
Improved Algorithms for Distance Selection and
Related Problems
Haitao Wang #

School of Computing, University of Utah, Salt Lake City, UT, USA

Yiming Zhao1 #

Department of Computer Science, Utah State University, Logan, UT, USA

Abstract
In this paper, we propose new techniques for solving geometric optimization problems involving
interpoint distances of a point set in the plane. Given a set P of n points in the plane and an integer
1 ≤ k ≤

(
n
2

)
, the distance selection problem is to find the k-th smallest interpoint distance among all

pairs of points of P . The previously best deterministic algorithm solves the problem in O(n4/3 log2 n)
time [Katz and Sharir, 1997]. In this paper, we improve their algorithm to O(n4/3 log n) time.
Using similar techniques, we also give improved algorithms on both the two-sided and the one-sided
discrete Fréchet distance with shortcuts problem for two point sets in the plane. For the two-sided
problem (resp., one-sided problem), we improve the previous work [Avraham, Filtser, Kaplan, Katz,
and Sharir, 2015] by a factor of roughly log2(m + n) (resp., (m + n)ϵ), where m and n are the sizes
of the two input point sets, respectively. Other problems whose solutions can be improved by our
techniques include the reverse shortest path problems for unit-disk graphs. Our techniques are quite
general and we believe they will find many other applications in future.

2012 ACM Subject Classification Theory of computation → Computational geometry; Theory of
computation → Design and analysis of algorithms

Keywords and phrases Geometric optimization, distance selection, Fréchet distance, range searching

Digital Object Identifier 10.4230/LIPIcs.ESA.2023.101

Related Version Full Version: https://arxiv.org/abs/2306.01073

Funding This research was supported in part by NSF under Grants CCF-2005323 and CCF-2300356.

1 Introduction

In this paper, we propose new techniques for solving geometric optimization problems
involving interpoint distances in a point set in the plane. More specifically, the optimal
objective value of these problems is equal to the (Euclidean) distance of two points in the set.
Our techniques usually yield improvements over the previous work by at least a logarithmic
factor (and sometimes a polynomial factor).

The first problem we consider is the distance selection problem: Given a set P of n points
in the plane and an integer 1 ≤ k ≤

(
n
2
)
, the problem asks for the k-th smallest interpoint

distance among all pairs of points of P . The problem can be easily solved in O(n2) time.
The first subquadratic time algorithm was given by Chazelle [10]; the algorithm runs in
O(n9/5 log4/5 n) time and is based on Yao’s technique [21]. Later, Agarwal, Aronov, Sharir,
and Suri [1] gave a better algorithm of O(n3/2 log5/2 n) time and subsequently Goodrich [13]
solved the problem in O(n4/3 log8/3 n) time. Katz and Sharir [14] finally presented an
O(n4/3 log2 n) time algorithm. All above are deterministic algorithms. Several randomized
algorithms have also been proposed for the problem. The randomized algorithm of [1] runs
in O(n4/3 log8/3 n) expected time. Matousek [17] gave another randomized algorithm of

1 Corresponding author.

© Haitao Wang and Yiming Zhao;
licensed under Creative Commons License CC-BY 4.0

31st Annual European Symposium on Algorithms (ESA 2023).
Editors: Inge Li Gørtz, Martin Farach-Colton, Simon J. Puglisi, and Grzegorz Herman; Article No. 101;
pp. 101:1–101:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:haitao.wang@utah.edu
mailto:yiming.zhao@usu.edu
https://doi.org/10.4230/LIPIcs.ESA.2023.101
https://arxiv.org/abs/2306.01073
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

101:2 Improved Algorithms for Distance Selection and Related Problems

O(n4/3 log2/3 n) expected time. Very recently, Chan and Zheng proposed a randomized
algorithm of O(n4/3) expected time (see the arXiv version of [9]). Also, the time complexity
can be made as a function of k. In particular, Chan’s randomized techniques [7] solved the
problem in O(n log n + n2/3k1/3 log5/3 n) expected time and Wang [18] recently improved
the algorithm to O(n log n + n2/3k1/3 log n) expected time; these algorithms are particularly
interesting when k is relatively small.

In this paper, we present a new deterministic algorithm that solves the distance selection
problem in O(n4/3 log n) time. Albeit slower than the randomized algorithm of Chan and
Zheng [9], our algorithm is the first progress on the deterministic solution since the work of
Katz and Sharir [14] published 25 years ago (30 years if we consider their conference version
in SoCG 1993). One technique we introduce is an algorithm for solving the following partial
batched range searching problem.

▶ Problem 1 (Partial batched range searching). Given a set A of m points and a set B

of n points in the plane and an interval (α, β], one needs to construct two collections of
edge-disjoint complete bipartite graphs Γ(A, B, α, β) = {At × Bt | At ⊆ A, Bt ⊆ B} and
Π(A, B, α, β) = {A′

s × B′
s | A′

s ⊆ A, B′
s ⊆ B} such that the following two conditions are

satisfied.
1. For each pair (a, b) ∈ At × Bt ∈ Γ(A, B, α, β), the (Euclidean) distance ∥ab∥ between

points a ∈ At and b ∈ Bt is in (α, β].
2. For any two points a ∈ A and b ∈ B with ∥ab∥ ∈ (α, β], either Γ(A, B, α, β) has a unique

graph At × Bt that contains (a, b) or Π(A, B, α, β) has a unique graph A′
s × B′

s that
contains (a, b).

In other words, the two collections Γ and Π together record all pairs (a, b) of points a ∈ A

and b ∈ B whose distances are in (α, β]. While all pairs of points recorded in Γ have their
distances in (α, β], this may not be true for Π. For this reason, we sometimes call the point
pairs recorded in Π uncertain pairs.

Note that if context is clear, we sometimes use Γ and Π to refer to Γ(A, B, α, β) and
Π(A, B, α, β), respectively. Also, for short, we use BRS to refer to batched range searching.

In the traditional BRS, which has been studied with many applications, e.g.,[20, 15, 4], the
collection Π is ∅ (and thus Γ itself satisfies the two conditions in Problem 1); for differentiation,
we refer to this case as the complete BRS. The advantage of the partial problem over the
complete problem is that the partial problem can usually be solved faster, with a sacrifice
that some uncertain pairs (i.e., those recorded in Π) are left unresolved. As will be seen later,
in typical applications the number of those uncertain pairs can be made small enough so
that they can be handled easily without affecting the overall runtime of the algorithm. More
specifically, we derive an algorithm to compute a solution for the partial BRS, whose runtime
is controlled by a parameter (roughly speaking, the runtime increases as the graph sizes of Π
decreases). Previously, Katz and Sharir [14] gave an algorithm for the complete problem.
Our solution, albeit for the more general partial problem, even improves their algorithm by
roughly a logarithmic factor when applied to the complete case.

