
Connectivity in the Presence of an Opponent
Zihui Liang1 #

University of Electronic Science and Technology of China, Chengdu, China

Bakh Khoussainov1 #

University of Electronic Science and Technology of China, Chengdu, China

Toru Takisaka #

University of Electronic Science and Technology of China, Chengdu, China

Mingyu Xiao #

University of Electronic Science and Technology of China, Chengdu, China

Abstract
The paper introduces two player connectivity games played on finite bipartite graphs. Algorithms
that solve these connectivity games can be used as subroutines for solving Müller games. Müller
games constitute a well established class of games in model checking and verification. In connectivity
games, the objective of one of the players is to visit every node of the game graph infinitely often.
The first contribution of this paper is our proof that solving connectivity games can be reduced
to the incremental strongly connected component maintenance (ISCCM) problem, an important
problem in graph algorithms and data structures. The second contribution is that we non-trivially
adapt two known algorithms for the ISCCM problem to provide two efficient algorithms that solve
the connectivity games problem. Finally, based on the techniques developed, we recast Horn’s
polynomial time algorithm that solves explicitly given Müller games and provide the first correctness
proof of the algorithm. Our algorithms are more efficient than that of Horn’s algorithm. Our solution
for connectivity games is used as a subroutine in the algorithm.
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1 Introduction

1.1 Müller games given explicitly
In the area of logic, model checking, and verification of reactive systems, studying games played
on graphs is a key research topic [10]. This is mostly motivated through modelling reactive
systems and reductions of model checking problems to games on graphs. Understanding the
algorithmic content of determinacy results is also at the core of this research. Müller games
constitute a well-established class of games for verification. Recall that a Müller game G is a
tuple (V0, V1, E, Ω), where

The tuple G = (V0 ∪ V1, E) is a finite directed bipartite graph so that V0 and V1 partition
the set V = V0 ∪ V1. Usually G is called the arena of G.
The set E ⊆ (V0 × V1) ∪ (V1 × V0) of edges.
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79:2 Connectivity in the Presence of an Opponent

V0 and V1 are sets from which player 0 and player 1, respectively, move. Positions in Vσ

are called player σ positions, σ ∈ {0, 1}.
Ω ⊆ 2V is a collection of winning sets.

Say that the game G = (V0, V1, E, Ω) is explicitly given if V , E, and all sets in Ω are fully
presented as input. The (input) size of explicitly given Müller game is thus bounded by
|V | + |E| + 2|V | · |V |. Finally, the game graph of the Müller game G is the underlying bipartite
graph G = (V0 ∪ V1, E).

For each v ∈ V , let E(v) = {u | E(v, u)} be the set of successors of v. Let X ⊆ V . Call
the set E(X) =

⋃
v∈X E(v) the successor of X. Similarly, for a v ∈ V , the predecessor of v

is the set E−1(v) = {u | (u, v) ∈ E}. Call the set E−1(X) =
⋃

v∈X E−1(v) the predecessor
of X.

Let G = (V0, V1, E, Ω) be a Müller game. The players play the game by moving a given
token along the edges of the graph. The token is initially placed on a node v0 ∈ V . The play
proceeds in rounds. At any round of the play, if the token is placed on a player σ’s node v,
then player σ chooses u ∈ E(v), moves the token to u and the play continues on to the next
round. Formally, a play (starting from v0) is a sequence ρ = v0, v1, . . . such that vi+1 ∈ E(vi)
for all i ∈ N. If a play reaches a position v such that E(v) = ∅, then player 1 wins the play.
For an infinite play ρ, set Inf(ρ) = {v ∈ V | ∃ωi(vi = v)}. We say player 0 wins the play ρ if
Inf(ρ) ∈ Ω; otherwise, player 1 wins the play.

A strategy for player σ is a function that takes as inputs initial segments of plays
v0, v1, . . . , vk where vk ∈ Vσ and output some vk+1 ∈ E(vk). A strategy for player σ

is winning from v0 if, assuming player σ follows the strategy, all plays starting from v0
generated by the players are winning for player σ. The game G is determined if one of the
players has a winning strategy. Müller games are Borel games, and hence, by the result of
Martin [18], they are determined. Since Müller games are determined we can partition the
set V onto two sets Win0 and Win1, where v ∈ Winσ iff player σ wins the game starting
at v, σ ∈ {0, 1}. To solve a given Müller game G = (V0, V1, E, Ω) means to find the sets
Win0 and Win1. There are several known algorithms that solve Müller games. These
algorithms provide the basis for analysis and synthesis of Müller games. In particular, these
algorithms extract finite state winning strategies for the players [8, 12, 13, 19, 20, 22]. Also,
efficiency of algorithms depend on the underlying structure of graphs [17] [9]. We stress
that the algorithms that solve Müller games depend on the presentations of the games. The
problem of solving Müller games is typically in PSPACE for many reasonable representations
[19, 20]. However, if the winning condition is represented as a Zielonka tree [22] or as the
well-known parity condition, then solving the games turns into a NP ∩ co-NP problem [5].
P. Hunter and A. Dawar [13] investigate five other representations: win-set, Muller, Zielonka
DAGs, Emerson-Lei, and explicit Muller. They show that the problem of the winner is
PSPACE-hard for the first four representations. F. Horn [12] provides a polynomial time
algorithm that solves explicit Müller games. However, his proof of correctness has non-trivial
flaws. So, we provide an alternative correctness proof based on ideas totally independent of
Horn’s. Designing new algorithms, improving and analysing the state of the art techniques
in this area is a key research direction. This paper contributes to this.

