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Abstract
Subproblem separation is a common strategy for the acceleration of the logic-based Benders’
decomposition (LBBD). However, it has only been applied to problems with an inherently separable
subproblem structure. This paper proposes a new method to separate the subproblem using the
connected components algorithm. The subproblem separation is applied to the vehicle routing
problem with local congestion (VRPLC). Accordingly, new Benders’ cuts are derived for the new
subproblem formulation. The computational experiments evaluate the effectiveness of subproblem
separation for different methods applying new cuts. It is shown that subproblem separation
significantly benefits the LBBD scheme.
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1 Introduction

Logic-based Benders’ decomposition (LBBD) is an extension of classical Benders’ decom-
position. LBBD extends the classical Benders’ approach by allowing the subproblem to
be an optimisation problem of any form. LBBD was first introduced in Hooker [4] and
then formalised in Hooker and Ottosson [7]. It generates Benders’ cuts by using logical
deductions from subproblem solutions, therefore it can handle any type of subproblem. This
makes LBBD an effective method of combining different approaches such as mixed-integer
programming (MIP) and constraint programming (CP).

Successful applications of LBBD include resource allocation and scheduling problems
([5],[12],[2],[19],[3],[9]), vehicle routing problems ([17],[14],[15],[10]), and other types of large-
scale optmisation problems ([6]). Various acceleration techniques have been used in these
applications in order to improve the effectiveness of the LBBD scheme. The common
acceleration techniques are subproblem relaxation, cut strengthening, and subproblem
separation. In their works on the evaluation of cut-strengthening techniques in LBBD, Saken
et al. [18] and Karlsson and Rönnberg [8] show that for problems, which have inherently
separable subproblems, benefits of applying subproblem separation dominate the benefits of
applying cut strengthening.
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16:2 Subproblem Separation for the Vehicle Routing Problem with Local Congestion

Subproblem separation can be applied to problems with a bordered block-diagonal
structure. This structure allows splitting the subproblem when master problem variables
are fixed. We propose a new method for subproblem separation for problems that do not
have such structure. On the example of the VRPLC, we demonstrate why problems with
no block-diagonal structure can not be separated at the problem formulation stage. We
then introduce a new method that applies the connected components algorithm to identify
separable blocks of the subproblem based on the master problem solution in each iteration
of the Benders’ algorithm. The computational evaluation of the new method confirms that
subproblem separation we propose has a significant impact on the LBBD scheme.

The rest of this paper is structured as follows. Section 2 describes the VRPLC. Section 3
presents the problem formulation. A brief description of the LBBD scheme for the problem
is given in Section 4. The main contributions of this paper are Sections 5–7. Section 5
introduces the new method for subproblem separation. The derivation of new Benders’ cuts
is given in Section 6. The computational results in Section 7 demonstrate the effectiveness of
the subproblem separation by evaluating the solution run times for the various new methods.
Finally, concluding comments are given in Section 8.

Our contribution

The main contributions are:
A new method of subproblem separation in the LBBD scheme using the connected
components in a graph.
A derivation and analytical validation of various Benders’cuts.
Detailed computational experiments evaluating four different methods applying sub-
problem separation and the default method with no subproblem separation.
The code related to the LBBD scheme and the subproblem separation is freely available
at https://git.exeter.ac.uk/as1392/subproblem-separation-in-lbbd.

2 Vehicle routing problem with local congestion

The vehicle routing problem (VRP) is a problem that finds a set of suitable routes for a
fleet of vehicles that deliver/collect goods from the central depot to a set of customers. The
obtained routes must satisfy all of the customer requests while minimising the total travel
distance and/or other costs. Some examples of practical applications are grocery delivery,
parcel delivery, farm produce collection, waste collection etc. The VRP is one of the most
extensively studied problems in optimisation due to both practical and theoretical interest.

There is no standard VRP formulation. However, one of the best-studied formulations of
the vehicle routing problem is the capacitated VRP (CVRP)([16],[13],[20],[1],[17],[14],[15],
and references therein). A lot of VRP problem formulations are based on CVRP. A feasible
solution of CVRP is a set of routes starting and ending at the central depot. Every customer
is visited only once on a specific route, and the cumulative demand (weight) of all requests
the vehicle delivers must not exceed its capacity.