On the one hand, our partial BRS solution helps achieve our new result for the distance
selection problem. On the other hand, combining some techniques for the latter problem, we
propose a general algorithmic framework that can be used to solve any geometric optimization
problem that involves interpoint distances of a set of points in the plane. Consider such a
problem whose optimal objective value (denoted by δ∗) is equal to the distance of two points
of a set P of n points in the plane. Assume that the decision problem (i.e., given δ, decide
whether δ ≥ δ∗) can be solved in TD time. A straightforward algorithm for computing δ∗ is to

H. Wang and Y. Zhao 101:3

use the distance selection algorithm and the decision algorithm to perform binary search on
interpoint distances of all pairs of points of P ; the algorithm runs in O(log n) iterations and
each iteration takes O(n4/3 log n + TD) time (if we use our new distance selection algorithm).
As such, the total runtime is O((n4/3 log n + TD) log n). Using our new framework, the
runtime can be bounded by O((n4/3 + TD) log n), which is faster when TD = o(n4/3 log n).

One application of this new framework is the two-sided discrete Fréchet distance with
shortcuts problem, or two-sided DFD for short. Fréchet distance is used to measure the
similarity between two curves and many of its variations have been studied, e.g., [2, 3, 4, 5, 6,
12]. To reduce the impact of outliers between two (sampled) curves, discrete Fréchet distance
with shortcuts was proposed [4, 12]. If outliers of only one curve need to be taken care of, it
is called one-sided DFD; otherwise it is two-sided DFD. Avraham, Filtser, Kaplan, Katz, and
Sharir [4] solved the two-sided DFD in O((m2/3n2/3 + m + n) log3(m + n)), where m and n

are the numbers of vertices of the two input curves, respectively. Using our new framework,
we improve their algorithm to O((m2/3n2/3 · 2O(log∗(m+n)) + m log n + n log m) log(m + n))
time, an improvement of roughly O(log2(m + n)).

For the one-sided DFD, the authors of [4] gave a randomized algorithm of O((m+n)6/5+ϵ)
expected time, for any constant ϵ > 0. Using our solution to the partial BRS, we improve
their algorithm to O((m + n)6/5 log8/5(m + n)) expected time. Based on the techniques of [4],
Katz and Sharir [15] proposed an algorithmic framework for solving geometric optimization
problems that involve interpoint distances in a point set. Consider such a problem whose
optimal objective value (denoted by δ∗) is equal to the distance of two points of a set P of
n points in the plane. The framework has two main procedures. The first procedure is to
compute an interval that contains δ∗ and with high probability at most L interpoint distances
of P . Using the interval and a bifurcation tree technique, the second main procedure finally
computes δ∗. Assuming that the decision problem can be solved in TD time, the first main
procedure takes O(n4/3+ϵ/L1/3 + TD · log n · log log n) expected time and the second one
runs in O(L1/2 · TD · log n) time, resulting in an algorithm of O(n4/3+ϵ/L1/3 + TD · log n ·
log log n + L1/2 · TD · log n) expected time in total [4, 15]. Using our partial BRS solution, we
improve the first main procedure to O(n4/3/L1/3 · log2 n + TD · log n · log log n) expected time,
which eliminates the O(nϵ) factor. Thus, the total expected time of the framework becomes
O(n4/3/L1/3 · log2 n + TD · log n · log log n + L1/2 · TD · log n). Our result for the one-sided
DFD is a direct application of this framework. More specifically, since TD = O(m + n) [4],
we set L = (m + n)2/5 log6/5(m + n) and replace n by (m + n) in the above time complexity
as there are two parameters m and n in the problem.

We demonstrate two more applications of the framework where our new techniques lead
to improved results over the previous work: the reverse shortest paths in unit-disk graphs and
its weighted case. Given a set P of n points in the plane and a parameter δ > 0, the unit-disk
graph Gδ(P) is an undirected graph whose vertex set is P such that an edge connects two
points p, q ∈ P if the (Euclidean) distance between p and q is at most δ. In the unweighted
(resp., weighted) case, the weight of each edge is equal to 1 (resp., the distance between the
two vertices). Given P , two points s, t ∈ P , and a parameter λ, the problem is to compute
the smallest δ∗ such that the shortest path length between s and t in Gδ∗(P) is at most λ.

Deterministic algorithms of O(n5/4 log7/4 n) and O(n5/4 log5/2 n) times are known for
the unweighted and weighted problems, respectively [20]. The decision problem for the
unweighted case can be solved in O(n) time (after points of P are sorted) [8] while the
weighted case can be solved in O(n log2 n) time [19]. As such, using their framework, Katz
and Sharir [15] solved both problems in O(n6/5+ϵ) expected time (by setting L = n2/5).
With our improvement to the framework, we can now solve the unweighted problem in
O(n6/5 log8/5 n) expected time (by setting L = n2/5 log6/5 n) and solve the weighted case in
O(n6/5 log12/5 n) expected time (by setting L = n2/5/ log6/5 n).

ESA 2023

101:4 Improved Algorithms for Distance Selection and Related Problems

In summary, we propose two algorithmic frameworks for geometric optimization problems
that involve interpoint distances in a set of points in the plane. The first one is deterministic
while the second one is randomized. The first framework is mainly useful when the decision
algorithm time TD is relatively large (e.g., close to O(n4/3)) while the second one is more
interesting when TD is small (e.g., near linear). Both frameworks rely on our solution to
the partial BRS problem. As optimization problems involving interpoint distances are very
common in computational geometry, we believe our techniques will find more applications.

Outline. The rest of the paper is organized as follows. Section 2 presents our algorithm for
the partial BRS. The distance selection algorithm is described in Section 3. The two-sided
DFD problem is solved in Section 4, where we also propose our first algorithmic framework.
The one-sided DFD and our second algorithmic framework are discussed in Section 5. Due
to the space limit, some details and proofs are omitted but can be found in the full paper.

2 Partial batched range searching

In this section, we present our solution to the partial BRS problem, i.e., Problem 1. We
follow the notation in the statement of Problem 1. In particular, m = |A| and n = |B|.

For any set P of points and a compact region R in the plane, let P (R) denote the subset
of points of P in R, i.e., P (R) = P ∩ R. For any point p in the plane, with respect to the
interval (α, β] in Problem 1, let Dp denote the annulus centered at p and having radii α and
β (e.g., see Fig. 1); so Dp has an inner boundary circle of radius α and an outer boundary
circle of radius β. We assume that Dp includes its outer boundary circle but not its inner
boundary circle. In this way, a point q is in Dp if and only if ∥pq∥ ∈ (α, β]. Define D as the
set of all annuli Dp for all points p ∈ A. Define C to be the set of boundary circles of all
annuli of D. Hence, C consists of 2m circles. For any compact region R in the plane, let CR

denote the subset of circles of C that intersect the relative interior of R.
An important tool we use is the cuttings [11]. For a parameter 1 ≤ r ≤ n, a (1/r)-cutting

Ξ of size O(r2) for C is a collection of O(r2) constant-complexity cells whose union covers
the plane such that the interior of each cell σ ∈ Ξ is intersected by at most m/r circles in
C, i.e., |Cσ| ≤ m/r. We actually use hierarchical cuttings [11]. We say that a cutting Ξ′

c-refines a cutting Ξ if each cell of Ξ′ is contained in a single cell of Ξ and every cell of Ξ
contains at most c cells of Ξ′. Let Ξ0 denote the cutting whose single cell is the whole plane.
Then we define cuttings {Ξ0, Ξ1, ..., Ξk}, in which each Ξi, 1 ≤ i ≤ k, is a (1/ρi)-cutting of
size O(ρ2i) that c-refines Ξi−1, for two constants ρ and c. By setting k = ⌈logρ r⌉, the last
cutting Ξk is a (1/r)-cutting. The sequence {Ξ0, Ξ1, ..., Ξk} of cuttings is called a hierarchical
(1/r)-cutting of C. For a cell σ′ of Ξi−1, 1 ≤ i ≤ k, that fully contains cell σ of Ξi, we say
that σ′ is the parent of σ and σ is a child of σ′. Thus the hierarchical (1/r)-cutting can be
viewed as a tree structure with Ξ0 as the root.

