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Abstract
We combine the theory of inductive data types with the theory of universal measurings. By doing so,
we find that many categories of algebras of endofunctors are actually enriched in the corresponding
category of coalgebras of the same endofunctor. The enrichment captures all possible partial
algebra homomorphisms, defined by measuring coalgebras. Thus this enriched category carries more
information than the usual category of algebras which captures only total algebra homomorphisms.
We specify new algebras besides the initial one using a generalization of the notion of initial algebra.
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1 Introduction

In both the tradition of functional programming and categorical logic, one takes the perspect-
ive that most data types should be obtained as initial algebras of certain endofunctors (to use
categorical language). For instance, the natural numbers are obtained as the initial algebra
of the endofunctor X 7→ X + 1, assuming that the category in question (often the category
of sets) has a terminal object 1 and a coproduct +. Much theory has been developed around
this approach, which culminated in the notion of W-types [5].

In another tradition, for k a field, it has been long understood (going back at least to
Wraith, according to [3], and Sweedler [10]) that the category of k-algebras is naturally
enriched over the category of k-coalgebras, a fact which has admitted generalization to
several other settings (e.g. [3, 11, 8, 6]). In this paper, we extend this theory to the setting
of an endofunctor on a category – in particular those endofunctors that are considered in the
theory of W-types.

This work is thus the beginning of a development of an analogue of the theory of W-
types – not based on the notion of initial objects in a category of algebras, but rather on
generalized notions of initial objects in a coalgebra enriched category of algebras. Our main
result (Theorem 31) states that the categories of algebras of endofunctors considered in the
theory of W-types are often enriched in their corresponding categories of coalgebras. The
hom-coalgebras of our enriched category carry more information than the hom-sets in the
unenriched category that is usually considered in the theory of W-types. Because of our
passage to the enriched setting, we have more precise control than in the unenriched setting,
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15:2 Coinductive Control of Inductive Data Types

and we are able to specify more data types than just those which are captured by the theory
of W-types. We do this by generalizing the notion of initial algebra, taking inspiration from
the notion of weighted limits. This general theory is presented in Section 3.

But first, in Section 2, we begin our paper with an enlightening example which serves
as an illustration of the relevance of our enriched theory and as a motivation for the more
general setting. Therein, we provide explicit calculations for the case of algebras over the
endofunctor X 7→ X + 1 on Set. In that example, we illustrate that it is appropriate to
interpret the elements of the hom-coalgebras as partial homomorphisms.

Indeed, in the classical Sweedler theory, the enrichment in coalgebras can also be under-
stood as encoding a notion of partial homomorphism. Though we do not study k-algebras in
this paper, we conclude this introduction with details of that classical theory. A measuring
from a k-algebra A to a k-algebra B, in the sense of Sweedler [10], is a k-coalgebra C together
with a linear homomorphism ϕ : C ⊗k A → B that is compatible with the multiplication and
identities of A and B. A measuring from A to B is equivalently a k-coalgebra C together
with a k-linear map ϕ : C → A → B such that

ϕc(aa′) =
n∑

i=1
ϕ

c
(1)
i

(a)ϕ
c

(2)
i

(a′), and ϕc(1A) = ε(c)1B ,

for all c ∈ C and a, a′ ∈ A where ∆(c) =
∑n

i=1 c
(1)
i ⊗ c

(2)
i is the comultiplication ∆: C →

C ⊗k C and ε : C → k is the counit of C. Therefore the k-linear maps ϕc : A → B can be
regarded as partial algebra homomorphisms, and the elements c ∈ C can be interpreted as
measuring how far each partial homomorphism ϕc is from being a total homomorphism. For
instance when ∆(c) = c ⊗ c, we have that ϕc : A → B is a total algebra homomorphism. Now
we proceed to tell an analogous story about endofunctors.

2 Illustrative example: id + 1

In this section, we illustrate our results in the context of one example: the endofunctor that
sends X 7→ X + 1 (the coproduct of X and a terminal set 1) in Set, the category of sets. The
initial algebra of this endofunctor is N, the natural numbers, and thus this endofunctor is
one of the most basic and important examples in the theory of W-types.

This section is one very long worked example of our general, categorical theory which
follows in Section 3.

We first review the classical story in Section 2.1, and afterwards our goal is to explain
how the category of algebras is naturally enriched in the category of coalgebras of this
functor and how we can use this extra structure to generalize the notion of initial algebra to
capture more algebras than just N. So, in Section 2.2 we explore by hand a notion of partial
homomorphism between algebras that will be captured more formally later in the enrichment.
Next, in Section 2.3, we explore the structure that this enrichment gives us. In Section 2.4,
we introduce a computational tool and compute explicitly some of the hom-objects of our
enrichment. Finally, in Section 2.5, we use this extra structure to generalize the notion of
initial object, and we describe some of the algebras that can be specified in this way.

Note that many of the proofs in this paper were relegated to the appendices, which do
not appear with this, published, version. Thus, we repeatedly reference proofs in the full
version, [7].
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2.1 Preliminaries
Here, we review the established theory regarding algebras and coalgebras of id + 1 that we
will use. See, for instance, [9, Ch. 3] for details.

We let Alg denote the category of algebras of id + 1, and we let CoAlg denote the category
of coalgebras of id + 1. Recall that an algebra is a pair (A, α) of a set A together with
a function α : A + 1 → A (equivalently, a successor endofunction α|A : A → A and a
zero α|1 : 1 → A), and a coalgebra is a pair (C, χ) of a set C together with a function
χ : C → C + 1, i.e., a partial endofunction. The initial object of Alg is (N, αN), where N is
the usual natural numbers, αN|N is the usual successor function x 7→ x + 1 and αN|1 picks
out 0 ∈ N. The terminal object of CoAlg is (N∞, χN∞) where N∞ is the extended natural
numbers N + {∞}, and the map χN∞ : N∞ → N∞ + 1 takes 0 ∈ N∞ to the element t ∈ 1
and all other x ∈ N∞ to x − 1 ∈ N∞.