1.2 Connectivity games
One motivation for defining connectivity games comes from solving Müller games. Many
algorithms that solve Müller games or its variants are recursive. Given a Müller game G, one
constructs a set of smaller Müller games. The solution of the games G′ from this set is then
used to solve G. Through an iteration process, these reductions produce sequences of the



Z. Liang, B. Khoussainov, T. Takisaka and M. Xiao 79:3

form G1, G2, . . . , Gr, where Gi+1 = G′
i such that G′

r = Gr+1. The key point is that solving the
game Gr at the base of this iteration boils down to investigating connectivity of the graph
Gr in the game-theoretic setting. Namely, to win the game Gr, one of the players has to visit
all the nodes of Gr infinitely often. This observation calls for deeper and refined analysis of
those Müller games G = (V0, V1, E, Ω) where the objective of player 0 is to visit all the nodes
of the underlying graph G, that is, Ω = {V }. We single out these games:

▶ Definition 1. A Müller game G = (V0, V1, E, Ω) is called a connectivity game if Ω is a
singleton that consists of V .

The second motivation to investigate the connectivity games comes from the concept of
connectivity itself. The notion of (vertex) connectivity is fundamental in graph theory and
its applications. There is a large amount of work ranging from complexity theoretic issues
to designing efficient data structures and algorithms that aim to analyse connectivity in
graphs. Connectivity in graphs and graph like structures is well-studied in almost all areas
of computer science in various settings and motivations. For undirected graphs, connectivity
of a graph G is defined through existence of paths between all vertices of G. For directed
graphs G connectivity is defined through strong connectivity. The digraph G is strongly
connected if for any two vertices x and y there exist paths from x to y and from y to x. One
can extend these notions of (vertex) connectivity into a game-theoretic setting as follows.
There are two players: player 0 and player 1. A token is placed on a vertex v0 of a bipartite
graph G = (V0 ∪ V1, E). Player 0 starts the play by moving the token along an outgoing
edge (v0, v1). Player 1 responds by moving the token along an outgoing edge from the vertex
v1, say (v1, v2). This continues on and the players produce a path v0, v1, . . . , vk called a play
starting at v0. Say that player 0 wins the play v0, v1, . . . , vk if the play visits every node in
V . Call thus described game forced-connectivity game. A posssible scenario for this situation
is that player 0 wants to pass a message through all the nodes of a given network in the
presense of an adversary. If player 0 has a winning strategy, then we say that the player wins
the game starting at v0. Winning this forced-connectivity game from v0 does not always
guarantee that the player wins the game starting at any other vertex. Therefore we can define
game-theoretic connectivity as follows. A directed bipartite graph G is forced-connected if
player 0 wins the forced-connectivity game in G starting at any vertex of G. Thus, finding
out if G is a forced-connected is equivalent to solving connectivity games as in Definition 1.

▶ Definition 2. Let G = (V0, V1, E, Ω) be a connectivity game. Call the bipartite graph
G = (V0, V1, E) forced-connected if player 0 wins the game G.

The third motivation is related to generalised Büchi winning condition. The generalised
Büchi winning condition is given by subsets F1, . . ., Fk of the game graph G. Player 0 wins a
play if the play meets each of these winning sets F1, . . ., Fk infinitely often. Our connectivity
games winning condition can be viewed as a specific generalised Büchi winning condition
where the accepting sets are all singletons.

1.3 Our contributions
The focus of this paper is two-fold. On the one hand, we study connectivity games and
provide the state-of-the-art algorithms for solving them. H. Bodlaender, M. Dinneen, and
B. Khoussainov [3, 4] call connectivity games update games. Their motivation comes from
modelling the scenario where messages should be passed to all the nodes of the network in
the presence of adversary. On the other hand, using the connectivity game solution process
as a subroutine, we recast Horn’s polynomial time algorithm that solves explicitly given
Müller games and provide a proof of its correctness. We detail these below.

ESA 2023



79:4 Connectivity in the Presence of an Opponent

1. Our first contribution is that given a connectivity game G, we construct a sequence of
directed graphs G0, G1, . . . , Gs such that player 0 wins G if and only if Gs is strongly
connected [See Theorem 8]. Due to this result, we reduce solving connectivity game
problem to the incremental strongly connected component maintenance (ISCCM) problem,
one of the key problems in graph algorithms and data structure analysis [1, 11].

2. A standard brute-force algorithm that solves the connectivity game G runs in time
O(|V |2(|V | + |E|)). H. Bodlaender, M. Dinneen, and B. Khoussainov in [3, 4, 7, 16]
provided algorithms that solve the connectivity games in O(|V ||E|). Due to Theorem 8,
we solve the connectivity game problem by adapting two known algorithms that solve
the ISCCM problem. The first algorithm is by Haeupler et al. [11] who designed the
soft-threshold search algorithm that handles sparse graphs. Their algorithm runs in time
O(

√
mm), where m is the number of edges. The second is the solution by Bender et al.

