial Red-Blue Set Cover in Appendix A. Then, in Section 4 we give the algorithm for
MMSAt with t ≥ 5. This algorithm relies on the algorithm for MMSA4, which we describe
later in Section 6. We present a reduction from Min k-Union to Red-Blue Set Cover, which
yields a hardness of approximation result for Red-Blue Set Cover, in Section 5. The discussion
on hardness of the general MMSAt problem is deferred to the full version of the paper.

2 Preliminaries

To simplify the description and analysis of our approximation algorithm for Red-Blue Set
Cover, we restate the problem in graph-theoretic terms. Essentially we restate the problem
as MMSA3. Specifically, we think of a Red-Blue Set Cover instance as a tripartite graph
(B, J, R, E) in which all edges (E) are incident on J and either B or R. The vertices in
J represent the set indices, and their neighbors in B (resp. R) represent the blue (resp.
red) elements in these sets. Thus, our goal is to find a subset of the vertices in J that is a
dominating set for B and has a minimum total number of neighbors in R. For short, we will
denote the cardinality of these different vertex sets by k = |B|, m = |J |, and n = |R|.

Similarly, we think of a MMSA4 instance as a tuple (B, J, R, S, E). Here, B, J , and R

represent gates in the second, third, and fourth layers of the circuit (where layer i consists
of the gates at distance i − 1 from the root), respectively; S represents the variables; E

represent edges between gates/variables. Combinatorially, the goal is to obtain a subset of
J as above, along with a minimum dominating set in S for the red neighbors (in R) of our
chosen subset of J .

Notation. We use Γ(·) to represent neighborhoods of vertices, and for a vertex set U , we
use Γ(U) to denote the union of neighborhoods of vertices in U , that is

⋃
u∈U Γ(u). We also

consider restricted neighborhoods, which we denote by ΓT (u) := Γ(u)∩T or ΓT (U) = Γ(U)∩T .
We will refer to the cardinality of such a set, i.e. |ΓT (u)| as the T -degree of u.

▶ Remark 7. Note that, for every set index j ∈ J , the set Γ(j) is simply the set Sj in the
set system formulation of the problem, and the set ΓR(j) (resp. ΓB(j)) is simply the subset
of red (resp. blue) elements in the set with index j. Similarly, ΓJ(i) consists of indices j

representing those sets Sj that contain element i, for any i ∈ R ∪B.

For Red-Blue Set Cover algorithms, we introduce a natural notion of progress:

▶ Definition 8. We say that an algorithm for Red-Blue Set Cover makes progress towards
an O(A · log k)-approximation if, given an instance with an optimum solution containing
OPT red elements, the algorithm finds a subset Ĵ ⊆ J such that |ΓR(Ĵ)|

|ΓB(Ĵ)| ≤ A · OPT
|B| .

It is easy to see that if we have an algorithm which makes progress towards an A-
approximation, then we can run this algorithm repeatedly (with decreasing |B| parameter,
where initially |B| = k) until we cover all blue elements and obtain an O(A · log k)-
approximation. For brevity, all logarithms are implicitly base 2 unless otherwise specified,
that is, we write log(·) ≡ log2(·).

APPROX/RANDOM 2023

11:6 Approximating Red-Blue Set Cover and Minimum Monotone Satisfying Assignment

3 Approximation Algorithm for Red-Blue Set Cover

We begin by excluding a small number of red elements, and binning the sets J into a small
number of bins with uniform red-degree. For an O(A)-approximation, the goal will be to
exclude at most A ·OPT red elements (we may guess the value of OPT by a simple linear or
binary search). This is handled by the following lemma:

▶ Lemma 9. There is a polynomial time algorithm, which, given an input (B, J, R, E) and
parameter n0, returns a set of at most log n pairs (Jα, Rα) with the following properties:

The sets Jα ⊆ J partition the set J .
The sets Rα ⊆ R form a nested collection of sets, and the smallest among them (i.e.,
their intersection) has cardinality at least n− n0. That is, at most n0 red elements are
excluded by any of these sets.
For every α there is some rα such that every set j ∈ Jα has Rα-degree (or restricted red
set size) |ΓRα

(j)| ∈ [rα, 2rα],
and for every α, every red element i ∈ Rα has Jα-degree at most (that is, the number of
red sets in Jα that contain i) |ΓJα

(i)| ≤ 2mrα log n
n0

.

Proof. Consider the following algorithm:
Let r be the maximum red-degree (i.e., maxj∈J degR(j)).
Repeat the following while J ̸= ∅:

Delete the top n0/ log n J-degree red elements from R, along with their incident edges.
After this deletion, let J ′ = {j ∈ J | degR(j) ∈ [r/2, r]}.
If J ′ is non-empty, add the current pair (J ′, R) to the list of output pairs (excluding
all elements deleted from R so far).
Remove the sets in J ′ from J (along with incident edges) and let r ← r/2.

By the decrease in r, it is easy to see that this partitions J into at most log n sets (or more
specifically, log of the initial maximum red set size, maxj∈J degR(j)). Also note that at
the beginning of each iteration, all red sets have size at most r, and so there are at most
mr edges to R, and the top n0/ log n J-degree red elements will have average degree (and
in particular minimum degree) at most mr/(n0/ log n). Thus, after removing these red
elements, all remaining red elements will have J-degree (and in particular J ′-degree) at most
the required bound of 2mrα log n

n0
where rα = r/2. Finally, since there at most log n iterations,

the total number of red elements removed across all iterations is at most n0. ◀

Our algorithm works in iterations, where at every iteration, some subset of blue elements
is covered and removed from B. However, nothing is removed from J or R. Thus the above
lemma applies throughout the algorithm. Note that for an optimum solution JOPT ⊆ J , for
at least one of the subsets Jα in the above partition, the sets in JOPT ∩ Jα must cover at
least a (1/ log n)-fraction of B. Thus, to achieve an O(A) approximation, it suffices to apply
the above lemma with parameter n0 = OPT ·A, and repeatedly make progress towards an
A-approximation within one of the subgraphs induced on (B, Jα, Rα). We will only pay at
most another OPT ·A in the final analysis by restricting our attention to these subinstances.

Let us fix some optimum solution JOPT ⊆ J in advance. For any α in the above partition,
let Jα

OPT = Jα∩JOPT be the collection of sets in Jα that also belong to our optimum solution,
and let Bα = ΓB(Jα

OPT) be the blue elements covered by the sets in Jα
OPT. Note that every

blue element must belong by the feasibility of JOPT to at least one Bα. In this context we
can show the following:

E. Chlamtáč, Y. Makarychev, and A. Vakilian 11:7

▶ Lemma 10. For any α in the partition described in Lemma 9, there exists a red element
i0 ∈ Rα such that its optimum Jα-restricted neighbors ΓJα

OPT
(i0) cover at least |Bα|rα/OPT

blue elements.

