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Abstract
This paper is about the problem of finding a shortest s-t path using at most h edges in edge-weighted
graphs. The Bellman–Ford algorithm solves this problem in O(hm) time, where m is the number
of edges. We show that this running time is optimal, up to subpolynomial factors, under popular
fine-grained complexity assumptions.

More specifically, we show that under the APSP Hypothesis the problem cannot be solved faster
already in undirected graphs with nonnegative edge weights. This lower bound holds even restricted
to graphs of arbitrary density and for arbitrary h ∈ O(

√
m). Moreover, under a stronger assumption,

namely the Min-Plus Convolution Hypothesis, we can eliminate the restriction h ∈ O(
√

m). In other
words, the O(hm) bound is tight for the entire space of parameters h, m, and n, where n is the
number of nodes.

Our lower bounds can be contrasted with the recent near-linear time algorithm for the negative-
weight Single-Source Shortest Paths problem, which is the textbook application of the Bellman–Ford
algorithm.
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1 Introduction

The Bellman–Ford algorithm [24, 14, 4] is the textbook solution for the Single-Source Shortest
Paths (SSSP) problem in graphs with negative edge weights. It runs in O(nm) time, where
n denotes the number of nodes and m is the number of edges. If we limit the outer for-loop
(see Algorithm 1) to only h ⩽ n − 1 iterations, the algorithm computes single-source shortest
paths that use at most h edges (or hops) and runs in O(hm) time.

Algorithm 1 The Bellman–Ford algorithm.

d(0) ← [+∞, +∞, . . . , +∞];
d(0)[s]← 0;
for i from 1 to n− 1 do

d(i) ← d(i−1);
foreach edge (u, v) ∈ E do

d(i)[v]← min{d(i)[v], d(i−1)[u] + w(u, v)};
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Negative-weight SSSP has seen a lot of improvements over Bellman–Ford’s running
time: scaling algorithms [15, 16, 18], which eventually led to O(n1/2m log W ) running
time, where W denotes the maximum absolute value of a negative edge weight; interior-
point methods for the more general Minimum-Cost Flow problem, which recently led to
an almost-linear O(m1+o(1) log W ) time algorithm [8]; and finally, the recent combinat-
orial near-linear O(m log8(n) log W ) time algorithm [5], subsequently improved to run in
O(m log2(n) log(nW ) log log n) time [7].

Can we get similar improvements for the problem of finding shortest hop-bounded paths?

This basic question stays embarrassingly open. Even in undirected graphs with only
nonnegative edge weights, Bellman–Ford remains the fastest known algorithm for that
problem. In this paper, we give a negative answer to the above question, up to subpolynomial
factors, under popular fine-grained complexity assumptions.

1.1 Our results
Let us begin with formally stating the computational problem that we study: Given a
graph G = (V, E) with edge weights w : E → Z, two distinguished nodes s, t ∈ V , and a
nonnegative integer h ∈ Z⩾0, find (the length of) a shortest path from s to t that uses at
most1 h edges. We call such paths h-hop-bounded, or simply hop-bounded when h is implicit
in the context.

In this paper, we give two fine-grained reductions, each proving that the O(hm) running
time of the Bellman–Ford algorithm is conditionally optimal for the problem, up to subpoly-
nomial factors. Our two hardness results differ from each other in (1) how the parameters
n, m, h of the hard instances relate to each other, and (2) which hardness assumption is
required. Table 1 summarizes these differences.

Our first result holds under the APSP Hypothesis.

▶ Theorem 1. Unless the APSP Hypothesis fails, there is neither an O(h1−εm) nor an
O(hm1−ε) time algorithm for finding the length of a shortest h-hop-bounded s-t path in
undirected graphs with nonnegative edge weights, for any constant ε > 0.

This holds even restricted to instances with density n = Θ(
√

m) and hop bound h = Θ(mη)
for arbitrarily chosen η ∈ (0, 1/2].

Although the hard instances in Theorem 1 are dense, one can trivially obtain sparser
instances by adding isolated nodes. Indeed, such nodes influence neither the length of a
shortest h-hop-bounded s-t path nor the running time bounds as functions of h and m.

