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Abstract
We introduce categories of extended Gaussian maps and Gaussian relations which unify Gaussian
probability distributions with relational nondeterminism in the form of linear relations. Both
have crucial and well-understood applications in statistics, engineering, and control theory, but
combining them in a single formalism is challenging. It enables us to rigorously describe a variety
of phenomena like noisy physical laws, Willems’ theory of open systems and uninformative priors
in Bayesian statistics. The core idea is to formally admit vector subspaces D ⊆ X as generalized
uniform probability distribution. Our formalism represents a first bridge between the literature
on categorical systems theory (signal-flow diagrams, linear relations, hypergraph categories) and
notions of probability theory.

2012 ACM Subject Classification Theory of computation → Probabilistic computation; Theory of
computation → Categorical semantics; Mathematics of computing → Probability and statistics

Keywords and phrases systems theory, hypergraph categories, Bayesian inference, category theory,
Markov categories

Digital Object Identifier 10.4230/LIPIcs.CALCO.2023.13

Related Version Previous Version: https://arxiv.org/abs/2204.14024v1 [32]

Acknowledgements It has been useful to discuss this work with many people. Particular thanks go
to Tobias Fritz, Bart Jacobs, Dusko Pavlovic, Sam Staton and Alexander Terenin.

1 Introduction

Modelling the behavior of systems under uncertainty is of crucial importance in engineering
and computer science. We can distinguish two different kinds of uncertainty:

Probabilistic uncertainty means we may not know the exact value of some quantity,
like a measurement error, but we do know the statistical distribution of such errors. A
typical such distribution is the normal (Gaussian) distribution N (µ, σ2) of mean µ and
variance σ2.
Nondeterministic uncertainty models complete ignorance of a quantity. We know which
values the quantity may feasibly assume but have no statistical information beyond that.
Nondeterministic uncertainty can be modelled using subsets R ⊆ X which identify the
feasibles values. In practice, such subsets are often characterized by equational constraints
such as natural laws.

Systems may be subject to both probabilistic and nondeterministic constraints, but describing
such systems mathematically is more challenging. A classical treatment is Willems’ theory of
open stochastic systems [38, 37], where “openness” in his terminology refers to nondeterminism
or lack of information. We recall a simple example:
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13:2 Combining Gaussian Probability with Nondeterminism
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Figure 1 Gaussian prior and posterior in a noisy measurement example.

▶ Example 1 (Noisy resistor). For a resistor of resistance R, Ohm’s law constrains pairs (V, I)
of voltage and current to lie in the subspace D = {(V, I) : V = RI}. This is a relational
constraint – values must lie in D, but we have no further statistical information about which
values the system takes. In a realistic system, thermal noise is always present; such a noisy
system is better modelled by the equation

V = RI + ϵ (1)

where ϵ ∼ N (0, σ2) is a Gaussian random variable with some small variance σ2. Willems
notices that the variables V, I are not random variables in the usual sense; we have not
associated any distribution to them. On the other hand, the quantity V −RI is a honest
random variable. Furthermore, if we supply a fixed voltage V0, we can solve for I and

I = R−1(V0 − ϵ) (2)

becomes a classical (Gaussian) random variable. Willems calls this “interconnection” of
systems.

Willems models the “openness” of the stochastic systems by endowing the outcome space R2

with an unusually coarse σ-algebra E to formalize the lack of information. Measurable sets
are restricted to the form {(V, I) : V −RI ∈ A} for A ⊆ R Borel. The Gaussian probability
measure is then only defined on E , which essentially makes it a measure on the quotient
space R2/D. We purely formally define an extended Gaussian distributions on a space X
as a pair (D,ψ) of a subspace D and a Gaussian distribution on X/D. In particular, we
can think of any subspace D as an extended Gaussian distribution (D, 0). Operationally,
sampling a point x ∼ D means picking it nondeterministically from D. Every extended
Gaussian distribution can be seen as a formal sum ψ +D of a Gaussian contribution ψ and
a nondeterministic contribution D.

In our approach, the noisy resistor is described by a single extended Gaussian distribution
where D is the subspace for for Ohm’s law, and ψ is Gaussian noise in a direction orthogonal
to D. The marginals V, I are themselves extended Gaussian distributions: we find that V ∼ R
and I ∼ R, that is they are picked nondeterministically from the real line, so in this sense we
have no information about them. We also find that V −RI ∼ N (0, σ2) follows a classical
Gaussian distribution without any nondeterministic contribution. The interconnection (2) is
obtained as an instance of probabilistic conditioning V = V0. We compare our approach to
the one of Willems in Section 5.1.
We now describe a completely different situation where it makes sense to admit subspaces as
idealized probability distributions, namely uninformative priors in Bayesian inference:
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▶ Example 2 (Uninformative Priors). Our prior experience tell us that we expect the mass
X of some object to be normally distributed with mean 50 and variance 100. We use a
noisy scale to obtain a measurement of Y = 40. If the scale error has variance of 25, we can
compute our posterior belief over X, which turns out to be 1 X|(Y = 40) ∼ N (42, 20). Here,
the influence of the prior has corrected the predicted value to lie slightly above the measured
value, and have smaller overall variance (see Figure 1).

If we had no prior information at all about X, the posterior should simply reflect the
measurement uncertainty N (40, 25). We can model this by putting a larger and larger
variance on X. However, the limit of distributions N (50, σ2) for σ2 →∞ does not exist in
any measure-theoretic sense, because it would approach the zero measure on every measurable
set. There exists no uniform probability distribution over the real line. In practice, one can
sometimes pretend (using the method of improper priors, e.g. [19, 22]) that X is sampled
from the Lebesgue measure λ (with constant density 1). This measure fails to be normalized,
however the resulting density calculations may yield the correct probability measures.