Note that because N is initial in Alg, any algebra (A, αA) gets a function !A : N → A, and
thus it will be useful write nA for !A(n). That is, 0A is the zero of A, 1A is the successor of
0A, etc. For a ∈ A, we will often also write a + 1 as shorthand for αA(a) (especially when
the algebra structure morphism, here αA, does not have an explicit name).

Dually, because N∞ is terminal in CoAlg, there is a function J−K : C → N∞ for any
coalgebra (C, χA), and we will say that the index of a c ∈ C is JcK. Then the elements of C

that have index 0 are those c such that χC(c) = t, those that have index 1 are all those other
c such that χ2

C(c) = t, etc. For c ∈ C where JcK ̸= 0, we will also often write c − 1 to denote
χC(c) (especially when the coalgebra structure morphism does not have an explicit name).

Besides N, the initial algebra, we will often consider preinitial algebras, that is, algebras
A for which !A : N → A is epic. The nontrivial preinitial algebras are of the form n :=
({0, 1, ..., n}, αn) for any n ∈ N. Here, αn is the algebra structure that {0, 1, ..., n} inherits as
the quotient of N in Set that identifies all m ≥ n (see [7, Example 39] and the preceding [7,
Lemma 38]).

Dually, besides N∞, we will often consider subterminal coalgebras, that is, coalgebras
C for which J−K : C → N∞ is monic. The nontrivial ones are n◦ with underlying subset
{0, 1, ..., n} of N∞, N− with underlying subset N, and I with underlying subset {∞}. These
all inherit coalgebra structures from N∞ (see [7, Example 43] and the preceding [7, Lemma
42]).

2.2 Partial homomorphisms
Consider algebras A and B. We are, first of all, most interested in algebra homomorphisms
f : A → B (which we might call total algebra homomorphisms to distinguish them from the
notion of partial algebra homomorphisms which we are about to introduce). This means
that we have (H1) f(0A) = 0B and (H2) f(a + 1) = f(a) + 1 for all a ∈ A. If A is N, we
know that there is a total algebra homomorphism N → B, and we can use (H1) and (H2) to
inductively construct this homomorphism.

But depending on the nature of A and B, it might happen that we can only guarantee
(H1) and (H2) hold for some, but not all, a ∈ A, and thus an attempt to construct a total
algebra homomorphism A → B inductively might fail at some point. Perhaps A is a preinitial
algebra n and B is N. We can try to construct a total homomorphism, so we set f(0n) := 0N

following (H1), f(1n) := 1N following (H2), etc. This works until we get to nn. Since nn is
the successor of both (n − 1)n and nn, (H2) tells us to send nn both to nN and (n + 1)N. We
might say that induction worked only up to the nth step, or that we can define a n-partial
homomorphism.

CALCO 2023



15:4 Coinductive Control of Inductive Data Types

We formalize this idea in the following way, in which we inductively construct partial
homomorphisms in an attempt to approximate a total homomorphism. In our first attempt
at formalizing this idea, Construction 1 below, we make the simplifying assumption that A

is preinitial – simplifying because then there is at most one homomorphism A → B. We will
almost immediately drop this assumption in the more general Definition 2.

▶ Construction 1 (Partial induction). We seek to inductively approximate a homomorphism
A → B when A is preinitial. We define a sequence of functions fc : A → B as follows.
Initial step (P1). Define f0 : A → B by f0(a) := 0B for all a ∈ A.
Inductive step. Define fc+1 : A → B by:

(P2) fc+1(0A) := 0B;
(P3) fc+1(a + 1) := fc(a) + 1.

We stop when fc+1 is not well-defined.
If we have defined fc for all c ∈ N, then we will say that we have defined an ∞-partial

homomorphism. Otherwise, if we have only defined fc for all c ∈ {0, ..., n}, we will say that
we have defined an n-partial homomorphism.

Since A is preinitial, it is of the form n or N, and so every element is of the form xA

for x ∈ N. Thus, fc(xA) is xB for x ≤ c and otherwise cB. In particular, if A = n, then
fn = fm for all m ≥ n. Now we can see that there is an ∞-partial homomorphism A → B

if and only if there is a total homomorphism f : A → B. Indeed, if we have an ∞-partial
homomorphism A → B consisting of an fc : A → B for all c ∈ N, then we can define a
“diagonal” total homomorphism f : A → B by f(xA) := fx(xA). Conversely, if we have a
total homomorphism f : A → B, there is no obstruction to the inductive steps in defining a
∞-partial homomorphism. Thus, we can conflate the notions of a ∞-partial homomorphism
and a total homomorphism A → B when A is preinitial.

Notice that in the term “n-partial homomorphism” in the above Construction 1, n takes
values in N∞, the terminal coalgebra of our endofunctor. In fact, the above construction
follows the similar pattern of the measurings of algebras over a field that we mentioned in
the introduction. So now we make the following definition in which we encode the coalgebra
directly. This allows us to generalize Construction 1, dropping the hypothesis that A is
preinitial.

▶ Definition 2 (Measuring, cf. Definition 18 and Proposition 23). Consider algebras A and B

and a coalgebra C. A measuring from A to B by C is a function f : C → A → B such that:
(M1) fc(0A) = 0B for all c ∈ C;
(M2) fc(a + 1) = 0B for all JcK = 0 and for all a ∈ A;
(M3) fc(a + 1) = fc−1(a) + 1 for JcK ≥ 1 and for all a ∈ A.

We write µC(A, B) for the set of measurings from A to B. This defines a functor
µ : CoAlgop × Algop × Alg → Set.

For a measuring f and an element c ∈ C, we call fc a C-partial homomorphism.

▶ Example 3. Suppose that A is preinitial, so that in particular every element of A is of the
form 0A or a + 1.

Then there is a measuring from A to B by n◦ if the induction of Construction 1 creates
an n-partial homomorphism, and in this case the functions of the form fc constructed in
Construction 1 are the same as those specified in Definition 2.

