
Scheduling Electric Buses with Stochastic Driving
Times
Philip de Bruin #

Department of Information and Computing Sciences, Utrecht University, The Netherlands

Marjan van den Akker #

Department of Information and Computing Sciences, Utrecht University, The Netherlands

Han Hoogeveen #

Department of Information and Computing Sciences, Utrecht University, The Netherlands

Marcel van Kooten Niekerk #

Department of Information and Computing Sciences, Utrecht University, The Netherlands
Qbuzz BV, The Netherlands

Abstract
To try to make the world more sustainable and reduce air pollution, diesel buses are being replaced
with electric buses. This leads to challenges in scheduling, as electric buses need recharging during
the day. Moreover, buses encounter varying traffic conditions and passenger demands, leading to
delays. Scheduling electric buses with these stochastic driving times is also called the Stochastic
Vehicle Scheduling Problem. The classical approach to make a schedule more robust against
these delays, is to add slack to the driving time. However, this approach doesn’t capture the variance
of a distribution well, and it doesn’t account for dependencies between trips. We use discrete event
simulation in order to evaluate the robustness of a schedule. Then, to create a schedule, we use a
hybrid approach, where we combine integer linear programming and simulated annealing with the
use of these simulations. We show that with the use of our hybrid algorithm, the punctuality of the
buses increase, and they also have a more timely arrival. However, we also see a slight increase in
operating cost, as we need slightly more buses compared to when we use deterministic driving times.
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1 Introduction

In an effort to make the world more sustainable, electrification in the public transport sector
is becoming more and more important. More specifically, everywhere in The Netherlands,
diesel buses are replaced with their electric counterparts. This, however, introduces more
constraints when scheduling these buses. In their current status, electric buses are constrained
in their range, and need to be recharged during the day. For diesel buses, this is not an issue,
as they could generally drive the whole day on a single tank.

The introduction of range restrictions on the buses leads to various additional problems.
Electric buses either need to recharge, or swap their batteries during the day. This makes the
scheduling of electric buses more difficult, as we not only need to determine the routes for
the buses, but also when to recharge the vehicle. This results in an NP-hard problem [12].

There are several approaches to solve this problem, as is also discussed in a recent review
by Perumal et al. [11]. However, most of these solutions assume deterministic driving times.
This is not a realistic assumption, as traffic conditions and passenger loads vary from day to
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14:2 Scheduling Electric Buses with Stochastic Driving Times

day, which causes delays. These delays can cause various issues, such as delay propagation in
our network or inconveniences for the end-user, as it results in longer waiting times, delayed
arrivals, and possibly missed transfers. We investigate using stochastic driving times in order
to make our schedules more robust against these delays. Furthermore, we also consider the
driving behaviour of the bus drivers, since someone with a more sporty driving style has a
different energy consumption than someone who drives more conservatively. The scheduling
of these buses with the use of stochastic variables is called the Stochastic Electric
Vehicle Scheduling Problem (stochastic E-VSP).

A classical way to deal with stochastic driving times, is to include some slack based on
their distribution. This slack time could be based on a factor of the mean of the distribution,
or a percentile of the distribution. With this, all the stochastic driving times are converted
back into deterministic ones. However, this results in an approximation where the different
trips do not affect each other. Also, the variance of the distribution is only partly accounted
for, as we will not encounter the more extreme delays that realistically could still occur.
Thus, this approximation may not be very realistic. A better way to deal with stochastic
driving times is to work with the expected start- and end-times of a trip given the trips
that are driven before it. Unfortunately, it is very time-consuming, if not outright infeasible,
to compute these values exactly. This could be solved by estimating these values. An
approach to do this, is to use simulations in a local search algorithm [15]. However, the use
of simulations is computationally very expensive. Therefore, in their research on parallel
machine scheduling, Passage et al. [9] chose to assume normal distributions, which makes
calculating the expected start- and end-times a lot simpler and very quick. This also yielded
better results compared to the use of simulation, unless we do a lot of simulations each
iteration of the local search, which slows down the algorithm.

However, since driving times of trips on the same day are dependent, we focus on the
use of simulations inside a local search algorithm, as this will give us a better view on the
robustness of our solution. Using simulations in a local search algorithm is computationally
expensive. Doing only a few simulations is great runtime-wise, but might not give a correct
view on which solution is better. Thus, we minimize the number of simulations, while making
sure that we can make a “correct” decision. To do this, we tested several techniques. Namely,
Optimal Computation Budget Allocation, Indifference Zones, and a self-developed method
based on t-tests. For an explanation and comparison of these techniques, we refer to [4].