The VRPLC is the CVRP enriched with time window and local congestion constraints.
This variant of the CVRP was introduced in Lam and Van Hentenryck [11]. The customer
requests are grouped by locations. The congestion constraint at each location is a cumulative
resource constraint that limits the number of vehicles present and/or in service at any
given time. If all resources at a location are engaged, incoming vehicles must wait until the
resources become available. This leads to time dependencies, and, subsequently, a scheduling
substructure that is not present in conventional CVRPs [11]. An example of such time

https://git.exeter.ac.uk/as1392/subproblem-separation-in-lbbd
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Table 1 Data and decision variables for the model.

Name Description

T ∈ {1, . . . , ∞} Time horizon
l ∈ {1, . . . , L} Set of locations
n Number of requests
R = {1, . . . , n} Set of requests
Cl ∈ {1, . . . , ∞} Resource capacity of location l ∈ L
Rl = {i ∈ R|li = l} Set of requests at location l ∈ L
li ∈ L Location of request i ∈ R

ri ∈ [0, T ] Release time of request i ∈ R

di ∈ [0, T ] Deadline of request i ∈ R

pi ∈ [0, T ] Processing time of request i ∈ R

qi ∈ [1, Q] Weight of request i ∈ R

Q ∈ {0, . . . , ∞} Maximum weight a vehicle can carry
O+ Artificial start that corresponds to the central depot
O− Artificial end that corresponds to the central depot
N = R ∪ {O−, O+} Set of nodes
A = {(i, j) ∈ N × N |i ̸= j} Set of arcs connecting the nodes
cij Travel time along arc (i, j)

xij ∈ {0, 1} Indicates if a vehicle travels along arc (i, j)
ystart

i ∈ [ri, di] Time a vehicle starts unloading goods
yweight

i ∈ [qi, Q] Total accumulated weight of delivered goods

dependency is that a delay on one route entails delays on other routes visiting the same
location. These delays can cause infeasibility of a solution because of the time window
constraints.

Developing a hybrid MIP and CP solver “Nutmeg”, Lam et al. [10] introduce a logic-based
Benders’ decomposition (LBBD) scheme for the VRPLC. As VRPLC can be decomposed
into a routing and a scheduling problem, it is naturally suited to LBBD. The authors use
the branch-and-cut style of LBBD known as branch-and-check. Two objective types are
considered – minimising total travel distance and minimising makespan.

3 Problem formulation

The problem formulation studied in this paper is based on the VRPLC formulation in Lam et
al. [10]. However, we only consider the minimising total tardiness objective. The requests are
allowed to be delivered past their time window, the tardiness of each request is the amount of
time that has passed since the end of the window until the delivery time. The total tardiness
is the sum of the tardiness of all requests.

The problem is to create a set of routes for vehicles to deliver goods from a central depot
to various locations. The vehicles and the locations are subject to vehicle capacity and
congestion constraints, respectively.

Table 1 lists the data and decision variables for the problem. The requests for goods
are grouped by locations. Each request i ∈ R must be delivered to location li ∈ L within a
time window [ri, di], and all vehicles must return to the central depot before time T . Each
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16:4 Subproblem Separation for the Vehicle Routing Problem with Local Congestion

vehicle requires the use of one piece of equipment for processing time pi to unload the goods
for request i ∈ R. Each location only has the total fixed set of equipment Cl, the limited
capacity of equipment then leads to location congestion.

The problem can be modeled using a graph (N , A). The central depot and each request
i ∈ R with the corresponding location information are represented through the set of nodes N .
The set A denotes the arcs connecting the nodes. The variables xij equal 1 if a vehicle travels
along arc (i, j) ∈ A, and 0 otherwise. Moving along arc (i, j) takes cij time units. There are
two continuous subproblem variables at each node i ∈ N . The continuous variables ystart

i

and yweight
i are equal to the time a vehicle starts unloading goods and the total accumulated

weight of delivered goods, respectively.
The model for the vehicle routing problem with location congestion is given by

min
∑
i∈R

max{ystart
i + pi − di, 0} (1)

s. t.
∑

i:(i,j)∈A

xij = 1, j ∈ R, (2)

∑
j:(i,j)∈A

xij = 1, i ∈ R, (3)