There is a measuring by N− if the induction never fails, and again the functions fc from
Construction 1 and Definition 2 coincide. Now, note that exhibiting a measuring by N∞

amounts to exhibiting a measuring by N− together with a total algebra homomorphism f∞.
For such an A, then, exhibiting a measuring by N− is equivalent to exhibiting one by N∞.
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The reader might wonder why Definition 2 does not require (M2′) fc(x) = 0B for any
JcK = 0 and any x, but rather only requires fc(x) = 0B when JcK = 0 and x is either the zero
or a successor. In the previous example, when A is preinitial, every x ∈ A is either the zero
or a successor, so there is no difference between these two requirements. In the following
example, we consider an algebra A where this is not the case, and illustrate why we only
stipulate (M2) and not (M2′).

▶ Example 4. Consider the algebra A with underlying set N + N, where we will notate the
elements of the first copy of N as nA, and the elements of the second copy as n′. The zero
of A is then 0A and the successors are given by nA + 1 := (n + 1)A and n′ + 1 := (n + 1)′.
Total homomorphisms A → N are determined by the image of 0′ in N.

If we require (M2′) instead of (M2) in Definition 2, then in a measuring by N∞, f0(0′) = 0N

by (M2′), and in general fn(n′) = nN by (M3).
However, following Definition 2 as written, in a measuring by N∞, f0(0′) may be anything,

say z ∈ N and then general fn(n′) = (z + n)N.
Thus, Definition 2 does generalize the idea of inductively approximating a total homo-

morphism A → N from Construction 1.

Now notice another difference between Construction 1 and Definition 2. In Construction 1
we continue the induction as far as we can, but there is nothing of this flavor in Definition 2.
For instance, if there is a total algebra homomorphism A → B, then in the process described
by Construction 1, we will inductively construct fc for all c ∈ N. However, following
Definition 2, we could say that A → B is measured by 0 (which only amounts to exhibiting
f0), without making any claim about it being measured by other coalgebras – it does not
ask us to find any kind of maximum coalgebra C that measures A → B. To remedy this, we
make the following definition.

▶ Definition 5 (Universal measuring, cf. Definition 20). Let A and B be algebras.
We define the category of measurings from A to B to be the category whose objects are

pairs (C; f) of a coalgebra C and a measuring f : C → A → B, and whose morphisms
(C; f) → (D; g) are coalgebra homomorphisms d : C → D such that f = gd.

The universal measuring from A to B, denoted (Alg(A, B); u), is the terminal object in
the category of measurings from A to B. That is, if (C; f) is a measuring from A to B, then
there is a unique morphism ! : C → Alg(A, B) that makes the following diagram commute.

C A → B

Alg(A, B)

f

! u

▶ Example 6. Again, suppose that A is preinitial. In this case, the universal measuring is a
subterminal coalgebra [7, Lemma 37]. We have shown that if the induction of Construction 1
creates an n-partial homomorphism, then the maximum subterminal coalgebra that measures
A → B is n◦, so this is the universal measuring. And if the induction of Construction 1
creates an total homomorphism, then the maximum subterminal coalgebra that measures
A to B is N∞ itself, so this is the universal measuring. We will also show this fact more
directly (i.e., without reference to [7, Lemma 37]) in Section 2.4 below.

Since composing an arbitrary coalgebra homomorphism C → Alg(A, B) with u produces
a measuring C → A → B, we obtain a bijection, natural in C, A, B,

µC(A, B) ∼= CoAlg(C, Alg(A, B))

CALCO 2023



15:6 Coinductive Control of Inductive Data Types

showing that µ−(A, B) is represented by Alg(A, B). In Theorem 25, we will see that Alg(A, B)
always exists (for this and other endofunctors of interest). The coalgebra Alg(A, B) will
constitute the hom-coalgebra from A to B of our enriched category of algebras (Theorem 31).

Now, note that a measuring by the coalgebra I is a total algebra homomorphism. Thus,

Alg(A, B) ∼= µI(A, B) ∼= CoAlg(I, Alg(A, B))

and so we find the hom-sets of the category of algebras can be easily extracted from
Alg(A, B) – a statement that aligns with our intuition that Alg(A, B) is the set of total
algebra homomorphisms and Alg(A, B) is the coalgebra of partial algebra homomorphisms.

2.3 Composing partial homomorphisms
We will only prove that the universal measuring coalgebras form the hom-objects of our
enriched category in Theorem 31, but we can already work out how this enrichment behaves.
Thus, in this section, we describe the composition and identities of this enriched category.

Given algebras A, B, and T , we can always compose total homomorphisms f : A → B

and g : B → T to form a total homomorphism g ◦ f : A → T . We wish to do the same
for our partial homomorphisms. Consider coalgebras C and D, a C-partial homomorphism
fc : A → B, and a D-partial homomorphism gd : B → T . We can compose gd and
fc as functions to obtain gd ◦ fc : A → T , and we claim that this is a (D × C)-partial
homomorphism. Indeed D × C has a coalgebra structure where J(d, c)K = min(JdK, JcK) and
(d, c) − 1 = (d − 1, c − 1) if J(d, c)K > 0 for (d, c) ∈ D × C. This induces a symmetric monoidal
structure on CoAlg for which I is the unit (Proposition 30), and one can verify that gd ◦ fc is
a (D × C)-partial homomorphism.

Now we have constructed a function

µD(B, T ) × µC(A, B) −→ µD×C(A, T )
(g, f) 7−→ g ◦ f

where g ◦ f : (D × C) → A → T is defined by (g ◦ f)(d,c) = gd ◦ fc. Thus, by the universal
property of Alg, we obtain a function

CoAlg(D, Alg(B, T )) × CoAlg(C, Alg(A, B)) −→ CoAlg(D × C, Alg(A, T )).

Applying this function to (idAlg(B,T ), idAlg(A,B)), we obtain a composition morphism ◦ :
Alg(B, T ) × Alg(A, B) → Alg(A, T ) such that for (d, c) ∈ Alg(B, T ) × Alg(A, B), we have
ud ◦ uc = ud◦c (where u is as in Definition 20).

Similarly, for any algebra A we might ask if there is an identity idA : I → Alg(A, A).
We showed above that Alg(A, A) ∼= CoAlg(I, Alg(A, A)). Thus, we take the image of idA ∈
Alg(A, A) under this bijection.