For the local search algorithm, we extend the simulated annealing approach used by
ten Bosch et al. [14], by including robustness and simulations to evaluate solutions in each
iteration. Their method is based on a column-generation approach by van Kooten Niekerk
et al. [16], where each column represents the schedule of a single vehicle. However, instead
of solving a pricing problem to find new columns, they use simulated annealing to find a
solution and use the vehicle schedules in this solution as columns. These are then recombined
into a final solution by an ILP-solver.

For simulating a schedule, we need to know the distribution of the driving time. To
determine these, we worked with Qbuzz, a major bus company from The Netherlands, who
provided data and insights of their operations. We looked at historic data and determined the
various sources of delays. Furthermore, we also found that the driving times in the simulation
depend on each other, with the main idea that people taking the bus in the morning, will
also take the bus back in the afternoon. Thus, if we have higher passenger demands in the
morning, we will also see these higher passenger demands in the afternoon, likely resulting in
higher driving times both in the morning and the afternoon. With this, we determined the
distributions to use in our simulation. A detailed overview of this is given in Appendix A.
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Our contribution. We present an algorithm that takes into account the relevant sources of
delays to increase the robustness and punctuality of a schedule. Hereto, we combine local
search with simulation and integer linear programming. The probability distributions are
determined by analysing historical driving times and weather data.

The rest of this paper is organized as follows. In Section 2, we will first discuss the
relevant literature for this problem. In Section 3, we will describe the problem into more
detail. Then in Sections 4 and 5 we will go into the details of our model, where we discuss
our local search approach and its extension with simulation. Lastly, we run experiments to
test our model in Section 6, which we will discuss in Section 7.

2 Literature Overview

In this section, we discuss some of the literature on the planning of electric vehicles and the
use of stochastic driving times. In recent years, there has been an increasing focus on the
study of this problem due to its relevance in the context of electric vehicles. Considering the
scheduling of electric vehicles can be viewed as scheduling vehicles with resource constraints,
taking into account the limitations imposed by their range. In 1983, Raff [12] studied this
VSP problem with any resource constraint and show that is NP-hard. In 2007, Wang and
Shen [17] expanded this problem, adding fuelling time constraints. Here, they specifically
focus on electric vehicles.

In a recent review, Perumal et al. [11] divide the research of this problem into different
challenges and different methodologies to overcome these challenges. For the recharging of
these electric buses, multiple technologies can be considered [7, 3]. The main technologies
considered are battery swapping and the use of recharging stations. For example, the use of
battery swapping is studied by Chao and Xiaohong [2]. They solve the resulting problem
using a genetic algorithm. There is more focus on the use of recharging stations. Wen et al.
[18] present a large neighbourhood search heuristic for solving E-VSP with recharging stations,
where they assume the charging time to be linear in the charging volume. However, this
assumption of linear charging times is not realistic and, as shown by Olsen and Kliewer [8],
may lead to infeasible routes, as not enough time is planned for charging. Van Kooten Niekerk
et al. [16] incorporated such non-linear charging times and proposed a column-generation
approach to solve E-VSP. Ten Bosch et al. [14] built on this approach, by using simulated
annealing to solve the pricing problem.

The use of stochastic driving times in the E-VSP problem is novel. Tang et al. [13]
propose a branch-and-price framework for solving E-VSP under both static and dynamic
traffic conditions. They do this by using a so-called buffer-distance, which makes sure that
the bus does not run out of charge while in traffic. Furthermore, while they propose a model
to avoid running out of charge due to the traffic conditions, they still use the average travel
time for cost and delay calculations. So, while they look at stochastic driving conditions, they
still solve it deterministically. Bie et al. [1] use a Non-dominated Sorting Genetic Algorithm
with the elitist strategy (NGSA-II) to solve E-VSP for stochastic driving times. For their
recharging strategy, they set a range in which the battery’s state of charge is allowed to vary.
They recharge a bus when it is idle, i.e. when it is currently waiting for its next trip to start.

3 Problem Description

In the Vehicle Scheduling Problem (VSP), we are given a set of trips T̄ . These trips
consist of a departure and arrival location, a planned starting time, and a driving time. The
goal is to schedule a set of identical vehicles such that every trip in T̄ is driven. For this,
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we minimize the costs of using these vehicles. These costs consist of a fixed cost, a cost per
kilometer driven, and a cost per block. In this case, a block is a set of trips driven after
each other without going back to the depot. A cost for these blocks is included to penalize
situations where a bus only drives a single trip before going back to the depot. For this
problem, we consider only one depot location. All vehicles must start and end their route at
this location.