Proof. Consider the following subgraph of (Bα, Jα
OPT, E(Bα, Jα

OPT)). For every blue element
ℓ ∈ Bα, retain exactly one edge to Jα

OPT. Let F̂ be this set of edges.
Thus the blue elements Bα have at least |Bα|rα paths through F̂ × E(Jα

OPT, Rα) to the
red neighbors of Jα

OPT in Rα. Since there are at most OPT such red neighbors, at least
one of them, say i0 ∈ ΓRα(Jα

OPT), must be involved in at least a 1/OPT fraction of these
paths. That is, at least |Bα|rα/OPT paths. Since the F̂ -neighborhoods of the vertices in
Jα

OPT are disjoint (by construction), these paths end in distinct blue elements, thus, at least
|Bα|rα/OPT elements in Bα. ◀

Of course, we cannot know which red element will have this property, but the algorithm
can try all elements and run the remainder of the algorithm on each one. Now, given a red
element i0 ∈ Rα, our algorithm proceeds as follows: Begin by solving the following LP.

max
∑
ℓ∈B

zℓ (1)∑
i∈Rα

yi ≤ OPT (2)

0 ≤ zℓ ≤ min{1,
∑

j∈ΓJα (i0)∩ΓJα (ℓ)

xj} ∀ℓ ∈ B (3)

0 ≤ xj ≤ yi ≤ 1 ∀j ∈ ΓJα
(i0), i ∈ ΓRα

(j) (4)

In the intended solution, xj is the indicator for the event that j ∈ ΓJα
OPT

(i0), yi is the
indicator variable for the event that red vertex i is in the union of red sets indexed by
ΓJα

OPT
(i0) (and therefore in the optimum solution), and zℓ is the indicator variable for the

event that the blue vertex ℓ ∈ B is is covered by some set in ΓJα
OPT

(i0). This LP is always
feasible (say, by setting all variables to 0), though since there are at most log n subinstances
in the partition, for at least one α we must have |Bα| ≥ |B|/ log n, and then by Lemma 10,
there is also some choice of i0 ∈ Rα for which the objective function satisfies∑

ℓ∈B

zℓ ≥
|Bα|rα

OPT ≥ |B|rα

OPT · log n
. (5)

The algorithm will choose α and i0 that maximize the rescaled objective function
∑

ℓ∈B zℓ/rα,
guaranteeing this bound. Finally, at this point, we perform a simple randomized rounding,
choosing every set j ∈ ΓJα(i0) independently with probability xj . The entire algorithm is
described in Algorithm 1.

Now let J∗ ⊆ Jα be the collection of sets added by this step in the algorithm. Let us
analyze the number of blue elements covered by J∗ and the number of red elements added to
the solution. First, noting that this LP acts as a max coverage relaxation for blue elements,
the expected number of blue elements covered will be at least (1 − 1/e) |B|rα

OPT·log n , by the
standard analysis and the bound (5).

Now let us bound the number of red elements added. Let J+ =
{

j ∈ ΓJα
(i0)

∣∣∣ xj ≥ OPT
rαÂ

}
for a value of Â to be determined later. By Constraint (4), every red neighbor i ∈ ΓRα

(J+)
will also have yi ≥ OPT/(rαÂ), and so by Constraint (2), there can be at most rαÂ such
neighbors. On the other hand, the expected number of red elements added by the remaining
sets j ∈ J∗ \ J+ is bounded by

APPROX/RANDOM 2023

11:8 Approximating Red-Blue Set Cover and Minimum Monotone Satisfying Assignment

Algorithm 1 Approximation Algorithm for Blue-Red Set Cover.

Input: B, J, R, E

guess OPT ▷ e.g. using binary search
JALG = ∅ ▷ JALG stores the current solution
find decomposition {(Jα, Rα)}α as in Lemma 9, with n0 = OPT ·m1/3 log4/3 n log2 k.

while B ̸= ∅ do
for all α and i0 ∈ Rα do

Solve LP (1)-(4). Let LP(α, i0) be its objective value
end for
choose the value of α and i0 which maximizes LP(α, i0)/rα

let x, y, z be an optimal solution for this LP
use solution x and the method of conditional expectations to find J∗ ⊆ Jα

s.t. |ΓRα
(J∗)|/|ΓB(J∗)| ≤ O(1) ·m1/3 log4/3 n ·OPT/|B| ▷ see the proof for details

let JALG = JALG ∪ J∗

let B = B \ ΓB(J∗)
remove edges incident to deleted vertices from E

end while
return JALG

E

∣∣∣∣∣∣
⋃

j∈J∗\J+

ΓRα(j)

∣∣∣∣∣∣
 ≤ 2rαE [|J∗ \ J+|] by Rα-degree bounds for j ∈ Jα

= 2rα ·
∑

j∈ΓJα (i0)\J+

xj

≤ 2rα ·
OPT
rαÂ

|ΓJα
(i0) \ J+| by definition of J+

≤ 2OPT
Â

· 2mrα log n

OPT · Â
by Jα-degree bounds for i ∈ Rα

= 4mrα log n

Â2

These two bounds are equal when rαÂ = 4mrα log n/Â2, that is, when Â = (4m log n)1/3,
giving us a total bound on the expected number of red elements added in this step of

E[|ΓRα(J∗)|] ≤ 2rα(4m log n)1/3 ≤ 2rα(4m log n)1/3

(1− 1/e)|B|rα/(OPT · log n) · E[|ΓB(J∗)|].

Thus, E[|ΓRα(J∗)|] − 2(4m log4 n)1/3OPT
(1−1/e)|B| · E|ΓB(J∗)| ≤ 0. Using the method of conditional

expectations, we can derandomize the algorithm and find J∗ with a non-empty blue neighbor
set such that |ΓRα (J∗)|

|ΓB(J∗)| ≤ O(1) ·m1/3 log4/3 n · OPT
|B| . Thus, we make progress (according to

Definition 8) towards an approximation guarantee of Ã · k for Ã = O
(

m1/3 log4/3 n
)

, which,
as noted, ultimately gives us the same approximation guarantee for Red-Blue Set Cover,
proving Theorem 3.

4 Approximating MMSAt for t ≥ 5

We now turn to the general problem of approximating MMSAt for arbitrarily large (but
fixed) t. We will build on our approximation algorithm for MMSA4 (described in Section 6)
by recursively calling approximation algorithms for the problem with smaller values of t, and
using the result of this approximation as a separation oracle in certain cases.

E. Chlamtáč, Y. Makarychev, and A. Vakilian 11:9

We will denote the total size of our input by N , and we will denote our approximation
factor for MMSAt by At. We will only describe an algorithm for even depth. There is a very
slightly simpler but quite similar algorithm for odd depth, however the guarantee we are
able to achieve for MMSA2t−1 is nearly the same as for MMSA2t (up to an O(log N) factor).
Since MMSA2t−1 is essentially a special case of MMSA2t, we focus only on even levels.

▶ Lemma 11. For t ≥ 2, if MMSA2t can be approximated to within a factor of A2t, then we
can approximate MMSA2t+2 (and thus MMSA2t+1) to within O(

√
N ·A2t log N).