[1, 2]. Their algorithm is best suited for the class of dense graphs and runs in time of
O(n2 log n), where n is the number of vertices. By adapting these algorithms, we design
new algorithms to solve the connectivity games. The first algorithm, given a connectivity
game G, runs in time O((

√
|V1| + 1)|E| + |V1|2) [See Theorem 9]. The first feature of this

algorithm is that the algorithm solves the problem in linear time in |V0| if |V1| is considered
as a parameter. The parameter constant in this case is |V1|3/2. The second feature is that
the algorithm runs in linear time if the underlying game graph is sparse. Our second
algorithm solves the connectivity game in time O((|V1| + |V0|) · |V0| log |V0|) [See Theorem
10]. In contrast to the previous algorithm, this algorithm solves the connectivity game
problem in linear time in |V1| if |V0| is considered as a parameter. The parameterised
constant is |V0| log |V0|. Furthermore, the second algorithm is more efficient than the first
one on dense graphs. These two algorithms outperform the standard bound O(|V ||E|),
mentioned above, for solving the connectivity games. As a framework, this is similar to
the work of K. Chatterjee and M. Henzinger [6] who improved the standard O(|V ||E|)
time bound for solving Büchi games to O(|V |2) bound through analysis of maximal
end-component decomposition algorithms.

3. In [12] Horn provided a polynomial time algorithm that solves explicitly given Müller
games. In his algorithm, Horn uses the standard procedure of solving connectivity
games as a subroutine. Directly using our algorithms above, as a subroutine to Horn’s
algorithm, we obviously improve Horn’s algorithm in an order of magnitude. Horn’s proof
of correctness uses three lemmas (see Lemmas 5, 6, and 7 in [12]). However, his Lemmas
6 and 7 contain non-trivial flaws. We provide our independent proof of correctness. In
terms of ideas, our proof is completely different from Horn’s proof ideas. We discuss
these in Section 6. To the best of our knowledge, this is the first work that correctly and
fully recasts Horn’s polynomial time algorithm with the efficient sub-routine for solving
the connectivity games. Furthermore, in terms of running time, our algorithms perform
better than that of Horn’s algorithm [See Theorem 20 and Theorem 21]. For instance,
one of our algorithms decreases the degree of |Ω| from |Ω|3 in Horn’s algorithm to |Ω|2
[See Theorem 21]. Since |Ω| is bounded by 2|V |, the improvement is significant.

2 A characterization theorem

A Müller game G = (V0, V1, E, Ω) is a connectivity game if Ω = {V }. In this section we
focus on connectivity games G. In the study of Müller games, often it is required that
for each v the successor set E(v) = {u | (v, u) ∈ E} is not empty. We do not put this
condition as it will be convenient for our analysis of connectivity games to consider cases
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when E(v) = ∅. Recall that a strongly connected component of a directed graph is a maximal
set X such that there exists a path between any two vertices of X. Denote the collection
of all strongly connected components of the game graph G of game G by SCC(G). For all
distinct components X, Y ∈ SCC(G), we have X ∩ Y = ∅ and

⋃
X∈SCC(G) X = V .

▶ Definition 3. Let G be a connectivity game. Consider two sets U ⊆ V1 and S ⊆ V . Define

Force(U, S) = {v | v ∈ (E−1(S) \ S) ∩ U and E(v) ⊆ S}.

▶ Definition 4. We say that a set X ⊆ V in game G is a forced trap (FT) if either
|X| = 1 or if |X| > 1 then E(X ∩ V1) ⊆ X and X is strongly connected. Further X is
forced-connected component (FCC) if either |X| = 1 or if |X| > 1 then the sub-game
G(X) of the game G played in X is forced-connected.

▶ Lemma 5. Let C = {C1, C2, . . . , Ck}, where k > 1, be a collection of FTs that partition
the game graph G. If G is forced-connected then for every X ∈ C there is a Y ∈ C distinct
from X such that either Y is a singleton consisting of a player 1’s node and E(Y ) ⊆ X, or
Y has player 0’s node y with E(y) ∩ X ̸= ∅.

We now define the sequence {Gk}k≥0 of graphs. Initially, in G0, the edges are only those
that start in the nodes of player 0. Then the inductive construction increases the set of edges
as follows. Intuitive explanation of the process is the following. Throughout the sequence, the
invariant that FTs coincide with strongly connected components is maintained. By Lemma
7, these FTs are FCCs. This is ensured at each iteration by only adding the edges of those
Player 1 vertices from where Player 1 is forced onto an existing SCC in the graph constructed
so far. When this iteration terminates, the FCCs of the original graph coincide with the
FCCs of the resulting graph, which in turn coincides with the SCCs by the invariant.

Here is now a formal process. We will call each Gk the kth-derivative of G. We will also
view each Gk as a connectivity game. Our construction is the following.

