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Abstract
We show that a canonical labeling of a random n-vertex graph can be obtained by assigning to each
vertex x the triple (w1(x), w2(x), w3(x)), where wk(x) is the number of walks of length k starting from
x. This takes time O(n2), where n2 is the input size, by using just two matrix-vector multiplications.
The linear-time canonization of a random graph is the classical result of Babai, Erdős, and Selkow.
For this purpose they use the well-known combinatorial color refinement procedure, and we make a
comparative analysis of the two algorithmic approaches.
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1 Introduction

A walk in a graph G = (V, E) is a sequence of vertices x0x1 . . . xk such that (xi, xi+1) ∈ E

for every 0 ≤ i < k. We say that x0x1 . . . xk is a walk of length k from x0 to xk. For a
vertex x ∈ V , let wG

k (x) denote the total number of walks of length k in G starting from x.
Furthermore, we define wG

k (x) = (wG
1 (x), . . . , wG

k (x)).
The Erdős-Rényi random graph G(n, p) is a graph on the vertex set [n] = {1, . . . , n}

where each pair of distinct vertices x and y is adjacent with probability p independently of
the other pairs. In particular, G(n, 1/2) is a random graph chosen equiprobably from among
all graphs on [n].

▶ Theorem 1. Let G = G(n, 1/2). Then

wG
3 (x) ̸= wG

3 (y) for all x ̸= y

with probability at least 1 − O( 4
√

ln n/n).

If α is an isomorphism from a graph G to a graph H, then clearly wG
k (x) = wH

k (α(x)).
Theorem 1, therefore, shows that the map x 7→ wG

3 (x) is a canonical labeling of G for almost
all n-vertex graphs G. This labeling is easy to compute. Indeed, if A is the adjacency matrix
of G and 1 is the all-ones vector-column of length n, then

(wG
k (1), . . . , wG

k (n))⊤ = Ak
1.

After noting that wG
1 (x) = d(x), where d(x) denotes the degree of a vertex x, this yields the

following simple canonical labeling algorithm.
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Algorithm A. Canonical labeling of a random graph.

Input: a graph G on [n] with adjacency matrix A.
1. Form a vector D1 = (d(1), . . . , d(n))⊤.
2. Compute D2 = AD1 and D3 = AD2.
3. Let W be the matrix formed by the three columns D1, D2, D3 and let W1, . . . , Wn be the

rows of W .
4. If there are identical rows Wx = Wy for some x ̸= y, then give up. Otherwise,
5. to each vertex x, assign the label Wx.

▶ Corollary 2. Algorithm A with high probability canonizes a random n-vertex graph, taking
time O(n2) on every input.

The notation O(·) in the time bound means a linear function up to the logarithmic
factor log n log log n corresponding to the complexity of integer multiplication [7], that is,
O(n2) = O(n2 log n log log n). If the model of computation assumes that multiplication of
two integers takes a constant time, then we just set O(n2) = O(n2). This time bound stems
from the fact that the two matrix-vector multiplications in Step 2 are the most expensive
operations performed by the algorithm. Note that this bound is essentially linear because a
random graph is with high probability dense, having (1/4 + o(1))n2 edges.

The linear-time canonization of almost all graphs is a classical result of Babai, Erdős, and
Selkow [2], which was a basis for settling the average-case complexity of graph isomorphism
in [3]. While our algorithm is based solely on basic linear-algebraic primitives, the method
used in [2, 3] is purely combinatorial. Before comparing the two approaches, we put Theorem
1 in the context of the earlier work on walk counts and their applications to isomorphism
testing.

Of course, Algorithm A can be enhanced by taking into account also longer walks, that
is, by involving also other vector-columns Ak

1 for k > 3. Note that there is no gain in
considering these vectors for k ≥ n. Indeed, if Ak

1 is a linear combination of the vectors
1, A1, A2

1, . . . , Ak−1
1, the same is obviously true also for Ak+1

1 (cf. [11, Lemma 1] and
see also [6] for a more detailed linear-algebraic analysis). Therefore, it suffices to start our
matrix W from the column 1 and add a subsequent column Ak

1 as long as this increases
the rank of W , which is possible only up to k = n − 1. The n × n matrix W = W G formed
by the columns 1, A1, . . . , An−1

1 is called the walk matrix of the graph G (WM for brevity).
The entries of W G = (wx,k)1≤x≤n, 0≤k<n are nothing else as the walk counts wx,k = wG

k (x).
Note that wG

0 (x) = 1 as there is a single walk of length 0 from x.
We say that a graph G is WM-discrete if the rows of the walk matrix W G are pairwise

different, i.e., W G
x ̸= W G

y for all x ̸= y. For a such G, the walk matrix yields a canonical
labeling where each vertex x is assigned the vector W G

x = (wG
0 (x), wG

1 (x), . . . , wG
n−1(x)).