▶ Corollary 2. The result of Theorem 1 holds even restricted to instances with density
n = Θ(mν) and hop bound h = Θ(mη) for arbitrarily chosen ν ∈ [1/2, 1] and η ∈ (0, 1/2].

We remark that it is not very surprising that our reduction from APSP can only produce
instances with h ∈ O(

√
m). The conjectured time complexity of APSP in n-node graphs is

n3−o(1) = |input|3/2−o(1). For h = Θ(mη), the O(hm) time bound is actually O(|input|1+η).
Fine-grained reductions from problems with smaller complexity to problems with larger
complexity are possible (see, e.g., [22]) but rare, and to our best knowledge no such reduction
from APSP is known. If Theorem 1 worked for η > 1/2, this would be the first such example.

1 We could also consider a variant of the problem asking for a walk with exactly h edges. It is the harder of
the two variants (adding a length-0 self-loop to node s reduces the “at most h” variant to the “exactly h”
variant), and we prove the hardness of the easier one already.
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Table 1 Summary and comparison of our conditional hardness results for the problem of finding
(the length of) a shortest hop-bounded path between two nodes.

Density Hops Hypothesis

Corollary 2 n = Θ(mν), ν ∈ [1/2, 1] h = Θ(mη), η ∈ (0, 1/2] APSP
Corollary 4 n = Θ(mν), ν ∈ [1/2, 1] h = Θ(mη), η ∈ [1/2, ν] Min-Plus Convolution

n

h

√
m m

1

√
m

m

Easy

Hard under Min-Plus
Convolution Hypothesis

Hard under
APSP Hypothesis

Figure 1 Parameter space. The upper-left triangle represents the case of h ⩾ n, where the
problem degenerates to the standard Shortest Path problem, without hop bound, which can be
solved in Õ(m) time.

In order to cover the remaining combinations of parameters, we use a stronger hypothesis,
concerning a problem with conjectured quadratic time complexity, namely the Min-Plus
Convolution Hypothesis. Since this hypothesis implies the APSP Hypothesis, it is also a
sufficient condition for Theorem 1 and thus gives hardness for the entire parameter space.

▶ Theorem 3. Unless the Min-Plus Convolution Hypothesis fails, there is neither an
O(h1−εm) nor an O(hm1−ε) time algorithm for finding the length of a shortest h-hop-
bounded s-t path problem in undirected graphs with nonnegative edge weights, for any constant
ε > 0.

This holds even restricted to instances with density n = Θ(mη) and hop bound h = Θ(mη)
for arbitrarily chosen η ∈ [1/2, 1].

Just like before, we can sparsify the hard instances by adding isolated nodes.

▶ Corollary 4. The result of Theorem 3 holds even restricted to instances with density
n = Θ(mν) and hop bound h = Θ(mη) for arbitrarily chosen ν ∈ [1/2, 1] and η ∈ [1/2, ν].

Combining Corollaries 2 and 4, we cover the entire range of parameters ν ∈ [1/2, 1] and
η ∈ (0, ν] for which the O(hm) running time is optimal; see Figure 1.

Let us point out that, even though the Bellman–Ford algorithm finds paths from a single
source s to all the nodes in the graph, the above two hardness results hold even for the easier
problem of finding a single path between two distinguished nodes s and t. Moreover, note
that any (shortest path) algorithm for directed graphs could also be used for undirected
graphs (but not necessarily vice versa). Bellman–Ford works in directed graphs with possibly
negative edge weights, while our hardness results already hold for undirected graphs with
nonnegative edge weights.

ESA 2023
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1.2 Hardness assumptions

In this section, we briefly recall the two hypotheses that we use in our theorems.
The APSP Hypothesis is the assertion that the All-Pairs Shortest Paths (APSP) problem

in n-node graphs cannot be solved in truly subcubic O(n3−ε) time for any constant ε > 0. It
is one of the three main hypotheses in fine-grained complexity, the other two being the 3SUM
Hypothesis and Strong Exponential Time Hypothesis (SETH) [26]. The APSP Hypothesis is
strengthened by the existence of a large class of problems that are equivalent to the APSP
problem under subcubic reductions [27, 26], and by the lack of a truly subcubic algorithm
for any of these problems.