As we work with electric vehicles, we get the E-VSP problem. Since electric vehicles have a
lower range than their non-electric counterparts, we need to consider how and when to charge
these vehicles. When recharging the battery, we take the battery life into consideration This
is because certain charging strategies could significantly degrade the battery life, resulting
in more maintenance costs. Therefore, we follow the approach of van Kooten Niekerk et al.
[16]. They looked at the Depth-of-Discharge (DoD), which is a percentage that indicates how
much the battery is discharged. Based on the number of charge cycles of a battery and the
current DoD, they estimated the cost of charging, given the DoD at the start and the end of
charging. We use the exact same cost for our charging sessions. Lastly, we need a charging
strategy for these vehicles. For this, we make use of so-called opportunity charging. Thus, we
charge a bus whenever possible for as long as possible. Note that this charging strategy also
minimizes the DoD over the whole trip. Furthermore, charging a vehicle takes time. For
calculating this time, we take the same approach as van Kooten Niekerk et al. [16], thus we
assume the charging time to consist of two linear parts. Here, we assume that charging from
0% to 80% takes the same time as charging from 80% to 100%.

As we alluded to before, we want the created schedules to be robust against delays. This
is why we use stochastic driving times instead of deterministic ones. However, we also need
a measure for the robustness of a schedule. For this, we compare the robustness of a given
schedule using simulation, where we compare the planned and actual starting times of a trip,
because a delayed vehicle will start its next trip late when there is not enough slack between
the trips. For this measure, we use a piecewise-linear function, where we penalize being less
than 3 minutes late significantly less than being more than 3 minutes late. Doing this over
multiple simulations, and taking the mean, gives a good score for the robustness.

Summarizing, we schedule electric buses to perform a set of trips, where we minimize
operational costs, a cost for the battery lifetime, and the robustness penalty.

4 The Hybrid Algorithm

As mentioned before, we use the same approach as ten Bosch et al. [14] to solve the E-VSP
problem, which we expand with simulations in order to solve stochastic E-VSP. We first
look at how they set up their local search. For this, they take a set-covering MIP as a basis.
Remember that T̄ is the set of trips that need to be driven. Then, let V be the set of all
possible vehicle tasks. Here, a vehicle task, from now on task for short, is a set of trips that
can be driven by a single vehicle. For a task v ∈ V , we can calculate its cost Cv. This cost is
the sum of three components, as described in Section 3.

With this, we can formulate the master problem. We use the variable xv to denote if a
task v is chosen. Furthermore, we have the parameter rvt to denote that a trip t ∈ T̄ is in v.
Then our objective is to

minimize
∑
v∈V

xvCv. (1)
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Which is subject to the constraints:∑
v∈V

rvtxv = 1 ∀t ∈ T̄ , (2)

xv ∈ {0, 1} ∀v ∈ V. (3)

Here, Equation (2) ensures that we drive every trip in the final schedule and Equation (3)
sets the domain of our decision variables.

A common way to solve this problem, is to use column generation and find columns
by solving a pricing problem. However, ten Bosch et al. [14] have shown a better way to
solve this problem. They use simulated annealing to find a set of vehicle tasks. We use the
approach. Finally, we include these tasks in the restricted master problem and solve it to
find our final solution. However, in our setup we cannot calculate Cv directly, because of
the use of stochastic variables. Thus, we need to estimate the cost of a task. We do this by
simulating them and taking the average. To calculate the number of simulations that are
required each iteration, we look at the results of de Bruin [4]. We use the t-test method they
developed, as this seems to be a good compromise between runtime and solution quality.

5 Robustness

In order to simulate a task or a complete schedule, we make use of discrete-event simulation.
Each vehicle (or task) in the schedule has multiple subtasks. These subtasks are essentially
everything that needs to be driven, thus trips, deadheads, or going to and from the depot.
The discrete-event simulation consists of two events: the start and end of a subtask. During
this simulation, we also need to keep track of the state of charge in order to calculate the
minimum required charging times to make sure that buses do not run out of charge. Thus,
we also simulate the energy consumption, which we explain further in Section 5.2.

To integrate this into our simulated annealing algorithm, we perform multiple simulations
for a given solution and return the average result. However, when comparing two solutions, we
need to make sure that they are compared fairly. Specifically, the randomness of the driving
times and energy consumption can cause a worse solution to be “lucky” and outperform
the better solution. In order to make comparisons more fair, we employ a technique called
Common Random Numbers (CRN) [6]. With this technique, we make sure that both solutions
get the same realizations of driving times, thus solutions cannot gain an advantage by drawing
shorter driving times. However, this technique is not applicable to the energy consumption,
which we will explain further in Section 5.2.

5.1 Simulating Driving Times
To simulate the driving times, we first need to find appropriate distributions for them. To do
this, we analysed historic driving times that were provided by the bus company Qbuzz. This
analysis is available in Appendix A. Here, we also found that driving times within the same
day are somewhat dependent on each other. To capture this behaviour in our simulation,
we need to create scenarios where, for example, longer driving times in the morning also
lead to longer driving times in the evening, allowing us to create days with higher passenger
demands that could lead to higher driving times over the whole day. To accomplish this, we
generate instances of simulated driving times. These contain the simulated driving times of
all the trips on a single day.