Cumulative((ystart
i |i ∈ Rl), (pi|i ∈ Rl), (1|i ∈ Rl), Cl), l ∈ L, (4)

xij = 1 → yweight
i + qj ≤ yweight

j , (i, j) ∈ A, (5)

xij = 1 → ystart
i + pi + cij ≤ ystart

j , (i, j) ∈ A, (6)
xij ∈ {0, 1}, (i, j) ∈ A, (7)
ystart

i ∈ [ri, di], i ∈ N , (8)

yweight
i ∈ [qi, Q], i ∈ N . (9)

The objective function (1) minimises total tardiness of all requests. Constraints (2)–(3)
ensure each node has exactly one incoming and outgoing arc. This ensures each request is
assigned to exactly one vehicle. The Cumulative constraints (4) enforce processing capacity
limit at each location. Vector ((1|i ∈ Rl)) represents resource requirement for each request
i ∈ Rl. The Cumulative constraints require the following:

∑
i∈Rlt

1 ≤ Cl for all times
t, where Rlt = {i|ystart

i ≤ t < ystart
i + pi} is the set of requests being processed at time t.

Constraints (5)–(6) are only enforced when the corresponding values of xij are equal to 1.
Constraints (5) ensure that the total accumulated weight of delivered goods by a vehicle does
not decrease after each delivered request. Constraints (6) ensure request processing time and
minimum travel times are respected. Constraints (6) are sufficient to avoid cycles. All of
the vehicles are assumed to be identical, and each node has one incoming and outgoing arc,
therefore the vehicles are not presented explicitly. The number of arcs outgoing from (or
incoming to) the central depot gives the number of vehicles used in a solution.

4 Logic-based Benders’ decomposition for VRPLC

The VRPLC decomposes into routing and scheduling components. The variables xij are
viewed as the complicating variables. Fixing variables xij to trial values leads to a scheduling
subproblem. The scheduling subproblem can be solved as a CP. The trial values of xij are
found by solving the routing master problem as a MIP. The master problem identifies a set
of vehicle routes that satisfy all delivery requests.
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Let T denote the total tardiness. The master problem in iteration k is given by

min T (10)

s. t.
∑

i:(i,j)∈A

xij = 1, j ∈ R, (11)

∑
j:(i,j)∈A

xij = 1, i ∈ R, (12)

T ≥ Bxi(x), i = 1, ..., k − 1, (13)
[Valid inequalities]. (14)

The [Valid inequalities] contain constraints (5)–(6), they are added to the master problem to
retain some information about the subproblem. They state that for a vehicle that travels
along arc (i, j) the accumulated weight of goods delivered after request j cannot be smaller
than the accumulated weight after request i. Similarly, unloading of goods at node j cannot
start before unloading at node i. Inequalities (13) are the Benders’ cuts obtained by solving
the subproblem for master problem solutions xi in iterations i = 1, . . . , k − 1. The Benders’
cuts ensure feasibility and optimality of the problem solution.

Let xk be the master problem solution in iteration k, then the subproblem is given by

min
∑
i∈R

max{ystart
i + pi − di, 0} (15)

s. t. Cumulative((ystart
i |i ∈ Rl), (pi|i ∈ Rl), (1|i ∈ Rl), Cl), l ∈ L, (16)

xk
ij = 1 → yweight

i + qj ≤ yweight
j , (i, j) ∈ A, (17)

xk
ij = 1 → ystart

i + pi + cij ≤ ystart
j , (i, j) ∈ A. (18)

The subproblem is solved to schedule deliveries on the routes identified by the master problem.
The solution procedure is an iterative process that iterates between solving the master

problem and the subproblem. Let T ∗ and T ∗
k denote the optimal objective value of the

master problem and the subproblem, respectively. In each iteration, the optimal value T ∗

provides a lower bound on the optimal value of (1)–(9), and T ∗
k provides an upper bound.

The optimal value T ∗ increases monotonically, the subproblem value T ∗
k can increase or

decrease. The procedure terminates when T ∗ = min{T ∗
1 , . . . , T ∗

k }.
The main idea of LBBD is to use T ∗

k and the reasoning behind this solution to obtain a
bounding function Bxk (x) that gives a valid lower bound on the optimal value of (1). The
bounding function Bxk (x) should have following two properties.

▶ Property 1. Bxk (x) provides a valid lower bound on (1) for any given x ∈ Dx, where Dx

is the domain of x. That is, T ≥ Bxk (x) for any feasible (x, y) in problem .