Initially, for k = 0, set F0 = ∅, U0 = V1 and G0 = (V0, V1, E0), where E0 consists of all
outgoing edges in E of player 0.
For k > 0, consider the set Fk =

⋃
S∈SCC(Gk−1) Force(Ui−1, S), and define Uk = Uk−1\Fk,

Gk = (V0, V1, Ek), where Ek = Ek−1 ∪ {(v, u) | v ∈ Fk and (v, u) ∈ E}.
Note that the SCCs of G0 are all singletons. For k = 1 we have the following. The set F1
consists of all player 1 nodes of out-degree 1. The set E1 contains E0 and all outgoing edges
from the set F1. We note that each SCC of G1 is also a FT in G1. Therefore each SCC X

in G1 is also a maximal FT. Observe that each Fk ⊆ Uk−1 consists of player 1’s nodes v

such that all moves of player 1 from v go to the same SCC in Gk−1. Moreover, Uk is the set
of player 1’s nodes whose outgoing edges aren’t in Ek. Now we list some properties of the
sequence {Gk}k≥0. A verification of these properties follows from the construction:

For every player 1’s node v and k > 0, the outgoing edges of v are in Ek \ Ek−1 iff all the
outgoing edges of v point to the same SCC in Gk−1 and in Gk−1 the out-degree of v is 0.
For each k ≥ 0, every SCC in Gk is a FT in Gk.
For all k ≥ 0 we have Fk+1 ⊆ Uk ⊆ Uk−1 ⊆ . . . ⊆ U0 = V1.
For all k1 ̸= k2 we have Fk1 ∩ Fk2 = ∅.
If Fk = ∅ with k > 0 then for all i ≥ k, Gi = Gk−1. We call the minimal such k the
stabilization point and denote it by s. Note that s ≤ |V1|.
If for all X ∈ SCC(Gk), either |X| > 1 or X is a singleton consisting of player 0’s node
only then Gk = G.
For each k ≥ 0 and player 1’s node v, if v is in a nontrivial SCC in Gk then all v’s outgoing
edges from v are in Ek.

ESA 2023



79:6 Connectivity in the Presence of an Opponent

▶ Lemma 6. If G is forced-connected and |SCC(Gk)| > 1, then Gk ̸= Gk+1.

Given a connectivity game G, we now construct a sequence of forests {Γk(G)}k≥0 by
induction. The idea is to represent the interactions of the SCCs of the graphs Gk with SCCs
of the Gk−1, for k = 1, 2, . . .. The sequence of forests Γk(G) = (Nk, Sonk), k = 0, 1, . . ., is
defined as follows:

For k = 0, set Γ0(G) = (N0, Son0), where N0 = {{v} | v ∈ V } and Son0({v}) = ∅ for all
v ∈ V .
For k > 0, let C = SCC(Gk) \ Nk−1 be the set of new SCCs in Gk. Define the forest
Γk(G) = (Nk, Sonk), where

1. Nk = Nk−1 ∪ C, and
2. Sonk = Sonk−1 ∪ {(X, Y ) | X ∈ C, Y ∈ SCC(Gk−1) and Y ⊂ X}.
Thus the new SCCs X that belong to C have become the roots of the trees in the forest
Γk(G). The children of X are now SCCs in Gk−1 that are contained in X.

Note that if s is the stabilization point of the sequence {Gk}k≥0, then for all k ≥ s we have
Γk(G) = Γs(G). Therefore, we set Γ(G) = Γs(G). Thus, for the forest Γ(G) we have N = Ns

and Son = Sons. The following properties of the forest Γ(G) can easily be verified:
For all nodes X ∈ N , X’s sons partition X =

⋃
Y ∈Son(X) Y .

For all nodes X ∈ N with |X| > 1, E(X ∩ V1) ⊆ X.
The roots of Γ(G) are strongly connected components of Gs.

▶ Lemma 7. Consider Γ(G) = (N, Son). Let X ∈ N be such that |X| > 1. Then the
sub-game G(X) of the game G played in X is forced-connected.

Given the results above, we now relate solving forced connectivity problem to strong
connectedness in directed graphs:

▶ Theorem 8 (Characterization Theorem). The connectivity game G is forced-connected if
and only if the directed graph Gs is strongly connected.

3 Solving connectivity games efficiently

In a dynamic setting the increment strongly connected maintenance (ISCCM) problem is
stated as follows. Initially, we are given n vertices and the empty edge set. A sequence of
edges e1, . . . , em are added. No multiple edges and loops are allowed. The goal is to design
a data structure that maintains the SCCs of the graphs after each addition of edges. By
Theorem 8 the connectivity games problem is reduced to the incremental strongly connected
component maintenance (ISCCM) problem. Note that Tarjan’s algorithm solves the static
version of the strongly connected component maintenance problem in time O(m) [21].

We mention two algorithms that solve the ISCCM problem. The first is the soft-threshold
search algorithm by Haeupler et al. [11] that handles sparse graphs. Their algorithm runs in
time O(

√
mm). The second is by Bender et al. [1, 2]. Their algorithm is best suited for the

class of dense graphs and runs in time of O(n2 log n). We adapt these algorithms carefully
in the proofs of our Theorems 9 and 10 below.

▶ Theorem 9. The connectivity game G can be solved in time O((
√

|V1| + 1)|E| + |V1|2).

We point out two features of this theorem. The first is that if the cardinality |V1|
is considered as a parameter, then we can solve the problem in linear time in |V0|. The
parameter constant in this case is |V1|3/2. The second feature is that the algorithm runs in
linear time if the underlying game graph is sparse. Our second theorem is the following:
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▶ Theorem 10. The connectivity game G can be solved in time O((|V1| + |V0|) · |V0| log |V0|).

In comparison to the theorem above, this theorem implies that we can solve the problem
in linear time in |V1|. The parameterised constant is |V0| log |V0|. Furthermore, the algorithm
is more efficient than the first one on dense graphs.

Finally, both of the algorithms outperform the standard known bound O(|V ||E|) that
solves the connectivity games.

