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Abstract
We consider the Min-Sum k-Clustering (k-MSC) problem. Given a set of points in a metric which is
represented by an edge-weighted graph G = (V,E) and a parameter k, the goal is to partition the
points V into k clusters such that the sum of distances between all pairs of the points within the
same cluster is minimized.

The k-MSC problem is known to be APX-hard on general metrics. The best known approximation
algorithms for the problem obtained by Behsaz, Friggstad, Salavatipour and Sivakumar [Algorithmica
2019] achieve an approximation ratio of O(log |V |) in polynomial time for general metrics and an
approximation ratio 2 + ϵ in quasi-polynomial time for metrics with bounded doubling dimension.
No approximation schemes for k-MSC (when k is part of the input) is known for any non-trivial
metrics prior to our work. In fact, most of the previous works rely on the simple fact that there is a
2-approximate reduction from k-MSC to the balanced k-median problem and design approximation
algorithms for the latter to obtain an approximation for k-MSC.

In this paper, we obtain the first Quasi-Polynomial Time Approximation Schemes (QPTAS)
for the problem on metrics induced by graphs of bounded treewidth, graphs of bounded highway
dimension, graphs of bounded doubling dimensions (including fixed dimensional Euclidean metrics),
and planar and minor-free graphs. We bypass the barrier of 2 for k-MSC by introducing a new
clustering problem, which we call min-hub clustering, which is a generalization of balanced k-median
and is a trade off between center-based clustering problems (such as balanced k-median) and pair-wise
clustering (such as Min-Sum k-clustering). We then show how one can find approximation schemes
for Min-hub clustering on certain classes of metrics.
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1 Introduction

Clustering is a fundamental problem in many areas of data analysis and machine learning
and has many applications across various fields. Given a set of points with a notion of
similarity (distance) between every pair of points, in a typical k clustering problem, the task
is to partition the points into k clusters to minimize dissimilarities of the points that fall
into the same cluster.

In the well-known center-based k-clustering problems (such as k-center, k-median, k-
means), the partition is obtained by selecting a set of k centers and assigning each point to
its nearest center. The clusters are then evaluated based on the distances between the points
and their centers: in the case of k-center, the objective is to minimize the maximum distance
of a point to its nearest center, while in the case of k-median (k-means), respectively, the
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84:2 Approximation Schemes for Min-Sum k-Clustering

(a) (b)

Figure 1 Clustering of a set of points: (a) a possible center-based clustering induced by a Voronoi
diagram of two cluster centers , and (b) a min-sum k-clustering solution for k = 2. Observe that the
min-sum k-clustering solution in (b) places all outliers into a separate cluster.

objective is to minimize the sum of distances (the sum of squared distances, respectively)
between points and their centers. Compared to other clustering algorithms, center-based
algorithms are efficient for clustering large datasets as the main task reduces to selecting k
centers; once we decided on the set of centers, points that are closest to a particular center
are considered to be part of the cluster represented by that center. Center-based clustering
algorithms are not always precise because they heavily rely on the assumption that each
cluster has a spherical shape and hence can be represented by one center.

In pair-wise k-clustering, on the other hand, the goal of partitioning is to minimize the
dissimilarity between pairs of points that are in the same cluster. For example, in the case of
the k-diameter problem, the goal is to minimize the maximum distance between any two
points in a cluster; or in the min-sum k-clustering problem, the goal is to minimize the sum
of distances between all pairs of the points within the same cluster.

Unlike center-based clustering problems, min-sum k-clustering (which is the main focus
of this paper) is less sensitive to the shape of clusters because it forms clusters based on
the pair-wise distances between points rather than the distances of points to their cluster
center. Also, as observed in [8], min-sum k-clustering can handle (detect) noises (outliers) in
an effective way: in scenarios where data include well-defined clusters and a limited number
of scattered noises (outliers), assigning an outlier to one of the clusters would be more costly
than placing it in an outlier cluster that holds all the outliers. This results in a solution with
a separate cluster specifically for outliers, avoiding the limitations of center-based clustering
algorithms, which rely on Voronoi partitioning to divide the data space into clusters and are
unable to handle overlapping cluster spaces. See Figure 1.

We now formally define the min-sum k-clustering problem. Given a metric space over a set
of n points V with metric distances d(u, v) between any two u, v ∈ V . We assume the metric
is induced by an edge-weighted graph G = (V,E). In the Min-Sum k-Clustering problem
(k-MSC), the goal is to partition points V into k clusters C1, ..., Ck to minimize the sum
of pairwise distances between points assigned to the same cluster:

∑k
i=1

∑
{u,v}⊆Ci

d(u, v).
This problem is closely related to the Balanced k-Median problem (k-BM), with the same
input as in k-MSC. Here, the goal is to select k points c1, ..., ck ∈ V as the centers of the
clusters and partition points V into clusters C1, ..., Ck to minimize

∑k
i=1 |Ci|

∑
v∈Ci

d(v, ci).

Related Works

Sahni and Gonzalez introduced k-MSC in 1976 [13]. They showed the problem is NP -hard
and provided a polynomial time k-approximation algorithm for the k-Max Cut problem,
which is the dual of k-MSC and involves partitioning points into k clusters to maximize
the distance between points in different clusters. Kann et al. [12] showed it is NP -Hard
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to approximate non-metric k-MSC within O(n2−ϵ) for any ϵ > 0 and k > 3. Later,
Cohen-Addad et al. [6] proved that it is NP -hard to approximate metric k-MSC within
1.415.

Guttman-Beck and Hassin [11] showed that k-BM and k-MSC are closely related.
They showed an algorithm with ρ approximation for one of these problems implies a 2ρ
approximation for the other. In the literature, most of the previous work (with a guaranteed
approximation factor) for k-MSC make use of this reduction. Guttman-Beck and Hassin [11]
showed that k-BM can be solved in time nO(k) by guessing the cluster centers and sizes
and finding the minimum-cost assignment from clients to these centers. This results in
a 2-approximation solution for the min-sum k-clustering problem when k is fixed. Bartal
et al. [3] introduced the first polynomial time approximation algorithm for both k-MSC
and k-BM in metric spaces. They devised an algorithm with an approximation factor of
O( 1

ϵ log1+ϵ n) and running time of n 1
ϵ for k-BM. The algorithm is based on the embedding

of metric spaces into hierarchically separated trees (HSTs). They also provided a bi-criteria
approximation algorithm with a constant approximation factor with O(k) clusters. Later,
Behsaz et al. [4] improved the result by utilizing the properties of HSTs through a direct
dynamic programming approach, leading to a O(logn) approximation algorithm for both
k-MSC and k-BM. This is the current best result for general metrics. They also present a
quasi-polynomial time approximation scheme for k-BM in metrics with constant doubling
dimensions, leading to a (2 + ϵ)-approximation algorithm for the min-sum k-clustering
problem that runs in quasi-polynomial time. More recently Banerjee et al. [2] gave a
bicriteria approximation for k-MSC with outliers: for any ϵ > 0, given an instance with n

points and any integer n′ ≤ n, their algorithm finds a solution that clusters at least (1 − ϵ)n′

points whose cost is poly(1/ϵ) times the optimum clustering of n′ points.
For small values of k, Vega et al. [9] introduced the first polynomial time approximation

scheme for k-MSC in metric spaces. The running time of their algorithm is O(n3k2ϵ−k2

).
Czumaj and Sohler [8], presented a (4 + ϵ) approximation algorithm for k-MSC in metric
spaces with a running time of linear for k = o(logn/ log logn).