We create a set of instances for multiple types of situations. First, we have a set of
instances for “normal” days. These are days with an average passenger load and mostly
average driving times. But, as we want our schedules to be robust against delays, we will
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also create scenarios for busier days, where we have more passengers and thus more above
average driving times. By simulating a mix of these situations, we make our schedules robust
against these busy days, while maintaining a good schedule under more normal loads.

To start a simulation, we randomly select one of these instances and simulate the whole
schedule with it. Before running the simulations, we also decide how many of each of the
instance types we simulate per iteration. This is set beforehand, such that we always run
the simulation with the same distribution of instance types. Here, we also ensure that each
instance type is accounted for.

5.2 Simulating Energy Consumption
In our simulation, we account for different bus drivers having different driving styles, and
thus different energy consumption figures. However, since we do not create a crew schedule,
we need to estimate this, as we do not know who is driving when. Therefore, we create three
scenarios, namely for 95%, 100%, and 105% of the base energy consumption. Then, before
the vehicle pulls out of the depot, we select one of these scenarios randomly. We assume
that these driving styles do not have an influence on the driving time. This might not be a
completely realistic assumption, but we do not expect the driving style to have a big effect
on the driving time.

As drivers need breaks, bus drivers may be swapped along the route. Since we do not
create a crew schedule, we use a more high-level model. Here, we allow these driver swaps at
the start of every trip. However, to make sure that drivers are not swapped too frequently, a
driver needs to drive the bus for at least 2 hours before he is allowed to be swapped. After
these 2 hours, we try to swap the drivers as soon as possible. Note that since we employ only
three different driving styles, this does not always lead to a change in energy consumption.

Unfortunately, this approach does not allow for CRN to be used on these stochastic
energy consumptions. Since we are comparing different bus routes, it is unreasonable to
assume that every trip is still driven by the same driver. Furthermore, the actual distance
driven could also be significantly different between these routes. This could be solved by
using the same driver scenario over the whole solution, but this could lead to unrealistically
large energy usage. Another approach would be to select a driver scenario per trip, however
this could lead to an excessive number of driver swaps. For these reasons, we will not use
CRN for these driver scenarios in our model.

6 Experiments and Results

To test our algorithm, we compare the use of stochastic driving times with using deterministic
driving times. These deterministic driving times are given in the input data and form the
basis of the stochastic driving times. Note that the deterministic driving times already
contain some slack in order to make the schedule more robust. For our input, we use several
instances that were provided by Qbuzz. These instances are from various regions of The
Netherlands, namely the regions of Dordrecht, Groningen, and Utrecht. A short overview of
these instances is provided in Table 1.

We use 15 simulated annealing runs to generate trips for the restricted master problem.
These trips are then combined into a final solution using CPLEX version 22.1 as our ILP
solver. Note that the simulated annealing can handle both stochastic and deterministic
driving times.

In order to have a fair comparison between our final solutions, we simulate these 1 000
times. This is also done for solutions that were created with deterministic driving times.
Thus, we can fairly compare the robustness between each method. Here it is important
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Table 1 Overview of the used datasets and their parameters.

Dataset #Trips #Lines Battery Capacity (kWh)

dmg 631 8 232
gn345 463 3 184
qlink 590 3 160
zst 317 2 232

to note that we do not employ CRN in these simulations. However, due to the number
of simulations we use, we do not expect this to result in unfairness, since using a lot of
simulations reduces the variance.

6.1 General results
First we compare the lateness, maximum DoD, and number of vehicles used. Averages of
these statistics over multiple solutions are shown in Table 2. In this table, we use L to denote
the set containing the lateness values for each trip. We define the lateness as the difference
between the planned starting time of a trip and the earliest time a bus could depart for this
trip. This can be negative, and a positive value means the trip started late. Furthermore,
these values are in minutes. This means that L̄ denotes the mean lateness of all the trips,
and we use L95 to denote the 95th percentile of the lateness. We define the punctuality to
be the percentage of trips that started on time. Lastly, the column “Mean Late” denotes
the mean of the set {x ∈ L | x > 0}. Thus, it is the average number of minutes a bus starts
late, given that it starts late. From these results, we see some reductions in the lateness of a
trip, and also a reduction in the “Mean Late” statistic. However, this sometimes comes at
the cost of having to use more buses. We checked these results with Qbuzz, confirming that
these lateness values are similar to what they encounter in practice.

Table 2 Various statistics regarding the final solutions calculated with either deterministic or
stochastic driving times.