Proof. Denote our input as a layered graph with vertex layers V1, . . . , V2t+2. Ideally, we
would like to discard any vertex j ∈ V2t such that covering its neighbors Γ2t+1(j) requires
more than OPT vertices in V2t+2, however, checking this precisely requires solving Set Cover.
Instead, we discard any vertex j ∈ V2t for which the smallest fractional set cover3 in V2t+2
of its neighbors ΓV2t+1(j) has value greater than OPT. Such vertices cannot be included
without incurring cost greater than OPT and so we know they do not participate in any
optimum solution. We begin with the following basic LP:∑

h∈V2t+2

wh ≤ OPT (6)

yi ≤
∑

h∈Γ2t+2(i)

wh ∀i ∈ V2t+1 (7)

xj ≤ yi ∀j ∈ V2t, i ∈ ΓV2t+1(j) (8)
xj , yi, wh ∈ [0, 1] ∀j ∈ V2t∀i ∈ V2t+1∀h ∈ V2t+2 (9)

Note that, as stated, this LP is trivial. Indeed, in the absence of any additional constraints,
the all-zero solution is feasible. However, we will add new violated constraints as the algorithm
proceeds.

Given a solution to the above linear program, our algorithm for MMSA2t+2 is as follows:
Let V +

2t = {j ∈ V2t | xj ≥ 2(1 + ln N)/A2t+2}. Add these vertices to the solution.
Let V +

2t+2 = ΓV2t+2(ΓV2t+1(V +
2t)) be the neighbors-of-neighbors of V +

2t .
Apply a greedy (1 + ln N)-approximation for Set Cover to obtain a set cover (in V2t+2)
for ΓV2t+1(V +

2t), and add this set cover to the solution as well.
Create an instance of MMSA2t by removing layers V2t+1, V2t+2, all vertices in V +

2t , as
well as their neighbors in V2t−1, that is, ΓV2t−1(V +

2t), as these are already covered by V +
2t .

Apply an A2t-approximation algorithm for MMSA2t to this instance, and let UALG ⊆
V2t \ V +

2t be the result (or at least the portion belonging to layer 2t).
If |UALG| ≤ A2t+2/(2 + 2 ln N), add the vertices in UALG to the solution, as well as a
greedy set cover (in V2t+2) for the neighborhood ΓV2t+1(UALG).
Otherwise (if |UALG| > A2t+2/(2 + 2 ln N)), continue the Ellipsoid algorithm using the
new violated constraint∑

j∈V2t\V +
2t

xj ≥
⌊

A2t+2

2(1 + ln N)A2t

⌋
+ 1, (10)

and restart the algorithm (discarding the previous solution) using the new LP solution.

3 That is, min
{∑

h∈S

zh

∣∣∣∣ ∀i ∈ ΓV2t+1 (j) :
∑

h∈ΓV2t+2 (i)

zh ≥ 1; ∀h ∈ S : zh ≥ 0
}

.

APPROX/RANDOM 2023

11:10 Approximating Red-Blue Set Cover and Minimum Monotone Satisfying Assignment

Let us now analyze this algorithm. By (8), we know that all neighbors i ∈ V2t+1 of V +
2t

have LP value yi ≥ 2(1 + ln N)/A2t+2. Thus, by (7), if for every vertex h ∈ V2t+2 we define
w+

h = wh ·A2t+2/(2 + 2 ln N), then this is a fractional Set Cover for the V2t+1-neighborhood
ΓV2t+1(V +

2t), and by (6) it has total fractional value at most OPT ·A2t+2/(2 + 2 ln N). Thus,
the greedy Set Cover (1 + ln N)-approximation algorithm will cover this neighborhood using
at most OPT ·A2t+2/2 vertices in V2t+2. After this step, we may add at most OPT ·A2t+2/2
additional vertices in V2t+2 to our solution to obtain an A2t+2-approximation.

Now, suppose our MMSA2t approximation returns a set UALG of cardinality |UALG| ≤
A2t+2/(2 + 2 ln N). Clearly, adding to our solution the vertices of UALG and a V2t+2-Set
Cover for its neighborhood ΓV2t+1(UALG) gives a feasible solution to our MMSA2t+2 instance.
Moreover, since by our preprocessing, the neighborhood ΓV2t+1(j) of every j ∈ UALG has a
fractional Set Cover in V2t+2 of value at most OPT, it follows that the union of all these
neighborhoods, that is ΓV2t+1(UALG), has a fractional set cover in V2t+2 of value at most
OPT · |UALG| ≤ OPT ·A2t+2/(2 + 2 ln N). And so applying a greedy Set Cover algorithm for
the neighborhood ΓV2t+1(UALG) contributes at most an additional OPT ·A2t+2/2 vertices in
V2t+2 to our solution, as required.

Finally, let us examine the validity of the final step (the separation oracle). If the A2t-
approximation for MMSA2t was not able to find a solution of size at most A2t+2/(2 + 2 ln N),
then by definition, the value of any solution to our MMSA2t instance must be greater than
A2t+2/((2 + 2 ln N)A2t). This is a subinstance of our original instance, so any solution to our
original MMSA2t+2 instance must also contain more than A2t+2/((2 + 2 ln N)A2t) vertices
in V2t. Thus, Constraint (10) is valid for any optimum solution. But when is it violated?

By definition of V +
2t , the current total LP value of V2t \V +

2t is at most 2(1 + ln N)N/A2t+2.
And so the current LP solution violates (10) if

2(1 + ln N)N
A2t+2

≤ A2t+2

2(1 + ln N)A2t
⇐⇒ A2t+2 ≥ 2(1 + ln N)

√
N ·A2t.

Thus, we can obtain an approximation factor of A2t+2 = O(
√

N ·A2t log N) as claimed. ◀

Thus, by induction on t, with the guarantee of Theorem 4 for MMSA4 as the basis of the
induction, and Lemma 11 for the inductive steps, we get a general approximation algorithm
for MMSAt with approximation ratio O

(
N1− 1

3 23−⌈t/2⌉ · (log N)2+O(2−t/2)
)

.

5 Reduction from Min k-Union to Red-Blue Set Cover

In this section, we first present a reduction from Min k-Union to Red-Blue Set Cover and
then prove a hardness result for Red-Blue Set Cover. We start with formally defining the
Min k-Union problem.

▶ Definition 12 (Min k-Union). In the Min k-Union problem, we are given a set X of size
n, a family S of m sets S1, . . . , Sm, and an integer parameter k ≥ 1. The goal is to choose k

sets Si1 , . . . , Sik
so as to minimize the cost

∣∣∣⋃k
t=1 Sit

∣∣∣. We will denote the cost of the optimal
solution by OPTMU (X,S, k).