Our Results and Techniques

As mentioned earlier, the previous methods for designing approximation for k-MSC attempt
to approximate the cost using a center-based clustering objective (such as k-BM [3, 4] or a
capacitated version of k-median [2]). Such methods have a barrier of 2 (even for tree metrics).
A key challenge in extending the framework of [4] to work directly for k-MSC is to develop
a compact representation of the cluster types in a near-optimal solution that can capture the
essence of the cluster without relying on a center.

Here we introduce a new clustering objective that is in between the pair-wise distances
objective of k-MSC and the center-based objective of k-BM, which we call min-hub
clustering. We show that for metrics with a nice hierarchical decomposition (such as graphs
of bounded treewidth, or bounded doubling dimension), the objective of min-hub clustering is
a good (namely (1 + ϵ)) approximation of k-MSC and how one can obtain an approximation
scheme for the new objective (and hence one for k-MSC).

In center-based clustering, a cluster is represented by a single center. However, as
demonstrated in Figure 1 (see the outlier cluster in red), not all k-MSC clusters can be
represented by a single center. To address this, we explore the possibility of using multiple
centers to represent a cluster. Our results show that a cluster in the k-MSC solution can be
represented by Oϵ(1) centers, which we refer to as hubs, while incurring an error of (1 + ϵ).
Specifically, let H be a set of hubs. The hub-distance between two points u and v in a cluster
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C is defined as the shortest path between the points that passes through hub points in H.
Our results show that there exists a set of H of constant size (depending on ϵ) such that
the sum of distances between all pairs of points within C is “almost” equal to the sum of
hub-distances between pairs of points in C. This suggests that the network interconnecting
the hubs, called the backbone structure, carries the majority of the connection flow in the
cluster. We represent a cluster by the type of its backbone structure and the distribution of
points around its hubs.

In Section 2, we consider the special case of tree metrics. We construct a dynamic program
for k-MSC on tree metrics that have a logarithmic height. In Section 3, we extend our
approach to cover metrics with bounded treewidth, thereby covering general trees as well.

▶ Theorem 1. There is a quasi-polynomial time algorithm that, given an instance of k-MSC
on a metric of treewidth f , for any ϵ > 0 finds a (1 + ϵ)-approximate solution in time
nO(f2+( log n

ϵ )σ+1), where σ depends on ϵ.

It is worth pointing out that, if one tries to extend the result from trees to graphs with
treewidth f in a natural way, the algorithm will have a run time of the form n( log n

ϵ )f2+σ+1

(instead of nO(f2+( log n
ϵ )σ+1)), which is still quasi-polynomial for fixed f , but will not be

quasi-polynomial if f = Polylog(n). This is essential to obtain the next three theorems, as
we use embeddings into graphs with treewidths f = Polylog(n).

In Section 4, using frameworks from [14], [10], and [7], we expand our results to three
additional metric classes: bounded doubling metrics, bounded highway dimension metrics,
and minor-free metrics, respectively.

▶ Theorem 2. There is a quasi-polynomial time algorithm that, given an instance of k-MSC
on a metric of doubling dimension D, for any ϵ > 0 finds a (1 + ϵ) approximate solution in
time nO(( D log n

ϵ )2D+( log n
ϵ )σ+1).

▶ Theorem 3. There is a quasi-polynomial time algorithm that, given an instance of k-MSC
on a metric highway dimension D and violation λ, for any ϵ > 0 finds a (1 + ϵ) approximate
solution in time nO((log n)α+( log n

ϵ )σ+1)), where α = O(log2( D
ϵλ )/λ).

▶ Theorem 4. There is a quasi-polynomial time algorithm that, given an instance of k-MSC
in minor-free metrics, for any 1/2 > ϵ > 0 finds a (1 + ϵ) approximate solution in time
nϵ−O(1) logO(1) n.

2 The k-MSC Problem in Tree Metrics

In this section, we construct a dynamic program for k-MSC on trees. Consider metric (V, d)
induced by an edge-weighted tree T = (V,E). Let w(e) denote the weight of edge e in E.

We let T be rooted at an arbitrary vertex r ∈ V . The parent of a vertex v ∈ V \ {r} is
the vertex adjacent to v on the path from v to r. If u is the parent of v then v is a child of u.
A tree vertex is called a leaf if it has no children and is called an internal vertex otherwise.
The level of each node is the number of edges on the path from it to r. The height of the
tree is the level of the leaf node with the highest level. We use Tv to denote the subtree
rooted at v, V (Tv) and E(Tv) to denote the vertex set and the edge set of Tv, respectively.
By introducing zero-weight edges and nodes, we convert the tree into an equivalent binary
tree. Note that the resulting binary tree has at most 2|V | nodes.

We use C ⊆ V to denote a cluster and D(C) to denote the total sum of the distances
between all pairs of points in C; i.e., D(C) =

∑
{u,v}⊆C d(u, v). We use H ⊆ V to indicate a

set of points referred to as hubs. The distance between any two points u and v in C, when



I. Naderi, M. Rezapour, and M. R. Salavatipour 84:5

(a) (b)

Figure 2 (a) A cluster on the tree, where the blue circles specify points of this cluster. (b) Shaded
regions highlight the resulting groups by applying Lemma 5 on the cluster. Notice that the distance
between any two points of the cluster that belong to different groups (such as u and v) is equal
to their hub-distance, dH(u, v), as long as H contains the border nodes of the groups. The larger
circles around the nodes depict the border nodes of the groups (so the proper hubs of the cluster).

Algorithm 1 Tree Partitioning Algorithm.