Note that if W G has identical rows, then this matrix is singular; cf. [5, Section 7]. O’Rourke
and Touri [10] prove that the walk matrix of a random graph is non-singular with high
probability. This implies that a random graph is WM-discrete with high probability and,
hence, almost all graphs are canonizable by computing the n × n walk matrix similarly to
Algorithm A. Note that this takes time O(n3), which is outperformed by our Corollary 2
due to using the truncated variant of WM of size n × 4.

Remarkably, non-singular walk matrices can be used to test isomorphism of two given
graphs directly rather than by computing their canonical forms. If graphs G and H are
isomorphic, then their walk matrices W G and W H can be obtained from one another by
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rearranging the rows. If the last condition is satisfied, we write W G ≈ W H . This relation
between matrices is efficiently checkable just by sorting the rows in the lexicographic order.
We say that a graph G is WM-identifiable if, conversely, for all H we have G ∼= H whenever
W G ≈ W H . Liu and Siemons [8] prove that if the walk matrix of a graph is non-singular,
then it uniquely determines the adjacency matrix. This implies by [10] that a random graph
is WM-identifiable with high probability.

Note that, by a simple counting argument, almost all n-vertex graphs cannot be identified
by the shorter version of the walk matrix of size n × k as long as k = o(

√
n/ log n). In

particular, Theorem 1 cannot be extended to the identifiability concept.
The combinatorial approach of Babai, Erdős, and Selkow [2] is based on the color

refinement procedure (CR for brevity) dating back to the sixties (e.g., [9]). CR begins with
a uniform coloring of all vertices in an input graph and iteratively refines a current coloring
according to the following principle: If two vertices are equally colored but have distinct
color frequencies in their neighborhoods, then they get distinct colors in the next refinement
step. The refinement steps are executed as long as the refinement is proper. As soon as
the color classes stay the same, CR terminates and outputs the current coloring (a detailed
description of the algorithm is given in Section 3.1). CR distinguishes graphs G and H if
their color palettes are distinct. A graph G is called CR-identifiable if it is distinguishable by
CR from every non-isomorphic H. CR can also be used for computing a canonical labeling
of a single input graph. We say that a graph G is CR-discrete if CR assigns a unique color
to each vertex of G. It is easy to prove that every CR-discrete graph is CR-identifiable. We
do not know whether or not this is true also for the corresponding WM concepts.

Powers and Sulaiman [11] discuss examples when the CR-partition and the WM-partition
are different, that is, CR and the WM-based vertex-classification algorithm give different
results. In particular, [11, Fig. 3] shows a graph which is, in our terminology, CR-discrete
but not WM-discrete. We give a finer information about the relationship between the two
algorithmic approaches.

▶ Theorem 3.
1. Every WM-discrete graph is also CR-discrete.
2. Every WM-identifiable graph is also CR-identifiable.
3. There is a graph that is

(a) CR-discrete (hence also CR-identifiable) and
(b) neither WM-discrete
(c) nor WM-identifiable.

Theorem 3 shows that the WM approach is superseded by the CR algorithm with regard to
canonization of a single input graph and testing isomorphism of two input graphs. Moreover,
CR is sometimes more successful with respect to both algorithmic problems. Thus, WM can
be regarded as a weaker algorithmic tool for canonical labeling and isomorphism testing,
which is not so surprising as this approach is actually based on a single basic linear-algebraic
primitive, namely matrix-vector multiplication. In this sense, Algorithm A is arguably
simpler than the classical CR-based canonization of a random graph as it demonstrates
that a random graph can be canonized in an essentially linear time even with less powerful
computational means.

Theorems 1 and 3 are proved in Sections 2 and 3 respectively.
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2 Canonization of a random graph

2.1 Probability preliminaries
Let X be a binomial random variable with parameters n and p, that is, X =

∑n
i=1 Xi where

Xi’s are mutually independent and, for each i, we have Xi = 1 with probability 1 and Xi = 0
with probability 1 − p. We use the notation X ∼ Bin(n, p) when X has this distribution. As
well known, X is well-concentrated around its expectation np.

▶ Lemma 4 (Chernoff’s bound; see, e.g., [1, Corollary A.1.7]). If X ∼ Bin(n, p), then

P[|X − np| > t] ≤ 2e−2t2/n

for every t ≥ 0.

▶ Lemma 5. If X and Y are independent random variables, each having the probability
distribution Bin(n, 1/2), then P[X = Y ] < 1/

√
πn.