Note that Min k-Union resembles the Red-Blue Set Cover Cover problem: in both problems,
the goal is to choose some subsets Si1 , . . . , Sir

from a given family S so as to minimize the
number of elements or red elements in their union. Importantly, however, the feasibility
requirements on the chosen subsets Si1 , . . . , Sir are different in Red-Blue Set Cover Cover

E. Chlamtáč, Y. Makarychev, and A. Vakilian 11:11

and Min k-Union; in the former, we require that the chosen sets cover all k blue points but
in the latter, we simply require that the number of chosen sets be k. Despite this difference,
we show that there is a simple reduction from Min k-Union to Red-Blue Set Cover.

▷ Claim 13. There is a randomized polynomial-time reduction from Min k-Union to Red-
Blue Set Cover that given an instance I = (X,S, k) of Min k-Union returns an instance
I ′ = (R, B, {S′

i}i∈[m]) of Red-Blue Set Cover satisfying the following two properties:
1. If S′

j1
, . . . , S′

jr
is a feasible solution for I ′ then k′ ≤ r and the cost of solution Sj1 , . . . , Sjk′

for Min k′-Union where k′ = ⌊k/ℓ⌋ and ℓ = ⌈loge k⌉+1 does not exceed that of S′
j1

, . . . , S′
jr

for Red-Blue Set Cover:

costMU (Sj1 , . . . , Sjk′) ≡

∣∣∣∣∣∣
k′⋃

t=1
Sit

∣∣∣∣∣∣ ≤
∣∣∣∣∣

r⋃
t=1

(S′
it
∩R)

∣∣∣∣∣ = costRB(S′
j1

, . . . , S′
jr

).

This is true always no matter what random choices the reduction makes.
2. OPTRB(R, B, {S′

i}i) ≤ OPTMU (X,S, k) with probability at least 1− 1/e.

Proof. We define instance I ′ as follows. Let R = X and B = [k]. For every i ∈ [m],
let Ri = Si; Bi be a set of ℓ elements randomly sampled from [k] with replacement, and
S′

i = Ri∪Bi. All random choices are independent. Now we verify that this reduction satisfies
the required properties.

Consider a feasible solution S′
j1

, . . . , S′
jr

for I ′. Since this solution is feasible, ∪r
t=1Bt = B.

Now |Bt| ≤ ℓ and thus r ≥ |B|/ℓ = k/ℓ ≥ k′, as required. Further,

costMU (Sj1 , . . . , Sjk′) ≡

∣∣∣∣∣∣
k′⋃

t=1
Sjt

∣∣∣∣∣∣ =

∣∣∣∣∣∣
k′⋃

t=1
Rjt

∣∣∣∣∣∣ ≤
∣∣∣∣∣

r⋃
t=1

Rjt

∣∣∣∣∣ ≡ costRB(S′
j1

, . . . , S′
jr

).

We have verified that item 1 holds. Now, let Si1 , . . . , Sik
be an optimal solution for I. We

claim that S′
i1

, . . . , S′
ik

is a feasible solution for I ′ with probability at least 1− 1/e. To verify
this claim, we need to lower bound the probability that Bi1 ∪ · · · ∪ Bik

= B. Indeed, set
Bi1 ∪ · · · ∪Bik

consists of kℓ elements sampled from B with replacement. The probability
that a given element b ∈ B is not in Bi1 ∪ · · · ∪Bik

is at most (1− 1/k)kℓ ≤ e−ℓ ≤ 1
ek . By

the union bound, the probability that there is some b ∈ B \ (Bi1 ∪ · · · ∪ Bik
) is at most

k × 1
ek = 1

e . Thus, there is no such b with probability at least 1 − 1/e and consequently
Bi1 ∪ · · · ∪ Bik

= B. In that case, the cost of solution S′
i1

, . . . , S′
ik

for Red-Blue Set Cover
equals

∣∣∣⋃k
i=1 R′

it

∣∣∣ =
∣∣∣⋃k

i=1 Sit

∣∣∣, the cost of the optimal solution for Min k-Union. ◁

▶ Corollary 14. Assume that there is an α(m, n) approximation algorithm A for Red-Blue
Set Cover (where α is a non-decreasing function of m and n).Then there exists a randomized
polynomial-time algorithm B for Min k-Union that finds k′ sets Si1 , . . . , Sik′ such that∣∣∣∣∣∣

k′⋃
t=1

Sit

∣∣∣∣∣∣ ≤ α(m, n)OPTMU (X,S, k).

The failure probability is at most 1/n.

Proof. We simply apply the reduction to the input instance of Min k-Union and then solve
the obtained instance of Red-Blue Set Cover using algorithm A. To make sure that the
failure probability is at most 1/n, we repeat this procedure ⌈loge n⌉ times and output the
best of the solutions we found. ◀

APPROX/RANDOM 2023

11:12 Approximating Red-Blue Set Cover and Minimum Monotone Satisfying Assignment

▶ Theorem 15. Assume that there is an α(m, n) approximation algorithm A for Red-
Blue Set Cover (where α is a non-decreasing function of m and n). Then there exists an
O(log2 k)α(m, n) approximation algorithm for Min k-Union.

Proof. Our algorithm iteratively uses algorithm B from the corollary to find an approximate
solution. First, it runs B on the input instance and gets k1 = k′ sets. Then it removes the
sets it found from the instance and reduces the parameter k to k − k1. Then the algorithm
runs B on the obtained instance and gets k2 sets. It again removes the obtained sets and
reduces k to k−k1−k2 (here k is the original value of k). It repeats these steps over and over
until it finds k sets in total. That is, k1 + · · ·+ kT = k where T is the number of iterations
the algorithm performs.

Observe that each of the instances of Min k-Union constructed in this process has cost
at most OPTMU (X,S, k). Indeed, consider the subinstance It+1 we solve at iteration t + 1.
Consider k sets that form an optimal solution for (X,S, k). At most k1 + · · ·+ kt of them
have been removed from It+1 and thus at least k − k1 − · · · − kt are still present in It+1.
Let us arbitrarily choose k − k1 − · · · − kt sets among them. The chosen sets form a feasible
solution for It+1 of cost at most OPTMU (X,S, k).

Thus, the cost of a partial solution we find at each iteration t is at most α(m, n) ·
OPTMU (X,S, k). The total cost is at most α(m, n) · T · OPTMU (X,S, k). It remains to
show that T ≤ O(log2 k). We observe that the value of k reduces by a factor at least 1− 1/ℓ

in each iteration, thus after t iterations it is at most (1− 1/ℓ)tk. We conclude that the total
number of iterations T is at most O(ℓ log k) = O(log2 k), as desired. ◀

Now we obtain a conditional hardness result for Reb-Blue Set Cover from a corollary from
the Hypergraph Dense-vs-Random Conjecture.

▶ Corollary 16 (Chlamtáč et al. [9]). Assuming the Hypergraph Dense-vs-Random Conjecture,
for every ε > 0, no polynomial-time algorithm for Min k-Union achieves better than Ω(m1/4−ε)
approximation.

Theorem 6 immediately follows.

6 Approximation Algorithm for MMSA4

Consider an instance (B, J, R, S, E) of MMSA4. As we did for Red-Blue Set Cover, we will
focus on making progress towards a good approximation. Due to space constraints, we have
omitted most proofs for statements in this section. Complete proofs can be found in the full
version of the paper.