4 Solving explicitly given Müller games

We start with standard notions about games on graphs. Let G be a Müller game. A set
S ⊆ V determines a subgame in G if for all v ∈ S we have E(v) ∩ S ̸= ∅. We call G(S), the
subgame of G determined by S. The set S ⊆ V is a σ-trap in G if S determines a subgame
in G and E(S ∩ Vσ) ⊆ S.

Let Winσ(G) be the set of all v in G such that player σ wins G starting from v. If
Winσ(G) = V , we say that player σ wins G. Otherwise, we say that player σ cannot win G.

Let Attrσ(X, G(Y )) be the set of all v in Y such that player σ can force the token from
v to X in game G(Y ).

Let Ω be the set of all winning sets of the Müller game G. We topologically order < the set
Ω, that is, for all distinct X, Y ∈ Ω, if X ⊊ Y then X < Y . Thus, if W1 < W2 < . . . < Ws is
a topological linear order on Ω then we have this. If i < j then Wi ̸⊇ Wj .

Below we provide several results that are interesting on their own. We will also use them
in our analysis of Müller games.

▶ Lemma 11. Let G be a game, F0 = Ω and F1 = 2V \ Ω. If V ∈ Fσ and for all v ∈ V ,
either Attrσ({v}, G) = V or player σ wins G(V \ Attrσ({v}, G)) then player σ wins G.

The proof of the next lemma uses the lemma above:

▶ Lemma 12. Let S = {S1, S2, . . . , Sk} ⊆ 2V \ {V } be the collection of all 0-traps in G and
assume that V ∈ Ω. If for all Si ∈ S, player 1 can’t win G(Si) then player 0 wins G.

The next lemma shows that we can reduce the size of the wining condition set Ω′ if one
of the sets W ∈ Ω′ is minimal (with respect to ⊆) and not forced-connected. The proof uses
Lemmas 11 and 12.

▶ Lemma 13. Let W ⊆ V be a subgame. If G(W ) isn’t forced-connected and no winning set
in Ω is contained in W , then Win1(G) = Win1(G′), where G′ is the same as G but has the
additional winning set: Ω′ = Ω ∪ {W}.

Let G be Müller game with Ω = {W1, W2, . . . , Ws}. For the next two lemmas and the
follow-up theorem we assume that there exists a W ∈ Ω such that G(W ) is forced-connected
and W isn’t a 1-trap. The following is a construction that occurs naturally if one wants to
analyse Müller games. We attribute this to Horn [12]:

▶ Definition 14 (Horn’s construction). Let W ∈ Ω such that G(W ) is forced-connected and is
not a 1-trap. The game GW = (GW , ΩW ) determined by W is defined as follows:

1. VW = V0 ∪ V1 ∪ {W}, where W is a player 1’s new vertex.
2. EW = E ∪ (V0 ∩ W ) × {W} ∪ {W} × (E(V1 ∩ W ) \ W ).
3. ΩW = (Ω ∪ {W ′ ∪ {W} | W ′ ∈ R}) \ (R ∪ {W}), where the set R is the following

R = {W ′ | W ′ ∈ Ω and W ⊂ W ′}.

ESA 2023



79:8 Connectivity in the Presence of an Opponent

Note that |ΩW | + 1 = |Ω|, and GW (W ) is forced-connected. Thus, similar to the lemma
above, Horn’s construction also reduces the size of Ω. Now our goal is to show that Horn’s
construction preserves the winners of the original game. This is shown in the next two
lemmas. Here we note that Horn’s original proof of his correctness followed a different line
of proof; this will be explained later.

▶ Lemma 15. We have Win0(GW ) \ {W} ⊆ Win0(G).

Proof. Let σW be a winning strategy for player 0 in game GW starting at s ∈ V . We now
describe a winning strategy for player 0 in G starting from s. Player 0 plays the game G by
simulating plays ρ consistent with σW in GW . If a play ρ stays out of W, then the player 0
copies ρ in G. Once ρ moves to W, then player 0 in G moves to any node in W ∩ V1. Then
player 0 stays in W and uses its strategy to visit every node in W . If player 1 moves out of
W to a node u in G, this will correspond to a move by player 1 from W to u in GW . Player
0 continues on simulating ρ.

Let ρ′ be the play in G consistent with the strategy. If ρ meets W finitely often then
Inf(ρ) = Inf(ρ′) and Inf(ρ′) ∈ Ω. If ρ never moves out of W from some point on, then
Inf(ρ′) = W . In both cases player 0 wins. If the simulation leaves W infinitely often, then
Inf(ρ) ∈ {W ′ ∪ {W} | W ′ ∈ R} and W ⊆ Inf(ρ). Therefore

Inf(ρ′) ⊆ Inf(ρ) \ {W} ∪ W = Inf(ρ) \ {W} ⊆ Inf(ρ′),

and hence Inf(ρ′) = Inf(ρ) \ {W} ∈ R, and player 0 wins. ◀

The next lemma is more involved. Assume that the set W ′ ⊆ V determines a subgame in
G. Then W ′ also determines a subgame of GW . We call the set W ′ extendible if W ′ ∪{W} is a
subgame of GW . Note that there could exist non-extendible W ′. In particular, some winning
sets in Ω could become non-extendible in GW . In the analysis of Win1(GW ) extendible and
non-extendible sets must be taken into account. The lemma below does extactly that.

▶ Lemma 16. We have Win1(GW ) \ {W} ⊆ Win1(G).