In the Min-Plus Convolution problem, we are given two sequences (a[i])n−1
i=0 , (b[i])n−1

i=0 , and
the goal is to output sequence (c[i])n−1

i=0 defined as c[k] = mini+j=k(a[i] + b[j]). So far, only
subpolynomial 2O(

√
log n)-factor improvements [6, 28] over the naive quadratic running time

are known. The Min-Plus Convolution Hypothesis [21, 11] states that the problem cannot
be solved in truly subquadratic time, that is, O(n2−ε) for any constant ε > 0. Similarly to
APSP, there is also a class (albeit smaller) of problems equivalent to Min-Plus Convolution
under subquadratic reductions [11].2

The two hypotheses are closely related because APSP is runtime-equivalent (up to constant
factors) to the Min-Plus Product problem [13], which is the matrix product analogue of
Min-Plus Convolution. There is a reduction from the convolution to the product problem [6],
which entails that the Min-Plus Convolution Hypothesis implies the APSP Hypothesis, and
the former is therefore a stronger assumption.

As is customary in fine-grained complexity, these hypotheses, as well as all the results in
this paper, are stated in the word RAM model of computation with O(log n)-bit machine
words. We assume all input numbers fit into single machine words. Alternatively, the
APSP Hypothesis is sometimes stated as follows [26]: For every ε > 0 there is a constant
c such that APSP cannot be solved in O(N3−ε) time in N -node graphs with edge weights
in {−N c, . . . , N c}. Our results could also be stated this way because our reductions do not
increase weights by more than polynomial factors.

1.3 Related work

Hop-bounded paths are studied in various areas related to graph algorithms, e.g., distributed
algorithms [17], dynamic algorithms [25, 23], or even polyhedral combinatorics [12]. Problems
of finding shortest hop-bounded paths appear, e.g., in the context of quality-of-service (QoS)
routing in networks [2, 9].

Guérin and Orda [19] and Cheng and Ansari [10] studied the problem of finding shortest h-
hop-bounded paths from single source s to all nodes in the graph and for all hop bounds h ⩽ H.
They proved an Ω(Hm) lower bound for that problem against so-called path-comparison-based
algorithms, i.e., algorithms that only access the edge weights by comparing the lengths of
two paths. Although Dijkstra and Bellman–Ford are known to be path-comparison-based,
algebraic algorithms relying on fast matrix multiplication are not.

2 One of the problems equivalent to Min-Plus Convolution is the Knapsack problem on instances with
target value t = Θ(n). Recall that Knapsack can be solved in O(nt) time by a dynamic programming
algorithm due to Bellman [3]. Hence, we can half-jokingly rephrase Theorem 3 and say that if one
Bellman’s algorithm is optimal for Knapsack, then the other Bellman’s algorithm is optimal for shortest
hop-bounded paths.
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Bicriteria Path. In the Bicriteria Path problem, we are given a graph G = (V, E) with two
types of nonnegative edge weights l, c : E → Z, called lengths and costs, respectively; two
budgets L, C ∈ Z; and two distinguished nodes s, t ∈ V . The goal is to find a path from s

to t with the total length at most L and the total cost at most C. Joksch’s algorithm [20]
solves the problem in pseudopolynomial O(min(L, C) · m) time. For the special case of all
edge costs equal to 1, the Bicriteria Path problem is equivalent to the problem we study in
this paper and, moreover, Joksch’s algorithm runs in the same time as the Bellman–Ford
algorithm.

Abboud, Bringmann, Hermelin, and Shabtay [1] proved that, unless SETH fails, there is
no algorithm solving the Bicriteria Path problem on sparse graphs (with m = Θ(n) edges)
with budgets L, C = Θ(nγ) in time O(n1+γ−ε) for any ε > 0 and γ > 0. In other words,
they proved that Joksch’s algorithm is conditionally optimal, up to subpolynomial factors.
Their reduction, however, heavily uses both types of edge weights, and hence it does not
imply any lower bound for the special case with unit costs, i.e., for our problem of interest.

2 Hardness under APSP Hypothesis

Preliminaries. Given a complete tripartite graph G = (A ∪ B ∪ C, E) with edge weights
w : E → Z, the Negative Triangle problem asks to find three nodes a ∈ A, b ∈ B, and c ∈ C

with w(a, b) + w(b, c) + w(c, a) < 0. Vassilevska Williams and Williams [27] proved that
APSP and Negative Triangle are equivalent under subcubic reductions. In particular, unless
the APSP Hypothesis fails, there is no O(N3−ε) time algorithm for Negative Triangle with
|A| = |B| = |C| = N , for any ε > 0.