▶ Definition 17. We say that an algorithm for MMSA4 makes progress towards an O(A)-
approximation if, given an instance with an optimum solution containing at most OPT vertices
in S, the algorithm finds a subset Ĵ ⊆ J and a subset Ŝ ⊆ S such that ΓR(Ĵ) ⊆ ΓR(Ŝ) (a
valid partial solution) and |Ŝ|

|ΓB(Ĵ)| ≤ A · OPT
|B| .

As before, it is easy to see that given such an algorithm, we can run such an algorithm
repeatedly to obtain an actual Õ(A) approximation for MMSA4. In fact, in the rest of
this section we will only discuss an algorithm which makes progress towards an O(A)-
approximation.

For the sake of formulating an LP relaxation with a high degree of uniformity, we will
actually focus on a partial solution which covers a large fraction of blue elements in a uniform
manner:

E. Chlamtáč, Y. Makarychev, and A. Vakilian 11:13

▶ Lemma 18. For any cover J0 ⊆ J of the blue elements B, there exist subsets J ′ ⊆ J0 and
B′ ⊆ B and a parameter ∆ > 0 with the following properties:

Every vertex j ∈ J ′ has B′-degree in the range degB′(j) ∈ [∆, 2∆].
Every blue element ℓ ∈ B′ has at least one neighbor in J ′

∆ and at most 2e ln(2k) neighbors.
We have the cardinality bound |B′| ≥ |B|/(log k log m).

Simplifying Assumptions. We can make the following assumptions which will be useful
in the analysis of our algorithm. First, we may assume that for every j ∈ J , the red
neighborhood ΓR(j) has a fractional set cover in S of weight at most OPT. That is, the
standard LP relaxation for covering ΓR(j) using S has optimum value at most OPT. If we
have guessed the correct value of OPT, then we know that no j ∈ J whose red neighborhood
cannot be covered with cost OPT can participate in an optimum solution, and can therefore
be discarded. We may also assume that for some ε > 0, the value ∆ above is at most k/mε.
The reason is that otherwise, the blue elements B′ can be covered with at most Õ(mε)
vertices in J , and we know that for each of these, its red neighborhood can be covered by a
set of size Õ(OPT) in S, and thus we can make progress towards an Õ(mε) approximation.

Guessing the value of ∆ ∈ [k] above and the value of the optimum OPT, we can write
the following LP relaxation:∑

h∈S

wh ≤ OPT (11)∑
ℓ∈B

zℓ ≥ |B|/(log k log m) (12)

zℓ ≤
∑

j∈ΓJ (ℓ)

xℓ
j ≤ 2e ln(2k)zℓ ∀ℓ ∈ B (13)

∆xj ≤
∑

ℓ∈ΓB(j)

xℓ
j ≤ 2∆xj ∀j ∈ J (14)

0 ≤ xℓ
j ≤ xj , zℓ ≤ 1 ∀ℓ ∈ B∀j ∈ J (15)∑

h∈ΓS(i)

wh ≥ yi ∀i ∈ R (16)

0 ≤ xj ≤ yi ∀(j, i) ∈ E(J, R) (17)

We further strengthen this LP by partially lifting the above constraints. Specifically, for every
a ∈ J ∪S, j ∈ J , h ∈ S, i ∈ R, and ℓ ∈ B we introduce variables X

(a)
h , X

(a)
ℓ , X

(a)
ℓ,j , X

(a)
j , X

(a)
i ,

and lift all the above constraints accordingly. For a precise definition, see Appendix B. For
any j ∈ J such that xj > 0 or h ∈ S such that wh > 0, we will denote the “conditioned”
variables by ŵ

(j)
h = X

(j)
h /xj , ẑ

(h)
ℓ = X

(h)
ℓ /wh, etc.

▶ Remark 19. The above linear program is a relaxation for the partial solution given by
Lemma 18. Specifically, given an optimal solution (JOPT, SOPT), applying the lemma to
J0 = JOPT, we have the following feasible solution: Set the variables zℓ and xj to be indicators
for B′ and J ′ as in the lemma, respectively, and the variables xℓ

j to be indicators for J ′ ×B′.
Set the the variables wh to be indicators for SOPT, and the variables yi to be indicators for
the red neighbors ΓR(J ′) of J ′.

Let us examine some useful properties of this relaxation. First of all, we note that it
approximately determines the total LP value of J (since the LP assigns total LP value Θ̃(|B|)
to B):

APPROX/RANDOM 2023

11:14 Approximating Red-Blue Set Cover and Minimum Monotone Satisfying Assignment

▷ Claim 20. Any solution satisfying constraints (13)-(15), has total LP weight in J bounded
by 1

2∆
∑

ℓ∈B zℓ ≤
∑

j∈J xj ≤ 2e ln(2k)
∆

∑
ℓ∈B zℓ.

These constraints also determine a useful combinatorial property: in any feasible solution,
the number of blue neighbors a subset of J has is (at least) proportional to the LP value of
that set.

▷ Claim 21. For any solution satisfying constraints (13)-(15), and any subset of vertices
Ĵ ⊆ J , the number of blue neighbors of Ĵ is bounded from below by:

|ΓB(Ĵ)| ≥ 1
4e ln(2k) log k log m

· x(Ĵ)
x(J) · |B|.

A fractional variant of the above covering property for the blue vertices is the following:

▷ Claim 22. For any solution satisfying constraints (13)-(15), and any subset of vertices
Ĵ ⊆ J , at least ε|B| vertices ℓ ∈ B satisfy

∑
j∈ΓĴ (ℓ) xℓ

j ≥ 1
4 log k log m ·

x(Ĵ)
x(J) , where ε =

1
8e ln(2k) log k log m ·

x(Ĵ)
x(J) .

Let us now analyze the approximation guarantee of Algorithm 2. We begin by stating
simple lower bounds on the total LP value of the set J0 as well as the vertices in the set.

▶ Lemma 23. The set J0 defined in Algorithm 2 has LP value at least x(J)/(2 log m) and
the lower bound on the individual LP values in the set is bounded by x0 ≥ 1/m.

Next, we examine the bucketing of neighbors in S, and give a lower bound on the number
of vertices in these bucketed sets.

▶ Lemma 24. In Algorithm 2, for every vertex j ∈ J0, and every red neighbor i ∈ ΓR(j),
the bucketed set of neighbors Γ̂j(i) of i has cardinality bounded from below by |Γ̂j(i)| ≥
1/(6βji log |S| log(|S|2m)).

Proof. Fix vertices j ∈ J0 and i ∈ ΓR(j). Let us begin by examining our choice of βji.
Note that lifting Constraint 17, we get xj = X

(j)
j ≤ X

(j)
i (≤ xj), and so ŷ(j) = X

(j)
i /xj = 1.