Proof. Using the well-known estimate(
2n

n

)
<

22n

√
πn

, (1)

we obtain

P[X = Y ] =
n∑

k=0

((
n

k

)
2−n

)2
= 2−2n

n∑
k=0

(
n

k

)2
= 2−2n

(
2n

n

)
<

1√
πn

,

where the last equality is a special case of Vandermonde’s convolution. ◀

2.2 Proof of Theorem 1
For a vertex i ∈ [n], recall that w3(i) = (wG

1 (i), wG
2 (i), wG

3 (i)). By the union bound,

P[w3(i) = w3(j) for some i, j] ≤
∑
i,j

P[w3(i) = w3(j)] =
(

n

2

)
P[w3(1) = w3(2)].

Therefore, it suffices to prove that

P[w3(1) = w3(2)] = O(n−9/4 ln1/4 n). (2)

Let NH(v) denote the neighborhood of a vertex v in a graph H. Given two sets U1 ⊂
[n] \ {1} and U2 ⊂ [n] \ {2}, let G′ = G′(U1, U2) be the random graph G subject to the
conditions NG(1) = U1 and NG(2) = U2. In other terms, G′ is a random graph on [n] chosen
equiprobably among all graphs satisfying these conditions. Let w′

k(i) = wG′

k (i) denote the
number of walks of length k emanating from i in G′ (the dependence of w′

k(i) on the pair
U1, U2 will be dropped for the sake of notational convenience). Define

p(U1, U2) = P
[∑

i∈U1

w′
1(i) =

∑
i∈U2

w′
1(i) and

∑
i∈U1

w′
2(i) =

∑
i∈U2

w′
2(i)
]

.

We have
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P[w3(1) = w3(2)]

=
∑

U1,U2 : |U1|=|U2|

P[w3(1) = w3(2) | NG(1) = U1, NG(2) = U2]

× P[NG(1) = U1, NG(2) = U2]

=
∑

U1,U2 : |U1|=|U2|

p(U1, U2) × P[NG(1) = U1, NG(2) = U2]. (3)

Note first that∑
|U1|=|U2|

P [NG(1) = U1, NG(2) = U2] = P [|NG(1)| = |NG(2)|]

= P [|NG(1) \ {2}| = |NG(2) \ {1}|] = O(n−1/2)

by Lemma 5 because |NG(1) \ {2}| ∼ Bin(n − 2, 1/2) and |NG(2) \ {1}| ∼ Bin(n − 2, 1/2)
are independent binomial random variables. This allows us to derive (2) from (3) if we prove
that

p(U1, U2) = O(n−7/4 ln1/4 n) (4)

for the neighborhood sets U1 and U2.
In fact, we do not need to prove (4) for all pairs U1, U2 because the contribution of some

of them in (3) is negligible. Indeed, set ε(n) = n−1/4. Note that |NG(j)| ∼ Bin(n − 1, 1/2)
for j = 1, 2 and |(NG(1) ∩ NG(2)) \ {1, 2}| ∼ Bin(n − 2, 1/4). By the Chernoff bound (see
Lemma 4), we have (1/2 − ε(n))n ≤ |NG(j)| ≤ (1/2 + ε(n))n for j = 1, 2 and (1/4 − ε(n))n ≤
|NG(1) ∩ NG(2)| ≤ (1/4 + ε(n))n with probability 1 − e−Ω(

√
n). Call a pair U1, U2 standard

if |Uj | for j = 1, 2 and |U1 ∩ U2| are in the same ranges. Thus, all non-standard pairs make a
negligible contribution in (3), and we only have to prove (4) for each standard pair U1, U2.

For a graph H and a subset U ⊂ V (H), let EH(U) denote the set of edges of H with
at least one vertex in U . Given two sets of edges E1 and E2 incident to the vertices in
U1 \ {2} and U2 \ {1} respectively, let G′′ = G′′(U1, U2, E1, E2) be the random graph G′

subject to the conditions EG′(U1 \ {2}) = E1 and EG′(U2 \ {1}) = E2. Let w′′
k(i) = wG′′

k (i)
denote the number of walks of length k emanating from i in G′′ (the dependence of w′′

k(i) on
U1, U2, E1, E2 is dropped for notational simplicity). Using this notation, we can write

p(U1, U2) =
∑

E1,E2:
∑

U1
w′

1(i)=
∑

U2
w′

1(i)

P [EG′(U1 \ {2}) = E1, EG′(U2 \ {1}) = E2]

× P
[∑

i∈U1

w′′
2 (i) =

∑
i∈U2

w′′
2 (i)

]
. (5)

We first show that∑
E1,E2:

∑
U1

w′
1(i)=

∑
U2

w′
1(i)

P [EG′(U1 \ {2}) = E1, EG′(U2 \ {1}) = E2] = O(1/n). (6)

Note that the sum in the left hand side of (6) is equal to the probability that
∑

i∈U1
w′

1(i) =∑
i∈U2

w′
1(i). This equality is equivalent to

∑
i∈U1\(U2∪{2}) w′

1(i) =
∑

i∈U2\(U1∪{1}) w′
1(i),

which in its turn is true if and only if U1 \ (U2 ∪ {2}) and U2 \ (U1 ∪ {1}) send the same
number of edges to [n] \ [(U1 ∪ U2 ∪ {1, 2}) \ (U1 ∩ U2)]. Since the pair U1, U2 is standard,
these numbers are independent binomial random variables with Θ(n2) trials. Equality (6)
now follows by Lemma 5.