We leave it as an exercise for the interested reader to show by hand that this constitutes
an enrichment of Alg in (CoAlg, ⊗, I), i.e., that all the axioms for an enriched category
are satisfied by this choice of composition and identities. We will instead leave this result
(Theorem 31) to the general setting.

2.4 The convolution algebra
We now give an alternative representation of µC(A, B) that can be directly defined and
computed. In this section, we will be able to use it to compute Alg(A, B) without appealing
to [7, Lemma 37].
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In Definition 2, we defined µC(A, B) to be a certain subset of Set(C, Set(A, B)) ∼=
Set(A, Set(C, B)). We now identify that subset as the subset of (total) algebra homomorph-
isms A → Set(C, B) with a particular convolution algebra structure on Set(C, B).

▶ Definition 7 (Convolution algebra, cf. Definition 27). Given a coalgebra (C, χC) and an
algebra (B, αB), define the convolution algebra [C, B] to be the algebra whose underlying set
is Set(C, B), whose zero is the constant function C → B at 0B, and where f + 1 is defined by

(f + 1)(c) =
{

0B if JcK = 0;
f(c − 1) + 1 if JcK > 0.

This defines a functor [−, −] : CoAlgop × Alg → Alg.

Given a coalgebra (C, χC) and an algebra (B, αB), a function m : C → A → B is
a measuring if and only if the associated m̃ : A → C → B (under the bijection −̃ :
Set(C, Set(A, B)) → Set(A, Set(C, B))) underlies a homomorphism A → [C, B] of algebras.
Indeed, (M1) of Definition 2 for m is equivalent to (H1) m̃(0A) = 0[C,B] and criteria (M2)
and (M3) for f are equivalent to (H2) m̃(a + 1) = m̃(a) + 1.

Therefore, we find the following string of bijections, natural in C, A, B,

µC(A, B) ∼= CoAlg(C, Alg(A, B)) ∼= Alg(A, [C, B]) (1)

so that we see that µC(−, B) is represented by [C, B]. We can even find a representation for
µC(−, B), but we will leave this for the more general setting (Theorem 22). The interested
reader is encouraged to calculate that other representation in this example.

In practice, when we want to compute Alg(A, B), we will compute [C, B] and then apply
the universal property above. We do that now, computing some of the results of Example 6
without appealing to [7, Lemma 37].

▶ Example 8. We compute Alg(n, B) using the right-hand bijection in Equation (1).
We first observe the following for any coalgebra Z.

Alg(n, Z) ∼=

{
∗ if nZ = (n + 1)Z

∅ otherwise

Since we are considering Z := [C, B], we need to understand when n[C,B] = (n + 1)[C,B]. By
definition, 0[C,A] is the constant function at 0A. Then 1[C,A] is the function that takes every
c ∈ C of index 0 to 0B , and every other c ∈ C to 1B . Inductively, we can show that n[C,B](c) =
min(JcK, n)B . Thus, n[C,B] = (n + 1)[C,B] means that min(JcK, n)B = min(JcK, n + 1)B for all
c ∈ C, and this holds if and only if JcK ≤ n for all c ∈ C or nB = (n + 1)B . Now we have the
following.

CoAlg(C, Alg(n, B)) ∼= Alg(n, [C, B]) ∼=


∗ if JcK ≤ n for all c ∈ C

∗ if nB = (n + 1)B

∅ otherwise
(2)

In the case that nB = (n + 1)B , we find that Alg(n, B) has the universal property of the
terminal object, N∞.

Now suppose that nB ̸= (n + 1)B. Since CoAlg(C, n◦) = ∗ if and only if JcK ≤ n for all
c ∈ C, Alg(n, B) has the universal property of n◦.

CALCO 2023



15:8 Coinductive Control of Inductive Data Types

Now we have calculated the following

Alg(n, B) =
{

N∞ if nB = (n + 1)B

n◦ otherwise

This aligns with our expectations, since there is a total homomorphism n → B if nB = (n+1)B

but there is only an n-partial homomorphism n → B otherwise.
Finally, note that taking B := N, we have calculated Alg(n, N), the dual (Definition 29)

of n, to be n◦.

2.5 Generalizing initial objects
Now we turn to the question of specifying algebras other than N via a generalization of the
notion of initial algebra.

The fact that N is the initial object in Alg means that the algebra structure on an algebra
A specifies exactly one total algebra homomorphism N → A, and this can be constructed
inductively. Now we have introduced the notion of partial homomorphism which can be
constructed by partial induction (Construction 1). Thus, we might ask if we can formalize a
notion of being initial with respect to partial homomorphisms and partial induction.

Our calculations in this section so far have perhaps given us the intuition that the algebra
n represents n-partial homomorphisms in the way that N represents total homomorphisms.
Indeed, from Equation (2), there is a unique measuring f : n◦ → n → B for any algebra B.
Now we try to capture and elucidate this fact by rephrasing it to say that n is a certain kind
of initial object with respect to such partial homomorphisms.

There are multiple equivalent definitions of initial object, and we choose the one that is
amenable to generalization. We choose to define an initial object in a category C as an object
I ∈ C such that there is a unique function 1 → C(I, X) for all X ∈ C. Now we have brought
to the surface a parameter, here 1, that we can vary, inspired by the theory of weighted
limits.

▶ Definition 9 (C-initial algebra, cf. Definition 35). For a coalgebra C, we define a C-initial
algebra to be an algebra A such that there is a unique coalgebra morphism C → Alg(A, X)
for all algebras X.

▶ Remark 10. One may wonder what would happen if for a set S, we defined an S-initial
algebra to be an algebra A such that there is a unique function S → Alg(A, X) for all
X ∈ Alg. But every algebra is an ∅-initial algebra, and an S-initial algebra is an initial
algebra for any S ̸= ∅ (because functions S → T are unique only when S = ∅ or T ∼= 1).
Thus, we need to consider Alg(A, X) and not just Alg(A, X) to obtain interesting C-initial
algebras.