Lifting Constraint (16), we thus get
∑

h∈ΓS(i) ŵ
(j)
h ≥ 1. Note that the total LP weight of the

set S′
ji = {h ∈ ΓS(i) | ŵ(j)

h ≤ 1/|S|2} is at most 1/|S| ≤ ŵ(j)(ΓS(i))/3. Therefore, the total
ŵ(j) LP weight of the bucketed sets Sji

s for s such that 2−s ≥ 1/|S|2 is at least 2
3 ŵ(j)(ΓS(i)),

and at least one of these bucketed sets has LP weight at least a 1/(2 log |S|)-fraction of this,
or at least ŵ(j)(ΓS(i))/(3 log |S|) ≥ 1/(3 log |S|). This gives a lower bound on the LP weight
of the bucket which defines βji. Also, the heaviest bucket cannot be Sji

s for s such that
2−s ≤ 1/|S|2, since even the total weight of these buckets is at most 1/|S| = o(1/(3 log |S|)).
In particular, this means that βji ≥ 1/|S|2. Moreover, for s such that 2−s = βji, since the
total conditional LP weight of Sji

s is at least 1/(3 log |S|), and every vertex in the set has
conditional LP value at most 2βji, the cardinality of the set must be at least 1/(6βji log |S|).

Now let us examine the second stage of bucketing. Note that for every h ∈ ΓS(i), we
have wh ≥ X

(j)
h = ŵ

(j)
h · xj ≥ βjix0 ≥ 1/(|S|2m) (and, of course, wh ≤ 1). Therefore, the

number of non-empty buckets Ŝji
t is at most log(|S|2m), and at least one of them must have

cardinality at least |Sji
s |/ log(|S|2m), which, along with our lower bound on |Sji

s | above, gives
us the required lower bound on |Γ̂j(i)|. ◀

Note that from the above proof, we also get upper-bounds on the number of values of βji

and γji that can produce non-empty buckets. In particular, we get the following bound:

E. Chlamtáč, Y. Makarychev, and A. Vakilian 11:15

▶ Observation 25. The total number of possible values for βji is at most 2 log |S|, and
the total number of possible values for γji is at most log(|S|2m). Along with the range of
values for D, the total number of triples ⟨β, γ, D⟩ for which JD

β,γ is non-empty is at most
2 log2 |S| log(|S|2m).

The algorithm proceeds by separating the buckets corresponding to parameters for which
the simple rounding (which samples a random subset of J of size Ω̃(J)) makes progress
towards an approximation guarantee of Õ(A). If a large fraction of vertices in J0 participate
exclusively in such buckets, then the algorithm applies this rounding. The following lemma
gives the analysis of the algorithm in this case.

▶ Lemma 26. In Algorithm 2, if |J1| < |J0|/2, then with high probability the algorithm
samples a subset JALG ⊆ J which covers an Ω̃(1)-fraction of blue vertices, and a subset of S

of size Õ(A ·OPT) which covers all the red neighbors of JALG.

Finally, we turn to the remaining case in Algorithm 2, when |J1| ≤ |J0|/2. The analysis
of this case rests on a back-degree argument similar (though significantly more involved) to
the argument in Lemma 10 for Red-Blue Set Cover. Indeed, we show the following:

▶ Lemma 27. If |J1| ≥ |J0|/2, then for β, γ, D, h0 and the set JALG as defined by the
algorithm in this case, we have

∑
j∈JALG

x̂
(h0)
j ≥ |J0|Dx0β

OPT · 1
4 log2 |S| log(|S|2m) log m

.
Furthermore, for every vertex j ∈ J̃ (as defined by the algorithm), we have x̂h0

j ∈
[x0β/(2γ), 4x0β/γ].

We can now show that in this case, the algorithm makes progress towards an Õ(m/A2)-
approximation. Trading this off with the progress towards an Õ(A)-approximation as
guaranteed by Lemma 26, we get an Õ(m1/3)-approximation by setting A = m1/3.

▶ Lemma 28. In Algorithm 2, if |J1| ≥ |J0|/2, then with high probability, the algorithm
makes progress towards an approximation guarantee of Õ(m/A2).

Proof. Let us first bound the number of blue vertices covered by JALG. By Lemma 27, we
have

x̂h0 (JALG) ≥ |J0|x0Dβ

OPT · 1
4 log2 |S| log(|S|2m) log m

≥ x(J0)Dβ

OPT · 1
4 log2 |S| log(|S|2m) log m

since ∀j ∈ J0 : 2x0 ≥ xj

≥ x(J)Dβ

OPT · 1
4 log2 |S| log(|S|2m) log m

by Lemma 23

> x(J) · A

x(J0) · 1
4 log2 |S| log(|S|2m) log m

. since ∀⟨β, γ, D⟩ ∈ P1 : βD

OPT >
A

x(J0)

Thus, since the conditioned LP solution satisfies the basic LP, we can apply Claim 21 to this
solution and get that the size of the blue neighborhood of JALG can be bounded by

|ΓB(JALG)| ≥ 1
4e ln(2k) log k log m

· A

x(J0) ·
1

4 log2 |S| log(|S|2m) log m
· |B|

= 1
16 ln(2k) log k log2 |S| log(|S|2m) log2 m

· A

x(J0) · |B|.

APPROX/RANDOM 2023

11:16 Approximating Red-Blue Set Cover and Minimum Monotone Satisfying Assignment

Note that by the LP constraints and Lemma 27, for every red neighbor i ∈ ΓR(JALG),
we have ŷh0

i ≥ xh0
i ≥ x0β/(2γ), and so by (16), the rescaled solution (ŵh0

h · 2γ/(x0β))h∈S

is a fractional set cover for ΓR(JALG). Thus, sampling every h ∈ S with probability
min{1, 2 ln n · ŵh0

h · 2γ/(x0β)} produces a valid set cover with high probability. It remains
to analyze the size of this set cover. Indeed, since ŵh0(S) ≤ OPT, our sampling procedure
produces a set of expected size

E[|SALG|] ≤
4γ ln n

x0β
·OPT

≤ 8 ln n · γ

β
· |J0|

x(J0) ·OPT since ∀j ∈ J0 : xj ≤ 2x0

≤ 8 ln n · γ

β
· m

x(J0) ·OPT

< 8 ln n · 1
A
· m

x(J0) ·OPT, since ∀⟨β, γ, D⟩ ∈ P1 : β

γ
> A

and so with high probability we have |SALG| = O(OPT ·m log n/(A · x(J0))).
Putting our two bounds together, we get that in this case, the algorithm makes progress

towards an approximation guarantee of

|B|
|ΓB(JALG)| ·

|SALG|
OPT = Õ(1) · x(J0)

A
· m

A · x(J0) = Õ(1) · m

A2 . ◀

References
1 V. P. Abidha and Pradeesha Ashok. Red blue set cover problem on axis-parallel hyperplanes

and other objects. CoRR, abs/2209.06661, 2022. doi:10.48550/arXiv.2209.06661.
2 Michael Alekhnovich, Samuel R. Buss, Shlomo Moran, and Toniann Pitassi. Minimum

propositional proof length is np-hard to linearly approximate. J. Symb. Log., 66(1):171–191,
2001. doi:10.2307/2694916.