Our theory of extended Gaussians avoids unnormalized measures altogether: The non-
deterministic distribution X ∼ R is used as the uninformative prior on X, which gives the
desired results, and R can be seen as the limit of N (50, σ2) for σ2 →∞ in an appropriate
sense.

1.1 Contribution
The paper is devoted to making our manipulations of subspaces as generalized probability
distributions rigorous. We introduce a class of mathematical objects called extended Gaussian
distributions and show that such distributions can be manipulated (combined, pushed forward,
marginalized) as if they were ordinary probability distributions. Importantly, extended
Gaussians remain closed under taking conditional distributions, which means we can use
them in applications such as statistical learning and Kalman filtering. The subspace R, seen
as a uniform distribution, formalizes the role of an improper prior.

Describing distributions on a space X is only the first step. In order to build up systems
in a compositional way, we need to understand transformations between spaces X → Y .
Category theory is a widely used language to study the composition of different kinds of
systems. We identify two relevant flavors in the literature

categorical and diagrammatic methods for engineering and control theory, such as graphical
linear algebra (e.g. [28]), cartesian bicategories (e.g. [6]) and signal-flow diagrams
([4, 3, 5, 2, 1]). A central notion is that of a hypergraph category [13], and prototypical
models are the categories of linear maps or linear relations. Willems’ system theory has
been explored in these terms [12], but probability is absent from these developments.
categorical models of probability, such as copy-delete categories [7] and Markov categories
[15, 17, 16, 18]. Prototypical models are stochastic matrices, or the category Gauss of
affine-linear maps with Gaussian noise.

Despite these developments, it has been challenging to combine probability and nondetermin-
ism into a single model – mathematical obstructions to achieving this are described in [39, 21].
Our work is a first successful step in combining these bodies of literature: We define a category
GaussEx of extended Gaussian maps which can seen both as extending linear relations with

1 see appendix 6.2 for the calculation
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13:4 Combining Gaussian Probability with Nondeterminism

probability, or extending Gaussian probability with nondeterminism (or improper priors).
Gaussian probability is a very expressive fragment of probability with a variety of useful
applications (Gaussian processes, Kalman filters, Bayesian Linear Regression).

Our definition of the Markov category GaussEx uses a special case of the widely studied
construction of decorated cospans [9, 11, 14, 12]. We recall that GaussEx has conditionals,
which is the categorical formulation of conditional probability used to formalize inference
problems like Example 2.

We then define a hypergraph category of Gaussian relations, which allows arbitrary
decorated cospans to allow the possibility of failure and explicit conditioning in the categorical
structure. Hypergraph categories are highly symmetrical categories with an appealing duality
theory. To our knowledge, probabilistic models of hypergraph categories are novel. The self-
duality of hypergraph categories is reflected in the duality between covariance and precision
forms, which takes a particularly canonical form for extended Gaussians. We elaborate this
in Section 5.2.

The following table summarizes the relationships between our constructions:

(adding Gaussian noise)
linear maps Gaussian maps

(adding nondeterminism) total linear relations extended Gaussian maps
(adding failure) linear relations Gaussian Relations

1.2 Outline
We assume basic familiarity of the reader with linear algebra, (monoidal) categories and string
diagrams; an overview can be found in the appendix Section 6. All categories considered
will be symmetric monoidal and have a copy-delete structure. All vector spaces are assumed
finite dimensional.

We begin Section 2 with a recap of Gaussian probability and continue to define extended
Gaussian distributions as Gaussian distributions on quotient spaces. We extend this definition
to a notion of extended Gaussian map in Section 3 and establish the structure of a Markov
category. We give the construction both in elementary terms and using the formalism of
decorated cospans in Section 3.2.

In Section 4, we define a hypergraph category of Gaussian relations, which extends
extended Gaussian maps with the possibility of failure and conditioning. This makes use of
the discussion of conditionals in Section 4.1.

The idea of extended Gaussian distributions has appeared in several places independently,
for different motivations. We conclude the paper with an extended “Related Works” Section 5,
which compares these approaches in detail, and gives perspective in terms of measure theory,
topology, and program semantics.

2 Extended Gaussian Distributions

We begin with a short review of Gaussian probability; we assume basic concepts of linear
algebra but have summarize the terminology in the appendix (Section 6.3). For a more
detailed introduction to Gaussian probability see e.g. [35, 24].

The normal distribution or Gaussian distribution N (µ, σ2) of mean µ and variance σ2 is
defined by having the density function

f(x) = 1√
2πσ2

exp
(
− (x− µ)2

2σ2

)
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with respect to the Lebesgue measure. This is generalized to multivariate normal distributions
as follows: Every Gaussian distribution on Rn can be written uniquely as N (µ,Σ) where
µ ∈ Rn is its mean and Σ ∈ Rn×n is a symmetric positive-semidefinite matrix called its
covariance matrix. Note that a vanishing covariance matrix is explicitly allowed; in that
case the Gaussian reduces to a point-mass δx = N (x, 0). We will sometimes abbreviate the
point-mass δx by x if the context is clear.

We write Gauss(Rn) for the set of all Gaussian distributions on Rn. The support of
N (µ,Σ) is the affine subspace µ + col(Σ) where col(Σ) is the column space (image) of Σ.
Gaussian distributions transform as follows under linear maps: If A ∈ Rm×n is a matrix,
then the pushforward distribution is given by

A∗(N (µ,Σ)) = N (Aµ,AΣAT ) (3)

Product distributions are formed as follows

N (µ,Σ)⊗N (µ′,Σ′) = N
((

µ

µ′

)
,

(
Σ 0
0 Σ

))
(4)

We write addition + between distributions to indicate the distribution of the sum of two
independent variables (convolution). For example, if X,Y ∼ N (0, 1) are independent, then
X + Y ∼ N (0, 2) because variance is additive for independent variables. We have

N (µ,Σ) +N (µ′,Σ′) = N (µ+ µ′,Σ + Σ′)

which can be confirmed by first forming the product distribution (4) and pushing forward
under the addition map (3). The set Gauss(Rn) forms a commutative monoid with convolu-
tion + and neutral element 0.