▶ Property 2. Bxk (xk) = T ∗
k .

It is convenient to regard T ∗
k as having an infinite value if the subproblem is infeasible.

By this assumption, a strong duality holds for the dual of the subproblem: the optimal value
of the subproblem is always equal to the optimal value of its dual [7].

▶ Theorem 1 ([5]). If the bounding function Bxk (x) satisfies properties 1 and 2 in each
iteration of the Benders algorithm, and the domain Dy of y is finite, the Benders algorithm
converges to the optimal value of (problem) after finitely many steps.

ATMOS 2023



16:6 Subproblem Separation for the Vehicle Routing Problem with Local Congestion

Let Jk = {(i, j) ∈ A|xk
ij = 1} be the set of arcs that were selected in the master problem

solution in iteration k. If the subproblem is infeasible, a feasibility cut given by∑
(i,j)∈Jk

(1 − xij) ≥ 1 (19)

is generated. If the subproblem has an optimal solution with value T ∗
k , an optimality cut

T ≥ Bxk (x) is generated. The cut is given by

T ≥ T ∗
k

(
1 −

∑
(i,j)∈Jk

(1 − xij)
)
. (20)

The cut indicates that the total tardiness T will have a value of at least T ∗
k , unless one of

the arcs (i, j) ∈ Jk is removed from the route.
Both feasibility cuts (19) and optimality cuts (20) can be routinely strengthened by

replacing Jk with a smaller subset J ′

k ⊆ Jk, if the subproblem corresponding to J ′

k gives a
solution with the same objective value as the solution for Jk.

5 Subproblem separation

Subproblem separation is a common strategy used to accelerate the LBBD scheme. It
is especially useful when the subproblem is a scheduling problem. Given that scheduling
problems are difficult to scale up, splitting one big subproblem into many small independent
subproblems usually benefits the solution procedure.

The subproblem can be separated when the problem has a bordered block diagonal
structure, where the master variables define the border. Therefore, fixing the master
variables to trial values makes the blocks separable. Meaning that the subproblem can be
decoupled into a separate subproblem for each such block, and the solution of any decoupled
subproblem does not depend on solutions of other subproblems.

The VRPLC formulation does not exhibit a block diagonal structure. Fixing master
variables for the vehicle routing problem, does not naturally decouple the subproblem. One
might consider decoupling the subproblem by each location. However, since a vehicle can
travel through more than one location, constraints (5)–(6) create a border that connects the
locations. For example, if a vehicle first travels through location l1 and then location l2, the
subproblem for location l2 would require the subproblem solution for l1. This issue could be
resolved by solving the subproblem for l1 before solving subproblem for l2. However, since a
location may host several requests, it is possible that another vehicle travels through l1 and
l2 in the opposite order, thus making this method of subproblem separation inapplicable.
Therefore, the subproblem cannot be decoupled by locations at the problem formulation
stage.

We propose to separate the subproblem during the solution process. One can note that
some master subproblem solutions give routes that only connect some of the locations. For
example, see Figure 1a, locations 1 and 4 are connected to each other and the central depot,
while locations 2 and 3 are only connected to the central depot. One subproblem can be
solved for locations 1 and 4 together, and one subproblem for each of locations 3 and 4.

We propose to identify separable blocks of locations in each iteration of the Benders’
algorithm. The master problem solution xk

ij can be represented as a graph Jk. The edges in
graph Jk are the connections between requests. In order to identify separable locations, a
new graph is formed where the nodes are given by locations. The edges between requests are
mapped onto the edges between locations. Connected locations can then be found by using
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1

2

D

3

4

(a) Routes in the MP solution.

1

2

D

3

4

(b) Connected components.

Figure 1 Example of a graph representing the central depot (D) and four locations.

an algorithm to identify connected components in the location graph. Our implementation
uses a depth-first search (DFS) to identify connected components. Note that the edges
that connect the central depot to the locations are ignored, otherwise, all of the locations
will belong to a single connected component through the central depot. The number of
independent calls of the DFS function is equal to the number of connected components.
In the example above, (see Figure 1b) the connected components are {[1, 4], [2], [3]}. A
separate subproblem is then solved for each connected component. Observe that solving the
subproblem when a connected component is a path is trivial.