▶ Example 11. We have shown in Example 8 that n is an n◦-initial algebra.
Since Alg(A, X) ∼= CoAlg(I, Alg(A, X)), the initial algebra N is the (only) I-initial algebra.

In fact, since Alg(N, X) = N∞ for all X by [7, Lemma 37] or by a similar computation
to Example 8, we find that N is a C-initial algebra for any subterminal coalgebra (i.e.,
∅, n◦, N−, N∞).

Now we see that for instance, both n and N are n◦-initial algebras. Thus, n◦-initial
algebras are not determined up to isomorphism as initial algebras are. This captures the fact
that for an algebra B, we can construct n-partial homomorphisms from both n and N to B.
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▶ Definition 12 (Terminal C-initial algebra, cf. Definition 35). Consider the category whose
objects are C-initial algebras, and whose morphisms A → B are total algebra homomorphisms
A → B. Then we call the terminal object of this category the terminal C-initial algebra.

▶ Example 13. Since the only I-initial algebra is N, it is also the terminal C-initial algebra.

We want to show that n is the terminal n◦-initial algebra. However, we need another
computational tool. This is in fact an alternate generalization of the notion of initial algebra.

Above, we might have observed that an initial object can be characterized as the limit of
the identity functor and then, following the theory of weighted limits, considered objects
limC idAlg with the following universal property.

Alg(A, limC idAlg) ∼= limX∈Alg CoAlg(C, Alg(A, X))

We can immediately calculate (Proposition 36) that limC idAlg is C∗ := [C, N], the dual of C

(Definition 29). By the bijection above, there is a unique total algebra homomorphism from
each C-initial object to limC idAlg. This will help us understand the possible structure that a
C-initial object can have. But first, we must understand the structure of C∗.

▶ Example 14. Let C := n◦. Then elements of [n◦, N] are sequences of n+1 natural numbers.
The successor of a sequence (ai)n

i=0 is (bi)n
i=0 where b0 = 0 and bi+1 = ai + 1. Notice that

the successor of (bi)n
i=0 is (ci)n

i=0 where c0 = 0, c1 = 1 and otherwise ci+2 = ai + 2. Thus, we
can inductively show that the (n + 1)-st successor of any element of [n◦, N] is the sequence
(i)n

i=0, and the successor of this sequence is itself.
We claim that the unique morphism ![n◦,N] : N → [n◦, N] factors through n. We have

m[n◦,N] = (min(i, m))n
i=0. Thus, the restriction of the map ![n◦,N] to {0, ..., n} ⊂ N is injective,

and n[n◦,N] = m[n◦,N] for all m ≥ n.

▶ Example 15. Now we can show that n is the terminal n◦-initial algebra. In this calculation,
we use of the law of excluded middle for the only time in this paper.

Consider an n◦-initial algebra A.
First, we show that every a ∈ A is either the basepoint or a successor. So suppose that

there is an element a ∈ A that is not a basepoint or successor, and consider an algebra B

with more than one element. Then for any b ∈ B and any measure f : n◦ → A → B, we
can form a measure f̃ : n◦ → A → B such that f̃n(a) = b and f̃ agrees with f everywhere
else, since Definition 2 imposes no requirements on f̃n(a). Thus, there are multiple measures
n◦ → A → B, equivalently total algebra homomorphisms n◦ → Alg(A, B), so we find a
contradiction.

Now, we consider the unique map A → [n◦, N] and claim that this factors through the
injection n → [n◦, N], so that there is a unique A → n. Since every element of A is either a
basepoint or a successor, every element of A is either of the form nA or has infinitely many
predecessors. The elements of the form nA are mapped those to of the form n[n◦,N], and the
elements who have infinitely many predecessors can only be mapped to the “top element”
n[n◦,N] = (i)n

i=0, since this is the only element which has an m-th predecessor for any m ∈ N.
Thus, the unique A → [n◦, N] indeed factors through n.

Thus we have shown how to specify algebras of the form n in a way analogous to the
specification of N as an initial algebra. After determining an algebra structure on a set A,
we obtain a unique n-partial algebra homomorphism n → A.
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3 General theory

In this section, we now generalize the results of the previous section. So fix a symmetric
monoidal category (C, ⊗, I) and a lax symmetric monoidal endofunctor (F, ∇, η) (defined
below in Definition 16) on C.

3.1 Measuring coalgebras
In this section, we define the general notion of measuring for F . Note that in Section 2.2
above, it was convenient to define a measuring to be a certain kind of function C → A → B,
but here we first define the notion of measuring without requiring the monoidal structure to
be closed. That is, we define a measuring to be a certain kind of function C ⊗ A → B.

▶ Definition 16. That (F, ∇, η) is a lax symmetric monoidal endofunctor means that F is
an endofunctor on C with
(L1) a natural transformation ∇X,Y : F (X) ⊗ F (Y ) −→ F (X ⊗ Y ), for all X, Y ∈ C; and
(L2) a morphism η : I → F (I) in C;
such that (F, ∇, η) is associative, unital and commutative, as described in [7, Appendix A.2].

▶ Example 17. In Section 2, we considered the (cartesian closed) symmetric monoidal
category (Set, ×, 1). For the endofunctor id+1, we define ∇X,Y : (X+1)×(Y +1) → (X×Y )+1
to take (x, y) 7→ (x, y), (t, y) 7→ t, (x, t) 7→ t, (t, t) 7→ t for x ∈ X, y ∈ Y, t ∈ 1. We define
η : 1 → 1 + 1 to be the inclusion into the first summand.

▶ Definition 18 (Measuring, cf. Definition 2). Consider algebras (A, α) and (B, β), and a
coalgebra (C, χ). We call a map ϕ : C ⊗ A → B a measuring from A to B if it makes the
following diagram commute.

F (C) ⊗ F (A) F (C ⊗ A) F (B)

C ⊗ F (A)
C ⊗ A B

∇C,A F (ϕ)

β

χ⊗id

id⊗α ϕ

We denote by µC(A, B) the set of all measurings C ⊗ A → B.