We now wish to a combine Gaussian distributions on Rn with uninformative (nondetermin-
istic) distributions along a vector subspace D.

▶ Definition 3. An extended Gaussian distribution on Rn is a pair (D,ψ) of a subspace
D ⊆ Rn and a Gaussian distribution µ on the quotient Rn/D. Following [38], we call the
space D the (nondeterministic) fibre of the extended Gaussian. We write GaussEx(Rn) for
the set of all extended Gaussian distributions on Rn.

There are several equivalent ways to formalize the notion of a Gaussian distribution over
this quotient space.
1. We identify the quotient space Rn/D with a complementary subspace K of D, and give a

Gaussian distribution on that space. This has the advantage of only involving Euclidean
spaces, and we can use matrices to represent linear maps.

2. We develop a coordinate-free definition of Gaussian distributions on arbitrary vector
spaces X so we can then interpret the construction Gauss(Rn/D) directly. This will be
useful for the duality results in Section 5.2.

3. Willems keeps the spaces Rn but equips them with restricted σ-algebras. This corresponds
to a quotient on the level of measurable spaces. We discard this perspective for now but
will return to it in Section 5.1.

For now, it doesn’t matter which formalization we choose. We will build intuitions with
some examples:

CALCO 2023



13:6 Combining Gaussian Probability with Nondeterminism

1. Every Gaussian distribution ψ becomes an extended Gaussian distribution with D = 0;
that is the nondeterministic contribution vanishes (is constantly zero).

2. Every subspace D becomes an extended Gaussian distribution with ψ = 0; that is the
probabilistic contribution vanishes. By slight abuse of notation, we will simply write D or
ψ for the embedding of subspaces or distributions into extended Gaussian distributions.

3. If the nondeterministic fibre D = Rn is the whole space, then Gauss(Rn/D) = {0}. Hence,
the only extended Gaussian with fibre D is the subspace D itself. This distribution
expresses total ignorance.

4. We can easily classify all extended Gaussian distributions on R. The fibre D must be
either 0 or R, so we have GaussEx(R) = Gauss(R) ∪̇ {R}.

5. The possible pairs (V, I) satisfying Ohm’s law are given by the subspace D = {(V, I) :
V = RI}. For noisy Ohm’s law, we let ϵ ∼ N (0, σ2) and notice that the random vector
w = (−1, R) · ϵ is orthogonal to D. Its covariance matrix is

Σw =
(

1 −R
−R R2

)
and thus the distribution of the noisy law is given by (N (0,Σw), D).

We may think of the extended distribution (D,ψ) as being composed of nondeterminstic
noise along the space D, and Gaussian noise ψ. It is evocative to write the extended Gaussian
distribution as a formal sum ψ +D of distribution and a subspace. The distribution ψ is not
unique because the nondeterministic noise absorbs components of ψ that are parallel to D.
This is analogous to how we use notation like 3 + 2Z for elements of quotient groups (cosets).
This notation is formally justified by the formula for addition of extended Gaussians, as
discussed next.

2.1 Transformations of Extended Gaussians
Extended Gaussian distributions support the same basic transformations as ordinary Gaus-
sians. If A is a matrix, we push forward the Gaussian and nondeterministic contribution
separately,

A∗(ψ +D) = A∗ψ +A[D]

where A[D] = {Ax : x ∈ D} denotes the image subspace. Tensor and sum are similarly
component-wise

(µ+D)⊗ (ψ + E) = (µ⊗ ν) + (D × E) (µ+D) + (ν + E) = (µ+ ν) + (D + E)

Well-definedness is a corollary of the next section, because those operations are special cases
of the categorical structure of GaussEx.

▶ Example 4. The subspace R ∈ GaussEx(R) absorbs all additive contributions, e.g. 42+R =
N (0, 1) + R = R

3 A Category of Extended Gaussian maps

After defining extended Gaussians on Euclidean spaces X, the next challenge is to develop
a notion of extended Gaussian map X → Y between spaces. We wish to define a category
GaussEx such that we recover extended Gaussian distributions as maps out of the unit space
0, i.e. GaussEx(X) ∼= GaussEx(0, X). The operations of pushforward, product and sum of



D. Stein and R. Samuelson 13:7

distributions will be simple instances of categorical and monoidal composition in the category
GaussEx. For purely Gaussian probability, the appropriate definition of a map is a linear
function together with Gaussian noise, informally written f(x) = Ax+N (b,Σ). We begin
by analyzing this construction before generalizing it to the extended Gaussian case.

3.1 Decorated Linear Maps and the Category Gauss
We write Vec for the category of finite dimensional vector spaces. The category Gauss [15]
is defined as follows: Objects are vector spaces X, and morphisms X → Y are pairs (f, ψ)
of a linear map f : X → Y and a Gaussian distribution ψ ∈ Gauss(Y ). The identity is
given by (idX , 0) and composition is given by pushing forward and addition of the noise,
(f, ξ) ◦ (g, ψ) = (fg, ξ + f∗ψ).

It is straightforward to generalize the pattern of this construction: The set of distributions
Gauss(X) is a commutative monoid (Gauss(X),+, 0) and the assignment X 7→ Gauss(X)
becomes a lax monoidal functor Gauss : Vec → CMon from vector spaces to commutative
monoids. By understanding a commutative monoid as a one-object category, the functor
Gauss : Vec → Cat is an indexed category, and the category Gauss is the monoidal op-
Grothendieck construction associated to this functor [26].