It is important to note that the proposed algorithm can identify connected components
for more general cases than the example above. Since a vehicle can travel to multiple
locations, the algorithm ensures that all of the locations visited by one vehicle belong to
a single component. Moreover, if several vehicles deliver requests to the same location, all
of the locations traversed by the vehicles will be encompassed in a single component. This
is possible due to the step of mapping the edges between requests to the edges between
locations – several request nodes become one location node.

6 New Benders’ cuts

There is an inherent computational benefit to splitting the subproblem into smaller inde-
pendent subproblems. Nevertheless, in order to fully exploit the new subproblem structure it
is important to generate strong Bender’s cuts. In this section, we analytically derive different
sets of valid Benders’ cuts.

Let xk be the master problem solution in iteration k, and let set Jk be given by Jk =
{(i, j)|xk

ij = 1}. As mentioned in Section 5, since Jk ⊆ A is a graph, it can be separated
into connected components. Let set Ck denote the set of connected components in iteration
k. The connected components partition the set Jk, i.e.,⋃

c∈Ck

J c
k = Jk and J c

k

⋂
J c′

k = ∅ c, c′ ∈ Ck, c ̸= c′,

where J c
k ⊆ Jk is the set of all edges from Jk in the connected component c.

Sets J c
k partition Jk, cut (20) therefore can be rewritten as

T ≥ T ∗
k

(
1 −

∑
c∈Ck

∑
(i,j)∈J c

k

(1 − xij)
)
. (21)

Each connected component c ∈ Ck describes a separate subproblem. The optimal objective
for subproblem c in iteration k is given by T ∗

ck. Further, cut (21) can then be rewritten as
the first cut we are proposing to generate

T ≥
∑

c∈Ck

T ∗
ck

(
1 −

∑
(i,j)∈J c

k

(1 − xij)
)
. (22)

ATMOS 2023



16:8 Subproblem Separation for the Vehicle Routing Problem with Local Congestion

The cut (22) can be seen as a summation of cuts of type (20) for each component c ∈ Ck.
Note that cut strengthening can be applied to all cuts presented in this section unless
otherwise stated.

The second valid set of cuts we propose to generate in iteration k is given by

Tck ≥ T ∗
ck

(
1 −

∑
(i,j)∈J c

k

(1 − xij)
)
, c ∈ Ck, (23)

T ≥
∑

c∈Ck

Tck. (24)

The auxiliary variables Tck, denoting total tardiness for each connected component, are
added to the master problem.

We now looking at splitting the cuts further. The main idea is to look at the edges
(i, j) ∈ A in the routes identified by the master problem. When the subproblem is decoupled,
the corresponding edges are also decoupled. Tardiness incurred by a vehicle traveling along
(i, j) is denoted by Tij . Consider cut (20), replacing T with T =

∑
(i,j)∈A Tij results in∑

(i,j)∈A

Tij ≥ T ∗
k

(
1 −

∑
(i,j)∈Jk

(1 − xij)
)
. (25)

Since (i, j) ∈ A \ Jk have no influence on the bound given by cut (25), we can replace A
by Jk and rewrite the cut as

∑
(i,j)∈Jk

Tij ≥ T ∗
k

(
1 −

∑
(i,j)∈Jk

(1 − xij)
)
, (26)

▶ Theorem 2. Cuts (26) will provide a valid set of cuts to solve the problem to optimality.

Proof. Cuts (26) can be presented in the form of Benders’ cuts T ≥ Bxk (x). Where in
iteration k

T =
∑

(i,j)∈Jk

Tij , and Bxk (x) = T ∗
k

(
1 −

∑
(i,j)∈Jk

(1 − xij)
)

According to Theorem 1 and Properties 1 and 2, if for any feasible solution (x, y) the
total tardiness is bounded such that T ≥ Bxk (x), and Bxk (xk) = T ∗

k , the Benders’ algorithm
converges to the optimal value.