Proof. We define the following two sets of subgames of the game G. The first set A is the
following set of subgames of G:

{W ′ | W ′ is extendible & player 1 wins GW (W ′ ∪ {W})}.

Note that if W ′ ∈ A then player 1 wins the subgame GW (W ′). The second set B is the
following set of subgames of G:

{W ′ | W ̸⊆ W ′ and player 1 wins GW (W ′)}.

Now we define the set S = A ∪ B. The sets A and B are disjoint. The set W does not belong
to S because W ∪ {W} is not a subgame in GW and W ̸∈ B by definition of B. Note that
the set B can contain sets W ′ that are subsets of non-extendible (winning) sets.

Since player 1 wins GW (Win1(GW )), Win1(GW ) is a 0-trap in GW and it’s easy to see that
Win1(GW )\{W} is also a 0-trap in G. Then if W ∈ Win1(GW ) then Win1(GW )\{W} ∈ A,
otherwise Win1(GW ) \ {W} ∈ B. Since Win1(GW ) \ {W} ∈ S, to prove the lemma it suffices
to show that player 1 wins G(S) for all S ∈ S.

Topologically order S: S1 < S2 < . . . < Ss. For each ℓ = 1, 2, . . . , s, we want to show
that player 1 wins G(Sℓ). As player 1 wins GW (Sℓ), for all 1-traps S′ ⊂ Sℓ player 1 wins
GW (S′). Let T = {T1, T2, . . . Tt} ⊆ 2Sℓ \ {Sℓ} be all 1-traps in the game G(Sℓ). For each
Ti ∈ T we reason as follows.
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Case 1: W ⊆ Ti. Then EW (W)∩Ti = (EW (V1 ∩W )\W )∩Ti = (EW (V1 ∩W )\W )∩Sℓ =
EW (W) ∩ Sℓ. Since W ⊆ Sℓ implies player 1 wins GW (Sℓ ∪ {W}) and EW (W) ∩ Sℓ ̸= ∅,
Ti ∪ {W} is also a 1-trap in the game GW (Sℓ ∪ {W}) and player 1 wins GW (Ti ∪ {W}).
Hence Ti belongs to A.

Case 2: W ̸⊆ Ti. Note that Ti is also a 1-trap in the game GW (Sℓ) and player 1 wins
GW (Ti). Hence Ti belongs to B.

Thus, T ⊂ S and by hypothesis, player 1 wins all G(Ti).
If Sℓ ∈ B then player 1 wins G(Sℓ) = GW (Sℓ). Otherwise Sℓ ∈ A and player 1 wins

GW (Sℓ ∪ {W}).
If Sℓ /∈ Ω, then for all v ∈ Sℓ, Attr1({v}, G(Sℓ)) = Sℓ or player 1 wins G(Sℓ \
Attr1({v}, G(Sℓ))) since Sℓ \ Attr1({v}, G(Sℓ)) is a 1-trap in the game G(Sℓ). By Lemma
11, player 1 wins G(Sℓ).
Otherwise by Lemma 12, there is a 0-trap Q ⊂ Sℓ ∪ {W} in GW (Sℓ ∪ {W}) such that
player 1 wins GW (Q).

If W /∈ Q then W ∩ V0 ∩ Q = ∅ and Q also determines a 0-trap in the game G(Sℓ).
Since W ̸⊆ Q, player 1 wins G(Q) = GW (Q) and let Y = Q.
If W ∈ Q then let Y = Q \ {W}. Note that for all v ∈ V0 ∩ W ∩ Q, EW (v) ∩ Q =
EW (v) ∩ (Sℓ ∪ {W}) and |EW (v) ∩ (Sℓ ∪ {W})| > 1. Hence Y determines a 0-trap in
the game G(Sℓ). Since player 1 wins GW (Y ∪ {W}), Y belongs to A and by hypothesis
player 1 wins G(Y ).

Therefore there exists a 0-trap Y in the game G(Sℓ) such that player 1 wins G(Y ). Also
Attr1(Y, G(Sℓ)) = Sℓ or player 1 wins G(Sℓ \ Attr1(Y, G(Sℓ))) since Sℓ \ Attr1(Y, G(Sℓ))
is a 1-trap in the game G(Sℓ). Then we construct a winning strategy for player 1 in the
game G(Sℓ) as follows.

If the token is in Y then player 1 forces the token in Y forever and follows the winning
strategy in G(Y ).
If the token is in Attr1(Y, G(Sℓ)) then player 1 forces the token to Y .
Otherwise, player 1 follows the winning strategy in G(Sℓ \ Attr1(Y, G(Sℓ))).

By hypothesis, for all Si ∈ S, player 1 wins G(Si). ◀

By Lemmas 15 and 16, we have the following theorem.