3 Pradeesha Ashok, Sudeshna Kolay, and Saket Saurabh. Multivariate complexity ana-
lysis of geometric red blue set cover. Algorithmica, 79(3):667–697, 2017. doi:10.1007/
s00453-016-0216-x.

4 Pranjal Awasthi, Avrim Blum, and Or Sheffet. Improved guarantees for agnostic learning of
disjunctions. In Adam Tauman Kalai and Mehryar Mohri, editors, COLT 2010 - The 23rd
Conference on Learning Theory, Haifa, Israel, June 27-29, 2010, pages 359–367. Omnipress,
2010. URL: http://colt2010.haifa.il.ibm.com/papers/COLT2010proceedings.pdf#page=
367.

5 Robert D. Carr, Srinivas Doddi, Goran Konjevod, and Madhav V. Marathe. On the red-blue
set cover problem. In David B. Shmoys, editor, Proceedings of the Eleventh Annual ACM-SIAM
Symposium on Discrete Algorithms, January 9-11, 2000, San Francisco, CA, USA, pages
345–353. ACM/SIAM, 2000. URL: http://dl.acm.org/citation.cfm?id=338219.338271.

6 Timothy M. Chan and Nan Hu. Geometric red-blue set cover for unit squares and related
problems. Comput. Geom., 48(5):380–385, 2015. doi:10.1016/j.comgeo.2014.12.005.

7 Moses Charikar, Yonatan Naamad, and Anthony Wirth. On approximating target set
selection. In Klaus Jansen, Claire Mathieu, José D. P. Rolim, and Chris Umans, ed-
itors, Approximation, Randomization, and Combinatorial Optimization. Algorithms and
Techniques, APPROX/RANDOM 2016, September 7-9, 2016, Paris, France, volume 60
of LIPIcs, pages 4:1–4:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2016. doi:
10.4230/LIPIcs.APPROX-RANDOM.2016.4.

8 Eden Chlamtác, Michael Dinitz, Christian Konrad, Guy Kortsarz, and George Rabanca.
The densest k-subhypergraph problem. SIAM J. Discret. Math., 32(2):1458–1477, 2018.
doi:10.1137/16M1096402.

https://doi.org/10.48550/arXiv.2209.06661
https://doi.org/10.2307/2694916
https://doi.org/10.1007/s00453-016-0216-x
https://doi.org/10.1007/s00453-016-0216-x
http://colt2010.haifa.il.ibm.com/papers/COLT2010proceedings.pdf#page=367
http://colt2010.haifa.il.ibm.com/papers/COLT2010proceedings.pdf#page=367
http://dl.acm.org/citation.cfm?id=338219.338271
https://doi.org/10.1016/j.comgeo.2014.12.005
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2016.4
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2016.4
https://doi.org/10.1137/16M1096402

E. Chlamtáč, Y. Makarychev, and A. Vakilian 11:17

9 Eden Chlamtác, Michael Dinitz, and Yury Makarychev. Minimizing the union: Tight ap-
proximations for small set bipartite vertex expansion. In Philip N. Klein, editor, Proceed-
ings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
2017, Barcelona, Spain, Hotel Porta Fira, January 16-19, pages 881–899. SIAM, 2017.
doi:10.1137/1.9781611974782.56.

10 Irit Dinur and Shmuel Safra. On the hardness of approximating label-cover. Inf. Process.
Lett., 89(5):247–254, 2004. doi:10.1016/j.ipl.2003.11.007.

11 Michael Elkin and David Peleg. The hardness of approximating spanner problems. Theory
Comput. Syst., 41(4):691–729, 2007. doi:10.1007/s00224-006-1266-2.

12 Michael H. Goldwasser and Rajeev Motwani. Intractability of assembly sequencing: Unit disks
in the plane. In Frank K. H. A. Dehne, Andrew Rau-Chaplin, Jörg-Rüdiger Sack, and Roberto
Tamassia, editors, Algorithms and Data Structures, 5th International Workshop, WADS ’97,
Halifax, Nova Scotia, Canada, August 6-8, 1997, Proceedings, volume 1272 of Lecture Notes in
Computer Science, pages 307–320. Springer, 1997. doi:10.1007/3-540-63307-3_70.

13 Raghunath Reddy Madireddy and Apurva Mudgal. A constant-factor approximation algorithm
for red-blue set cover with unit disks. Algorithmica, 85(1):100–132, 2023. doi:10.1007/
s00453-022-01012-z.

14 Raghunath Reddy Madireddy, Subhas C. Nandy, and Supantha Pandit. On the geometric
red-blue set cover problem. In Ryuhei Uehara, Seok-Hee Hong, and Subhas C. Nandy, editors,
WALCOM: Algorithms and Computation - 15th International Conference and Workshops,
WALCOM 2021, Yangon, Myanmar, February 28 - March 2, 2021, Proceedings, volume
12635 of Lecture Notes in Computer Science, pages 129–141. Springer, 2021. doi:10.1007/
978-3-030-68211-8_11.

15 Pauli Miettinen. On the positive-negative partial set cover problem. Inf. Process. Lett.,
108(4):219–221, 2008. doi:10.1016/j.ipl.2008.05.007.

A Adapting and Applying our Algorithm to Partial Red-Blue Set Cover

Let us now consider the variation in which we are given a parameter k̂, and are only required
to cover at least k̂ elements in a feasible solution. The algorithm and analysis work with
almost no change other than the following.

In the algorithm, the stopping condition of the loop is of course no longer once we have
covered all blue elements, but once we have covered at least k̂ of them.

A slightly more subtle change involves the analysis of the LP rounding in the final
iteration. The notion of progress towards a certain approximation guarantee may not be
valid if the ratio of red elements to blue elements covered is still as small as required, but
the number of blue elements added is far more than we need. Rather than derandomize the
rounding, one can show that it succeeds (despite this issue) with high probability. Let us
briefly sketch the argument here.

First, note that we can always preemptively discard any sets with more than OPT red
elements, and so we may assume that rα ≤ OPT. Suppose we need to cover an additional
k∗ elements in order to reach the target of k̂ blue elements total. Since our bound on
E[|ΓRα(J∗)|] is a linear function of our bound on E[|J∗ \ J+|], by a Chernoff bound we
have |ΓRα

(J∗)| = Õ(rαA) with all but exponentially small probability. On the other hand,
|ΓB(J∗)| is always at most |B|, so by Markov, we have

Prob
[
|ΓB(J∗)| ≤ E[|ΓB(J∗)|]

2

]
≤ |B| − E[|ΓB(J∗)|]
|B| − E[|ΓB(J∗)|]/2 ≤ 1− 1

2|B| .