#Vehicles L̄ L95 Mean Late Punctuality Max DoD
Dataset Driving times

dmg
Deterministic 45.0 -3.8 2.0 2.9 89.5% 53.2%
Stochastic 52.2 -4.5 1.0 2.0 92.7% 58.3%

gn345
Deterministic 92.0 -2.3 1.2 4.7 93.4% 95.1%
Stochastic 94.0 -2.9 1.0 3.3 94.7% 95.2%

qlink
Deterministic 37.8 0.8 5.0 5.1 83.2% 52.9%
Stochastic 45.8 -3.0 1.6 2.7 91.8% 62.3%

zst
Deterministic 38.6 -5.9 0.0 2.4 98.4% 69.8%
Stochastic 37.4 -6.2 0.0 2.2 98.5% 70.0%

6.2 Recombination
We also compare our simulated annealing runs with the results from the recombination. For
this, we compare the scores of the schedules. We use 15 simulated annealing runs for the
recombination. During our simulated annealing, we keep multiple of our best solutions, which
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are used for the recombination, i.e. to be included in the MIP (of restricted master problem).
From a certain point in our simulated annealing we will collect the new best solutions,
however after collecting a new best solution, we wait a few iterations before collecting the
next one. This is done in order to not collect solutions that just differ in one neighbour. This
means that we collect about 20 to 40 solutions per simulated annealing run, which results
in about 7 000 to 56 000 columns depending on the dataset that is used. Recall, that one
simulated annealing solution is a complete schedule resulting in multiple vehicle tasks, and
hence multiple columns. Lastly, we set the time limit of the ILP to 20 minutes in order to
reduce the total computation time.

We show the average result for different statistics in Table 3. Note that the runtime
consists of both the recombination and the score calculation of the columns, which is why
some instances report a time that is above 20 minutes. Also, the “Improvement” denotes the
percentage improvement compared to the best simulated annealing score, where a negative
value means that the recombination did not improve compared to the simulated annealing.
We do not give the ILP solver an initial solution. Thus, the solver will not necessarily come
up with a solution that is better than simulated annealing in the given timeframe, which
is why we see these datasets run into the time limit of 20 minutes. Furthermore, these are
also the only tests with fairly big integrality gaps, and they do not show an improvement
compared to the simulated annealing. However, the results on the other tests are quite
promising, as they show 1 to 3 percent improvements compared to simulated annealing,
which is a big improvement cost-wise.

Table 3 Various statistics regarding the performance of the recombination. Here, “Gap” denotes
the gap to the LP relaxation, and “Improvement” denotes the percentage improvement compared to
the best simulated annealing score.

#Columns Gap Improvement Time (s)
Dataset Driving Times

dmg
Deterministic 20 523.7 5.889% −2.377% 1 200.41
Stochastic 27 566.7 7.411% −3.425% 1 251.85

gn345
Deterministic 33 320.8 0.013% 1.545% 467.80
Stochastic 55 770.7 0.038% 2.372% 760.99

qlink
Deterministic 21 931.6 0.005% 3.645% 18.70
Stochastic 25 805.3 4.672% −1.237% 1 238.82

zst
Deterministic 7 037.4 0.009% 2.713% 74.39
Stochastic 23 271.2 0.010% 3.206% 245.42

6.3 Lateness
To better understand the robustness of our solutions, we first look at the histogram of the
lateness values (the set L) we encountered in our simulations. This is displayed in Figure 1.
There are a few things to notice. First, we see that for most trips the bus is early by about 2
minutes or less, which is normal and expected behaviour. We also see some peaks at −10
and −15 minutes. This is especially clear in the qlink dataset. These peaks correspond to
the frequency of some lines in these datasets. We suspect that these peaks are due to the
dataset not containing many lines, thus the only way to increase robustness is to keep a bus
reserve at the starting location of the trip. One way to do this, is to arrive just when the
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next bus departs, essentially arriving 1 trip early. Furthermore, for every dataset, there is
also a big peak at 0 minutes. This is partly due to the buses charging until their trip starts,
but also due to tight planning. Comparing the lateness between deterministic and stochastic
driving times, we see that in case of stochastic driving times, a bus generally arrives earlier,
which is in line with our other results.

Figure 1 Histogram of the set L.

We ran our algorithm with different penalty factors for the lateness, in order to get a
better overview of how the stochastic driving times compare to the deterministic driving
times. Thus, we verify what happens when we change the importance of the lateness factor
in the solution score. For this, we look at both the punctuality and the mean lateness.