Via a by now standard argument, under the same assumption, for any ε > 0, there is
no O(Nα+2−ε) time algorithm for the problem restricted to instances with |A| = Θ(Nα)
and |B| = |C| = N for arbitrarily chosen α ∈ (0, 1]. Specifically, the reduction partitions
the original set A into Θ(N1−α) subsets of size Θ(Nα) each; the sets B and C are copied
to all Θ(N1−α) produced instances. A negative triangle exists in the original instance if
and only if it exists in at least one of the produced instances. Thus, if each of the obtained
instances could be solved in O(Nα+2−ε) time, then the original instance could be solved in
O(N1−α · (N2 + Nα+2−ε)) = O(N3−α + N3−ε) time3, violating the APSP Hypothesis.

Reduction. We show how to reduce an instance of Negative Triangle, with |A| = Θ(Nα)
and |B| = |C| = N , to finding the minimum length of an h-hop-bounded s-t path in an
undirected graph with n = Θ(N) nodes, m = Θ(N2) edges, and the hop bound h = Θ(Nα).
In order to prove Theorem 1, we set α = 2η so that n = Θ(N) = Θ(

√
m) and h = Θ(Nα) =

Θ(N2η) = Θ(mη). An O(h1−εm) time (or O(hm1−ε) time) algorithm finding a shortest
h-hop-bounded s-t path would thus yield an O(Nα(1−ε)+2) = O(Nα+2−αε) time (respectively,
O(Nα+2−2ε) time) algorithm for the original instance of the Negative Triangle problem. As
argued above, no such algorithm exists unless the APSP Hypothesis fails.

Let P = |A|. Suppose that A = {a1, . . . , aP }, B = {b1, . . . , bN }, and C = {c1, . . . , cN }.
Moreover, let W denote the maximum absolute value of an edge weight. Create an undirected
graph (see Figure 2) with node set A ∪ B ∪ C ∪ Ā, where Ā = {ā1, . . . , āP } is a disjoint copy
of A.

3 The N2 term corresponds to the time it takes to construct each instance, which consists of O(N2) edges.

ESA 2023
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a1

ā1
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aP −1
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āP
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cN−2
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· · · · · · · · · · · ·

· · · · · · · · · · · ·

ai

bj

ck

āi

0 0

0 0

w(ai, bj) + 3(P + 1 − i)W

w(bj , ck) + 3W

w(ck, ai) + 3iW

s

t

Figure 2 The graph created in the reduction from Negative Triangle.

For every ai ∈ A and bj ∈ B, add edge {ai, bj} with weight w(ai, bj) + 3(P + 1 − i)W .
For every bj ∈ B and ck ∈ C, add edge {bj , ck} with weight w(bj , ck) + 3W .
For every ck ∈ C and ai ∈ A, add edge {ck, āi} with weight w(ck, ai) + 3iW .
For every i ∈ {1, . . . , P − 1}, add edges {ai, ai+1} and {āi, āi+1} with weights 0.

Consider a shortest path in this graph from s
def= a1 to t

def= āP using at most h
def= P + 2

hops. We claim that its total length is less than (3P + 2)W if and only if there is a negative
triangle in the initial graph. Indeed, each triple (ai, bj , ck) ∈ A × B × C corresponds to path
a1 − a2 − · · · − ai − bj − ck − āi − āi+1 − · · · − āP , which uses exactly P + 2 hops and has
total length

w(ai, bj) + 3(P + 1 − i)W + w(bj , ck) + 3W + w(ck, ai) + 3iW

=
(
w(ai, bj) + w(bj , ck) + w(ck, ai)

)
+ (3P + 2)W.