We start from proving that T ≥ Bxk (x) for any feasible (x, y). Note that, trivially
T ≥

∑
(i,j)∈Jk

Tij .
Let m be an iteration of the Benders’ algorithm, such that m ≠ k. Let set Jm be defined

as Jm = {(i, j)|xm
ij = 1}. There can be three cases: Jm is a subset of Jk, Jm is a superset of

Jk, and the symmetrical set difference Jm△Jk is non-empty. In the third case, the indices
in Jm \ Jk do not influence the bound by the definition of the cut, the indices in set Jk \ Jm

correspond to variables xm
ij = 0 in the cut and do not influence the bound. Therefore, it is

sufficient to consider the former two cases:
Jm ⊆ Jk. This gives

(
1 −

∑
(i,j)∈Jk

(1 − xm
ij )

)
≤ 0, since ∃(i, j) ∈ Jk, such that xm

ij = 0.
Therefore T ≥ T ∗

k

(
1 −

∑
(i,j)∈Jk

(1 − xij)
)
.

Jk ⊆ Jm. This gives
(
1 −

∑
(i,j)∈Jk

(1 − xm
ij )

)
= 1, since ∀(i, j) ∈ Jk, xm

ij = 1. Therefore
T ≥ T ∗

k

(
1 −

∑
(i,j)∈Jk

(1 − xij)
)
, because T ≥ T ∗

k .
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We now prove that Bxk (xk) = T ∗
k in any iteration k:

Bxk (xk) = T ∗
k

(
1 −

∑
(i,j)∈Jk

(1 − xij)
)

= T ∗
k , since ∀(i, j) ∈ Jk, xk

ij = 1. ◀

The third set of cuts we propose to generate can be derived by splitting the edges in Jk

by the connected components. Since sets J c
k partition Jk, cut (26) can be rewritten as the

set of cuts∑
(i,j)∈J c

k

Tij ≥ T ∗
ck

(
1 −

∑
(i,j)∈J c

k

(1 − xij)
)
, c ∈ Ck (27)

T ≥
∑

c∈Ck

∑
(i,j)∈J c

k

Tij . (28)

▶ Theorem 3. Cuts (27)–(28) will provide a valid set of cuts to solve the problem to optimality

Proof. A logic similar to the proof of Theorem 2 can be applied here. Let Tck be defined as
Tck =

∑
(i,j)∈J c

k
Tij . We first prove that Tck ≥ T ∗

ck

(
1 −

∑
(i,j)∈J c

k
(1 − xij)

)
for any feasible

solution (x, y).
Let Jm be the master problem solution in iteration m. The set Jm can be split by the

connected components obtained in iteration k such that
⋃

c∈Ck
J c

m = Jm. Similar to the
proof of Theorem 2, it is sufficient to consider the following two cases:

J c
m ⊆ J c

k . This gives
(
1 −

∑
(i,j)∈J c

k
(1 − xm

ij )
)

≤ 0, since ∃(i, j) ∈ J c
k , such that xm

ij = 0.
Therefore Tck ≥ T ∗

ck

(
1 −

∑
(i,j)∈J c

k
(1 − xij)

)
.

J c
k ⊆ Jm. This gives

(
1−

∑
(i,j)∈J c

k
(1−xm

ij )
)

= 1, since ∀(i, j) ∈ J c
k , xm

ij = 1. Therefore
Tck ≥ T ∗

ck

(
1 −

∑
(i,j)∈J c

k
(1 − xij)

)
◀

7 Computational experiments

The computational effectiveness of subproblem separation and various Benders’ cuts, described
in Section 6, is evaluated in a series of computational experiments. The evaluated cuts are
cuts (22), cuts (23)–(24), cuts (27), and the combination of cuts (23)–(24) and cuts (27).
Using the combination of cuts (23)–(24) and cuts (27) means generating both sets of cuts
in each iteration. Each experiment solves the VRPLC with the minimising total tardiness
objective. The experiments run the LBBD scheme with the separated subproblem generating
each type of cuts separately. Another experiment runs the default implementation of the
LBBD scheme with no subproblem separation. The different implementations are referred to
as “methods” for the sake of brevity. Since it is important to apply cut strengthening to
accelerate the solution process, the deletion filter cut-strengthening technique ([8],[18]) has
been applied in all computational runs.

The main metric of computational effectiveness is the impact of different methods on the
run time of the LBBD scheme. For the run time plots, the horizontal axis gives the time and
the vertical axis gives the percentage of solved instances. A point (x, y) on the curve means
that y% of instances can be solved in less than x seconds.
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Experiment setting

The LBBD scheme is implemented in Python 3.8, and the MIP and CP models are solved
using Gurobi Optimizer version 9.1.2 and IBM ILOG CP Optimizer version 20.1, respectively.
All tests have been carried out on a computer with two Intel Xeon Gold 6130 processors (16
cores, 2.1 GHz each) and 96 GB RAM. Each instance was given a total time of 20 minutes
and the MIP-gaps are set to 0 for the master problems.