A hierarchical (1/r)-cutting of C can be computed in O(mr) time, e.g., by the algorithm
in [18], which adapts Chazelle’s algorithm [11] for hyperplanes. The algorithm also produces
the subset Cσ for all cells σ ∈ Ξi for all i = 0, 1, . . . , k, implying that the total size of these
subsets is O(mr). In particular, each cell of the cutting produced by the algorithm of [18] is
a pseudo-trapezoid that is bounded by two vertical line segments from left and right, an arc
of a circle of C from top, and an arc of a circle of C from bottom (e.g., see Fig. 2).

Using cuttings, we obtain the following solution to the partial BRS problem.

▶ Lemma 1. For any r with 1 ≤ r ≤ min{m1/3, n1/3}, we can compute in O(mr log r + nr)
time two collections Γ(A, B, α, β) = {At × Bt | At ⊆ A, Bt ⊆ B} and Π(A, B, α, β) = {A′

s ×
B′

s | A′
s ⊆ A, B′

s ⊆ B} of edge-disjoint complete bipartite graphs that satisfy the conditions

H. Wang and Y. Zhao 101:5

α

β

p

Figure 1 An annulus Dp (the grey region). Figure 2 Illustrating a pseudo-trapezoid.

of Problem 1, with the following complexities: (1) |Γ| = O(r4); (2)
∑

t |At|,
∑

t |Bt| =
O(mr log r + nr); (3) |Π| = O(r4); (4) |A′

s| = O(m/r3) and |B′
s| = O(n/r3) for each

A′
s×B′

s ∈ Π; (5) the number of pairs of points recorded in Π is O(r4 ·m/r3 ·n/r3) = O(mn/r2).

Proof. We begin with constructing a hierarchical (1/r)-cutting {Ξ0, Ξ1, ..., Ξk} for C, which
takes O(mr) time as discussed above. We use Ξ to refer to the set of all cells σ in all cuttings
Ξi, 0 ≤ i ≤ k. Next we compute the set B(σ) for each cell σ in the cutting (recall that B(σ)
refers to the subset of points of B inside σ; we call B(σ) a canonical subset). This can be
done in O(n log r) time in a top-down manner by processing each point of B individually.
Specifically, for each point p ∈ B, suppose we know that p is in σ′ for a cell σ′ in Ξi−1 (which
is true initially when i = 1 as Ξ0 has a single cell that is the entire plane). By examining
each child of σ′ we can find in O(1) time the cell σ of Ξi that contains p and then we add p

to B(σ). Since k = Θ(log r), each point of B is stored in O(log r) canonical subsets and the
total size of all canonical subsets B(σ) for all cells σ ∈ Ξ is O(n log r).

Next, for each cell σ of Ξ, we compute another canonical subset Aσ ⊆ A. Specifically, a
point p ∈ A is in Aσ if the annulus Dp contains σ but not σ’s parent. The subsets Aσ for
all cells σ of Ξ can be computed in O(mr) time. Indeed, recall that the cutting algorithm
already computes Cσ for all cells σ ∈ Ξ. For each Ξi−1, 1 ≤ i ≤ k, for each cell σ′ of Ξi−1, we
consider each circle C ∈ Cσ′ . Let p be the point of A such that C is a bounding circle of the
annulus Dp. For each child σ of σ′, if Dp fully contains σ, then we add p to Aσ. In this way,
Aσ for all cells σ of Ξ can be computed in O(mr) time since

∑
0≤i≤k

∑
σ′∈Ξi

|Cσ′ | = O(mr)
and each cell σ′ has O(1) children. As such, the total size of Aσ for all cells σ ∈ Ξ is O(mr).

By definition, for each cell σ ∈ Ξ, for any point a ∈ Aσ and any point b ∈ B(σ), we have
∥ab∥ ∈ (α, β]. As such, we return {Aσ × B(σ) | σ ∈ Ξ} as a subcollection of Γ(A, B, α, β) to
be computed for the lemma. Note that the complete bipartite graphs of {Aσ × B(σ) | σ ∈ Ξ}
are edge-disjoint. The size of the subcollection is equal to the number of cells of the
hierarchical cutting, which is O(r2). Also, we have shown above that

∑
σ∈Ξ |Aσ| = O(mr)

and
∑

σ∈Ξ |B(σ)| = O(n log r).
For each cell σ of the last cutting Ξk, we have |Cσ| ≤ m/r. Let Âσ denote the subset of

points p ∈ A such that Dp has a bounding circle in Cσ. We do not know whether distances
between points of Âσ and points of B(σ) are in (α, β] or not. If |B(σ)| > n/r2, then we
arbitrarily partition B(σ) into subsets of size between n/(2r2) and n/r2. We call these
subsets standard subsets of B(σ). Since |B| = n and we have O(r2) cells in cutting Ξk, the
number of standard subsets of all cells of Ξk is O(r2). For each standard subset B̂(σ) ⊆ B(σ),
we form a pair (Âσ, B̂(σ)) as an “unsolved” subproblem. Then we have O(r2) subproblems.
Note that |Âσ| ≤ m/r and |B̂(σ)| ≤ n/r2. If we apply the same algorithm recursively on each
subproblem, then we have the following recurrence relation (which holds for any 1 ≤ r ≤ m):

T (m, n) = O(mr + n log r) + O(r2) · T (m

r
,

n

r2). (1)

ESA 2023

101:6 Improved Algorithms for Distance Selection and Related Problems

Note that if we use T (m, n) to represent the total size of At and Bt of all complete
bipartite graphs At × Bt in the subcollection of Γ(A, B, α, β) that have been produced as
above, then we have the same recurrence as above. If N(m, n) denotes the number of these
graphs, then we have the following recurrence:

N(m, n) = O(r2) + O(r2) · N(m

r
,

n

r2).

We now solve the problem in a “dual” setting by switching the roles of A and B, i.e., define
annuli centered at points of B and compute the hierarchical cutting for their bounding circles.
Then, symmetrically we have the following recurrences (which holds for any 1 ≤ r ≤ n):

T (m, n) = O(nr + m log r) + O(r2) · T (m

r2 ,
n

r
), (2)

N(m, n) = O(r2) + O(r2) · N(m

r2 ,
n

r
).