If ϕ : C ⊗A → B is a measuring, a : (A′, α′) → (A, α) and b : (B, β) → (B′, β′) are algebra
homomorphisms, and c : (C ′, χ′) → (C, χ) is a coalgebra homomorphism, then one can check
that the composite

C ′ ⊗ A′ C ⊗ A B B′c⊗a ϕ b

is a measuring. Therefore, the assignment C, A, B 7→ µC(A, B) underlies a functor

µ : CoAlgop × Algop × Alg −→ Set.

We shall see that this functor is representable in each of its variables under reasonable
hypotheses.

▶ Example 19. The monoidal unit I of C is a coalgebra via the lax symmetric monoidal
structure η : I → F (I). Thus morphisms A → B in C are in bijection with morphisms
I⊗A → B in C, and one can check that a morphism A → B in C is an algebra homomorphism
if and only if I ⊗ A → B is a measure. Thus, µI(A, B) ∼= Alg(A, B).
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▶ Definition 20 (Universal measuring, cf. Definition 5). Let A and B be algebras.
We define the category of measurings from A to B to be the category whose objects are

pairs (C; f) of a coalgebra C and a measuring f : C ⊗ A → B, and whose morphisms
(C; f) → (D; g) are coalgebra homomorphisms d : C → D such that f = g(d ⊗ A).

The universal measuring from A to B, denoted (Alg(A, B), ev), is the terminal object (if
it exists) in the category of measurings from A to B. That is, if (C; f) is a measuring from
A to B, then there is a unique morphism ! : C → Alg(A, B) that makes the following diagram
commute.

C ⊗ A B

Alg(A, B) ⊗ A

f

!⊗A ev

If a universal measuring (Alg(A, B), ev) exists, then we obtain a representation Alg(A, B)
for µ−(A, B) : CoAlgop → Set. That is, we have the following bijection, natural in C, A, B.

µC(A, B) ∼= CoAlg(C, Alg(A, B)).

In the following sections, we will show that if C is closed and locally presentable and F is
accessible, then the universal measuring always exists.

3.2 Local presentability, accessibility, and the measuring tensor
We will now usually require that C be locally presentable and F is accessible [2, Def. 1.17 & 2.17].
Then Alg and CoAlg are also locally presentable, the forgetful functor Alg → C has a left
adjoint Fr, and the forgetful functor CoAlg → C has a right adjoint Cof [2, Cor. 2.75 & Ex. 2.j].
We will also use that these categories, as locally presentable categories, are complete and
cocomplete.

▶ Example 21. Set is locally presentable and id + 1 is accessible.

If C is locally presentable and F is accessible, then for a coalgebra (C, χ), and algebras
(A, α) and (B, β), a map ϕ : C ⊗ A → B uniquely determines an algebra homomorphism
ϕ′ : Fr(C ⊗ A) → (B, β). Notice then that a map ϕ : C ⊗ A → B is a measuring if and only if
both composites from Fr(C ⊗ FA) to (B, β) coincide in the following diagram.

Fr(C ⊗ FA) Fr(C ⊗ A) (B, β)
Fr(idC⊗α)

f

ϕ′

In the above, f is obtained as adjunct under the free-forgetful adjunction of the composition

C ⊗ FA FC ⊗ FA F (C ⊗ A) F (Fr(C ⊗ A)) Fr(C ⊗ A),χ⊗id ∇C,A F (i) αFr

in which i is the unit of the free-forgetful adjunction and αFr is the algebra structure on the
free algebra Fr(C ⊗ A). We have now shown the following.

▶ Theorem 22. Suppose that C is locally presentable and F is accessible. Consider a coalgebra
C and an algebra A. Then the coequalizer of the following diagram in Alg exists, and we
denote it by C ▷ A and call it the measuring tensor of C and A.

Fr(C ⊗ FA) Fr(C ⊗ A) C ▷ A.
coeq
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Given any algebra B, a measuring ϕ : C ⊗ A → B uniquely corresponds to an algebra
homomorphism C ▷ A → B. In other words, we obtain a natural identification

µC(A, B) ∼= Alg(C ▷ A, B).

That is, the functor µC(A, −) : Alg → Set is represented by C ▷ A.

In the following sections, we will also construct representing objects for µC(−, B) and
µ−(A, B).

3.3 Measurings as partial homomorphisms
Now we will often assume that the symmetric monoidal structure of C is closed. Whenever we
do, we will denote the internal hom by C(−, −). In this section, we provide a dual description
of measurings when C is closed, generalizing Definition 2.

Note that since F is lax monoidal, it is also lax closed: that is, there is a map

∇̃X,Y : F (C(X, Y )) −→ C(FX, FY )

natural in X, Y ∈ C. Indeed, this is the adjunct under the adjunction − ⊗ FX ⊣ C(FX, −)
of the composition

F (C(X, Y )) ⊗ F (X) F (C(X, Y ) ⊗ X) F (evX )−−−−→ F (Y ),
∇C(X,Y ),X

in which evX is the counit of the adjunction − ⊗ X ⊣ C(X, −).
Given a closed monoidal structure, we can connect the notion of measuring with our

notion of partial homomorphism from Section 2.

▶ Proposition 23 (cf. Definition 2). Suppose that C is closed. Given algebras (A, α) and
(B, β) and a coalgebra (C, χ), a map ϕ : C ⊗ A → B is a measuring if and only if its adjunct
ϕ̃ : C → C(A, B) fits in the following commutative diagram

F (C) F (C(A, B)) C(FA, FB)
C

C(A, B) C(FA, B)

F (ϕ̃) ∇̃A,B

β∗

χ

ϕ̃ α∗

where α∗ denotes precomposition by α and β∗ denotes postcomposition by β. We shall also
refer to the pair (C; ϕ̃) as a measuring.

▶ Example 24. Note that the cartesian monoidal structure on Set is closed, and that the
above recovers Definition 2.