1 Cν ← ∅
2 η ← max{ν|C|, 1}
3 L← {v ∈ V : 1

2η ≤ |V (Tv) ∩ C| ≤ η}
4 while L ̸= ∅ do
5 v̂ ← v ∈ L ▷ If multiple, select v with the lowest level.
6 g ← V (Tv̂)
7 Cν ← Cν ∪ {g}
8 remove Tv̂ from T

9 L← {v ∈ V (T ) : 1
2η ≤ |V (Tv) ∩ C| ≤ η}

10 end
11 Cν ← Cν ∪ {V (Tr)}

measured through hubs in H, is called the hub-distance and is denoted by dH(u, v). This
is the length of the shortest path between the two points that goes through hub points in
H; i.e., dH(u, v) = minh1,h2∈H

(
d(u, h1) + d(h1, h2) + d(h2, v)

)
. Let pH(u, v) represent the

path between points u and v that passes through hub points in H and has the length of
dH(u, v). The sum of pairwise hub-distances for the points in C is represented by DH(C)
and is equal to the total sum of the hub-distances between all pairs of points in C; i.e.,
DH(C) =

∑
{u,v}⊆C dH(u, v). Note that DV (C)=D(C).

The following lemma shows how to find a (constant-size) set of hubs that represents a
given cluster in metrics induced by a tree metric. See Figure 2. For a subset of nodes g ⊆ V ,
we use δ(g) = {v ∈ g : uv ∈ E & u /∈ g} to denote the border nodes of g.

▶ Lemma 5. Let C ⊆ V be a cluster and let T = (V,E) be a given binary tree. For
any ν > 0, there exists a partition of V into a set of groups Cν = {g1, . . . , gσ} such that
all of the following properties hold: (i) the subgraph induced by each group g ∈ Cν is
connected. (ii) for each group g ∈ Cν , |g ∩ C| ∈ [1,max {1, ν|C|}]. (iii) |Cν | = O(1/ν). (iv)
∀g ∈ Cν , |δ(g)| = O(1/ν).

Proof. We use Algorithm 1 to compute Cν . The algorithm iteratively selects a subtree Tv̂,
with approximately ν

2 of the total number of points |C|, adds the vertex set V (Tv̂) to Cν ,
and removes Tv̂ from T . The number of iterations (i.e. the number of groups made by the
algorithm) is at most 2/ν, and every vertex of V belongs to one group.
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84:6 Approximation Schemes for Min-Sum k-Clustering

Note that there is at most one edge between any two groups, so |δ(g)| = O(1/ν), ∀g ∈ Cν .
The subgraphs induced by gi’s are connected by construction. Thus, the algorithm has
constructed a partition with the desired properties, as shown in Figure 2. ◀

Note that each cluster covers only a subset of points, however, the groups of the cluster
always include all the nodes of V . Given a cluster C ⊆ V and a constant ν > 0, let
Cν = {g1, . . . , gσ} be the groups obtained by applying Lemma 5 on C with the given value
of ν. We let Hν(C) = ∪σ

i=1δ(gi) denote the ν-proper hubs of the cluster. Notice that the
size of |Hν(C)| is constant, depending on ν.

Given a cluster C ⊆ V and a constant ν > 0, consider the ν-proper hubs of the
cluster, Hν(C). We refer to costHν (C) =

∑σ
i=1

∑σ
j=i+1

∑
u∈gi∩C,v∈gj∩C dHν (C)(u, v) as the

ν-approximate cost of the cluster. This represents the sum of hub-distances between all
pairs of points of C belonging to different groups. The following lemma shows that costHν (C)
is “almost” equal to D(C), when the value of ν is sufficiently small.

▶ Lemma 6. For each such cluster C and any ν > 0, costHν (C) ≤ D(C) ≤ (1 +
O(ν))costHν

(C).

The proof is omitted due to page limitations.
To make the presentation of our dynamic programming algorithm simpler, we formulate

a problem with the same input and objective as the min-sum k-clustering problem, but the
cost of clusters is evaluated by costHν(C) instead of D(C): Given a constant ν > 0 and an
edge-weighted tree T = (V,E). In the Min-Hub k-Clustering problem (k-MHC), we are
asked to partition points V into k clusters C1, ..., Ck to minimize

∑k
i=1 costHν (Ci).

▶ Theorem 7. Let ϵ > 0. A (1 + ϵ)-approximation for k-MHC will imply a (1 + O(ϵ))-
approximation for k-MSC on tree metrics.

The proof is omitted due to page limitations.

2.1 QPTAS for k-MHC on Trees with Logarithmic Heights
Theorem 7 tells us that if we try to find a clustering which optimizes the objective of
k-MHC, then the same clustering has a good value for the objective of k-MSC. Suppose
we are given a tree T = (V,E) that has a logarithmic height and a constant ν > 0. Let
OPT be the minimum cost of partitioning V into k clusters C1, C2, · · · , Ck with the total
cost being

∑k
i=1 costHν

(Ci). Given ϵ > 0, we will present a dynamic program that finds
a (1 + ϵ)-approximation of OPT . This, as a result of Theorem 7, leads to a (1 + O(ϵ))
approximation solution for k-MSC on trees with logarithmic heights. Then, in the next
section, we will extend the dynamic program to cover metrics with bounded treewidth,
thereby covering general trees as well.

Preprocessing. We assume each node of the tree has a token on it and our goal is to cluster
the tokens. We may modify the tree by adding dummy edges (with zero weight) and dummy
nodes (that do not have tokens). Throughout this section, we refer to a node with a token
as a point and a node without a token as a vertex. By introducing zero-weight edges and
nodes, we convert the tree into an equivalent binary tree in which the points are only located
on distinct leaves. We repeatedly remove leaves with no tokens until there is no such leaf
in the tree. We also repeatedly remove internal vertices (with no token) of degree two by
consolidating their incident edges into one edge of the total weight.
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(a) (b) (c)

Figure 3 (a) A cluster and its corresponding groups. (b) The partial cluster with respect to Tv.
(c) The corresponding backbone tree whose nodes are labelled according to their sizes/weights.

Cluster, Backbone Tree, and Partial Cluster Types. Let ν > 0 and consider a cluster
C ⊆ V . Suppose Cν = {g1, . . . , gσ} are the groups by Lemma 5. We define a tree called the
backbone tree of C, with nodes corresponding to groups g1, . . . , gσ. This tree has edges
between nodes whose corresponding groups are connected by an edge. We use gi to refer to
both the group and the corresponding node in the backbone tree. According to Cayley’s
formula [1], the number of different trees that can be formed by ñ labeled nodes is ññ−2.
Hence the cluster’s backbone tree has one of the types 1, 2, · · · , σσ−2.

Each cluster C is associated with a pair (tb, w⃗) (referred to as the cluster type of C),
where tb is an integer between 1 and σσ−2 and represents the type of the cluster’s backbone
tree, and w⃗ is a vector representing the weights of each node in the backbone tree, with
w⃗[i] = |gi ∩ C| being the number of points in the i-th group of the cluster; see Figure 3.