By applying (2) to each subproblem of (1) using the same parameter r and we can obtain
the following recurrence:

T (m, n) = O(mr log r + nr) + O(r4) · T (m

r3 ,
n

r3).

Similarly, we have

N(m, n) = O(r4) + O(r4) · N(m

r3 ,
n

r3).

The above recurrences tell us that in O(mr log r + nr) time we can compute a collection
of O(r4) edge-disjoint complete bipartite graphs At × Bt with At ⊆ A and Bt ⊆ B such that
for any two points a ∈ At and b ∈ Bt their distance ∥ab∥ lies in (α, β]. Further, the size of
all such At’s and Bt’s is bounded by O(mr log r + nr). We return the above collection as
Γ(A, B, α, β) for the lemma.

In addition, we have also O(r4) graphs A′
s × B′

s with A′
s ⊆ A and B′

s ⊆ B corresponding
to the unsolved subproblems T (m/r3, n/r3) and we do not know whether ∥ab∥ ∈ (α, β] for
points a ∈ A′

s and b ∈ B′
s. We return the collection of all such graphs as Π(A, B, α, β) for

the lemma. Hence, |Π(A, B, α, β)| = O(r4), and |A′
s| ≤ m/r3 and |B′

s| ≤ n/r3 for each
graph A′

s × B′
s in the collection. The number of pairs of points recorded in Π(A, B, α, β) is

O(|Π(A, B, α, β)| · m/r3 · n/r3), which is O(mn/r2). This proves the lemma. ◀

Theorem 2 solves the complete BRS by running the algorithm of Lemma 1 recursively.

▶ Theorem 2. We can compute in O(m2/3n2/3 · 2O(log∗(m+n)) + m log n + n log m) time a
collection Γ(A, B, α, β) = {At × Bt | At ⊆ A, Bt ⊆ B} of edge-disjoint complete bipartite
graphs that satisfy the conditions of Problem 1 (with Π(A, B, α, β) = ∅), with the following
complexities: (1) |Γ| = O(m2/3n2/3 ·log∗(m+n)+m+n); (2)

∑
t |At|,

∑
t |Bt| = O(m2/3n2/3 ·

2O(log∗(m+n)) + m log n + n log m).

Proof. To solve the complete BRS problem, the main idea is to apply the recurrence (2)
recursively until the size of each subproblem becomes O(1). We first consider the symmetric
case where m = n. By setting r = n1/3/ log n and applying (2) with m = n, we obtain the
following

T (n, n) = O(n4/3) + O(n4/3/ log4 n) · T (log3 n, log3 n). (3)

H. Wang and Y. Zhao 101:7

Similarly, we have

N(n, n) = O(n4/3/ log4 n) + O(n4/3/ log4 n) · N(log3 n, log3 n). (4)

The recurrences solve to T (n, n) = n4/3 ·2O(log∗ n) and N(n, n) = O(n4/3 · log∗ n). This means
that in n4/3 · 2O(log∗ n) time we can compute a collection Γ(A, B, α, β) = {At × Bt | At ⊆
A, Bt ⊆ B} of O(n4/3 log∗ n) edge-disjoint complete bipartite graphs, with

∑
t |At|,

∑
t |Bt| =

n4/3 · 2O(log∗ n), and it satisfies the conditions of Problem 1 with Π(A, B, α, β) = ∅.
For the asymmetric case, i.e., m ̸= n, it is solved by utilizing the above symmetric case

result; the details can be found in the full paper. ◀

For comparison, Katz and Sharir [14] solved the complete BRS problem in O((m2/3n2/3 +
m + n) log m) time by producing O(m2/3n2/3 + m + n) complete bipartite graphs whose
total vertex set size is O((m2/3n2/3 + m + n) log m)). Our result improves their runtime and
vertex set size by almost a logarithmic factor with slightly more graphs produced.

3 Distance selection

In this section, we present our algorithm for the distance selection problem. Let P be a set
of n points in the plane. Define E(P) as the set of distances of all pairs of points of P . Given
an integer 1 ≤ k ≤

(
n
2
)
, the problem is to find the k-th smallest value in E(P), denoted by δ∗.

Given any δ, the decision problem is to determine whether δ ≥ δ∗. Wang [18] recently gave
an O(n4/3) time algorithm that can compute the number of values of E(P) at most δ, denoted
by kδ. Observe that δ ≥ δ∗ if and only if kδ ≥ k. Thus, using Wang’s algorithm [18], the
decision problem can be solved in O(n4/3) time. We should point out that the O(n4/3 log2 n)
time algorithm of Katz and Sharir [14] for computing δ∗ utilizes a decision algorithm of
O(n4/3 log n) time. However, even if we replace their decision algorithm by Wang’s O(n4/3)
time algorithm, the runtime of the overall algorithm for computing δ∗ is still O(n4/3 log2 n)
because other parts of the algorithm dominate the total time. To reduce the overall time
to O(n4/3 log n), new techniques are needed, in addition to using the faster O(n4/3) time
decision algorithm. These new techniques include, for instance, Lemma 1 for the partial BRS
problem, as will be seen below.

Before presenting the details of our algorithm, we first give the following lemma, which is
critical to our algorithm and is obtained by using Lemma 1.

▶ Lemma 3. Given an interval (α, β], Problem 1 with A = P and B = P can be solved
in O(n4/3) time by computing two collections Γ(P, P, α, β) = {At × Bt | At, Bt ⊆ P}
and Π(P, P, α, β) = {A′

s × B′
s | A′

s, B′
s ⊆ P} with the following complexities: (1) |Γ| =

O(n4/3/ log4 log n); (2)
∑

t |At|,
∑

t |Bt| = O(n4/3); (3) |Π| = O(n4/3/ log4 log n); (4)
|A′

s|, |B′
s| = O(log3 log n), for each A′

s × B′
s ∈ Π.

Proof. We first apply Lemma 1 with A = P , B = P , and r = n1/3/ log n. This constructs a
collection Γ1 = {At × Bt | At, Bt ⊆ P} of O(n4/3/ log4 n) edge-disjoint complete bipartite
graphs in O(n4/3) time. The total size of vertex sets of these graphs is O(n4/3), i.e.,∑

t |At|,
∑

t |Bt| = O(n4/3). We also have a collection Π1 = {A′
s × B′

s | A′
s, B′

s ⊆ P} of
O(n4/3/ log4 n) edge-disjoint complete bipartite graphs that record uncertain point pairs,
with |A′

s|, |B′
s| = O(log3 n).