This approach allows us to reformulate the notion of measuring as certain coalgebra
homomorphisms which we now describe. If C is locally presentable and F is accessible, then
given a coalgebra (C, χ) and algebras (A, α) and (B, β), a map ϕ : C → C(A, B) in C uniquely
determines a coalgebra homomorphism ϕ′ : (C, χC) → Cof(C(A, B)). A map ϕ : C → C(A, B)
is a measuring if and only if both composites from (C, χC) to Cof

(
C(FA, B)

)
in the following

diagram coincide.

(C, χC) Cof
(
C(A, B)

)
Cof

(
C(FA, B)

)ϕ′ Cof(C(α,B))

f
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In the above, f is the adjunct under the cofree-forgetful adjunction of the following composite.

Cof(C(A, B)) F
(
Cof(C(A, B))

)
F

(
C(A, B)

)
C(F (A), F (B)) C(F (A), B).χCof F (ε) ∇̃A,B β∗

Here χCof is the coalgebraic structure on the cofree coalgebra, and ε is the counit of the
cofree-forgetful adjunction.

Now we can use this to guarantee the existence of a universal measuring.

▶ Theorem 25 (Proof in [7, Appendix A.3]). Suppose that C is locally presentable and closed
and that F is accessible. Given algebras A and B, then the universal measuring coalgebra
Alg(A, B) exists and is obtained as the following equalizer diagram in CoAlg

Alg(A, B) Cof
(
C(A, B)

)
Cof

(
C(F (A), B)

)
,

eq

with ẽv : Alg(A, B) → C(A, B) obtained as the composition of the equalizer map eq together
with the counit Cof

(
C(A, B)

)
→ C(A, B) of the cofree-forgetful adjunction.

▶ Corollary 26. Suppose that C is locally presentable and closed and that F is accessible.
Given algebras A and B, the functor µ−(A, B) : CoAlgop → Set is represented by Alg(A, B).

3.4 Measuring via the convolution algebra
We will now describe the last representable object for the measuring functor.

▶ Definition 27 (Convolution algebra, cf. Definition 7). Suppose that C is closed. Given a
coalgebra (C, χ) and an algebra (A, α) in C, we define an algebra structure on C(C, A), called
the convolution algebra, which is denoted [(C, χ), (A, α)] or simply [C, A], as follows. The
algebra structure F [C, A] → [C, A] is the composition

F (C(C, A)) C(FC, FA) C(C, A),∇̃C,A α∗χ∗

where α∗χ∗ denotes postcomposition by α and precomposition by χ. The convolution algebra
construction lifts the internal hom to a functor

[−, −] : CoAlgop × Alg −→ Alg.

The convolution algebra provides a representing object for µC(−, B) : Algop → Set.
Indeed, we have the following bijection natural in C, A, B.

µC(A, B) ∼= Alg(A, [C, B]).

In other words, a measuring ϕ : C ⊗ A → B corresponds to an algebra homomorphism
ϕ′ : A → [C, B] under the bijection C(C ⊗ A, B) ∼= C(A, C(C, B)). Indeed, notice that ϕ′

is a homomorphism if and only if the following diagram, adjunct to the one appearing in
Definition 18, commutes.

F ([C, B]) [F (C), F (B)]

F (A)

A [C, B]

∇̃C,B

β∗χ∗

F (ϕ′)

α ϕ′

CALCO 2023



15:14 Coinductive Control of Inductive Data Types

▶ Remark 28. The convolution algebra also provides an alternative characterization of
the algebra C ▷ A and coalgebra Alg(A, B). As limits in Alg and colimits in CoAlg are
determined in C [1] and the internal hom C(−, −) : Cop × C → C preserves limits, the functor
[−, −] : CoAlgop × Alg → Alg also preserves limits. Moreover, fixing a coalgebra C, the
induced functor [C, −] : Alg → Alg is accessible since filtered colimits in Alg are computed in
C (see [1, 5.6]). Therefore, by the adjoint functor theorem [2, 1.66], the functor [C, −] is a
right adjoint. Its left adjoint is precisely C ▷ − : Alg → Alg. Indeed, for any algebras A and
B, we obtain the following bijection, natural in C, A, B.

Alg
(
C ▷ A, B

) ∼= Alg
(
A, [C, B]

)
.

Notice we can also determine the universal measuring by using the adjoint functors. Fixing
now an algebra B, the opposite functor [−, B]op : CoAlg → Algop preserves colimits, where
the domain is locally presentable and the codomain is essentially locally small. By the adjoint
functor theorem [2, 1.66] and [4, 5.5.2.10], this functor is a left adjoint. Its right adjoint is
precisely the functor Alg(−, B) : Algop → CoAlg. Indeed, for any algebra A and B and any
coalgebra C, we have the following bijection, natural in C, A, B.

CoAlg
(
C, Alg(A, B)

) ∼= Alg
(
A, [C, B]

)
.

Combining the identifications, we see that the measuring functor is representable in each
factor:

µC(A, B) ∼= CoAlg
(
C, Alg(A, B)

) ∼= Alg
(
A, [C, B]

) ∼= Alg
(
C ▷ A, B

)
.

In other words, for any algebra A and B and any coalgebra C, the following data are
equivalent.

C ⊗ A → B C → C(A, B) C → Alg(A, B) A → [C, B] C ▷ A → B

measuring measuring coalgebra algebra algebra
homomorphism homomorphism homomorphism

▶ Definition 29. Assuming that C is locally presentable and F is accessible, Alg has an
initial object which we denote by N .

Let (−)∗ : CoAlgop → Alg denote the functor [−, N ], and call C∗ the dual algebra of C

for any coalgebra C.
Let (−)◦ : Algop → CoAlg denote the functor Alg(−, N), and call A◦ the dual coalgebra

of A for any algebra A.
These functors form a dual adjunction since we have the following bijection, natural in

C, A:

Alg(A, C∗) ∼= CoAlg(C, A◦).

3.5 Measuring as an enrichment
We now come to the main punchline of the general theory presented in this paper: that
Alg(−, −) gives the category of algebras an enrichment in coalgebras. First, we describe how
to compose measurings.

▶ Proposition 30. The category CoAlg has a symmetric monoidal structure for which the
forgetful functor CoAlg → C is strong symmetric monoidal.
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Proof. Suppose (C, χC) and (D, χD) are coalgebras. Then C ⊗D has the following coalgebra
structure.