First, punctuality. We compare this with the operating costs and the number of vehicles
used. These comparisons are shown in Figures 2 and 3 respectively. In these figures we see
that using stochastic driving times, generally leads to solutions with a better punctuality, but
they use more vehicles. This is also reflected in Figure 2, where we see higher operating costs
for the same punctuality. Note that the operating cost also contains a time component. Thus,
buses that need to wait for their trip to start increase the operating cost. The stochastic
model includes more slack in the schedule, and not having enough slack, or waiting time,
might result in lateness penalties.

We also compare the lateness itself to the operating cost and the number of vehicles used.
For the lateness, we use the mean minutes late statistic (L̄). The results of these comparisons
are shown in Figures 4 and 5 respectively. These figures show results that are similar to the
punctuality, where we decrease the average lateness for a bit more vehicle usage, which is
reflected in the operating costs.

6.4 Depth of Discharge
We also ran our algorithm with different penalty factors for the DoD, to see what happens
when we prioritize battery costs more. In Figure 6, we see the maximum DoD for different
number of vehicles used in the final solution. For most of the datasets, we see very similar
results between the use of stochastic and deterministic driving times. Meaning that the
maximum DoD is more or less the same for both deterministic and stochastic driving times.
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Figure 2 Punctuality compared to the operating cost.

Figure 3 Punctuality compared to the number of vehicles used.

The main difference here is the number of vehicles a solution requires. This seems intuitive,
as a higher DoD means that a bus can drive longer without recharging. Hence, fewer vehicles
are required in order to drive all trips, but this have a negative effect on the lifetime of the
battery.

7 Conclusion

In this paper, we show a model to solve E-VSP with stochastic driving times. For this, we
used a hybrid algorithm including a local search approach in the form of simulated annealing
and a set covering ILP. We extended an existing simulated annealing approach for the case
of deterministic driving times by including robustness and simulations, such that we could
use it with stochastic driving times.
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Figure 4 Mean minutes late compared to the operating cost.

Figure 5 Mean minutes late compared to the number of vehicles used.

We compared the robustness by using stochastic variables in Table 2 and Figure 1. Here
we see a decrease in lateness compared to using deterministic driving times. This is not only
true for the average lateness, but more importantly also for the worse cases. That is, we see
reduction of the 95th percentile of the lateness. From this, we can conclude that the use of
these stochastic driving times indeed increases robustness of our schedules. However, this
comes at a small cost. In general, these solutions could require about the same number of
vehicles, although on average solutions created with stochastic driving times require slightly
more vehicles. Furthermore, the operating cost of these solutions is also higher. This is due
to the additional vehicles required, and the extra waiting time that is sometimes needed.

From the results of the combination of different simulated annealing runs, we see improve-
ments on the solution quality of up to 3%. However, for some of our experiments the ILP
ran into the time limit of 20 minutes, where it did not find any improvements compared to
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Figure 6 Maximum DoD for different number of vehicles used.

the simulated annealing. This is especially visible in the integrality gaps reported in Table 3,
where the experiments that ran into the time limit have a fairly big gap compared to the
experiments that did not run into this limit. Given more time, these instances should find a
solution that is at least as good as the solution found by the simulated annealing. For the
other instances, we can improve our best solution quite quickly. Thus, although it is not
always improving our best result, this extra step seems a good addition to our simulated
annealing.

7.1 Future Research
We showed that our model for stochastic E-VSP is quite successful in creating more robust
schedules. This approach could be further enhanced to increase the applicability of our
results. One of the assumptions we made for our stochastic driving times is that we use the
same distribution for every line in every direction. This is not necessarily realistic, as there
are lines that solely cross city centers, but also lines that cover longer distances. Buses on
these lines encounter different traffic conditions and stopping patterns, and thus they could
end up with different distributions for their driving time. Our work could be extended to
include a distinction between these different line types, which would require more research
into how these distinctions should be made and also the distributions that are required.

The model itself could also be further enhanced. Currently, we make use of opportunity
charging and do not look at the price of electricity. Hence, future extensions could look at
making charging plans, taking these prices into account.
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A Driving Time Analysis

In order to find good distributions for the driving times, we analysed historic driving times.
This data is mainly from the region of Dordrecht, The Netherlands. This data was provided
by Qbuzz, the bus company that serves this region. We looked at total time of trips driven
in this region during 2019. It contains the information about the delay at the start of a
trip, the planned driving time of the trip, the actual driving time of the trip, the dwell time
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during the trip, and the driving distance. Note that the dwell time is the time a bus stands
still at a stop. Furthermore, it contains 27 different routes with an average length of 11.8 km
and on average 22 stops. In total, this dataset contains 77 937 trips.