The maximum number of ways to assign weights to nodes of a backbone tree is nσ, where
n = |V |. To keep the number of different cluster types manageable, we store the group
weights approximately by rounding them to the nearest threshold value. This reduces the
number of possible ways to assign weights to nodes of a backbone tree to a poly-logarithmic
number and so allows for a more compact representation of the cluster types.

▶ Definition 8. Given ϵ > 0, let ϵ′ be ϵ
c log n . Let logarithmic threshold values be

Φϵ,n = {ϕ1, · · · , ϕτ } where ϕi = i for 1 ≤ i ≤ ⌈ 1
ϵ′ ⌉, and for i > 1

ϵ′ we have ϕi = ⌈ϕi−1(1+ϵ′)⌉,
and ϕτ = n. So τ = O( log n

ϵ ). We define a mapping ϕ which associates with each value
1 ≤ i ≤ n the minimum threshold value ϕj for which i ≤ ϕj holds.

By rounding the weights of groups to the nearest threshold value, the number of different
cluster types is reduced to O(σσ−2( log n

ϵ′ )σ)), where σ = O(1/ν). We will show that, by choos-
ing the number of thresholds appropriately large, the DP solution will have a multiplicative
error of at most 1 +O(ϵ) (provided that the tree has a logarithmic height).

For every cluster C ⊂ V and every node v ∈ V , the part of cluster that falls into Tv is
referred to as the partial cluster of C with respect to v. To represent such a partial cluster,
we associate it with a triple (tc, γv, s⃗v), where tc is an integer between 1 and O(σσ−2( log n

ϵ′ )σ))
and represents the type of the cluster, γv is the split group of the partial cluster and specifies
the group that includes the node v, and s⃗v is a vector representing the sizes of each group
of the partial cluster that intersects with the tree Tv, with s⃗v[i] = |(gi ∩ C) ∩ V (Tv)| being
the number of points in the i-th group that intersect with V (Tv); see Figure 3. Similar
to the group weights, the group sizes are stored approximately by rounding them to the
nearest threshold value. This results in a reduction of the number of partial cluster types to
O(σσ−2( log n

ϵ′ )σ)). Observe that a partial cluster C with respect to root r is actually the full
cluster C. This means that for every group i in the cluster, the value s⃗r[i] is equal to w⃗[i].
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We let Γv ⊆ Cν indicate the groups, called the inner groups, of the partial cluster whose
nodes are completely contained within the tree node Tv. For a specific partial cluster type ℓ
at v, we use the notation γℓ

v,Γℓ
v, s⃗

ℓ
v, and w⃗ℓ to refer to its split group, inner groups, size, and

weight vectors, respectively. It is important to note that both the weight vector w⃗ℓ and the
inner groups Γℓ

v can be obtained from the triple (tc, γv, s⃗v) that defines ℓ.
A partial cluster type ℓ with respect to a node v is considered valid if the following

conditions are met: (i) the values of s⃗ℓ
v[i] for each group i of ℓ are between 0 and w⃗ℓ[i], (ii)

the value of w⃗ℓ[i] for each group i of ℓ is less than or equal to max{ν.
∑

i′ w⃗ℓ[i′], 1} (see
Lemma 5), (iii) if v is a leaf node of T , then γℓ

v is a leaf node of the backbone tree of ℓ (from
the definition of the backbone tree). A partial cluster type ℓ is considered a leaf partial
cluster type at a node v if γℓ

v is a leaf node of the backbone tree of ℓ and s⃗ℓ
v[γℓ

v] = 1.

Edge Load, Partial Cluster Cost, and Cluster Cost. Consider a cluster C together with its
groups Cν = {g1, . . . , gσ} and hubs Hν(C) , and let ℓ be the type of this cluster with respect
to v. Recall that, vectors w⃗ℓ and s⃗ℓ

v are used to show the weight and the size (with respect
to the tree Tv) of the groups within the cluster C, and γv is used to specify the group of the
cluster that includes the node v. Here, we explain how to compute the ν-approximate cost
of the cluster, costHν

(C), by utilizing the information provided by these vectors.
We define the load of edge e with respect to the cluster C, its groups Cν , and hubs

Hν(C) to be the number of paths pH(u, v) that include edge e over all (u, v) ∈ X, where
X = ∪σ̂

i=1Xi and Xi = {(u, v) : u ∈ ĝi v ∈ C \ ĝi}. Let ev denote the edge connecting v to
its parent in T . The load of edge ev with respect to ℓ can be calculated using the following
formula, represented as loadℓ(ev):

loadℓ(ev) =
( σ∑
i=1,i ̸=γv

s⃗ℓv[i]
)
×

( σ∑
i=1

(w⃗ℓ[i]− s⃗ℓv[i])
)

︸ ︷︷ ︸
#paths crossing ev s.t. one of its ends is below γv

+ s⃗ℓv[γv]×
( σ∑
i/∈Γv

w⃗ℓ[i]
)

︸ ︷︷ ︸
#paths crossing ev s.t. one of its ends is in γv

We define and compute the cost of a partial cluster type ℓ with respect to a node v (we
denote it by costℓv) recursively as follows. For the base case, costℓv = 0, if v is a leaf node. For
the recurrence, costℓv = costℓv1

+ costℓv2
+ loadℓ(ev1)w(ev1) + loadℓ(ev2)w(ev2), where v1, v2

are children of v. Note that the union of groups of each cluster always includes the root node
r (see Algorithm 1). One can verify that costℓr = costHν (C), if ℓ stores the exact weights and
sizes of the groups of the cluster. However, here, ℓ stores weights and sizes approximately
and therefore the edge load loadℓ(ev) might be overestimated by a factor of (1 + ϵ′) (by
choosing the number of thresholds appropriately large). In the next section, we will see
how this affects our approximation solution and results in a multiplicative error of at most
1 +O(ϵ) (provided that the tree has a logarithmic height).

Dynamic Program

The Dynamic Program (DP) starts at the leaves of T and works its way up, exploring
all possible ways to form clusters. For each node v and each possible configuration Pv

of partial clusters with respect to v, there is an entry in the DP table. A configuration
Pv ∈ [k]O(σσ−2( log n

ϵ′ )σ)} at node v lists the number of each type of partial cluster covering
points within subtree Tv. We let A[v,Pv] store the minimum cost to form a set of partial
clusters, which match the configuration Pv, and cover all points in Tv. Observe that the
number of such subproblems is at most nO(σσ−2( log n

ϵ′ )σ).
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(a) (b) (c)

Figure 4 Consider a node v and its children v1, v2. There are three possible scenarios in which v,
v1, and v2 may belong to one or two groups of a cluster. (a) is depicting the case where all three
nodes are in the same group, (b) is depicting the case that v and v1 are in the same group, (c) is
depicting the case that v and v2 are in the same group. Note that the case where all three nodes
belong to different groups does not happen due to Algorithm 1.