ESA 2023
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We now can derive Equality (4) from Equality (6) by proving that

P
[∑

i∈U1

w′′
2 (i) =

∑
i∈U2

w′′
2 (i)

]
= O(n−3/4 ln1/4 n) (7)

for each potential pair E1, E2. Again, it is enough to do this only for most probable pairs
whose contribution in (5) is overwhelming. Specifically, let w′

2(u, v) denote the number of all
paths of length 2 between u and v in G′ and define

∆(i, j) = (w′
2(i, 1) + w′

2(j, 1)) − (w′
2(i, 2) + w′

2(j, 2)).

Note that the numbers w′
2(i, 1), w′

2(j, 1), w′
2(i, 2), w′

2(j, 2) and, hence, the numbers ∆(i, j)
are completely determined by specifying EG′(U1 \ {2}) = E1 and EG′(U2 \ {1}) = E2. We
call a pair E1, E2 standard if ∆(i, j) takes on O(

√
n ln n) different values for i ̸= j from

[n] \ (U1 ∪ U2 ∪ {1, 2}). The following fact shows that it is enough if we prove (7) for each
standard pair E1, E2.

▷ Claim 6. If a pair U1, U2 is standard, then

|{∆(i, j) : i, j ∈ [n] \ (U1 ∪ U2 ∪ {1, 2}), i ̸= j}| = O(
√

n ln n)

with probability 1 − O(n−6).

Proof. Let u1 = |U1|, u2 = |U2|, and u = |U1 ∩ U2|. Note that

∆(i, j) = |NG′(i)∩(U1 \U2)|+|NG′(j)∩(U1 \U2)|−|NG′(i)∩(U2 \U1)|−|NG′(j)∩(U2 \U1)|.

The four terms in the right hand side are independent random variables Bin(u1 − u, 1/2),
Bin(u1 − u, 1/2), Bin(u2 − u, 1/2), Bin(u2 − u, 1/2) respectively. Since N − Bin(N, p) ∼
Bin(N, 1 − p), we conclude that ∆(i, j) ∼ 2u − 2u2 + Bin(2u1 + 2u2 − 4u, 1/2). The Chernoff
bound (see Lemma 4) implies that, for each pair i, j, the inequalities

2u − 2u2 + (u1 + u2 − 2u)
(

1 −
√

2 ln n√
u1 + u2 − 2u

)

≤ ∆(i, j) ≤ 2u − 2u2 + (u1 + u2 − 2u)
(

1 +
√

2 ln n√
u1 + u2 − 2u

)

are violated with probability at most O(n−8). By the union bound, the probability that not
all values ∆(i, j) fall in an integer interval of length at most

2
√

2 ln n(u1 + u2 − 2u) = O(
√

n ln n)

is bounded by O(n−6). ◁

It remains to prove (7) for a fixed standard pair E1, E2. Note that all walks of length 3
starting from 1 and 2 and having at least 2 vertices inside U1 ∪ U2 ∪ {1, 2} are determined
by U1, U2, E1, E2. Let γj = γj(U1, U2, E1, E2) denote the number of such walks starting at j

for j = 1, 2. Let e′′
i,j be the indicator random variable of the presence of the edge {i, j} in

G′′. The equality
∑

i∈U1
w′′

2 (i) =
∑

i∈U2
w′′

2 (i) can be rewritten as

γ1 +
∑

i,j /∈U1∪U2∪{1,2}

e′′
ij(w′

2(i, 1)+w′
2(j, 1)) = γ2 +

∑
i,j /∈U1∪U2∪{1,2}

e′′
ij(w′

2(i, 2)+w′
2(j, 2)), (8)
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where the sums count the walks of length 3 from 1 and 2 whose last two vertices are
outside U1 ∪ U2 ∪ {1, 2}. Since E1, E2 is a standard pair, there exists an integer x ̸= 0
such that ∆(i, j) = x for Ω(n3/2/

√
ln n) pairs i, j. Let Sx be the set of all such pairs. Let

G∗ = G∗(U1, U2, E1, E2, E∗) be obtained from G′′ by exposing all edges except those between
i, j in Sx, where E∗ is the set of exposed edges. Equality (8) is fulfilled if and only if∑