Hence, the number of uncertain pairs of points of P (i.e., we do not know whether their
distances are in (α, β]) is

∑
s |A′

s| · |B′
s| = O(n4/3 log2 n). To further reduce this number,

we apply Lemma 1 on every pair (A′
s, B′

s) of Π1. More specifically, for each pair (A′
s, B′

s)

ESA 2023

101:8 Improved Algorithms for Distance Selection and Related Problems

of Π1, we apply Lemma 1 with A = A′
s, B = B′

s, and r = log n/ log log n. This computes
a collection Γs of O(log4 n/ log4 log n) edge-disjoint complete bipartite graphs in O(log4 n)
time; the total size of vertex sets of all graphs in Γs is O(log4 n). We also have a collection
Πs of O(log4 n/ log4 log n) edge-disjoint complete bipartite graphs. The size of each vertex
set of each graph of Πs is bounded by O(log3 log n). The total time for Lemma 1 on all
pairs (A′

s, B′
s) of Π1 as above is O(n4/3). We return Γ1 ∪

⋃
s Γs as collection Γ, and

⋃
s Πs

as collection Π in the lemma statement. As such, the complexities in the lemma hold. ◀

In what follows, we describe our algorithm for computing δ∗. Like Katz and Sharir’s
algorithm [14], our algorithm proceeds in stages. Initially, we have I0 = (0, +∞]. In each
j-th stage, an interval Ij = (αi, βj] is computed from Ij−1 such that Ij must contain δ∗

and the number of values of E(P) in Ij is a constant fraction of that in Ij−1. Specifically,
we will prove that |E(P) ∩ Ij | = O(n2ρj) holds for each j, for some constant ρ < 1. Once
|E(P) ∩ Ij | is no more than a threshold (to be given later; as will be seen later, this threshold
is not constant, which is a main difference between our algorithm and Katz and Sharir’s
algorithm [14]), we will compute δ∗ directly. In the following we discuss the j-th stage of the
algorithm. We assume that we have an interval Ij−1 = (αj−1, βj−1] containing δ∗.

We first apply Lemma 3 with (α, β] = (αj−1, βj−1]. This is another major difference
between our algorithm and Katz and Sharir’s algorithm [14], where they solved the complete
BRS problem, while we only solve a partial problem (this saves time by a logarithmic factor).
Applying Lemma 3 produces a collection Γj−1 = {At ×Bt | At, Bt ⊆ P} of O(n4/3/ log4 log n)
edge-disjoint complete bipartite graphs, with

∑
t |At|,

∑
t |Bt| = O(n4/3), as well as another

collection Πj−1 of O(n4/3/ log4 log n) graphs. By Lemma 3 (3) and (4), the number of pairs
of points of P in Πj−1 is O(n4/3 log2 log n).

If
∑

t |At| · |Bt| ≤ n4/3 log n, which is our threshold, then this is the last stage of the
algorithm and we compute δ∗ directly by Lemma 4. Each edge of the graph in Γj−1 ∪ Πj−1
connects two points of P ; we say that the distance of the two points is induced by the edge.

▶ Lemma 4. If
∑

t |At| · |Bt| ≤ n4/3 log n, then δ∗ can be computed in O(n4/3 log n) time.

Proof. We first explicitly compute the set S of distances induced from edges of all graphs of
Γj−1 and Πj−1. Since

∑
t |At| · |Bt| ≤ n4/3 log n and the number of edges of all graphs of Πj−1

is O(n4/3 log2 log n), we have |S| = O(n4/3 log n) and S can be computed in O(n4/3 log n)
time by brute force. Then, we compute the number kαj−1 of values of E(P) that are at most
αj−1, which can be done in O(n4/3) time [18]. Observe that δ∗ is the (k − kαj−1)-th smallest
value in S. Hence, using the linear time selection algorithm, we can find δ∗ in O(|S|) time,
which is O(n4/3 log n). ◀

We now assume
∑

t |At| · |Bt| > n4/3 log n. The rest of the algorithm for the j-th iteration
takes O(n4/3) time. For each graph At × Bt ∈ Γj−1, if |At| < |Bt|, then we switch the name
of At and Bt, i.e., At now refers to Bt and Bt refers to the original At. Note that this does
not change the solution of the partial BRS produced by Lemma 3 and it does not change the
complexities of Lemma 3 either. This name change is only for ease of the exposition. Now
we have |At| ≥ |Bt| for each graph At × Bt ∈ Γj−1. Let mt = |At| and nt = |Bt|.

We partition each At into g = ⌊mt/nt⌋ subsets At1, At2, . . . , Atg so that each subset
contains nt elements except that the last subset Atg contains at least nt but at most 2nt − 1
elements. Each pair (Ati, Bt), 1 ≤ i ≤ g, can be viewed as a complete bipartite graph. As
in [14], we construct a d-regular LPS-expander graph Gti on the vertex set Ati ∪ Bt, for a

H. Wang and Y. Zhao 101:9

constant d to be fixed later.2 The expander Gti has O(|Ati|+|Bt|) edges and can be computed
in O(|Ati| + |Bt|) time [14, 16]. Let Gt be the union of all these expander graphs Gti over all
i = 1, 2, . . . , g. The construction of Gt takes

∑g
i=1 O(|Ati| + |Bt|) = O(|At| + ⌊ mt

nt
⌋ · |Bt|) =

O(|At|) time. Hence, computing all graphs {Gt}t for all O(n4/3/ log4 log n) pairs At × Bt in
Γj−1 takes

∑
t O(|At|) = O(n4/3) time. The number of edges in Gt is O(|At| + |Bt|), and

thus the number of edges in all graphs {Gt}t is
∑

t O(|At| + |Bt|) = O(n4/3).
For each edge (a, b) in graph Gt that connects a point a ∈ At and a point b ∈ Bt, we

associate it with the interpoint distance ∥ab∥. We compute all these distances for all graphs
{Gt}t to form a set S. The size of S is bounded by the number of edges in all graphs {Gt}t,
which is O(n4/3). Note that all values of S are in the interval Ij−1.

One way we could proceed from here is to find the largest value δ1 of S with δ1 < δ∗ and
the smallest value δ2 with δ∗ ≤ δ2, and then return (δ1, δ2] as the interval Ij and finish the
j-th stage of the algorithm. Finding δ1 and δ2 could be done by binary search on S using the
linear time selection algorithm and the O(n4/3) time decision algorithm. Then the runtime
of this step would be O(n4/3 log n), resulting in a total of O(n4/3 log2 n) time for the overall
algorithm for computing δ∗ since there are O(log n) stages. To improve the time, as in [14],
we use the “Cole-like” technique to reduce the number of calls to the decision algorithm to
O(1) in each stage, as follows.