Instances

We use 450 instances from Lam et al. [10], the instances are available at https://github.com/
ed-lam/nutmeg/tree/master/examples/vrplc/Instances. The instances are generated
for 5, 8, or 10 locations. For each number of locations, there are instances with 20, 30, and
40 requests. Location resource capacities vary between one and eight for all instances The
instances are modified for the minimising total tardiness objective with deadlines decreased
by 10%.

Percentage of solved instances

The main observation from Figure 2 is that all of the methods applying subproblem separation
outperform the default implementation. The default implementation with 12% of solved
instances is notably behind the methods applying subproblem separation. Cuts (23)–(24)
have the highest effectiveness with 81.5% of solved instances. Cuts (22) and the combination
of cuts (23)–(24) and (27) have marginally lower percentages of solved instances – 77.8% and
80%, respectively.

An interesting result is that although cuts (27) outperform the default method, they show
significantly lower results than other methods applying subproblem separation – 28.2% of
solved instances. The main reason is that the cuts lead to repeated master problem solutions
with the same connected components. This implies that this type of cut introduces symmetry
that is difficult to handle for the master problem solver. The results for the combination
of cuts (27) and cuts (23)–(24) being slightly lower than the results for cuts (23)–(24) also
imply that cuts (27) adversely impact the run time.
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Figure 2 Percentage of instances solved to optimality for the minimising tardiness for cumulative
scheduling problem.
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Table 2 The table presents the average master problem solution time, average subproblem
solution time, and number of subproblems solved per instance. The instances for which the results
were not retrieved within 20 minutes are omitted.

Method TMP Tsub Tsub Nsub Niter Ninst Ninst

(per iter) (solved)
Default 1.36 3.75 0.67 1453 40.3 105 53
Cuts 22 0.92 0.138 0.02 430 11.25 352 349
Cuts 23-24 1.09 0.141 0.016 578 17.6 367 366
Cuts 27 0.26 0.065 0.03 108 3.3 126 126
Combination 1.19 0.068 0.015 502 12.11 361 359

The results in Table 2 highlight the effect of subproblem separation on the LBBD scheme.
The reported values are calculated for different sets for each method. For each method,
the set comprises retrieved instances that were either solved to optimality or timed out.
The Ninst column indicates the number of instances in each set. The number of instances
solved to optimality by each method is given in the last column. As can be seen in Table 2,
the default implementation spends much more time solving subproblem per instance – 3.75
seconds compared to 0.141 seconds and below by other methods. This can be explained by
the greater average subproblem solution time per Benders’ iteration – 0.67 seconds compared
to 0.02 seconds, 0.016 seconds, 0.03 seconds, and 0.015 seconds by cuts (22), cuts (23)–(24),
cuts (27), and the combination of cuts (23)–(24) and cuts (27), respectively. This result shows
that it takes less time to solve multiple smaller subproblems than to solve one subproblem.
Another interesting observation is that the default implementation leads to a higher number
of Benders’ iterations and subproblems solved, this suggests that the cuts generated by the
default implementation are less effective than the cuts generated by the other methods.

8 Conclusion

This paper proposes a new implementation of the LBBD scheme for the vehicle routing
problem with local congestion. We propose using the connected components algorithm to
identify separable blocks of the subproblem. The new implementation reformulates the
separated subproblem in each Benders’ algorithm iteration. This method of separating the
subproblem can be applied to other vehicle routing problems with vehicle capacity and
congestion constraints. Since the new reformulation requires new Bender’s cuts, we derive
various types of cuts. We then evaluate subproblem separation and new Benders’ cuts in
computational experiments.

The main conclusion is that subproblem separation is an effective technique for accelerating
the LBBD scheme for the vehicle routing problem with local congestion. However, in order to
fully exploit the new subproblem structure, it is important to generate strong cuts. Splitting
the cuts by the connected components showed the best computational results. Whereas,
splitting the cuts by edges was not effective. An area of future work is to investigate methods
to handle the difficulty introduces by these cuts.
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