{i,j}∈Sx

e′′
ijx = γ(U1, U2, E1, E2, E∗) (9)

for some integer γ(U1, U2, E1, E2, E∗) which is completely determined by U1, U2, E1, E2, E∗. It
remains to note that the binomial random variable

∑
{i,j}∈Sx

e′′
ij ∼ Bin(|Sx|, 1/2) takes on

any fixed value with probability at most
( |Sx|

⌊|Sx|/2⌋
)
/2|Sx| = O(|Sx|−1/2) = O(n−3/4 ln1/4 n),

where the first equality is due to (1). This completes the proof of Equality (7) and of the
whole theorem.
▶ Remark 7. The probability bound in Theorem 1 cannot be significantly improved be-
cause P[wG

3 (1) = wG
3 (2)] = n−Ω(1). To see this, note first that P[wG

1 (1) = wG
1 (2)] =

Θ(n−1/2) (see the proof of Lemma 5). Assuming that a standard pair U1, U2 with
|U1| = |U2| is fixed, we can similarly show that p(U1, U2) = Θ(n−1), which implies that
P[
(
wG

1 (1), wG
2 (1)

)
=
(
wG

1 (2), wG
2 (2)

)
] = Θ(n−3/2). Showing a polynomial lower bound for

P[
(
wG

1 (1), wG
2 (1), wG

3 (1)
)

=
(
wG

1 (2), wG
2 (2), wG

3 (2)
)
] is a slightly more delicate issue. Follow-

ing the same proof strategy as for the upper bound, we have to ensure that the equation
(9) has at least one integer solution

∑
{i,j}∈Sx

e′′
ij . We can do this because we have enough

freedom in adjusting the right hand side of (9) by choosing an appropriate value of γ1 − γ2.
Indeed, first of all, |x| does not exceed 2n with probability 1. Second, we have an interval of
length at least 100n for the values of γ1 − γ2 that are reachable with probability Ω(n−1). As
easily seen, this is enough for obtaining a desired lower bound.

We leave as an open question whether Theorem 1 can be improved by excluding paths
of length 3. Our conjecture is that this is impossible, that is, Theorem 1 is optimal in this
respect, but proving this poses some technical challenges.

3 Comparing WM and CR

3.1 Color refinement
We begin with a formal description of the color refinement algorithm (CR for short). CR
operates on vertex-colored graphs but applies also to uncolored graph by assuming that their
vertices are colored uniformly. An input to the algorithm consists either of a single graph or
a pair of graphs. Consider the former case first. For an input graph G with initial coloring
C0, CR iteratively computes new colorings

Ci(x) =
(

Ci−1(x), {{Ci−1(y)}}y∈N(x)

)
, (10)

where {{}} denotes a multiset and N(x) is the neighborhood of a vertex x. Denote the
partition of V (G) into the color classes of Ci by Pi. Note that each subsequent partition
Pi+1 is either finer than or equal to Pi. If Pi+1 = Pi, then Pj = Pi for all j ≥ i. Suppose
that the color partition stabilizes in the t-th round, that is, t is the minimum number such
that Pt = Pt−1. CR terminates at this point and outputs the coloring C = Ct. Note that if
the colors are computed exactly as defined by (10), they will require exponentially long color
names. To prevent this, the algorithm renames the colors after each refinement step, using
the same set of no more than n color names.

ESA 2023
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We say that a graph G is CR-discrete if C(x) ̸= C(x′) for all x ̸= x′.
If an input consists of two graphs G and H, then it is convenient to assume that their

vertex sets V (G) and V (H) are disjoint. The vertex colorings of G and H define an initial
coloring C0 of the union V (G) ∪ V (H), which is iteratively refined according to (10). The
color partition Pi is defined exactly as above but now on the whole set V (G) ∪ V (H). As
soon as the color partition of V (G) ∪ V (H) stabilizes1, CR terminates and outputs the
current coloring C = Ct of V (G) ∪ V (H). The color names are renamed for both graphs
synchronously.

We say that CR distinguishes G and H if {{C(x)}}x∈V (G) ̸= {{C(x)}}x∈V (H). A graph G

is called CR-identifiable if it is distinguishable by CR from every non-isomorphic H. Note
that every CR-discrete graph is CR-identifiable.

3.2 Proof of Theorem 3

3.2.1 Parts 1 and 2

Parts 1 and 2 of Theorem 3 follow immediately from the lemma below. We prove this lemma
by a direct combinatorial argument. Alternatively, one can use an algebraic approach in [11,
Theorem 2] or the connection to finite variable logics exploited in [4, Lemma 4].

▶ Lemma 8. Let G and H be uncolored n-vertex graphs (the case G = H is not excluded).
Let x ∈ V (G), x′ ∈ V (H), and k be an arbitrary non-negative integer. Then Ck(x) ̸= Ck(x′)
whenever wG

k (x) ̸= wH
k (x′).