▶ Theorem 17. Win0(G) = Win0(GW ) \ {W} and Win1(G) = Win1(GW ) \ {W}. ⌟

Input: An explicit Müller game G = (G, Ω)
Output: The winning regions of player 0 and player 1
topologically order Ω;
G′ = (V ′

0 , V ′
1 , E′)← G = (V0, V1, E);

Ω′ ← Ω;
W in0 ← ∅;
while Ω′ ̸= ∅ do

W ′
i ← pop(Ω′)

if G′(W ′
i ) is forced-connected then

if W ′
i is a 1-trap in G′ then

remove Attr0(W ′
i , G′) from G′ and add it to W in0;

else
G′ ← G′

W ′
i
;

end
end

end
return W in0 ∩ V and V \W in0

Figure 1 Algorithm for explicit Müller games.
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We briefly explain the algorithm, presented in Figure 1, that takes as input an explicit
Müller game G and returns the winning regions of the players. Initially, the algorithm orders
Ω topologically: W1 < W2 < . . . < Ws. At each iteration, the algorithm modifies the arena
and the winning conditions:

If W ′
i doesn’t determine a subgame in game G′ or G′(W ′

i ) isn’t forced-connected, W ′
i is

removed from Ω′.
Otherwise, G′(W ′

i ) is forced-connected, then:
If W ′

i is a 1-trap in G′ then Attr0(W ′
i , G′) is removed from G′ and added to the winning

region of player 0. Note that all W ′ ∈ Ω′ with W ′ ∩ Attr0(W ′
i , G′) ̸= ∅ are removed.

Otherwise, apply Horn’s construction to G′ by setting G′ = G′
W ′

i
. In this construction,

a new player 1’s node W′
i is added to G′, W′

i is added to all supersets of W ′
i in Ω′

and W ′
i itself is removed from Ω′, which maintains the topological order of Ω′.

Now our goal is to show that Horn’s algorithm preserves the winner of the original games
at each iteration so that the algorithm can compute the winning regions correctly. This is
shown in the next lemma and theorem.

▶ Lemma 18. At the end of each iteration, we have

Win0(G) = (Win0(G′) ∪ Win0) ∩ V and Win1(G) = Win1(G′) ∩ V.

Proof. Initially, G′ = G and Win0 = ∅, which holds the lemma. Then for i = 1, 2, . . . , s,
we want to show that at the end of ith iteration, Win0(G) = (Win0(G′) ∪ Win0) ∩ V

and Win1(G) = Win1(G′) ∩ V . Let G′′ be G′ and Win′
0 be Win0 at the beginning of ith

iteration. Let G′′′ be G′ and Win′′
0 be Win0 at the end of ith iteration. By hypothesis,

Win0(G) = (Win0(G′′)∪Win′
0)∩V and Win1(G) = Win1(G′′)∩V . If W ′

i doesn’t determine
a subgame in game G′ or W ′

i isn’t forced-connected then by Lemma 13, W ′
i can be removed

without affecting the winning regions of the players of the game. Otherwise, if W ′
i is a

1-trap in G′ then player 0 wins G′′(Attr0(W ′
i , G′′)) by forcing the token to W ′

i and then to
go through W ′

i . Since Attr0(W ′
i , G′′) is a 1-trap in G′′, Attr0(W ′

i , G′′) ⊆ Win0(G′′). Since
G′′′ = G′′(V ′′ \ Attr0(W ′

i , G′′)), Win0(G′′) = Win0(G′′′) ∪ Attr0(W ′
i , G′′) and Win1(G′′) =

Win1(G′′′). Therefore, Win0(G) = (Win0(G′′′)∪Attr0(W ′
i , G′′)∪Win′

0)∩V = (Win0(G′′′)∪
Win′′

0) ∩ V and Win1(G) = Win1(G′′′) ∩ V . If W ′
i isn’t a 1-trap in G′ then by Theorem 17,

Win0(G′′) = Win0(G′′′) \ {W′
i} and Win1(G′′) = Win1(G′′′) \ {W′

i}. Therefore, Win0(G) =
(Win0(G′′′) ∪ Win′′

0) ∩ V and Win1(G) = Win1(G′′′) ∩ V . By hypothesis, at the end of each
iteration, G′ and Win0 hold the lemma. ◀

By Lemma 18, we have the following theorem.

▶ Theorem 19. At the end of the algorithm, we have

Win0(G) = Win0 ∩ V and Win1(G) = V \ Win0. ⌟

At each iteration, at most one player 1’s vertex is added and at most |V ′
0 | edges are added.

Therefore, |V ′
0 | = |V0|, |V ′

1 | is bounded by |V1| + |Ω| and |E′| is bounded by |E| + |V0||Ω|.
For time complexity of the algorithm, there are at most |Ω| iterations in a run and the most
time-consuming operation is to determine if G′(W ′

i ) is forced-connected. By Theorem 9 and
Theorem 10, we have the following theorems.

▶ Theorem 20. There exists an algorithm that solves the explicit Müller game G in time
O(|Ω| · ((

√
|V1| + |Ω| + 1)(|E| + |V0||Ω|) + (|V1| + |Ω|)2)). ⌟
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▶ Theorem 21. There exists an algorithm that solves the explicit Müller game G in time
O(|Ω| · (|V0| + |V1| + |Ω|) · |V0| log |V0|). ⌟

Both of these algorithms beat the bound of Horn’s algorithm. Importantly, Theorem 21
decreases the degree of |Ω| from |Ω|3 in Horn’s algorithm to |Ω|2. Since |Ω| is bounded by
2|V |, the improvement is significant.