We do not use any special properties of Gaussian distributions, other than that they can
be added and pushed forward. In other words, can think of the distribution ψ as a purely
abstract decoration on the codomain of the linear map f . Any functor S : Vec → CMon
can be used to supply such a decoration, because it it automatically inherits a lax monoidal
structure (see below). In concrete terms, the op-Grothendieck construction can be described
as decorated linear maps:

▶ Definition 5. Let S : Vec→ CMon be a functor. The category LinS of S-decorated linear
maps is defined as follows
1. Objects are vector spaces X
2. Morphisms are pairs (f, s) where f : X → Y is a linear map and s ∈ S(Y )
3. Composition is defined as follows: for g : X → Y , f : Y → Z, s ∈ S(Y ), t ∈ S(Z) let

(f, t) ◦ (g, s) = (fg, t+ S(f)(s))

Note that addition takes place in the commutative monoid S(Z).

There is a faithful inclusion Vec→ LinS sending f to (f, 0). We argue that LinS has the
structure of a symmetric monoidal category with the tensor X ⊗ Y = X × Y on objects.
For this, we first observe that S is automatically lax monoidal: For (s, t) ∈ S(X)× S(Y ),
let s⊕ t = S(iX)(s) + S(iY )(t) where iX : X → X × Y, iY : Y → X × Y are the biproduct
inclusions. We can now define the tensor of decorated map as (f, s)⊗ (g, t) = (f × g, s⊕ t).
The monoidal category LinS is in general not cartesian; it does however inherit copy and
delete maps from Vec. The category LinS is a Markov category if and only if deleting is
natural, i.e. S(0) ∼= 0, where 0 denotes the terminal vector space/commutative monoid.

▶ Example 6. The following categories are instances of decorated linear maps:
1. For S(X) = 0, LinS is equivalent to Vec.
2. For S(X) = X, LinS is equivalent to the category of affine-linear maps. A map X → Y

consists of a pair (f, y) with f : X → Y linear and y ∈ Y .
3. For S(X) = Gauss(X), LinS is (by construction) the category Gauss

CALCO 2023



13:8 Combining Gaussian Probability with Nondeterminism

3.2 Decorated Cospans and Linear Relations
Like for Gauss, we wish to define an extended Gaussian map as a linear map with extended
Gaussian noise. The naive approach of considering linear maps decorated by S = GaussEx is
not fruitful, because the quotient by the nondeterministic fibre is not properly taken into
account: For example, for any two linear maps f, g : Rn → R, the decorated maps f +R and
g + R should be considered equal (Example 4). We can remedy this by considering maps
into the quotient X → R/R. This kind of behavior is precisely captured by (total) linear
relations.

▶ Lemma 7 (Section 6.3). To give a total linear relation R ⊆ X × Y is to give a subspace
D ⊆ Y and a linear map X → Y/D.

▶ Definition 8. An extended Gaussian map X → Y is a tuple (D, f, ψ) where D ⊆ Y is a
subspace, f : X → Y/D and ψ ∈ Gauss(Y/D).

In order to describe composition of such maps, it is convenient to use the formalism of
decorated cospans, which we recall now:

A cospan in a category C with finite colimits is a diagram of the form X
f−→ P

g←− Y . We
will identify two cospans if there exists an isomorphism P ∼= P ′ commuting with the legs.
Equivalence classes of cospans can be seen as morphisms between X and Y in a category
Cospan(C), where composition is given by pushout

X W

X X P Q

X Y Z

⌟idX idX

(5)

The following classes of cospans deserve special attention:
1. a cospan whose right leg is an isomorphism is the same thing as a map X → Y

2. a relation is a span X ← R→ Y which is jointly monic. Dually, a co-relation is a cospan
X → P ← Y which is jointly epic [11].

3. a partial map is a span X ← R → Y whose left leg is monic [8]. Dually we define a
copartial map to be a cospan X → P ← Y whose right leg is epic.

Just as partial maps are maps out of subobjects, copartial maps are maps into quotients. It is
worth noting that while the pushout of copartial maps is again a copartial map, co-relations
are not closed under pushout. Instead, the an image factorization has to be used to compose
them [11]. Lemma 7 can be rephrased as follows:

▶ Proposition 9. To give a copartial map X
f−→ P

p←− Y in Vec is to give a total linear
relation X → Y . The relation is obtained as R = {(x, y) : f(x) = p(y)}.

We now use the abstract theory of decorated cospans [9, 10, 14] to add Gaussian probability
to the cospans:

▶ Definition 10 ([9]). Given a lax monoidal functor S : (C,+)→ (Set,×), an S-decorated
cospan is a cospan X → P ← Y together with a decoration s ∈ S(P ). Given composable
cospans like in (5), the decoration of the composite is computed by the canonical morphism
S(P ) × S(Q) → S(P + Q) → S(W ). The category of S-decorated cospans is written
SCospan(C).
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The category Gauss is a special case of the decorated cospan construction, for cospans
whose right leg is an identity. We can now define:

▶ Definition 11. The category GaussEx of extended Gaussian maps is defined as the category
of copartial maps in Vec, decorated by the functor Gauss : Vec→ CMon→ Set.

Categories of decorated cospans are hypergraph categories [9, § 2] their monoidal structure
is given by the coproduct +. As the subcategory of decorated copartial maps, extended
Gaussians do inherit the symmetric monoidal and copy-delete structure, but are not a
hypergraph category. To obtain a useful hypergraph category of Gaussian probability, we
must study conditioning.

4 A Hypergraph Category of Gaussian Relations

A hypergraph category extends the structure of a copy-delete category in two important
ways
1. there is a multiplication µX : X ⊗ X → X on every object, which we think of as a

comparison operation. It succeeds if both inputs are equal (and return the input),
and fails otherwise. In linear relations, comparison is the relation {(x, x, x) : x ∈ X}.
Multiplication is dual to copying. In a probabilistic setting, we propose to think of the
comparison as conditioning on equality. The “cap” X ⊗X → I is denoted as =:= [25, 33].