Proof. Using the induction on k, we prove that wG
k (x) = wH

k (x′) whenever Ck(x) = Ck(x′).
In the base case of k = 0, these equalities are equivalent just because they are both true by
definition (recall that wG

0 (x) = 0). Assume that Ck(y) = Ck(y′) implies wG
k (y) = wH

k (y′) for
all y ∈ V (G) and y′ ∈ V (H). Let Ck+1(x) = Ck+1(x′). By the definition of the refinement
step, we have {{Ck(y)}}y∈N(x) = {{Ck(y)}}y∈N(x′). Using the induction assumption, from
here we derive the equality

{{
wG

k (y)
}}

y∈N(x) =
{{

wH
k (y)

}}
y∈N(x′). The equality wG

k+1(x) =
wH

k+1(x′) now follows by noting that wG
k+1(x) =

∑
y∈N(x) wG

k (y). ◀

3.2.2 Part 3

We now construct a graph G with the three desired properties (a)–(c). Note that this graph
can be used in an obvious way to produce infinitely many examples separating the strength
of WM and CR.

Let Zn denote the cyclic group with elements 0, 1, . . . , n and operation being the addition
modulo n. Our construction is based on the well-known Shrikhande graph; see, e.g., [12].
This is the Cayley graph of the group Z4 × Z4 with connection set {±(1, 0), ±(0, 1), ±(1, 1)}.
A natural drawing of the Shrikhande graph on the torus can be seen in both parts of Fig. 1.

Recall that a graph G is strongly regular with parameters (n, d, λ, µ) if it has n vertices,
every vertex in G has d neighbors (i.e., G is regular of degree d), every two adjacent vertices of
G have λ common neighbors, and every two non-adjacent vertices have µ common neighbors.
We will use two properties of the Shrikhande graph:

It is a strongly regular graph with parameters (16, 6, 2, 2).
The pairs u, v of non-adjacent vertices in the graph are split into two categories depending
on whether the two common neighbors of u and v are adjacent or not.
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A

a2

a3

a1

B

b2

b1 b3

Figure 1 Two colored versions of the Shrikhande graph.

Consider two copies A and B of the Shrikhande graph. In each of A and B, let us
individualize three vertices, a1, a2, a3 in A and b1, b2, b3 in B, by assigning unique colors
as shown in Fig. 1. The vertices ai and bi for each i = 1, 2, 3 are equally colored. All
non-individualized vertices are considered also colored, all in the same color. Of the three
vertices a1, a2, a3, only a1 and a2 are adjacent, and the vertices b1, b2, b3 have the same
adjacency pattern. An important difference between A and B is that the two common
neighbors of b2 and b3 are adjacent while the two common neighbors of a2 and a3 are not.2
This implies that the vertex-colored graphs A and B are non-isomorphic.

Before presenting further details, we give a brief outline of the rest of the proof. We
will begin with establishing some useful properties of A and B. Though these graphs are
non-isomorphic, it is useful to notice that they are still quite similar in the sense that they
are indistinguishable by one round of CR (Claim 9). On the other hand, both A and B are
CR-discrete (Claim 10) and are, therefore, distinguished after CR makes sufficiently many
rounds (Claim 11). The desired graph G will be constructed from A and B by connecting the
equally colored vertices, i.e., ai and bi, via new edges and vertices. While a1, a2, a3, b1, b2, b3
are not colored any more in G, their neighborhoods are modified so that their colors are
actually simulated by iterated degrees. This allows us to derive from Claims 10 and 11 that
G is CR-discrete (Claim 12). On the other hand, G is not WM-discrete (Claim 14). In order
to show that some vertices in G have the same numbers of outgoing walks of each length, we
use some basic properties of strongly regular graphs (Claim 13) and the fact that a walk can
leave A or B only via one of the vertices a1, a2, a3, b1, b2, b3 (and here an important role is
played by Claim 9). Finally, we argue that G is not WM-identifiable (Claim 15). Indeed, if
we construct another graph G′ similarly to G but using two copies of A, then G and G′ will
have the same walk matrix.

We now proceed with the detailed proof.

▷ Claim 9. After the first round of CR, the vertex-colored graphs A and B are still
indistinguishable. That is, there is a bijection f : V (A) → V (B) such that C1(x) = C1(f(x))
for all x ∈ V (A).

1 Note that the stabilization on each of the sets V (G) and V (H) can occur earlier than on V (G) ∪ V (H).
2 Using the fact that the Shrikhande graph is arc-transitive, it is easy to check that A and B are defined

uniquely up to isomorphism of colored graphs.
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A B

Figure 2 The colorings of A and B after the first color refinement round. For each i = 1, 2, 3,
the vertices ai and bi have the same unique color. The color of each non-individualized vertex is
determined by its adjacency to the individualized vertices. For example, the color of a vertex in
A means that this vertex is adjacent to a1 and a2 but not to a3.