Hence, the “if” direction follows. For the “only if” direction, fix an s-t path with at most
P + 2 hops and a total length strictly less than (3P + 2)W . The path must be of the form
a1 − a2 − · · · − ai − bj − · · · − ck − āi′ − āi′+1 − · · · − āP , where {ai, bj} is the first edge that
leaves A and {ck, āi′} is the last edge that enters Ā. Every edge has weight at least 0, every
edge incident to bj or ck has weight at least −W + 3W = 2W , and the direct edge between
bj and ck has weight at most W + 3W = 2 · 2W . Thus, the direct edge is the cheapest walk
from bj to ck both in terms of the length and the number of hops. Consequently, we may
assume without loss of generality that our s-t path proceeds directly from bj to ck. This
means that the number of hops is i + 3 + (P − 1 − i′) = P + 2 + i − i′, whereas the total
length is

w(ai, bj) + 3(P + 1 − i)W + w(bj , ck) + 3W + w(ck, ai′) + 3i′W

=
(
w(ai, bj) + w(bj , ck) + w(ck, ai′)

)
+ (3P + 2)W + 3(i′ − i)W.

If i′ < i, then the number of hops is at least P + 3, which is larger than assumed. If i′ > i,
then the path length is at least −3W + (3P + 2)W + 3W ⩾ (3P + 2)W , a contradiction.
Therefore, i = i′ holds. Since the path length is less than (3P + 2)W , we conclude that
w(ai, bj) + w(bj , ck) + w(ck, ai) < 0, i.e., (ai, bj , ck) is a negative triangle in the initial graph.
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3 Hardness under Min-Plus Convolution Hypothesis

Preliminaries. In the Max-Plus Convolution Upper Bound problem, we are given three
sequences (a[i])n−1

i=0 , (b[i])n−1
i=0 , and (c[i])n−1

i=0 of n numbers each, and the goal is to decide
whether c[k] ⩾ maxi+j=k(a[i]+b[j]) holds for all k. In other words, we want to find i, j, k such
that i + j = k and c[k] < a[i] + b[j]. The Max-Plus Convolution Upper Bound and Min-Plus
Convolution problems are equivalent under subquadratic reductions [11, Theorem 3.1]; thus,
in particular, unless the Min-Plus Convolution Hypothesis fails, there is no O(n2−ε) time
algorithm for Max-Plus Convolution Upper Bound, for any ε > 0.

Let us introduce an intermediate problem, which we call Common Max-Plus Convolution
Upper Bound: Given M pairs of sequences(

(a1[i])N−1
i=0 , (b1[i])N−1

i=0
)
, . . . ,

(
(aM [i])N−1

i=0 , (bM [i])N−1
i=0

)
,

and one sequence (c[i])N−1
i=0 , decide if there exist i, j, k, ℓ such that i + j = k and c[k] <

aℓ[i] + bℓ[j]. We call such (i, j, k, ℓ) a violating quadruple. First, we show that the naive
running time of O(MN2) is conditionally optimal for this problem.

▶ Lemma 5. Unless the Min-Plus Convolution Hypothesis fails, there is no O(MN2−ε)
time algorithm for Common Max-Plus Convolution Upper Bound, for any ε > 0, even when
restricted to instances with M = Θ(Nα) for an arbitrarily chosen constant α ⩾ 0.

Proof. The argument is based on a self-reduction of Min-Plus Convolution (see [11, proof of
Theorem 5.5]). Let β = α/(1+α) ∈ [0, 1). We start with an instance of Max-Plus Convolution
Upper Bound with three sequences a, b, c, each of length n. We split a and b into Θ(nβ) blocks
of consecutive elements, each block of length ⌈n1−β⌉ (the last block can be shorter). For
every pair of blocks, one from a and the other from b, we want to check if the corresponding
fragment of c is an upper bound of their max-plus convolution. Similarly to [11], we add
suitable padding so that all three sequences are of the same length. This way, we end up with
Θ(n2β) smaller instances of Max-Plus Convolution Upper Bound. The key step is to classify
these instances according to the third sequence, which results in Θ(nβ) groups of size Θ(nβ)
each (the instances in any single group share the same third sequence). Each such group
becomes a single instance of Common Max-Plus Convolution Upper Bound, with M = Θ(nβ)
and N = Θ(n1−β). If each of these instances can be solved in O(MN2−ε) = O(nβ+(1−β)(2−ε))
time, then the original instance can be solved in O(n2β+(1−β)(2−ε)) = O(n2−(1−β)ε) time,
and the Min-Plus Convolution Hypothesis fails. We conclude the proof by observing that
nβ = nα/(1+α) = (n1/(1+α))α = (n1−β)α, and thus M = Θ(Nα) holds as desired. ◀