C ⊗ D F (C) ⊗ F (D) F (C ⊗ D)χC⊗χD ∇C,D

The morphism η : I → F (I) provides the coalgebraic structure on I. One can verify that
(CoAlg, ⊗, (I, η)) is a symmetric monoidal category (see details in [7, Appendix A.4]). ◀

Now we can prove our main theorem.

▶ Theorem 31 (Proof in [7, Appendix A.5]). Suppose that C is locally presentable and closed
and that F is accessible. Then the category Alg is enriched, tensored, and powered over the
symmetric monoidal category CoAlg respectively via

Algop × Alg
Alg(−,−)
−−−−−−→ CoAlg, CoAlg × Alg −▷−−−−→ Alg, CoAlgop × Alg [−,−]−−−→ Alg.

▶ Example 32 (Details in [7, Appendix A.7]). Suppose that C is locally presentable and closed.
The following endofunctors on C are accessible and lax symmetric monoidal.
(id) The identity endofunctor idC .
(A) The constant endofunctor that sends each object to a fixed commutative monoid A in C.
(GF ) The composition GF of accessible, lax symmetric monoidal endofunctors F and G.
(F ⊗ G) The pointwise tensor product F ⊗ G of accessible, lax symmetric monoidal endo-

functors F and G, assuming C is closed.
(F + G) The pointwise coproduct F + G of an accessible, lax symmetric monoidal en-

dofunctor F and an accessible endofunctor G equipped with natural transformations
GX ⊗GY → G(X ⊗Y ), λ : FX ⊗GY → G(X ⊗Y ), ρ : GX ⊗FY → G(X ⊗Y ) satisfying
the axioms described in [7, Appendix A.7], assuming C is closed.

(idA) The exponential idA for any object A of C, assuming the monoidal product on C is
cartesian closed.

(W -types) A polynomial endofunctor associated to a morphism f : X → Y in Set, given a
commutative monoid structure on Y and an oplax symmetric monoidal structure on the
preimage functor f−1 : C → Set.

(d.e.s.) A discrete equational system, assuming that the monoidal structure on C is cocarte-
sian and that C has binary products that preserve filtered colimits.

On some occasions, the category of coalgebras of F can be interesting while its category
of algebras is less so. For instance, given an alphabet Σ, coalgebras over the endofunctor
F (X) = 2 × XΣ in Set are automata but the initial algebra remains ∅. To remedy this, we
can extend our main result into the following theorem.

▶ Theorem 33 (Proof in [7, Appendix A.6]). Suppose that C is locally presentable and closed
and that F is also accessible. Let G : C → C be a C-enriched functor that is accessible. Then
AlgGF is enriched, tensored and powered over CoAlgF .

▶ Example 34. If F (X) = 2 × XΣ, we could consider G = id + 1, and thus AlgGF has N as
an initial object and remains enriched in automata.

The enrichment of algebras in coalgebras specify a pairing of coalgebras

Alg(B, T ) ⊗ Alg(A, B) −→ Alg(A, T ),
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regarded as an enriched composition, for any algebras A, B and T . In more details, the
above coalgebra homomorphism is induced by the measuring of(

Alg(B, T ) ⊗ Alg(A, B)
)

⊗ A Alg(B, T ) ⊗ B T.
id⊗evA,B evB,T

In other words, the enrichment is recording precisely that we can compose a measuring
C ⊗ A → B with D ⊗ B → T to obtain a measuring (D ⊗ C) ⊗ A → T . In particular, our
above discussion shows that Alg(A, A) is always a monoid object in the symmetric monoidal
category (CoAlg, ⊗, I).

3.6 General C-initial objects
Now we generalize Section 2.5. We can use the extra structure in the enriched category of
algebras to specify more algebras than we could in the unenriched category of algebras.

▶ Definition 35 (C-initial algebra, cf. Definition 9 and Definition 12). Suppose that C is locally
presentable and closed and that F is accessible.

Given a coalgebra C, we say an algebra A is a C-initial algebra if there exists a unique
map C → Alg(C, X), for all algebras X.

The terminal C-initial algebra is the terminal object, if it exists, in the subcategory of
Alg spanned by the C-initial algebras.

We end with a result that helped us calculate some terminal C-initial algebras in
Section 2.5.

▶ Proposition 36 (Proof in [7, Appendix A.8]). Suppose that C is locally presentable and
closed and that F is accessible. There is a unique map from any C-initial algebra to C∗.

4 Conclusions & Vista

In this paper, we have shown that given a closed symmetric monoidal category C and an
accessible lax symmetric monoidal endofunctor F on C, the category of algebras of F is
enriched, tensored, and cotensored in the category of coalgebras of F . The algebras of
such a functor are of central importance in theoretical computer science, and we hope that
identifying such extra structure can shed light on these studies. Indeed, we have demonstrated
one use case: we can now specify C-initial algebras in an analogous way to initial algebras.
We identified a large class of examples of endofunctors that are encompassed by our theory.
Thus, we have established the beginning of an enriched analogue of the theory of W -types.
We have also worked out concretely the results for the endofunctor id + 1 on Set, which
suggested a meaningful interpretation of the enrichment as partial algebra homomorphisms.

In future work, we will present similar meaningful interpretations for other endofunctors
of our theory. Our future plans involve incorporating features, such as C-initial algebras, of
this new enriched theory into concrete programming languages like Haskell or Agda.

We also seek to extend the results of Example 15 into more general settings and provide
conditions for the existence of the terminal C-initial algebras. We will also develop more
robust theory from Theorem 33. Our partial algebra homomorphisms remain total functions:
it would be interesting to develop a theory that encodes maps that are partial both as
a function and as algebra homomorphisms. Lastly in Example 32, when we consider the
constant functor at an object A, we must choose a commutative monoid structure on A.
What if we had two different monoidal structures on A? There are other such choices that
are needed in Example 32, for instance in our motivating example of W-types. We seek to
understand how these choices interact with one another.
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