Proof. Since A and B are regular graphs of the same degree, the equally colored vertices
x ∈ V (A) and x′ ∈ V (B) obtain distinct colors after the first color refinement round only
when their neighborhoods contain different sets of individualized vertices (that is, ai ∈ N(x)
while bi /∈ N(x′) or vice versa for some i = 1, 2, 3). This is not the case for the individualized
vertices because the correspondence ai 7→ bi is a partial isomorphism of A and B. As for
the non-individualized vertices, both A and B have exactly one vertex adjacent to all the
three individualized vertices, three vertices adjacent to exactly two of them, and two vertices
adjacent to none of them. Moreover, in both A and B there are two non-individualized
vertices adjacent to ai (resp. to bi) for each i = 1, 2 and three non-individualized vertices
adjacent to a3 (resp. to b3). The colorings of A and B after the first refinement round are
shown in Fig. 2. ◁

▷ Claim 10. Both vertex-colored graphs A and B are CR-discrete.

Proof. Call a vertex solitary if CR colors it differently than the other vertices of the graphs.
We prove that every vertex in A is solitary. Virtually the same argument applies also to B.
The individualized vertices a1, a2, a3 are solitary from the very beginning. The single vertex
a adjacent to all of them is obviously also solitary. Thus, A contains a triangle subgraph
whose all vertices, namely a, a1, a2, are solitary. Let a′ be the common neighbor of a1 and a2
different from a (recall that the Shrikhande graph is strongly regular with the third parameter
λ = 2). The fact that a1 and a2 are solitary implies that the equality C(a′) = C(x) for
x ̸= a′ can be true only if x = a, which is actually impossible because a is solitary. Therefore,
a′ is solitary too. This argument applies to any triangle whose all vertices are solitary and to
the other common neighbor of any two vertices of this triangle. Consider the graph whose
vertices are the triangles of the Shrikhande graph, adjacent exactly when they share an edge.
This graph (known as the Dyck graph) is obviously connected, which readily implies that all
vertices of A are solitary. ◁

▷ Claim 11. The vertex-colored graphs A and B are distinguishable by CR.

Proof. Recall that A and B are non-isomorphic because the two common neighbors of b2
and b3 are adjacent while the two common neighbors of a2 and a3 are not. By Claim 10,
both A and B are CR-discrete. Assume that A and B are indistinguishable by CR. Let f be
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c4

a3 c3 b3

a2 c2 b2

a1 c1 b1

A B

Figure 3 Construction of G.

the bijection from V (A) to V (B) respecting the final CR-coloring, that is, C(f(x)) = C(x)
for all x ∈ V (A). Since f is not an isomorphism, there are vertices u and v in A such that
u and v are adjacent but f(u) and f(v) are not or vice versa. This shows, however, that
the coloring C is still unstable because, by the refinement rule, u and f(u) have to receive
distinct colors in the next round. This contradiction proves the claim. ◁

We now construct a graph G as the vertex-disjoint union of A and B where each pair
ai, bi is connected via new edges and new intermediate vertices as shown in Fig. 3. Thus,
V (G) = V (A) ∪ V (B) ∪ {c1, c2, c3, c4} where c1, c2, c3, c4 are new connector vertices of degree
2, 3, 4, 1 respectively. The graph G is uncolored, that is, the colors of the six individualized
vertices a1, a2, a3, b1, b2, b3 are erased. The next claim proves Part 3(a) of the theorem.

▷ Claim 12. G is CR-discrete.

Proof. The connector vertices c1, c2, c3, c4 have unique degrees 2, 3, 4, 1 and become solitary
after the first refinement round. The vertices a1, a2, a3 have degree 7, while the other vertices
in A have degree 6. Each of the three vertices a1, a2, a3 is distinguished from the other two
by the adjacency to its own connector. It follows that after the second refinement round,
the colors C2(a1), C2(a2), C2(a3) become unique within A (even when still C2(ai) = C2(bi)).
Claim 10, therefore, implies that eventually C(x) ̸= C(x′) for all x ̸= x′ in A. The same
argument applies to B. Using the same argument as in the proof of Claim 11, we also have
C(x) ̸= C(x′) for all x ∈ V (A) and x′ ∈ V (B). ◁

Let wR
k (x, y) denote the number of walks of length k from a vertex x to a vertex y in a

graph R. We will need the following simple and well-known facts.3

3 Let Pk+1 be a path of length k with end vertices s and t. Note that wR
k (x, y) is equal to the number of

all homomorphisms from Pk+1 to R taking s to x and t to y. Part 2 of Claim 13 is a particular case of
a much more general result about the invariance of homomorphism counts under the Weisfeiler-Leman
equivalence for graphs with designated vertices [4, Lemma 4].
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▷ Claim 13.
1. If R is a regular graph of degree d, then wR

k (x) = dk for every x ∈ V (R).
2. Suppose now that R is a strongly regular graph with parameters (n, d, λ, µ) and fix an

arbitrary k ≥ 0. Then the walk count wR
k (x, x) is the same for every x ∈ V (R). If

x ≠ y, then the value of wR
k (x, y) depends only on the adjacency of x and y (and on the

parameters d, λ, µ).