Cygan, Mucha, Węgrzycki, and Włodarczyk [11, proof of Theorem 5.4] showed that,
without loss of generality, the input sequences to Max-Plus Convolution Upper Bound are
nonnegative and strictly increasing. The same argument applies to Common Max-Plus
Convolution Upper Bound. Using the additional structure, we can replace the condition
i+j = k with i+j ⩽ k. Indeed, suppose we find (i, j, k, ℓ) with i+j ⩽ k and c[k] < aℓ[i]+bℓ[j];
then, by monotonicity, c[i + j] ⩽ c[k], and hence (i, j, i + j, ℓ) is a quadruple satisfying the
original condition.

▶ Observation 6. The lower bound of Lemma 5 holds even restricted to instances with all
the sequences nonnegative and strictly increasing. For such instances, the condition i + j = k

can be equivalently replaced by i + j ⩽ k.

ESA 2023
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s

t

Figure 3 The graph created in the reduction from Common Max-Plus Convolution Upper Bound.

Reduction. We show how to reduce an instance of Common Max-Plus Convolution Upper
Bound, with M pairs of length-N sequences, to finding the length of a shortest hop-bounded
s-t path in an undirected graph with n = Θ(N + M) nodes, m = Θ(NM) edges, and the
hop bound h = Θ(N). This will let us conclude that an O(h1−εm) time (or O(hm1−ε) time)
shortest path algorithm would give an O(MN2−ε) time (respectively, O(M1−εN2−ε) time)
algorithm for the Common Max-Plus Convolution Upper Bound problem and thus violate
the Min-Plus Convolution Hypothesis.

Let W denote the maximum value of any input sequence element. Create an undirected
graph (see Figure 3) composed of three paths u0 − u1 − · · · − uN−1, v0 − v1 − · · · − vN−1,
w0 − w1 − · · · − wN−1, and an independent set of M nodes x1, x2, . . . , xM . Set the weights
of all the path edges to 0. For every i ∈ {0, 1, . . . , N − 1} and ℓ ∈ {1, 2, . . . , M}, add an
edge between ui and xℓ with weight 5W − aℓ[i]. Then, for every j ∈ {0, 1, . . . , N − 1} and
ℓ ∈ {1, 2, . . . , M}, add an edge between xℓ and vj with weight 5W − bℓ[j]. Finally, for every
k ∈ {0, 1, . . . , N − 1}, add an edge between v0 and wk with weight 5W + c[k].

Consider a shortest path in this graph from s
def= u0 to t

def= wN−1 using at most h
def= N + 2

hops. We claim that its total length is less than 15W if and only if there is a quadruple (i, j, k, ℓ)
with i + j ⩽ k and c[k] < aℓ[i] + bℓ[j]. Indeed, each quadruple (i, j, k, ℓ) corresponds to path

u0 − u1 − · · · − ui − xℓ − vj − vj−1 − · · · − v0 − wk − wk+1 − · · · − wN−1. (⋆)

Such a path uses i + 1 + 1 + j + 1 + (N − 1 − k) = (N + 2) + (i + j − k) hops and has total
length 15W − aℓ[i] − bℓ[j] + c[k]. Hence, the “if” direction follows. For the “only if” direction,
since every non-zero edge weight is at least 4W , an s–t path of total length less than 15W

can use at most three such edges, and therefore it must be of the form (⋆). The hop bound
implies i + j − k ⩽ 0 and the total length bound implies c[k] − aℓ[i] − bℓ[j] < 0.

Recall that n = Θ(N + M), m = Θ(NM), and h = Θ(N). For η ∈ [1/2, 1], in order to get
hard shortest hop-bounded path instances with density Θ(mη) and hop bound h = Θ(mη), we
start with the Common Max-Plus Convolution Upper Bound problem restricted to instances
with M = Θ(N (1−η)/η). This implies h = Θ(N) = Θ((NM)η) = Θ(mη). Moreover, due to
η ⩾ 1/2, we have M ⩽ O(N), and thus n = Θ(N + M) = Θ(N) = Θ(mη) holds as desired.
This concludes the proof of Theorem 3.
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