To analyse these driving times, we will first remove some outliers from the dataset. For
this, we require the dwell time to be non-negative and not bigger than the total driving time,
as values outside this range are simply not possible. Furthermore, we look at the average
speed of the bus. This has to be between 0 and 80 kilometers per hour. Lastly, we also filter
trips based on their delay at the start of the trip. We observed some trips to start exactly 1
hour before or after their planned time, suggesting an error in linking the bus with the exact
trip they drove. Thus, we filter trips based on the z-score of their delay at the start. The
z-score is the number of standard deviations by which this value is above or below the mean
of the observed values. In this case, we remove trips where the z-score of the delay at the
start is bigger than 2.5. After filtering, our dataset contains 76 485 different trips.

A.1 Variables
To create distributions for the driving times, we first investigate different sources for variation
in the driving times. For this, we look into the time of day, the weather conditions, and also
the effect of the dwell time.

A.1.1 Time of Day
One source of variation in the driving times is the time of day. Traffic conditions vary over
the day, where mornings and afternoons are usually more busy due to people commuting
to work or back home. For the same reasons, we also expect there to be more passengers,
thereby increasing the dwell time and thus the total driving time. These variations are
already accounted for in the bus schedule, as illustrated in Figure 7, where we observe higher
planned driving times in the morning and late afternoon.

Figure 7 Example of planned driving times over a single day. The blue lines indicate the time
periods defined in Table 4.

Looking at the full data, we extract the average driving time as a percentage of the
planned driving time. This is plotted in Figure 8, where we grouped each trip by the hour it
departs in. In this figure, we do not see big differences in these percentages over the whole
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day. However, we still create different distributions for different periods of the day. We
base this division on the work of Patnaik et al. [10] and the planned driving times. For our
simulation, we use the time periods defined in Table 4. These time periods are also indicated
by the blue lines in Figures 7 and 8. These do largely correspond to the time periods used
by Qbuzz for, for example, their deadhead driving time calculations. The main difference
being that we define more time periods.

Figure 8 Average driving time plus/minus two times its standard deviation as a percentage of
the planned driving over a whole day. The blue lines indicate the time periods defined in Table 4.

Table 4 Time periods used.

Time Period Description

Early Morning 4:00 till 6:59
Morning Peak 7:00 till 8:59
Late Morning 9:00 till 11:59
Early Afternoon 12:00 till 14:59
Afternoon Peak 15:00 till 17:59
Evening 18:00 till 19:59
Late night 20:00 and later

A.1.2 Weather
Another variable we investigated is the effect of the weather on the driving times. We expect
the driving times to be higher on days with bad weather. The reasoning behind this is that
we expect more people to take either public transport or go by car, thus increasing driving
times due to traffic conditions and higher passenger loads.

To test this hypothesis, we used the hourly weather data of 2019 made publicly available
by the KNMI [5]. For this, we used the readings from the weather station in Rotterdam,
which is closest to Dordrecht. We use information about the duration of rainfall (DR) and the
total amount of rainfall (RH) during the timeblock of an hour. For every trip, we calculate
the duration and total amount of rainfall during the day the trip took place, the morning of
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the day the trip took place, and the hour in which the trip departed. For this, we define
rain during the morning to be any rain that falls between 6:00 and 9:00, while rain during
the day is defined as any rain that falls between 6:00 and 20:00. We performed correlation
tests on these variables and the driving time, using Pearson’s correlation coefficient. These
coefficients are shown in Figure 9. Unfortunately, these tests indicate no relationship between
the driving time and various variables indicating rainfall.

Figure 9 Pearson’s correlation coefficients between various rainfall parameters and the driving
time.

To see why this is the case, we looked at the driving times under various rain conditions.
We looked at the average rain intensity in millimeters per hour. This is done for both for the
whole day (excluding the night) and within a certain hour. We use the rain intensity as this
would be the most accurate classifier within the available data. Another factor that could
be taken into consideration is, for example, the size of the rain droplets. However, we do
not have data for that and this is usually not reported in the weather reports, so we do not
expect this to be a major factor when people decide how they travel.

We classify an average rain intensity of 3 mm/h or less to be light rain, and higher values
are classified as rain. The driving times under these conditions are shown in Figure 10. This
indicates that there are not always significant differences between rain or no rain. We also
note that the amount of rain does not predict the driving time very well, as the figure shows
that higher intensities of rain sometimes lead to lower driving times than when there is no
rain.

From this we conclude that we cannot use these weather patterns in our simulations,
because it remains unclear how they influence the driving times. We saw that in some
scenarios there do not seem to be significant differences, and also that heavier rain did not
necessarily lead to higher driving times. This could be due to passenger behaviour, where
for some weather conditions people go by bus rather than by bike, while for other weather
conditions people just stay at home. We could not verify this behaviour as we do not have
access to passenger data for this route. Thus, we do not include these weather patterns in
our simulations, since we can not draw conclusions from our current data.
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Figure 10 Mean driving times with their 95% confidence interval under different rain conditions
during the day. Here, light rain has an average rain intensity of 3 mm/h or less, and more than 3
mm/h is classified as rain.