5 Applications

We now apply the results above to specific classes of games. Here we give three examples
of such classes. The first such class is the class of fully separated Müller games. A Müller
game G is fully separated if for each W ∈ Ω there is a sW , called separator, such that all
sW ∈ W but sW /∈ W ′ for all W ′ ∈ Ω distinct from W . The second class of games is the
class of linear games. A Müller game G is a linear game if the set Ω forms a linear order
W1 ⊂ W2 ⊂ . . . ⊂ Ws. These classes of games were studied in [15]. As the games are fully
separated, when one constructs G′

W ′
i

there is no need to add a new vertex. Then applying
Theorems 9 and 10 to Horn’s algorithm, we get the following result:

▶ Theorem 22. Each of the following is true:
1. Any fully separated Müller game G can be solved in time O(|V | · ((

√
|V1| + 1)|E| + |V1|2)).

2. Any fully separated Müller game G can be solved in time O(|V |2 · |V0| log |V0|). ⌟

Both of these algorithms beat the bound of [15] O(|V |2|E|) that solves fully separated
Müller game. Applying Theorem 20 and Theorem 21, we have the following theorems.

▶ Theorem 23. Each of the following is true:
1. Any linear Müller game G can be solved in time O(|V | · ((

√
|V | + 1) · |V0||V | + |V |2)).

2. Any linear Müller game G can be solved in time O(|V |2 · |V0| log |V0|). ⌟

Both of these algorithms beat the bound O(|V |2·|V |−1|E|) from of [15] and the bound
O(|V |3 · |V0|) implied from Horn’s algorithm.

The third class of Müller games was introduced by A. Dawar and P. Hunter in [14]. They
investigated games with anti-chain winning condition. A winning condition Ω is an anti-chain
if X ̸⊆ Y for all X, Y ∈ Ω. Applying Theorem 20 and Theorem 21, we have the following
theorems. Note that, since the winning condition is an anti-chain, |V ′

1 | is bounded by |V1|,
|E′| is bounded by |E| and no new player 1’s vertex is added to Ω′.

▶ Theorem 24. Each of the following is true:
1. Any Müller game G with anti-chain winning condition can be solved in time O(|Ω| ·

((
√

|V1| + 1)|E| + |V1|2)).
2. Any Müller game G with anti-chain winning condition can be solved in time O(|Ω||V | ·

|V0| log |V0|). ⌟

Just as above, both of the algorithms beat the bound O(|Ω||V |2|E|) from [14] and the
bound of Horn’s algorithm O(|Ω||V ||E|) that solves the explicit Müller games with anti-chain
winning conditions.

6 A note on Horn’s proof

In [12], Horn considers sensible sets. A winning set W ∈ Ω is sensible if it determines a
subgame. Initially, all non-sensible sets are removed (this is fine). Then Horn’s assumption
is that through the iteration process (in the algorithm in figure 1) sensibility is preserved.
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When GW is built (during iterations), a winning condition W ′ that contains W might become
non-sensible. Hence, sensibility is not preserved during iterations. Horn’s analysis doesn’t
take non-sensible sets into account. This is important. In Horn’s defence, assume we remove
all non-sensible winning sets in the current game GW (Note that the algorithm removes
non-sensible winning conditions). However, Horn does not prove that this is a correct action.
Horn’s proof does not analyse an intricate interplay between sensibility and maintenance of
the winning sets at each iteration. Neglecting non-sensible sets makes the proofs of Lemmas
6 and 7 (in [12]) incorrect. Here is an example.

Let G = (G, Ω) be a game where G is shown in figure 2 and Ω = {W1, W2, W3}, where
W1 = {v1, u1}, W2 = {v1, u1, u2}, and W3 = {v1, v2, u1, u2}. During the algorithm, player
0 wins the subgame determined by W1. The set W1 isn’t a 1-trap. So the new player 1’s
node W1 is added. The sensible set W2 now becomes non-sensible in GW1 . Let us assume
that W2 ∪ {W1} is removed from the winning set in GW1 . Then player 0 wins the subgame
determined by W3 ∪ {W1}. Horn’s Lemma 7 applied to the game in GW1 that occurs on
W3 ∪ {W1} states the following.

Player 1 wins the original game played on W3, where W3 is removed from Ω.

The proof uses induction that has the following important (in our view unrecoverable)
flaw. The proof considers the maximal winning sets inside W3. Clearly, the maximal winning
set inside W3 is W3 itself. Horn refers to player 1 winning strategy on W3. Such strategy
does not exists as it needs to be built. This is a self-loop argument. Trying to save Horn’s
proof, lets assume that W2 was considered by Horn to be the maximal set. Since W2 ∪ {W1}
is non-sensible in GW1 , it is removed during the algorithm. Horn claims that player 1 has
a winning strategy by playing inside W2 and uses it to build a winning strategy in W3.
However, player 0 wins G(W1) and W1 is a 1-trap in G(W2). As a result, player 1 has no
winning strategy in G(W2) and Horn’s proof fails. Since Horn reuses the proof of Lemma
7 in the proof of Lemma 6, Horn fails on the proofs of Lemmas 6 and 7. These show that
Horn’s inductive arguments fail.

Figure 2 The counter case to Horn’s Lemmas 6 and 7.

Our section 4 develops new ideas and methods that are not present in Horn’s arguments.
As an example, we consider extendible and non-extendible sets in the proof of Lemma 16.
The lemma takes winning regions that are subsets of non-sensible sets into account. These
are placed in set B in the lemma. We also show that the players’ winning nodes stay invariant
with each iteration. This completely differs from Horn’s arguments. Horn’s Lemmas 5, 6,
and 7 are aimed at proving that the original game restricted to W , given by the iteration, is
won by one of the players. Our approach is obviously different.
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