Consider a node v in the tree T . Assume for now that we have access to a table
λ[Pv,Pv1 ,Pv2 ], where Pv is the configuration at node v, and Pv1 and Pv2 are the configurations
at its children nodes v1 and v2, respectively. The table λ indicates whether the configurations
Pv, Pv1 , and Pv2 are consistent, meaning that there is a solution where the descriptions
of partial clusters below nodes v, v1, and v2 match the configurations Pv, Pv1 , and Pv2 ,
respectively. We shall describe how to compute λ. We will compute the subproblems A[v,Pv]
in a bottom-up manner: We will compute A[v,Pv] after we have computed the subproblems
A[v1,Pv1 ] and A[v2,Pv2 ] for the children of v. The subproblems are computed as follows:

Base Case. For every leaf node v and every configuration Pv, set: A[v,Pv] = 0 if there exists
a type ℓ such that Pv[ℓ] = 1 and ℓ is a leaf partial cluster at v. Otherwise, set A[v,Pv] = ∞.

Recurrence. Let load(v) =
∑

ℓ Pv[ℓ]loadℓ(ev). For each internal node v and its children,
v1, v2 and every combination of configurations of Pv on v and Pv1 ,Pv2 :

A[v,Pv] = min
Pv,Pv1 ,Pv2 :λ[Pv,Pv1 ,Pv2 ]=T rue

∑
i=1,2

(
A[vi,Pvi

] + load(vi)w(vvi)
)

The final solution is obtained by finding the minimum value of A[r,Pr] over all config-
urations Pr such that the sum of all Pr[ℓ] values equals k; and s⃗ℓ

r[i] = w⃗ℓ[i] holds, for each
partial cluster type ℓ with Pr[ℓ] > 0, and for all i.

Consistency Constraints. Consider a node v and its children v1, v2. Let Pv =
(tc, γv, s⃗v), Pv1 = (tc1 , γv1 , s⃗v1), Pv2 = (tc2 , γv2 , s⃗v2) be some valid partial cluster types at
v, v1, v2, respectively. We say Pv is consistent with Pv1 and Pv2 if the following conditions
are met:

Type Consistency. The types of Pv, Pv1 , and Pv2 must be the same, i.e. tc = tc1 = tc2 .
Group Consistency. The groups of Pv1 and Pv2 are consistent with those of Pv: Recall
that γv indicates the split group of a partial cluster Pv and Γv indicates the inner groups
of Pv. Let δin

v be the inner groups adjacent to γv in the backbone tree; δin
v = δ({γv})∩Γv,

where δ({γv}) indicates groups adjacent to γv (in the backbone tree). Depending on the
values of γv, γv1 , γv2 , one of the following cases holds:

If γv = γv1 = γv2 (Figure 4a), then δin
v1

∪ δin
v2

= δin
v , δin

v1
∩ δin

v2
= ∅.

If γv = γv1 and γv2 ∈ δin
v (Figure 4b), then δin

v1
= δin

v \ {γv2}, δin
v2

= δ({γv2}) \ {γv}.
If γv = γv2 and γv1 ∈ δin

v (Figure 4c), then δin
v2

= δin
v \ {γv1}, δin

v1
= δ({γv1}) \ {γv}.
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Size Consistency. The group sizes of P1 and P2 are consistent with those of P .
Depending on the values of γv, γv1 , γv2 , one of the following cases holds:

If γv = γv1 = γv2 , then we ensure that ϕ
(
s⃗v1 [γv1 ] + s⃗v2 [γv2 ]

)
= s⃗v[γv].

If γv = γv1 and γv2 ∈ δin
v , then we ensure that s⃗v2 [γv2 ] = w[γv2 ] and s⃗v1 [γv1 ] = s⃗v[γv].

If γv = γv2 and γv1 ∈ δin
v , then we ensure that s⃗v1 [γv1 ] = w[γv1 ] and s⃗v2 [γv2 ] = s⃗v[γv].

Note that the case that γv1 = γv2 , γv ̸= γv1 is impossible since each group of the cluster
covers a connected subtree. Furthermore, the case when γv1 ∈ δin

v & γv2 ∈ δin
v is impossible

using the fact that there is no point on the internal node v (see the preprocessing step).
The value of λ[Pv,Pv1 ,Pv2 ] is calculated recursively for every combination of configurations

of v and its children, v1, v2. For the base case λ[⃗0, 0⃗, 0⃗] = True. Let Pv − Pv indicate the
configuration of Pv with one less partial cluster of type Pv. For the recurrence, we consider
all possible consistent valid partial cluster types Pv, Pv1 and Pv2

λ[Pv,Pv1 ,Pv2 ] =
∨

∀ consistent Pv,Pv1 ,Pv2

λ[Pv − Pv,Pv1 − Pv1 ,Pv2 − Pv1 ]

Analysis

In our DP, configurations store the rounded sizes (and weights) of the partial clusters’ groups.
To ensure consistency between the sizes of the groups at node v and its children v1 and v2,
we allow the size of the group at v to be a (1 + ϵ′) upper bound for the combined size of
the groups at v1 and v2. This results in a multiplicative error of at most (1 + ϵ′) in the
calculation of the edges’ loads and so the cost of the partial clusters at each node of the tree
when the sizes (weights) of merged partial clusters are rounded. Given that the height of the
tree is h, it is not difficult to see that our dynamic programming approach finds a solution
that is an (1 + ϵ′)h-approximation to the problem.

The number of possible configurations Pv for each node v is at most nO(σσ−2( log n

ϵ′ )σ)),
resulting in nO(σσ−2( log n

ϵ′ )σ)) dynamic program table entries. To compute each entry in
the DP table, we iterate over all consistent configurations at v, v1, and v2, which takes
nO(σσ−2( log n

ϵ′ )σ)) time. Hence, the overall running time of the algorithm is nO(σσ−2( log n

ϵ′ )σ)),
which is still a quasi-polynomial time complexity in n. By setting ϵ′ = ϵ

log n in the threshold
mapping, the algorithm finds a (1 + ϵ) approximation solution in time nO(σσ−2( log n

ϵ )σ+1)).

▶ Theorem 9. There is a QPTAS for the k-MSC problem on trees with logarithmic heights.