We assign a weight to each value of S. Note that since each graph Gti ∈ Gt is a d-regular
LPS-expander, the degree of Gti is d [14]. Hence, Gti has at most (|Ati| + |Bt|) · d/2 edges
and thus it contributes at most (|Ati| + |Bt|) · d/2 values to S. We assign each distance
induced from Gti a weight equal to |Ati| · |Bt|/(|Ati| + |Bt|). As such, the total weight of the
values of S is at most∑

t,i

(|Ati| + |Bt|) · d

2 · |Ati| · |Bt|
|Ati| + |Bt|

= d

2 ·
∑
t,i

|Ati| · |Bt| = d

2 · mj−1,

where mj−1 =
∑

t |At| · |Bt|. Recall that mj−1 > n4/3 log n and |Bt| ≤ |Ati| in each Gti. We
can assume n ≥ 16 so that mj−1 ≥ 16. As such, we have the following bound for the weight
of each value in S: |Ati| · |Bt|/(|Ati| + |Bt|) ≤ |Bt| ≤

√
|Bt| · |Ati| ≤ √

mj−1 ≤ mj−1/4.
We partition the values of S into at most 2d intervals {I ′

1, I ′
2, ..., I ′

h}, 1 ≤ h ≤ 2d, such
that the total weight of values in every interval is at least mj−1/4 and but at most mj−1/2.
The partition can be done in O(|S|) time, which is O(n4/3), using the linear time selection
algorithm. Then, we invoke the decision algorithm log(2d) = O(1) times to find the interval
I ′

l that contains δ∗, for some 1 ≤ l ≤ h. We set Ij = I ′
l . Since the decision algorithm is called

O(1) times, this step takes O(n4/3) time. This finishes the j-th stage of the algorithm.
The following Lemma 5 shows that the number of values of E(P) in Ij is a constant

portion of that in Ij−1. This guarantees that the algorithm will finish in O(log n) stages
since |E(P)| = O(n2). As each stage runs in O(n4/3) time (except that the last stage takes
O(n4/3 log n) time), the total time of the algorithm is O(n4/3 log n).

▶ Lemma 5. There exists a constant ρ with 0 < ρ < 1 such that the number of values of
E(P) in Ij is at most ρ times the number of values of E(P) in Ij−1.

2 A good summary of definitions and properties of expanders can be found in Section 2 of [14]. Here it
suffices for the reader to know the following property (which is needed in the proof of Lemma 5): If X
and Y are two vertex subsets of a d-regular expander graph of M vertices and there are fewer than 3M
edges connecting points of X and points of Y , then |X| · |Y | ≤ 9M2/d.

ESA 2023

101:10 Improved Algorithms for Distance Selection and Related Problems

Proof. Define nj (resp., nj−1) as the number of values of E(P) in Ij (resp., Ij−1). Our goal
is to find a constant ρ ∈ (0, 1) so that nj ≤ ρ · nj−1 holds.

Recall that mj−1 is the number of distances induced from the graphs of Γj−1. Define
m′

j−1 as the number of distances induced from the graphs of Πj−1. Define qj (resp., q′
j) as

the number of interpoint distances of E(P) ∩ Ij whose point pairs are recorded in Γj−1 (resp.,
Πj−1). Note that all interpoint distances induced from graphs of Γj−1 are in Ij−1. Hence,
mj−1 ≤ nj−1. By definition, nj = qj + q′

j and q′
j ≤ m′

j−1. By Lemma 3 (3) and (4), we have
m′

j−1 = O(n4/3 log2 log n).
We first make the following claim: there exists a constant γ ∈ (0, 1/3) such that

qj ≤ γ · mj−1. The proof of this claim is similar to the analysis in [14] and can be found in
the full paper. Next, we prove the lemma by using this claim.

As this is not the last stage of the algorithm (since otherwise δ∗ would have already
been computed without producing interval Ij), it holds that mj−1 > n4/3 log n. Since
m′

j−1 = O(n4/3 log2 log n), there exists a constant c′ ∈ (0, 1/3) such that m′
j−1

mj−1
≤ c′ when

n is sufficiently large. As nj = qj + q′
j , q′

j ≤ m′
j−1, and mj−1 ≤ nj−1, we can obtain the

following using the above claim:

nj = qj + q′
j ≤ qj + m′

j−1 ≤ γ · mj−1 + c′ · mj−1 ≤ (γ + c′) · mj−1 ≤ (γ + c′) · nj−1.

Set ρ = γ + c′. Since both γ and c′ are in (0, 1/3), we have ρ ∈ (0, 2/3) and nj ≤ ρ · nj−1.
This proves the lemma. ◀

We conclude with the following result. Note that once δ∗ is computed, one can find a
pair of points of P whose distance is equal to δ∗ in additional O(n4/3) time [18].

▶ Theorem 6. Given a set P of n points in the plane and an integer 1 ≤ k ≤
(

n
2
)
, the k-th

smallest interpoint distance of P can be computed in O(n4/3 log n) time.

Remark. Our algorithm can be easily extended to the following bipartite version of the
distance selection problem: Given a set A of m points and a set B of n points in the plane, and
an integer 1 ≤ k ≤ mn, compute the k-th smallest interpoint distance δ∗ in the set {∥ab∥ | a ∈
A, b ∈ B}. This problem can be solved in O((m2/3n2/3 + m log n + n log m) log(m + n)) time
by extending our algorithm. More detailed discussions can be found in the full paper.

4 Two-sided discrete Fréchet distance with shortcuts

In this section, we show that our techniques in Section 3 can be used to solve the two-sided
DFD problem. Let A = {a1, a2, ..., am} and B = {b1, b2, ..., bn} be two sequences of points
in the plane. Consider two frogs connected by an inelastic leash, initially placed at a1 and
b1, respectively. Each frog is allowed to jump forward at most one step in one move, i.e., if
the first frog is currently at ai, then in the next move it can either jump to ai+1 or stay at
ai. Note that frogs are not allowed to go backwards. The discrete Fréchet distance (or DFD
for short) is defined as the minimum length of the inelastic leash that allows two frogs to
reach their destinations, i.e., am and bn, respectively.

Because the Fréchet distance is very sensitive to outliers, to reduce the sensitivity, DFD
with outliers have been proposed [4]. Specifically, if we allow the A-frog to jump from its
current point to any of its succeeding points in each move but B-frog has to traverse all points
in B in order plus one restriction that only one frog is allowed to jump in each move (i.e., in
each move one of the frogs must stay still), then this problem is called one-sided discrete
Fréchet distance with shortcuts (or one-sided DFD for short), where the goal is to compute

H. Wang and Y. Zhao 101:11

the minimum length of the inelastic leash that allows two frogs to reach their destinations.
If we allow both frogs to skip points in their sequences (but again with the restriction that
only one frog is allowed to jump in each move), then problem is called two-sided DFD.

We focus on the two-sided DFD in this section while the one-sided version will be treated
in the next section. Let δ∗ denote the optimal objective value, i.e., the minimum length
of the leash. Avraham, Filtser, Kaplan, Katz, and Sharir [4] presented an algorithm that
can compute δ∗ in O((m2/3n2/3 + m + n) log3(m + n)) time. In what follows, we show that
our techniques in Section 3 can improve their algorithm to O((m2/3n2/3 · 2O(log∗(m+n)) +
m log n + n log m) log(m + n)) time, roughly a factor of O(log2(m + n)) faster.

To solve the problem, the authors of [4] first proposed an algorithm to solve the decision
problem, i.e., given any δ, decide whether δ∗ ≤ δ; the algorithm runs in O((m2/3n2/3 + m +
n) log2(m + n)) time. Then, to compute δ∗, the authors of [4] used the bipartite version of
the distance selection algorithm from Katz and Sharir [14] for point sets A and B together
with their decision algorithm to do binary search on the interpoint distances between points
in A and those in B, i.e., in each iteration, using the distance selection algorithm to find
the k-th smallest distance δk for an appropriate k and then call the decision algorithm on
δk to decide which way to search. As both the distance selection algorithm [14] and the
decision algorithm run in O((m2/3n2/3 + m + n) log2(m + n)) time, computing δ∗ takes
O((m2/3n2/3 + m + n) log3(m + n)) time.