A.1.3 Number of Passengers
The last variable we looked at is the effect of passenger numbers on the driving times. While
we do not have exact passenger data, we do have information about the dwell times, which
gives an indication of how busy a trip is, since more people moving in or out of the bus leads
to longer dwell times. The dwell time could be a significant part of the total driving time,
thus we have to understand its influence.

To get a better understanding of how the driving times are influenced and by how much,
we group the dwell times into three categories. For each line, we calculate the 70th and
90th percentiles of the dwell time and use these to categorize the dwell time of a specific
trip. Then we create three groups with driving times. Group 1 contains driving times, where
the dwell time is below the 70th percentile of the dwell time of that trip. Group 2 contains
driving times, where the dwell time is above the 70th percentile and below the 90th percentile.
Lastly, group 3 contains the remaining driving times. Grouping on these categories gives us
insight into the mean and standard deviation of these driving times. These are shown in
Table 5.

Table 5 Mean and standard deviation of the driving time (as percentage of the planned driving
time) grouped by the dwell time category.

Driving time (% of planned driving time)

Mean Standard deviation #Trips

Group 1 91.77 9.23 53 519
Group 2 95.72 7.54 15 285
Group 3 99.45 8.62 7 681

From this table we can already see some differences between the driving times with the
different dwell times. To confirm that these differences are also significant, we performed
Welch’s unequal variances t-test. Our null-hypothesis in these tests is: “The means of the
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driving times from the two tested dwell time categories are equal.” For these tests, we
will use α = 0.005. This is lower than the usual 0.05, because we perform multiple t-tests.
The p-values for these tests are shown in Table 6. Note that some of these values are 0.0,
meaning that they are too small to be represented by a 64-bit floating point number. All
these p-values are lower than our chosen α, thus the means of the driving times in these
categories are significantly different. Note these p-values seem exceptionally low, which is
due to the number of trips in each category.

Table 6 p-Values of Welch’s unequal variances t-test we performed on the driving times in the
different dwell time categories.

Group 1 Group 2 Group 3

Group 1 − 0.0 0.0
Group 2 0.0 − 7.69 · 10−219

Group 3 0.0 7.69 · 10−219 −

For our implementation, it is important to know if there are any patterns in which
these higher dwell times happen. For example, are there certain days on which most of the
trips encounter higher dwell times? We mainly looked at patterns over a whole day, as our
simulation model generates driving times for a whole day. We found that these higher dwell
times could occur during the whole day. However, we could not find patterns in this. Hence,
we make sure to generate higher driving times over the whole day.

A.2 Distributions
Now that we know which variable to account for, we can fit distributions on the historical
data. To do this, we fit different distributions on the driving times for trips departing in the
time periods defined in Table 4. Based on Appendix A.1.3, we only use driving times with a
dwell time that is less than the 70th percentile of the dwell time for that trip. This is to
create a baseline distribution, that is not influenced by the more busy days. Then, in our
simulation model, we set a probability to generate driving times for a busy day, in which
case all simulated driving times are multiplied by a set factor. We base these factors on the
results shown in Table 5. Thus, with a 20% probability we will generate driving times that
are 5% higher and with a 10% probability we will generate driving times that are 10% higher.

We fitted normal distributions for the driving times in each period. These fits are shown
in Figure 11. For some time periods, we used a single normal distribution to fit the data
to, but for others we used a combination of two normal distributions to create a better fit.
Thus, these distributions are a mixture of the distributions N(µ1, σ2

1) and N(µ2, σ2
2) with

the weights p and 1 − p respectively. The parameters we use for these distributions are given
in Table 7.

In our simulation, we only use these distributions to generate the driving times of trips,
which means that deadheads and trips to and from the depot use deterministic driving times.
This is because we only have data on the planned driving times. However, these driving times
vary less in general, since they are not influenced by passenger loads. These deterministic
driving times still vary over the day to account for different traffic conditions; we vary these
according to specified time periods given in our input data.
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Figure 11 Histograms and the fitted probability density function of the driving time distribution
for each time period. Here, the density is the probability of a certain driving time occurring.

Table 7 Parameters of the fitted driving time distributions.

p µ1 σ1 µ2 σ2

Early Morning 1.00 0.924 0.055
Morning Peak 0.87 0.934 0.055 0.740 0.075
Late Morning 0.84 0.944 0.055 0.760 0.067
Early Afternoon 0.79 0.963 0.053 0.790 0.072
Afternoon Peak 0.93 0.950 0.063 0.740 0.061
Early Evening 0.94 0.945 0.062 0.740 0.050
Late Night 1.00 0.917 0.065
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