3 The k-MSC Problem in Metrics of Bounded Treewidth

In this section, we extend our algorithm from Section 2 to metrics of bounded treewidth. A
tree decomposition of a graph G = (V,E) is a tree T = (V ′, E′) on a new set of nodes V ′,
where each i ∈ V ′ corresponds to a subset bi, called a bag, of vertices of V with the following
properties: (i) ∪i∈V ′bi = V , (ii) for every edge uv ∈ E, there exists a bag t of T such that bt

contains both u and v, (iii) if bi, bj contain vertex v then every bag on the path between i

and j in T contains v. The width of a tree decomposition T is the size of the largest bag of T
minus one; this is maxi∈V ′(|bi| − 1). The treewidth of a graph G is the minimum width over
all possible tree decompositions of G. The authors of [5] showed that any graph G = (V,E)
with treewidth f has a tree decomposition T of width at most 3f + 2 that has the following
two extra properties: (i) T is binary, (ii) the height of T is O(log |V |).

Given a graph G = (V,E) with a treewidth of f ′, we create a binary decomposition tree
T = (V ′, E′) with a width of no more than 3f ′ + 2 and a height of logarithmic in |V | (see [5]).
Let f be the width of T . We will refer to G as the graph and T as the tree. We will refer to
vertices in V as nodes and vertices in V ′ as bags. We will refer to edges in G as edges and
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edges in T as super-edges. Let T be rooted at an arbitrary bag r ∈ V ′. We use Tb to denote
the subtree rooted at the bag b, V ′(Tb) to denote the bag set of Tb, and E′(Tb) to denote the
super-edge set of Tb. Each node u ∈ V can appear in multiple bags of V ′, and these bags
form a subtree of T . To ensure that each point is covered only once, we consider the point
as a token placed at the node. We place the token of a node at the bag closest to the root of
T that contains the node. This bag is marked as the one containing the point.

We further modify the tree to make sure that (i) only the leaf bags contain the tokens
and (ii) each bag contains at most one token: for any bag A that violates these two rules,
create two new bags B and C that are identical copies of A. Move one of the tokens from the
original bag A to bag C and place any remaining tokens in bag B. Connect the children of
the original bag A to the newly created bag B. Connect both bags B and C to A. Finally, we
remove all leaf bags without any tokens. This process results in a binary tree decomposition
with a height of O(logn). We call this tree decomposition with these properties the proper
tree decomposition of the graph. For each point u ∈ V , we let Bu ∈ V ′ denote the bag
that contains point u. For each C ⊆ V , let BC = {Bu : u ∈ C}.

Consider a mapping p : V ′ → V ′ that maps each bag to its parent bag and maps r to
itself. Let eb be the super-edge between b and p(b) in T . The edges (s, t) where s ∈ b and
t ∈ p(b) are referred to as the bridge-edges with respect to the super-edge eb. We use the
notation es,t

b to refer to these edges. An edge between such vertices s ∈ b and t ∈ p(b) is
added in G with a weight of d(s, t) if it does not already exist. For any pair of points u and
v in V , one can verify that there exists a path between u ∈ Bu and v ∈ Bv in the tree T
consisting only of bridge-edges over the super-edges which is equivalent to the shortest path
between u and v in the graph. This path connects the bags Bu and Bv in T and only uses
the bridge-edges over the super-edges of the unique path connecting these bags in the tree.
The length of this path is equal to d(u, v), the distance between u and v in the graph G.
This path is referred to as pB(u, v).

For each bag b ∈ V ′, let V ′
b = ∪i∈V ′(Tb)bi denote the union of nodes in bags of V ′(Tb).

For a tree decomposition T = (V ′, E′) and a subset of bags V̂ ⊆ V ′, we use δ(V̂ ) = {bi ∈ V̂ :
bibj ∈ E′ & bj /∈ V̂ } to denote the border bags of V̂ . The proof of the following lemma is
analogous to that of Lemma 5.

▶ Lemma 10. Given a graph G = (V,E) of bounded treewidth, a proper tree decomposition
T = (V ′, E′) of G, a set of points C ⊆ V , for any ν > 0, there exists a partition of V ′

into a set of groups Cν = {g1, . . . , gσ} such that all of the following properties hold: (i)
The subgraph induced by each group g ∈ Cν is connected in T . (ii) For each group g ∈ Cν ,
|g ∩BC | ∈ [1,max {1, ν|C|}]. (iii) σ = O(1/ν). (iv) ∀g ∈ Cν , |δ(g)| = O(1/ν).

Let ν > 0. Consider a cluster C ⊆ V . Let Cν = {g1, . . . , gσ} be the groups
obtained by Lemma 10. For each such cluster C and any constant ν > 0, we let
Hν(C) = ∪σ

i=1 ∪j∈δ(gi) bj denote the border hubs of the cluster and costHν (C) =∑σ
i=1

∑σ
j=i+1

∑
u∈V (gi)∩C,v∈V (gj)∩C dHν (C)(u, v) be the ν-approximate cost of the cluster.

Notice that for any two points u and v in C that belong to different groups of Cν , the path
pB(u, v) passes through the hubs Hν(C), implying d(u, v) = dHν (C)(u, v). The proof of the
following is analogous to that of Theorem 7.

▶ Theorem 11. Given ϵ > 0, a (1 + ϵ)-approximation for k-MHC, will imply a (1 +O(ϵ))-
approximation for k-MSC on bounded treewidth graphs.
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3.1 QPTAS for k-MHC on Graphs of Bounded Treewidth

Given ν > 0 and a graph G(V,E) that has a proper decomposition tree T = (V ′, E′) with a
logarithmic height and a treewidth of f . Let OPT be the minimum cost of partitioning V
into k clusters C1, C2, · · · , Ck with the total cost being

∑k
i=1 costHν

(Ci). Given ϵ > 0, we
will present a dynamic program that finds a (1 + ϵ) approximation of OPT . This, as a result
of Theorem 11, leads to a (1 +O(ϵ)) approximation solution for the k-MSC problem.

Consider a cluster C ⊆ V . Let Cν = {g1, . . . , gσ} be the groups obtained by Lemma 10
on C. We define a backbone tree associated with the cluster C. This tree is made up of
O(1/ν) nodes that correspond to the groups of Cν and there are edges between the nodes
in the tree if the corresponding groups in Cν are connected by a super-edge in the tree T .
A cluster type is defined as a node-weighted backbone tree where each node in the tree is
assigned a weight from the threshold values Φϵ,n (see Definition 8) which represents the
number of points in the corresponding group rounded up to the nearest threshold value.

For each cluster C and bag b in tree T , we associate a partial cluster type to it. This
is represented by a triple (tc, γb, s⃗b) and includes: the type of the cluster, tc; the group of
the cluster that has bag b, γb; and a vector s⃗b, where s⃗b[i] denotes the number of points in
the ith group located in tree Tb. It is not hard to verify that the number of possible partial
clusters is O(σσ−2 logσ

(1+ϵ′) n) = O(( log n
ϵ )σ+1), where we fix σ = O(1/ν).