APPROX/RANDOM 2023

https://doi.org/10.1137/1.9781611974782.56
https://doi.org/10.1016/j.ipl.2003.11.007
https://doi.org/10.1007/s00224-006-1266-2
https://doi.org/10.1007/3-540-63307-3_70
https://doi.org/10.1007/s00453-022-01012-z
https://doi.org/10.1007/s00453-022-01012-z
https://doi.org/10.1007/978-3-030-68211-8_11
https://doi.org/10.1007/978-3-030-68211-8_11
https://doi.org/10.1016/j.ipl.2008.05.007

11:18 Approximating Red-Blue Set Cover and Minimum Monotone Satisfying Assignment

Thus, repeating the rounding a polynomial number of times (in a given iteration), with all
but exponentially small probability we can find a set Ĵ ⊆ J that satisfies both

|ΓB(Ĵ)| ≥ E[|ΓB(J∗)|]
2 and |ΓRα(Ĵ)|] = Õ(rαA).

Now if E[|ΓB(J∗)|] ≤ 2k∗, then we have the required ratio and bound on the number of
new red elements by the previous analysis. If E[|ΓB(J∗)|] > 2k∗, then this will be the last
iteration, as we will cover at least the required k∗ additional blue elements, and the number
of red elements added at this final stage is at most Õ(rαA) ≤ Õ(A ·OPT), so we maintain
the desired approximation ratio.

B Additional LP Constraints for MMSA4

The following is a complete list of lifted constraints that we use in addition to the basic LP
relaxation for MMSA4:

X
(h)
j = X

(j)
h ∀j ∈ J, ∀h ∈ S

X
(j)
j = xj ∀j ∈ J∑

h∈ΓS(i)

X
(j)
h ≥ X

(j)
i ∀j ∈ J∀i ∈ R

X
(j)
j ≤ X

(j)
i ∀j ∈ J∀i ∈ ΓR(j)

0 ≤ X(j)
a ≤ xj ∀j ∈ J∀a ∈ {j} ∪R ∪ S∑

h′∈S

w
(h)
h′ ≤ OPT ∀h ∈ S∑

ℓ∈B

X
(h)
ℓ ≥ |B|/(log k log m)wh ∀h ∈ S

X
(h)
ℓ ≤

∑
j∈ΓJ (ℓ)

X
(h)
ℓ,j ≤ 2e ln(2k)X(h)

ℓ ∀h ∈ S∀ℓ ∈ B

∆X
(h)
j ≤

∑
ℓ∈ΓB(j)

X
(h)
ℓ,j ≤ 2∆X

(h)
j ∀h ∈ S∀j ∈ J

0 ≤ X
(h)
ℓ,j ≤ X

(h)
j , X

(h)
ℓ ≤ wh ∀h ∈ S∀ℓ ∈ B∀j ∈ J∑

h′∈ΓS(i)

X
(h)
h′ ≥ X

(h)
i ∀h ∈ S∀i ∈ R

X
(h)
j ≤ X

(h)
i ∀h ∈ S∀(j, i) ∈ E(J, R)

0 ≤ X(h)
a ≤ wh ∀h ∈ S∀a ∈ B ∪ J ∪R ∪ S

E. Chlamtáč, Y. Makarychev, and A. Vakilian 11:19

Algorithm 2 Approximation Algorithm for MMSA4.

Input: B, J, R, S, E

Guess OPT, ∆ and solve the LP ▷ e.g. using binary search
Choose parameter s such that the LP weight of the bucket Js = {j ∈ J | 2−s ≤ xj ≤
2−(s−1)}, that is,

∑
j∈Js

xj is maximized, and let x0 = 2−s and J0 = Js.
for every j ∈ J0 and i ∈ ΓR(j) do

Choose a new parameter s such that the conditioned LP weight of the bucket
Sji

s = {h ∈ S | 2−s ≤ ŵ
(j)
h ≤ 2−(s−1)}, that is,

∑
h∈Sji

s
ŵ

(j)
h , is maximized, and let

βji = 2−s.
Choose parameter t such that the sub-bucket Ŝji

t = {h ∈ Sji
s | 2−t ≤ wh ≤ 2−(t−1)}

has maximum cardinality |Ŝji
t |, and let γji = 2−t and Γ̂j(i) = Ŝji

t .
end for
for every j ∈ J0 and β, γ do

Let ΓR
β,γ(j) = {i ∈ ΓR(j) | βji = β, γji = γ}.

Let ΓS
β,γ(j) =

⋃
i∈ΓR

β,γ
(j) Γ̂j(i).

end for
for every β, γ and D ∈ {2s−1 | s ∈ ⌈log |S|⌉} do

Let JD
β,γ = {j ∈ J0 | ΓR

β,γ(j) ̸= ∅, |ΓS
β,γ(j)| ∈ [D, 2D]}.

Let T D
β,γ = {⟨j, ΓR

β,γ(j), ΓS
β,γ(j)⟩ | j ∈ JD

β,γ(j)}.
end for
Let P1 = {⟨β, γ, D | β/γ > A, βD > A ·OPT/x(J0)⟩}, and J1 =

⋃
⟨β,γ,D⟩∈P1

JD
β,γ .

if |J1| < |J0|/2 then
Let JALG = ∅.
for all j ∈ J0 \ J1 do

Independently add j to JALG with probability x0.
end for
Let SALG = ∅.
for every β do

Let Sβ =
⋃

j∈JALG

⋃
γ ΓS

β,γ(j).
for all h ∈ Sβ do

Independently add h to SALG with probability min{1, β ·
12 log |S| log(|S|2m) ln n}.

end for
end for

else if |J1| ≥ |J0|/2 then
Choose ⟨β, γ, D⟩ ∈ P1 that maximize the cardinality |JD

β,γ |, and let J2 = JD
β,γ .

Let SD̃ = {h ∈ S | {j′ ∈ J2 | h ∈ ΓS
β,γ(j′)}| ∈ [D̃, 2D̃]} for every D̃ ∈ {2s−1 | s ∈

⌈log |J2|⌉}.
Choose D̃ that maximizes the cardinality |{⟨j, h⟩ ∈ J2 × SD̃ | h ∈ ΓS

β,γ(j)}|, and let
S̃ = SD̃.

Choose h0 ∈ S̃ that maximizes the total LP value
∑

j∈J2:ΓS
β,γ

(j)∋h0
x̂

(h0)
j .

Let JALG = {j ∈ J2 | h0 ∈ ΓS
β,γ(j)}.

Let SALG = ∅.
for every h ∈

⋃
j∈JALG

ΓS(ΓR(j)) do
Independently add h to SALG with probability min{1, ŵh0

h · 4γ ln n/(x0β)}.
end for

end if

APPROX/RANDOM 2023

	1 Introduction
	1.1 Related work
	1.2 Our Results

	2 Preliminaries
	3 Approximation Algorithm for Red-Blue Set Cover
	4 Approximating MMSAt for t >= 5
	5 Reduction from Min k-Union to Red-Blue Set Cover
	6 Approximation Algorithm for MMSA4
	A Adapting and Applying our Algorithm to Partial Red-Blue Set Cover
	B Additional LP Constraints for MMSA4