2. there is a unit uX : I → X on every object, dual to deletion. The unit is neutral with
respect to the multiplication, i.e. conditioning on the unit has no effect. This suggests we
should think of the unit as a uniform distribution, or an improper prior. Both in linear
relations and extended Gaussians, the unit is the subspace X ⊆ X.

We arrive at the following synthetic dictionary for probabilistic inference and constraints
in hypergraph categories:

delete comparison condition uniform uniform
diagonal

copy

Figure 2 Dictionary for hypergraph categories.

For example, the noisy measurement example Example 2 can be expressed in the following
convenient way using hypergraph structure

N (50, 100)

N (−, 25)

40

=

N (42, 20)

We begin by recalling how conditioning works in the category Gauss, and prove that
extended Gaussians remain closed under conditioning. We then define a hypergraph category
GaussRel of Gaussian relations in which conditioning is internalized using a comparison
operation.

CALCO 2023



13:10 Combining Gaussian Probability with Nondeterminism

4.1 Conditioning
Gaussian distributions are self-conjugate; that is conditional distributions of Gaussians are
themselves Gaussian. More precisely, given a joint distribution ψ ∈ Gauss(X × Y ), the map
which sends x 7→ ψ|X=x is a Gaussian map X → Y . This is captured using the following
categorical definition:

▶ Definition 12 ([15, Definition 11.5]). A conditional for a morphism f : A → X ⊗ Y in
a Markov category is a morphism f|X : X ⊗ A → Y which lets us reconstruct f from its
X-marginal as f(x, y|a) = f|X(y|x, a)fX(y|a). In string diagrams, it satisfies

f =
f

f |X

A

A

XY

X Y

The category Gauss has all conditionals. By picking a convenient complement to the fibre D,
we can reduce the problem of conditioning in GaussEx to conditioning in Gauss.

▶ Theorem 13. GaussEx has conditionals.

Proof. In the appendix (Section 6.5). ◀

4.2 Gaussian Relations
One difficulty of conditioning is that it introduces the possibility of failure. For example, the
condition 0 =:= 1 is infeasible. In general, given a joint distribution ψ ∈ Gauss(X × Y ), we
can only condition ψ|X=x if x lies in the support of the marginal ψX . The dependence on
supports is carefully analyzed in the “Cond” construction of [34].

We define a hypergraph category GaussRel of Gaussian relations as follows

GaussRel(X,Y ) def= GaussEx(X × Y ) + {⊥}

That is, a Gaussian relation is either a joint extended Gaussian distribution, or a special
failure symbol ⊥ which represents infeasibility. Failure is strict in all categorical operations,
i.e. composing or tensoring anything with failure is again failure.

Most of the categorical structure of GaussRel is easy to define.
1. any morphism f ∈ GaussEx(X,Y ) can be embedded into GaussRel as its name ⌈f⌉ given

by I uX−−→ X
copyX−−−−→ X ⊗X idX ⊗f−−−−→ X ⊗ Y

2. the identity is the diagonal relation D = {(x, x) : x ∈ X} ∈ GaussEx(X ×X)
3. copying and comparison are the both given by the relation {(x, x, x) : x ∈ X}

Composition of Gaussian relations requires conditioning: Given R ∈ GaussRel(X,Y ) and
S ∈ GaussRel(Y,Z), we compose them as follows: If any of them is ⊥, return ⊥. Otherwise
form the tensor R⊗ S ∈ GaussEx(X ⊗ Y ⊗ Y ⊗ Z), and condition the two copies of Y to be
equal. If that condition is infeasible, return ⊥.
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4.3 Decorated cospans as generalized statistical models
We can get a clearer view of composition GaussRel by using decorated cospans. Recall that
decorated copartial functions X → P ← Y corresponded to extended Gaussian maps X → Y .
If we allow arbitrary cospans, we know that the category GaussCospan(Vec) is a hypergraph
category by construction. We now explain how to view such a cospan as a kind of generalized
statistical model, whose “solution” is a Gaussian relation.

▶ Theorem 14. We have a functor of hypergraph categories

F : GaussCospan(Vec)→ GaussRel

which sends the decorated cospan X f−→ P
g←− Y with decoration ψ ∈ Gauss(P ) to the Gaussian

relation described by the solution to the following inference problem: Initialize x ∼ X and
y ∼ Y with an uninformative prior. Then condition f(x)−g(x) =:= ψ, and return the posterior
distribution in GaussEx(X × Y ), or ⊥ if the condition was infeasible.

Decorated cospans thus have an interpretation as a generalized kind of statistical model,
and Gaussian relations can be understood as equivalence classes of such cospans which have
the same solution. This approach is systematically explored with the Cond construction
of [34], and indeed we can see GaussRel as a concrete representation of Cond(GaussEx).

5 Related Work and Applications

5.1 Open Linear Systems and σ-algebras
Recall that a probability space is a tuple (X, E , P ) of a set X, a σ-algebra E and a probability
measure P : E → [0, 1]. A random variable is a function V : X → R which is (E ,B(R))-
measurable, where B(R) denotes the Borel σ-algebra.

Willems defines an n-dimensional linear stochastic system to be a probability space of the
form (Rn, E , P ) for which there exists a “fibre” subspace D ⊆ Rn such that the σ-algebra E is
given by the Borel subsets of Rn/D in the following sense: Pick any complementary subspace
K with K ⊕D = Rn. Then, the events V ∈ E are precisely Borel cylinders parallel to D, i.e.
of the form V = A+D for A ∈ B(K). As an aside, we might wonder in which sense the the
algebra E is a quotient construction. The measurable projection p : (Rn, E)→ (K,B(K)) is
not an isomorphism of measurable spaces; after all, the underlying function is not invertible.
It is however an isomorphism in the category of probability kernels, namely the inclusion
i : K → Rn is an inverse when considered as a stochastic map. This is because the Dirac
measures δx and δipx are equal on E . This phenomenon of “weak quotients” is nicely explained
in [27, Appendix A].