The following lemma (whose proof is in the full paper) shows that the runtime of their
decision algorithm [4] can be improved by a factor of roughly O(log2(m + n)), by using our
result in Theorem 2 for the complete BRS problem.

▶ Lemma 7. Given any δ, we can decide whether the two-sided DFD δ∗ ≤ δ in O(m2/3n2/3 ·
2O(log∗(m+n)) + m log n + n log m) time.

Improving the optimization algorithm for computing δ∗. With our new O((m2/3n2/3 +
m log n+n log m) log(m+n)) time bipartite distance selection algorithm in Section 3 and the
above faster decision algorithm, following the same binary search scheme as discussed above,
δ∗ can be computed in O((m2/3n2/3 + m log n + n log m) log2(m + n)) time, a logarithmic
factor improvement over the result of [4]. Notice that the time is dominated by the calls to
the bipartite distance selection algorithm.

To further improve the algorithm, an observation is that we do not have to call the distance
selection algorithm as an oracle and instead we can use that algorithm as a framework and
replace the decision algorithm of the distance selection problem by the decision algorithm of
the two-sided DFD problem. This will roughly reduce another logarithmic factor. The proof
of the following theorem provides the details about this idea.

▶ Theorem 8. Given two sequences of points A = (a1, a2, ..., am) and B = (b1, b2, ..., bn) in
the plane, the two-sided DFD problem can be solved in O((m2/3n2/3 ·2O(log∗(m+n)) +m log n+
n log m) log(m + n)) time.

Proof. Following our distance selection algorithm, we run in stages and each j-th stage
will compute an interval Ij that contains δ∗. In the j-th stage, we first perform the partial
BRS on point sets A and B with respect to interval Ij−1, in the same way as before. This
produces a collection Γ of (m2/3n2/3/ log4 log(m2/n) + m2/3n2/3/ log4 log(n2/m) + m + n)
edge-disjoint complete bipartite graphs that record some pairs of A × B whose interpoint
distances are in Ij−1. The total size of vertex sets of all graphs in Γ is O(m2/3n2/3 +
m log n + n log m). In addition, we also have a collection Π of complete bipartite graphs
representing O(m2/3n2/3 log2 log(m + n)) uncertain pairs of A × B. The total runtime is
O(m2/3n2/3 + m log n + n log m).

ESA 2023

101:12 Improved Algorithms for Distance Selection and Related Problems

We next compute the number nΓ of distances induced from the graphs of Γ. If nΓ is larger
than the threshold τ = (m2/3n2/3 + m log n + n log m) log(m + n), then we use the “Cole-like”
technique to perform a binary search on the interpoint distances induced from the expander
graphs that are built on the vertex sets of the graphs in Γ, which calls the decision algorithm
O(1) times. The runtime for this stage is O(m2/3n2/3 · 2O(log∗(m+n)) + m log n + n log m). If
nΓ ≤ τ , then we reach the last stage of the algorithm and we can compute δ∗ as follows. We
compute the interpoint distances induced from the graphs in Γ and Π. The total number of
such distances is O((m2/3n2/3 + m log n + n log m) log(m + n)). Using the decision algorithm
and the linear time selection algorithm, a binary search on these interpoint distances is
performed to compute δ∗, which takes O((m2/3n2/3 ·2O(log∗(m+n)) +m log n+n log m) log(m+
n)) time as the decision algorithm is called O(log(m + n)) times. The algorithm finishes
within O(log(m+n)) stages by an analysis similar to Lemma 5 (indeed, the proof of Lemma 5
does not rely on which decision algorithm is used).

In summary, the total runtime for computing δ∗ is bounded by O((m2/3n2/3·2O(log∗(m+n))+
m log n + n log m) log(m + n)). ◀

A general (deterministic) algorithmic framework. The algorithm of Theorem 8 can be
made into a general algorithmic framework for solving geometric optimization problems
involving interpoint distances in the plane. Specifically, suppose we have an optimization
problem P whose optimal objective value δ∗ is equal to ∥ab∥ for a point a ∈ A and a point
b ∈ B, with A as a set of m points and B as a set of n points in the plane. The goal is to
compute δ∗. Suppose that we have a decision algorithm that can determine whether δ ≥ δ∗

in TD time for any δ. Then, we can compute δ∗ by applying exactly the same algorithm
of Theorem 8 except that we use the decision algorithm for P instead. The total time of
the algorithm is O((m2/3n2/3 + m log n + n log m + TD) · log(m + n)). Note that in the case
TD = o((m2/3n2/3 + m log n + n log m) log(m + n)) this is faster than the traditional binary
search approach by repeatedly invoking the distance selection algorithm.

▶ Theorem 9. Given two sets A and B of m and n points respectively in the plane, any
geometric optimization problem whose optimal objective value is equal to the distance between
a point of a ∈ A and a point of b ∈ B can be solved in O((m2/3n2/3 + m log n + n log m +
TD) · log(m + n)) time, where TD is the time for solving the decision version of the problem.

5 One-sided discrete Fréchet distance with shortcuts

We consider the one-sided DFD problem defined in Section 4. Let δ∗ denote the optimal
objective value. Avraham, Filtser, Kaplan, Katz, and Sharir [4] proposed an a randomized
algorithm of O((m + n)6/5+ϵ) expected time. We show that using our result in Lemma 1 for
the partial BRS the runtime of their algorithm can be reduced to O((m+n)6/5 log8/5(m+n)).

Define E(A, B) = {∥ab∥ | a ∈ A, b ∈ B}. It is known that δ∗ ∈ E(A, B) [4]. The decision
problem is to decide whether δ ≥ δ∗ for any δ. The authors [4] solved the decision problem
in O(m + n) (deterministic) time. To compute δ∗, their algorithm has two main procedures.

The first main procedure computes an interval (α, β] that is guaranteed to contain δ∗, and
in addition, with high probability the interval contains at most L values of E(A, B), given any
1 ≤ L ≤ mn; the algorithm runs in O((m + n)4/3+ϵ/L1/3 + (m + n) log(m + n) log log(m + n))
time, for any ϵ > 0. More specifically, during the course of the algorithm, an interval (α, β]
containing δ∗ is maintained; initially α = 0 and β = ∞. In each iteration, the algorithm first
determines, through random sampling, whether the number of values of E(A, B) in (α, β] is
at most L with high probability. If so, the algorithm stops by returning the current interval

H. Wang and Y. Zhao 101:13

(α, β]. Otherwise, a subset R of O(log(m + n)) values of E(A, B) is sampled which contains
with high probability an approximate median (in the middle three quarters) among the
values of E(A, B) in (α, β]. A binary search guided by the decision algorithm is performed to
narrow down the interval (α, β]; the algorithm then proceeds with the next iteration. As
such, after O(log(m + n)) iterations, the algorithm eventually returns an interval (α, β] with
the property discussed above.