We use ℓ ∈ {1, 2, . . . , O(( log n
ϵ )σ+1)} to refer to a specific partial cluster type. A partial

cluster type ℓ with respect to a vertex b is considered valid if: the values of s⃗ℓ
v[i] for each

group i of ℓ are between 0 and w⃗ℓ[i], the value of w⃗ℓ[i] for each group i of ℓ is less than or
equal to max{ν.

∑
i′ w⃗ℓ[i′], 1}, and if v is a leaf vertex of T , then γℓ

v is a leaf node of the
backbone tree of ℓ. A partial cluster type ℓ is considered a leaf partial cluster type at a
vertex b if γℓ

b is a leaf node of the backbone tree of ℓ and s⃗ℓ
b[γℓ

v] = 1.
Consider a cluster C together with its groups Cν = {g1, . . . , gσ} and hubs Hν(C), and

let ℓ be the type of this cluster with respect to bag b. Here, we explain how to compute
the ν-approximate cost of the cluster, costHν (C). Let X = ∪σ

i=1Xi and Xi = {(u, v) : u ∈
V (gi) v ∈ C \ V (gi)}. Let eb denote the super edge connecting b to its parent bag p(b) in T .
We define load of a bridge-edge es,t

b with respect to the cluster C, its groups Cν , and hubs
Hν(C) to be the number of paths pB(u, v) that contain this edge over all {u, v} ∈ X. We
use loadℓ(es,t

b ) to represent the load of bridge-edge es,t
b with respect to partial cluster type ℓ

and bag b. Similarly, we use loadℓ(eb) to represent the load of super-edge eb with respect to
partial cluster type ℓ and bag b.

Similarly to the case of the tree, the load of the super-edge eb with respect to ℓ can be
calculated using the following formula: loadℓ(eb) =

( ∑σ
i=1,i̸=γb

s⃗ℓ
b[i]

)
×

( ∑σ
i=1(w⃗ℓ[i] − s⃗ℓ

b[i])
)
+

s⃗ℓ
b[γb] ×

( ∑σ
i/∈Γb

w⃗ℓ[i]
)
. Note that loadℓ(eb) computes the number of paths pHν (C)(u, v) in G

that cross the cut-set (b, p(b)) for all pairs of points (u, v) in the set X.
When computing the cost of a cluster type, it is necessary to take into account the load

among the bridge-edges. However, the load of a bridge-edge cannot be calculated simply from
the sizes and weights of the groups within the cluster, unlike the load of the super-edges.

To address this issue, for each partial cluster type ℓ and each b, we have defined a vector
ψℓ

b with a dimension of f2 (where f is the treewidth of the graph), that ψℓ
b[es,t

b ] specifies the
load of each bridge-edge es,t

b with respect to ℓ. One can now compute the cost of a partial
cluster ℓ at bag b, denoted by costℓb, recursively as follows. For the base case, costℓb = 0, if
b is a leaf bag. For the recurrence, costℓb = costℓb1

+ costℓb2
+

∑
{s,t}∈b1×b ψ

ℓ
b1

(eb1
s,t)w(eb1

s,t) +∑
{s,t}∈b2×b ψ

ℓ
b2

(eb2
s,t)w(eb2

s,t), where b1, b2 are children of b.
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We could attach ψℓ
b (with a dimension of f2 which approximately stores the flow of the

bridge edges) to the vectores we store for each cluster type ℓ to obtain a QPTAS for the
problem on graphs with bounded treewidth. However, this QPTAS cannot be extended to
include graphs with bounded highway dimension or graphs with bounded doubling dimensions
(as f becomes logarithmic in these cases). To address this issue, in the next section we
propose that at each bag v, it is sufficient to store information about the total flow of the
partial clusters that passes through the bridge edges, in addition to the information about
the type of partial cluster covering the points within the subtree. This eliminates the need
to separately store the flow of each partial cluster.

Dynamic program

The Dynamic Program (DP) traverses T starting at the leaves and moving upward and
considers all ways partial clusters can be made. At each bag b, a configuration < b,Pb, ψb >

is defined. In this configuration, Pb specifies the number of partial clusters of each type
covering points within Tb, and ψb specifies the total load for each bridge-edge over all the
partial cluster types ℓ specified in Pb; namely, ψb =

∑
ℓ Pb[ℓ].ψℓ

b.

Valid Configuration. The validity check of a configuration involves ensuring the feasibility of
the load distributions among partial clusters. For a given bag b and configuration (Pb, ψb), we
can use the loads of super edges to get the total loads crossing b: Ψb =

∑
ℓ Pb[ℓ]loadℓ(eb). We

say the configuration (Pb, ψb) is valid if the following holds: ϕ(Ψb) = ϕ

(∑
eb

s,t∈b×p(b) ψ[eb
s,t]

)
;

this is, the total load of the partial clusters crossing super-edge eb (this can be obtained via
Pb as described in the previous section) must be equal to the total load of the partial clusters
crossing all the bridge-edges with respect to the super-edge eb. Note that when b is a leaf,
this condition implies that, ϕ(

∑
eb

s,t∈b×p(b) ψ[eb
s,t]) = ϕ(

∑
i w[i] − 1).

Assume for now that we have access to an inner table φ[(P, ψ), (P1, ψ1), (P2, ψ2)] that for
every combination of configurations of (P, ψ) on b and (P1, ψ1), (P2, ψ2) on its children, b1, b2,
indicates whether they are consistent or not. The representation of ⊥ is used to indicate the
empty configurations for handling the cases when b is a leaf or has one child.

Let A[b,Pb, ψb] be the minimum cost solution for subproblem < b,Pb, ψb > in which
points in V ′

b are covered by a set of partial clusters whose types (and loads) are consistent
with the configuration Pb, ψb (recall that V ′

b = ∪i∈Tb
bi).

We will compute the subproblems A[b,Pb, ψb] in a bottom-up manner:

Base Case. For each leaf vertex b: A[b,Pb, ψb] = 0 if φ[(Pb, ψb),⊥,⊥] = True and otherwise
it is ∞.