A linear system is called Gaussian if the measure P on K is a normal distribution. We
notice that this agrees precisely with our definition of an extended Gaussian distribution
on Rn with fibre D. A linear system is classical only if D = 0, in the sense that only in
this case the measure P is defined on the whole algebra B(R). In the case D = Rn, the
σ-algebra becomes E = {∅,Rn} and we cannot answer any nontrivial questions about the
system (Example 4).

Willems gives explicit formulas for combining Gaussian linear systems (“tearing, zooming
and linking”) [38]. These operations have been treated in categorical form in [12] but not for
probabilistic systems. One fundamental operation in Willems’ calculus is the interconnection
of systems: Two probability systems (X, E1, P1), (X, E2, P2) on the same state space X are
called complementary if for all E1, E

′
1 ∈ E1 and E2, E

′
2 ∈ E2, we have

E1 ∩ E2 = E′
1 ∩ E′

2 ⇒ P1(E1)P2(E2) = P1(E′
1)P2(E′

2)
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That is, the product of probabilities P1(E1)P (E2) depends only on the intersection E1 ∩E2.
The two probability measures P1, P2 can now be joined together on the larger σ-algebra
E = σ(E1 ∪ E2) by defining P (E1 ∩ E2) = P (E1)P (E2). This is what happens in Example 1
when connecting a noisy resistor to a voltage source: The underspecified σ-algebras gets
enlarged and nondeterministic relationships become become probabilistic ones. It seems to
us that interconnection is a special case of the composition of Gaussian relations.

It is furthermore interesting that Willems uses the term open for probability systems
with an underspecified σ-algebra on X, while in category theory, we think of open systems as
morphisms Y → X. A remarkable feature is that the σ-algebra, which in measure-theoretic
probability is considered a property of the objects in question (i.e. measurable spaces), is here
part of the morphisms. The cospan perspective unifies this, for in a cospan Y

f−→ Q
q←− X,

we can equip X with the σ-algebra generated by the quotient map q.

5.2 Variance-Precision Duality
We recall the coordinate-free description of Gaussian probability and use it to show that
extended Gaussians are highly symmetric objects, which enjoy an improved duality theory
over ordinary Gaussians (reflecting the hypergraph structure of Gaussian relations). This
also points towards future research to understand GaussEx as a topological completion of
ordinary Gaussians. Work in this direction is the variance-information manifold of [23]. For
simplicity, we will consider only Gaussians of mean zero.

If the covariance matrix Σ ∈ Rn×n is invertible, then its inverse Ω = Σ−1 is known as
precision or information matrix. Precision is dual to covariance, in the sense that while
covariance is additive for convolution +, precision is additive for conditioning.

Σψ1+ψ2 = Σψ1 + Σψ2 , Ωψ1∩ψ2 = Ωψ1 + Ωψ2

The latter equation is reminiscent of logdensities, which add when conditioning. Indeed, the
precision matrix appears in the density function of the multivariate Gaussian distribution
f(x) ∝ exp

(
− 1

2 (x− µ)TΩ(x− µ)
)
.

If we allow singular covariance matrices Σ, we still have well-defined Gaussian distributions
albeit with non-full support; however the information matrix ceases to exist (and the
distribution no longer has a density with respect to the n-dimensional Lebesgue measure).
Not only does this break the duality, but we are left to wonder which kind of distribution
corresponds to singular precision matrices: The answer is extended Gaussian distributions
with nonvanishing fibre.

In a coordinate-free way, the covariance of a distribution ψ ∈ Gauss(X) is the bilinear
form on the dual space Σ : X∗×X∗ → R given by Σ(f, g) def= E[f(U)g(U)]−E[f(U)]E[g(U)].
This form is symmetric and positive semidefinite. The precision form Ω is instead of type
Ω : X ×X → R. The duality between the two forms can be stated as follows:

▶ Theorem 15. The following data are equivalent for every f.d.-vector space X
1. pairs ⟨S,Ω⟩ of a subspace S ⊆ X and a bilinear form Ω : S × S → R
2. pairs ⟨F,Σ⟩ of a subspace F ⊆ X∗ and a bilinear form Σ : F × F → R

At the core of this duality lies the notion of the annihilator of a subspace, here denoted (−)⊥.
In brief, the correspondences are as follows

precision S = ker(Σ)⊥ ker(Ω) = D

covariance F = D⊥ ker(Σ) = S⊥

We give a proof of the duality in the appendix (Section 6.3).
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5.3 Statistical Learning and Probabilistic Programming

It is unsurprising that notions equivalent to extended Gaussians have appeared in the statistics
(e.g. in [22]). A novel perspective on statistical inference which more closely matches the
categorical semantics is probabilistic programming, a powerful and flexible paradigm which
has gained traction in recent years (e.g. [36, 29, 20]). In [34], we argued that the exact
conditioning operation (conditioning on equality) described in Section 4.2 is a fundamental
primitive in such programs, and enjoys good logical properties. We presented a programming
language for Gaussian probability featuring a first-class exact conditioning operator (=:=),
with Python/F# implementations available under [30]. For example, the noisy measurement
example expressed as a probabilistic program reads

x = normal(50, 100)

y = normal(x, 25)

y =:= 40

return x

This language uses Gaussian distributions only, but it can effortlessly be extended to use
extended Gaussian distributions, which are likewise closed under conditioning (Theorem 13).

The behavior of the conditioning operator (=:=) can be quite subtle, and it is difficult
to decide when two programs are observationally equivalent. The denotational semantics
defined in [34] on the basis of the category Cond(Gauss) is fully abstract, but it is still lacking
a concrete description of when two different programs fragements have the same behavior in
all contexts. This is remedied by passing to the concrete description of GaussRel. In terms of
Section 4.3, a program denotes a decorated cospan over Vec, and contextual equivalence is
precisely the equivalence relation Theorem 14.