Proof. Part 1 is obvious. Part 2 follows from an easy inductive argument. Indeed, it is trivially
true for k = 0. Assume that wR

k (x, y) = ak for all adjacent x and y and that wR
k (x, y) = nk

for all non-adjacent unequal x and y. Then wR
k+1(x, x) =

∑
z∈N(x) wR

k (z, x) = d ak. If x and
y are adjacent, then

wR
k+1(x, y) =

∑
z∈N(x)∩N(y)

wR
k (z, y) +

∑
z∈N(x)\N(y)

wR
k (z, y) = λak + (d − λ)nk.

If x and y are non-adjacent and unequal, then

wR
k+1(x, y) =

∑
z∈N(x)∩N(y)

wR
k (z, y) +

∑
z∈N(x)\N(y)

wR
k (z, y) = µak + (d − µ)nk,

enabling the induction step. ◁

We are now prepared to prove Part 3(b) of the theorem.

▷ Claim 14. G is not WM-discrete.

Proof. Define an equivalence relation ≡ on V (G) as follows. Each connector vertex is
equivalent only to itself. Let C1 be the coloring of V (A) ∪ V (B) obtained after the first
round of the execution of CR on the vertex-colored graphs A and B; see Claim 9. We set
x ≡ x′ for x, x′ ∈ V (A) ∪ V (B) if C1(x) = C1(x′). Recall that the largest equivalence class
of ≡ consists of six vertices (three uncolored vertices in A adjacent to a3 but neither to a1
nor to a2 and three uncolored vertices in B adjacent to b3 but neither to b1 nor to b2). We
claim that wG

k (x) = wG
k (x′) for every k whenever x ≡ x′. Indeed, if x ∈ V (A), then

wG
k (x) = wA

k (x) +
3∑

i=1

k−1∑
j=0

wA
j (x, ai)wG

k−j−1(ci). (11)

Here, we separately consider the walks of length k inside A and the walks of length k leaving
A. A walk can leave A only after visiting one of the vertices a1, a2, a3. If such a walk leaves
A first after the j-th step via ai, it arrives at the connector ci and, starting from it, makes
the remaining k − j − 1 steps. The similar equality holds for x ∈ V (B).

It remains to notice that the right hand side of (11) and its analog for B yield the same
value for all x in the same ≡-class. Indeed, let x ≡ x′ and suppose that x ∈ A and x′ ∈ B

(the cases x, x′ ∈ A and x, x′ ∈ B are completely similar). Then wA
k (x) = wB

k (x′) = 6k by
Part 1 of Claim 13. Finally, for each j the equalities wA

j (x, ai) = wB
j (x, bi) for i = 1, 2, 3

follow from Part 2 of Claim 13 by the definition of the relation ≡ and the description of C1
in the proof of Claim 9. ◁

It remains to prove Part 3(c) of the theorem.

▷ Claim 15. G is not WM-identifiable.
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Proof. Construct G′ in the same way as G but using a copy A′ of A instead of B. The graphs
G and G′ are non-isomorphic, basically because A and B are non-isomorphic as colored graphs.
In particular, G′ has an automorphism fixing the connector vertices and transposing A and A′,
whereas G has no non-trivial automorphism by Claim 12. Fix a colored-graph isomorphism
f ′ from A′ to A. Define a bijection F from V (G′) = V (A) ∪ V (A′) ∪ {c1, c2, c3, c4} onto
V (G) = V (A) ∪ V (B) ∪ {c1, c2, c3, c4} so that F (ci) = ci for i = 1, 2, 3, 4, the restriction f of
F to V (A) is as in Claim 9, and the restriction of F to V (A′) is the isomorphism f ′. The
proof of Claim 14 applies to the graph G′ virtually without changes. In particular, the analog
of Equality (11) for G′ allows us to show by a simple induction that wG′

k (x) = wG
k (f(x)) for

x ∈ V (A) and wG′

k (x′) = wG
k (f ′(x′)) for x′ ∈ V (A′), as well as that wG′

k (ci) = wG
k (ci) for

i = 1, 2, 3, 4. Thus, for every x ∈ V (G′) we have wG′

k (x) = wG
k (F (x)) for all k, implying that

G and G′ are WM-indistinguishable. ◁

The proof of Theorem 3 is complete.
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