The second main procedure is to find δ∗ from E(A, B) ∩ (α, β]. This is done by using a
bifurcation tree technique (Lemma 4.4 [4]), whose runtime relies on L′, the true number of
values of E(A, B) in (α, β]. As it is possible that L′ > L, if the algorithm detects that case
happens, then the first main procedure will run one more round from scratch. As L′ < L

holds with high probability, the expected number of rounds is O(1). If L′ ≤ L, the runtime
of the second main procedure is bounded by O((m + n)L1/2 log(m + n)).

As such, the expected time of the algorithm is O((m + n)4/3+ϵ/L1/3 + (m + n) log(m +
n) log log(m + n) + (m + n)L1/2 log(m + n)). Setting L to O((m + n)2/5+ϵ) for another small
ϵ > 0, the time can be bounded by O((m + n)6/5+ϵ).

Our improvement. We can improve the runtime of the first main procedure by a factor of
O((m + n)ϵ), which leads to the improvement of overall algorithm by a similar factor. To
this end, by applying Lemma 1 with r = (m+n

L)1/3, we first have the following corollary,
which improves Lemma 4.1 in [4] (which is needed in the first main procedure).

▶ Corollary 10. Given a set A of m points and a set B of n points in the plane, an interval
(α, β], and a parameter 1 ≤ L ≤ mn, we can compute in O((m + n)4/3/L1/3 · log(m+n

L))
time two collections Γ(A, B, α, β) = {At × Bt | At ⊆ A, Bt ⊆ B} and Π(A, B, α, β) = {A′

s ×
B′

s | A′
s ⊆ A, B′

s ⊆ B} of edge-disjoint complete bipartite graphs that satisfy the conditions
of Problem 1, with the following complexities: (1) |Γ| = O((m+n

L)4/3); (2)
∑

t |At|,
∑

t |Bt| =
O((m + n)4/3/L1/3 · log(m+n

L)); (3) |Π| = O((m+n
L)4/3); (4) |A′

s| = O(mL
m+n) and |B′

s| =
O(nL

m+n) for each A′
s × B′

s ∈ Π; (5) the number of pairs of points recorded in Π is O((m +
n)4/3L2/3).

Replacing Lemma 4.1 in [4] by our results in Corollary 10 and following the rest of the
algorithm in [4] leads to an algorithm to compute δ∗ in O((m + n)6/5 log2(m + n)) time.
More details can be found in the full paper, which makes the discussion in the context of a
more general algorithmic framework (indeed, a recent result of Katz and Sharir [15] already
gave such a framework; here we improve their result by a factor of O((m + n)ϵ) due to
Corollary 10). As discussed in Section 1, another immediate application of the framework is
the reverse shortest path problem in unit-disk graphs [20].

References
1 Pankaj K. Agarwal, Boris Aronov, Micha Sharir, and Subhash Suri. Selecting distances in the

plane. Algorithmica, 9(5):495–514, 1993.
2 Pankaj K. Agarwal, Rinat B. Avraham, Haim Kaplan, and Micha Sharir. Computing the

discrete Fréchet distance in subquadratic time. SIAM Journal on Computing, 43:429–449,
2014.

3 Helmut Alt and Michael Godau. Computing the Fréchet distance between two polygonal
curves. International Journal of Computational Geometry and Applications, 5:75–91, 1995.

4 Rinat B. Avraham, Omrit Filtser, Haim Kaplan, Matthew J. Katz, and Micha Sharir. The
discrete and semicontinuous Fréchet distance with shortcuts via approximate distance counting
and selection. ACM Transactions on Algorithms, 11(4):Article No. 29, 2015.

ESA 2023

101:14 Improved Algorithms for Distance Selection and Related Problems

5 Kevin Buchin, Maike Buchin, and Yusu Wang. Exact algorithms for partial curve matching via
the Fréchet distance. In Proceedings of the 20th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 645–654, 2009.

6 Maike Buchin, Anne Driemel, and Bettina Speckmann. Computing the Fréchet distance
with shortcuts is NP-hard. In Proceedings of the 30th Annual Symposium on Computational
Geometry (SoCG), pages 367–376, 2014.

7 Timothy M. Chan. On enumerating and selecting distances. International Journal of Compu-
tational Geometry and Application, 11:291–304, 2001.

8 Timothy M. Chan and Dimitrios Skrepetos. All-pairs shortest paths in unit-disk graphs in
slightly subquadratic time. In Proceedings of the 27th International Symposium on Algorithms
and Computation (ISAAC), pages 24:1–24:13, 2016.

9 Timothy M. Chan and Da Wei Zheng. Hopcroft’s problem, log-star shaving, 2D fractional
cascading, and decision trees. In Proceedings of the 33rd Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 190–210, 2022. Full version with new results available at
arXiv:2111.03744.

10 Bernard Chazelle. New techniques for computing order statistics in Euclidean space. In
Proceedings of the 1st Annual Symposium on Computational Geometry (SoCG), pages 125–134,
1985.

11 Bernard Chazelle. Cutting hyperplanes for divide-and-conquer. Discrete and Computational
Geometry, 9(2):145–158, 1993.

12 Anne Driemel and Sariel Har-Peled. Jaywalking your dog: computing the Fréchet distance
with shortcuts. SIAM Journal on Computing, 42(5):1830–1866, 2013.

13 Michael T. Goodrich. Geometric partitioning made easier, even in parallel. In Proceedings of
the 9th Annual Symposium on Computational Geometry (SoCG), pages 73–82, 1993.

14 Matthew J. Katz and Micha Sharir. An expander-based approach to geometric optimization.
SIAM Journal on Computing, 26(5):1384–1408, 1997.

15 Matthew J. Katz and Micha Sharir. Efficient algorithms for optimization problems involving
semi-algebraic range searching. arXiv, 2021. arXiv:2111.02052.

16 Alexander Lubotzky, Ralph Phillips, and Peter Sarnak. Explicit expanders and the Ramanujan
conjectures. In Proceedings of the 18th Annual ACM Symposium on Theory of Computing
(STOC), pages 240–246, 1986.

17 Jiří Matoušek. Randomized optimal algorithm for slope selection. Information Processing
Letters, 39:183–187, 1991.

18 Haitao Wang. Unit-disk range searching and applications. In Proceedings of the 18th Scandi-
navian Symposium and Workshops on Algorithm Theory (SWAT), pages 32:1–32:17, 2022.

19 Haitao Wang and Jie Xue. Near-optimal algorithms for shortest paths in weighted unit-disk
graphs. Discrete and Computational Geometry, 64:1141–1166, 2020.

20 Haitao Wang and Yiming Zhao. Reverse shortest path problem for unit-disk graphs. Journal
of Computational Geometry, 14(1):14–47, 2023.

21 Andrew Chi-Chih Yao. On constructing minimum spanning trees in k-dimensional spaces and
related problems. SIAM Journal on Computing, 11(4):721–736, 1982.

https://arxiv.org/pdf/2111.03744.pdf
https://arxiv.org/abs/2111.02052

	1 Introduction
	2 Partial batched range searching
	3 Distance selection
	4 Two-sided discrete Fréchet distance with shortcuts
	5 One-sided discrete Fréchet distance with shortcuts