Recurrence. For each internal vertex b and its children, b1, b2:

A[b,Pb, ψb] = min
φ[(Pb,ψb),(Pb1 ,ψb1 ),(Pb2 ,ψb2 )]=True

{ ∑
i=1,2

(
A[bi,Pbi , ψbi ] +

∑
{s,t}∈bi×b

ψb[ebi
s,t]w(ebi

s,t)
)}

The case of b having one child is similar. The final solution is obtained by finding the
minimum value of A[b,Pb, ψb] over all valid configurations < Pb, ψb > such that the sum of
all Pb[ℓ] values equals k.
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Consistency Constraints

Consider a bag b and its two children b1 and b2. Let < Pb, ψb >, < Pb1 , ψb1 >, and <

Pb2 , ψb2 > be some configurations at b, b1, and b2, respectively. To check the consistency of
them, there are two steps to follow: (1) verify the feasibility of partial cluster types; if the
types of the partial clusters in Pb match those in Pb1 and Pb2 . (2) ensure the feasibility of load
distributions; if the load distribution of the clusters in ψb aligns with the load distributions of
the clusters in ψb1 and ψb2 . If these two conditions are met, φ[(Pb, ψb), (Pb1 , ψb1), (Pb2 , ψb2)]
will be set to True. Otherwise, it will be set to False.

Feasibility of Partial Cluster Types. Here we check if there is a solution where the de-
scriptions of partial clusters below nodes b, b1, and b2 match the configurations Pb, Pb1 , and
Pb2 , respectively. This step guarantees that the final clustering covers all the points and
is therefore a valid solution. This check is very similar to the consistency verification we
performed in the case of the tree. There are three cases, depending on whether b is a leaf, a
bag with one child, or a bag with two children:

when b is a leaf: Pb[ℓ] = 1 must hold for some ℓ, where ℓ is a leaf partial cluster at b.
when b has one child, say bag b1: since there is no point (token) on internal bags, b and b1
must belong to the same group. In this case, we must ensure the following: tb = tb1 (type
consistency); γb = γb1 , δ

in
b = δin

b1
(group consistency); and s⃗b = s⃗b1 (size consistency).

when b has two children, b1, b2. Let P = (tc, γb, s⃗b), P1 = (tc1 , γb1 , s⃗b1), P2 = (tc2 , γv2 , s⃗b2)
be considered partial cluster types at b, b1, b2, respectively. Note that the type of a cluster
is made up of backbone tree tb and weights w⃗. Recall that similar to trees, δ({γb}) stands
for the adjacent bags of γb and δin

b stands for the adjacent bags of γb inside Tb. We say
the partial cluster type P (with respect to Tb) is consistent with the two partial clusters
P1 and P2 (with respect to Tb1 and Tb2 , respectively) if the following holds: (i) (type
consistency) tc = tc1 = tc2 . (ii)(group consistency) If γb = γb1 = γb2 , then we ensure
that δin

b1
∪ δin

b2
= δin

b and δin
b1

∩ δin
b2

= ∅. If γb = γb1 and γb2 ∈ δin
b , then we ensure that

δin
b1

= δin
b \ {γb2} and δin

b2
= δ({γb2}) \ {γb}. If γb = γb2 and γb1 ∈ δin

b , then we ensure that
δin

b2
= δin

b \ {γb1} and δin
b1

= δ({γb1}) \ {γb}. (iii) (size consistency) If γb = γb1 = γb2 , then
we ensure that ϕ

(
s⃗b1 [γb1 ] + s⃗b2 [γb2 ]

)
= s⃗b[γb]. If γb = γb1 and γb2 ∈ δin

b , then we ensure
that s⃗b2 [γb2 ] = w[γb2 ] and s⃗b1 [γb1 ] = s⃗b[γb]. If γb = γb2 and γb1 ∈ δin

b , then we ensure
that s⃗b1 [γb1 ] = w[γb1 ] and s⃗b2 [γb2 ] = s⃗b[γb].

For every combination of configurations on b and its children, b1, b2, λ[Pb,Pb1 ,Pb2 ] is
computed recursively as below. For the base case λ[⃗0, 0⃗, 0⃗] = True. For the recurrence, we
consider all possible consistent partial cluster types Pb, Pb1 and Pb2

λ[Pb,Pb1 ,Pb2 ] =
∨

∀ consistent Pb,Pv1 ,Pv2

λ[Pb − Pb,Pb1 − Pb1 ,Pb2 − Pb1 ]

where Pb − Pb indicates the configuration of Pb with one less partial cluster of type Pb.

Feasibility of Load Distributions. This ensures that the sum of all flows through the bridge
edges into bag b and the sum of all flows out of it are consistent, and that the flow originates
only from points that have tokens. This confirms the accuracy of the solution cost calculated
using these bridge-edge load distributions. There are three cases, depending on whether b is
a leaf, a bag with one child, or a bag with two children:

when b is a leaf. Suppose y ∈ b is the only point of bag b, we must ensure that:
∀st : s ∈ b, t ∈ p(b), s ̸= y, ψ[eb

s,t] = 0
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when b has one child, say b1. Loads of configurations ψb, ψb1 are consistent if and only if,
for each vertex of b, the load coming from b1 into each vertex of b is equal to the load
going upwards, formulated as following: ∀t ∈ b.

∑
s∈b1

ψ[eb1
s,t] =

∑
u∈p(b) ψ[eb

t,u]
when b has two children, b1, b2. For each t ∈ b let Lt be

∑
s∈b1

ψ[eb1
s,t], Rt be

∑
s∈b1

ψ[eb2
s,t],

Ut be
∑

s∈p(b) ψ[eb
t,s]. Load vectors of configurations ψb, ψb1 , ψb2 are consistent if and

only if for each u ∈ bb one of the following constraints must hold: Lb + Rb = Ub or
|Lb −Rb| = Ub.

Proof of Theorem 1. There are O(( log n
ϵ )σ+1) possible partial clusters, so the number of

subproblem configurations, Pb, at bag b is nO(( log n
ϵ )σ+1). The number of the possible values

for ψ, is nf2 , resulting in a number of DP table entries of nO(f2+( log n
ϵ )σ+1).

Deciding configurations (Pb, ψb), (Pvb
, ψb1), (Pb2 , ψb2) are consistent requires iterating over

all consistent configurations which are at most equal nO(f2+( log n
ϵ )σ+1). Therefore the running

time is nO(f2+( log n
ϵ )σ+1), which is quasi-polynomial in n. Notice that even if treewidth is

poly-logarithmic, the running time stays quasi-polynomial.
We lose a factor of (1 + ϵ/ logn) when computing A[b,Pb] at each level of recursion. Since

the height of the tree is at most c logn, the approximation factor of the solution is 1 + ϵ. ◀

4 Bounded Doubling, Highway Dimension, and Minor-Free Metrics

We assume that the aspect ratio of a given metric in a k-MSC instance is polynomially
bounded (the details are omitted). We use our QPTAS for k-MSC on graphs with bounded
treewidth as a black box and combine it with embeddings into polylogarithmic-treewidth
graphs [7, 10, 14] to develop QPTASs for k-MSC on metric spaces with bounded doubling
dimension1, bounded highway dimension, and minor-free metrics. The details are omitted in
this version of the paper.
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