The correspondence between probabilistic programs and categorical models of probability
(with conditioning) is elaborated in detail in [31].
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6 Appendix

6.1 Glossary: Category Theory
We assume basic familiarity of the reader with monoidal category theory and string diagrams.
All relevant categories in this article are symmetric monoidal.

A copy-delete category [7] (or gs-monoidal category) is a symmetric monoidal category
(C,⊗, I) where every object X is coherently equipped with the structure of a commutative
comonoid, which is used to model copying (copyX : X → X ⊗ X) and discarding (delX :
X → I) of information. In string diagrams, the comonoid axioms are rendered as

= == =

Neither deleting nor copying are assumed to be natural in a copy-delete category. A Markov
category is a copy-delete category where deleting is natural, or equivalently, the monoidal
unit I is terminal. Markov categories typically model probabilistic or nondeterministic
computation without possibility of failure, such as stochastic matrices, Gauss or total (linear)
relations.

Copy-delete categories can model unnormalized probabilistic computation, or the potential
of failure. The categories of partial functions or (linear) relations are typical examples of
copy-delete categories that are not Markov categories.

A hypergraph category [13] is a symmetric monoidal category with a particularly powerful
self-duality: Every object is equipped with a special commutative Frobenius algebra structure.

6.2 Noisy measurement example
▶ Example 16. We elaborate the noisy measurement example from the introduction. Formally,
we introduce random variables

X ∼ N (50, 100)
Y ∼ N (X, 25)

The vector (X,Y ) is multivariate Gaussian with mean (50, 50) and covariance matrix

Σ =
(

100 100
100 125

)
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The conditional distribution X|(Y = 40) is N (µ = 42, σ2 = 20).

Proof. The random vector (X,Y ) has joint density function

f(x, y) = 1
2π ·
√

100 · 25
exp

(
− (x− 50)2

2 · 100

)
· exp

(
− (y − x)2

2 · 25

)
The conditional density of x given y has the form

f(x|y) = f(x, y)∫
f(x, y)dx

By expanding and “completing the square”, it is easy to check that

f(x, 40) ∝ exp
(
− (x− 50)2

200 − (40− x)2

50

)
∝ exp

(
− (x− 42)2

2 · 20

)
is again a Gaussian density, from which we read off µ = 42 and σ2 = 20. ◀

6.3 Glossary: Linear Algebra
All vector spaces in this paper are assumed finite dimensional. For vector subspaces U, V ⊆ X,
their Minkowski sum is the subspace U+V = {u+v : u ∈ U, v ∈ V }. If furthermore U∩V = 0,
we call their sum a direct sum and write U ⊕ V . A complement of U is a subspace V such
that U ⊕ V = X. An affine subspace W ⊆ X is a subset of the form x+ U for some x ∈ X
and a (unique) vector subspace U ⊆ X. The space W is called a coset of U and the cosets of
U organize into the quotient vector space X/U = {x+ U : x ∈ X}.

An affine-linear map f : X → Y between vector spaces is a map of the form f(x) = g(x)+y
for some linear function g : X → Y and y ∈ Y . Vector spaces and affine-linear maps form a
category Aff.

A linear relation R ⊆ X × Y is a relation which is also a vector subspace of X × Y . We
write R(x) def= {y ∈ Y : (x, y) ∈ R}. A relation R ⊆ X × Y is called total if R(x) ̸= ∅ for all
x ∈ X. Linear relations and total linear relations are closed under the usual composition
of relations. We denote by LinRel and LinRel+ the categories whose objects are vector
spaces, and morphisms are linear relations and total linear relations respectively. LinRel is a
hypergraph category, while LinRel+ is a Markov category.

The following lemma is crucial for relating linear relations and cospans: Every left-total
linear relation can be written as a “linear map with nondeterministic noise” x 7→ f(x) +D.

▶ Proposition 17. Let R ⊆ X × Y be a left-total linear relation. Then
1. R(0) is a vector subspace of Y
2. R(x) is a coset of R(0) for every x ∈ X
3. the assignment x 7→ R(x) is a well-defined linear map X → Y/R(0)
4. every linear map X → Y/D is of that form for a unique left-total linear relation.

Proof. For 1, consider y, y′ ∈ R(0) (by assumption nonempty), then by linearity of R

(0, y) ∈ R, (0, y′) ∈ R⇒ (0, αy + βy′) ∈ R

so R(0) is a vector subspace. For 2, we can find some w ∈ R(x) and wish to show that
R(x) = w +R(0). Indeed if y ∈ R(x) then (x, y)− (x,w) = (0, y − w) ∈ R so y − w ∈ R(0),
hence y ∈ w + R(0). Conversely for all z ∈ R(0) we have (x,w + z) = (x,w) + (0, z) ∈ R
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so w + z ∈ R(x). This completes the proof that R(x) is a coset. For 3, the previous point
shows that the map ρ : x 7→ R(x) is a well-defined map X → Y/R(0). It remains to show
it is linear. That is, if w ∈ R(x) and z ∈ R(y) then αw + βz ∈ R(αx + βy). This follows
immediately from the linearity of R. For the last point 4, given a linear map f : X → Y/V

we construct the relation

(x, y) ∈ R⇔ y ∈ f(x)

which is left-total because f(x) ̸= ∅. To see that R is linear, let (x, y) ∈ R, (x′, y′) ∈ R
meaning y − z ∈ V and y′ − z ∈ V for representatives z, z′ of f(x), f(x′). Linearity of f
means that αz + βz′ is a representative of f(αx+ βx′). Thus

αy + βy′ − (αz + βz′) = α(y − z) + β(y′ − z′) ∈ V ◀

6.4 Annihilators
For subspaces D ⊆ X and F ⊆ X∗, the subspaces D⊥ ⊆ X∗, F⊥ ⊆ X are defined as

D⊥ def= {f ∈ X∗ : f |D = 0}, F⊥ def= {x ∈ X : ∀f ∈ F, f(x) = 0} (6)

▶ Proposition 18.
1. Taking annihilators is order-reversing and involutive
2. If D ⊆ S ⊆ X, then S⊥ ⊆ D⊥ ⊆ X∗ and we have a canonical isomorphism

(S/D)∗ ∼= D⊥/S⊥ (7)

and similarly for K ⊆ F ⊆ X∗, we have

(F/K)∗ ∼= K⊥/F⊥ (8)

3. We have

(V +W )⊥ = V ⊥ ∩W⊥

(F ∩W )⊥ = F⊥ +G⊥

If D ⊆ X and f : X → Y , then

(f [D])⊥ = {g ∈ Y ∗ : gf ∈ D⊥}

If U ⊆ X,V ⊆ Y , we have a canonical isomorphism

(U × V )⊥ ∼= U⊥ × V ⊥

Proof. Standard. An explicit description of the canonical iso (7) is given as follows.
1. We define α : D⊥/S⊥ → (S/D)∗ as follows. If f ∈ D⊥, then f is a function X → R such

that f |D = 0. The restriction f |S : S → R thus descends to the quotient S/D → R, and
we let α̃(f) = f |S . To check this is well-defined, notice that the kernel of α̃ consists of
those f ∈ X∗ such that f |S = 0, that is S⊥.

2. We define α−1 : (S/D)∗ → D⊥/S⊥ as follows. An element f ∈ (S/D)∗ is a function
f : S → R with S|D = 0. Find any extension of f to a linear function f̄ : X → R (such an
extension exists because S is a retract of X). Then still f̄ |D = 0, so f̄ ∈ D⊥. It remains
to show that the choice of extension does not matter in the quotient D⊥/S⊥. Indeed if
f̄2 is another extension, then (f̄ − f̄2)|S = f − f = 0, hence (f̄ − f̄2) ∈ S⊥. ◀
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6.5 Conditionals
The existence proof of conditionals in GaussEx relies on the ability to pick a convenient
complement to a subspace, as constructed by the following lemma:

▶ Lemma 19. Let V ⊆ X × Y be a vector subspace, and let VX ⊆ X be its projection. Then
there exists a complement K ⊆ X × Y of V such that KX is a complement of VX .

Proof. We give an explicit construction, where in fact we can choose K to be a cartesian
product of subspaces U ×W . Let

VX = {x : (x, y) ∈ V } H = {y : (0, y) ∈ V }

We argue that if U ⊕ VX = X and W ⊕ H = Y , then (U ×W ) ⊕ V = X × Y . First we
prove that (U ×W ) ∩ V = 0: Indeed, if (u,w) ∈ V for u ∈ U,w ∈W , then u ∈ VX , but that
implies u = 0. So we know (0, w) ∈ V , i.e. w ∈ H. Thus w = 0.

It remains to show that we can write every (x, y) as (u+ v1, w + v2) with u ∈ U,w ∈W
and (v1, v2) ∈ V .
1. We can write x = u+ v1 with u ∈ U and v1 ∈ VX .
2. We claim that there exists a b ∈W such that (v1, b) ∈ V . Because v1 ∈ VX , there exists

some b′ ∈ Y such that (v1, b
′) ∈ V . We now decompose b′ = b+ h for b ∈W,h ∈ H. By

definition of H, we have (0, h) ∈ V , so (v1, b) = (v1, b
′)− (0, h) ∈ V .

3. Write y = w′ + h with w′ ∈ W,h ∈ H and define w = w′ − b and v2 = h+ b. Then we
have w ∈W and (v1, v2) = (v1, b) + (0, h) ∈ V , and as desired

(u,w) + (v1, v2) = (x,w′ − b+ h+ b) = (x,w′ + h) = (x, y). ◀

We can now prove the existence of conditionals in GaussEx.

Proof of Theorem 13. Let φ ∈ GaussEx(A,X × Y ) be given by (D, f̃ , ψ̃) where f̃ : A →
(X×Y )/D, D ⊆ X×Y and ψ ∈ Gauss((X×Y )/D). By Lemma 19, we can pick a complement
K ⊆ X × Y of D such that KX is a complement of DX in X. Under the identification
(X × Y )/D ∼= K, we replace f̃ , ψ̃ with f : A→ X × Y and ψ ∈ Gauss(X × Y ).

Now we consider the morphism x 7→ f(x) + ψ in Gauss(A,X × Y ) and find a conditional
f |X ∈ Gauss(X ×A, Y ). Informally, this means we can obtain (X1, Y1) ∼ f(a) +ψ as follows:

X1 ∼ fX(a) + ψX , Y1 ∼ g(x, a) + ξ

Similarly we can use conditionals in LinRel+ to find a linear function h : X → Y and a
subspace H ⊆ Y such that (X2, Y2) ∼ D can be obtained as

X2 ∼ DX , Y2 ∼ h(X2) +H

Thus a joint sample (X,Y ) ∼ f(x) + ψ +D can be obtained using the following process

X1 ∼ fX(a) + ψX , X2 ∼ DX , X = X1 +X2

Y1 ∼ g(X1, a) + ξ, Y2 ∼ h(X2) +H, Y = Y1 + Y2

By construction we haveX1 ∈ KX , X2 ∈ DX . BecauseK was chosen such thatKX⊕DX = X,
we can extract the individual values of X1, X2 from X via the projections PKX

, PDX
: X → X.

A conditional for φ is thus given by the formula

φ|X(x, a) = g(PKX
(x), a) + h(PDX

(x)) + ξ +H ◀
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