
Coloring Tournaments with Few Colors: Algorithms
and Complexity
Felix Klingelhoefer #

Laboratoire G-SCOP (Univ. Grenoble Alpes), Grenoble, France

Alantha Newman #

Laboratoire G-SCOP (CNRS, Univ. Grenoble Alpes), Grenoble, France

Abstract
A k-coloring of a tournament is a partition of its vertices into k acyclic sets. Deciding if a tournament
is 2-colorable is NP-hard. A natural problem, akin to that of coloring a 3-colorable graph with few
colors, is to color a 2-colorable tournament with few colors. This problem does not seem to have
been addressed before, although it is a special case of coloring a 2-colorable 3-uniform hypergraph
with few colors, which is a well-studied problem with super-constant lower bounds.

We present an efficient decomposition lemma for tournaments and show that it can be used
to design polynomial-time algorithms to color various classes of tournaments with few colors,
including an algorithm to color a 2-colorable tournament with ten colors. For the classes of
tournaments considered, we complement our upper bounds with strengthened lower bounds, painting
a comprehensive picture of the algorithmic and complexity aspects of coloring tournaments.
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1 Introduction

A tournament T = (V, A) is a complete, oriented graph: For each pair of vertices i, j ∈ V ,
there is either an arc from i to j or an arc from j to i (but not both). A subset of vertices
S ⊆ V induces the subtournament T [S]. If this subtournament contains no directed cycles,
then it is said to be acyclic. The problem of coloring a tournament is that of partitioning the
vertices into the minimum number of acyclic sets, sometimes referred to as the dichromatic
number [32]. Since a tournament contains a directed cycle if and only if it contains a directed
triangle, the problem of coloring a tournament is equivalent to partitioning the vertices into
the minimum number of sets so that each set does not contain a directed triangle.

Coloring tournaments can be compared to the problem of coloring undirected graphs.
For the latter, deciding if a graph is 2-colorable (i.e., bipartite) is easy, but it is NP-hard to
decide if a graph is 3-colorable. A widely-studied promise problem is that we are given a
graph promised to be 3-colorable and the goal is to color it (in polynomial time) with few
colors [34, 5, 23, 24]. For tournaments, it is easy to decide whether or not a tournament is
1-colorable (i.e., transitive), since this is exactly when the tournament is acyclic. However,
deciding if a tournament is 2-colorable is already NP-hard [8].

This suggests the following promise problem: Given a tournament promised to be 2-
colorable, what is the fewest number of colors with which it can be colored in polynomial time?
This question is the starting point for this paper and naturally leads to related problems
of determining upper and lower bounds for coloring various classes of tournaments. For
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71:2 Coloring Tournaments with Few Colors: Algorithms and Complexity

Table 1 Best known lower and upper bounds for various graph coloring problems. All inapprox-
imability results are under the assumption P ̸= NP except those denoted by ∗, which are under
the d-To-1 Conjecture [26]. The lower bound should be read as, “It is hard to color a 3-colorable
graph with 5 colors.” The upper bound as, “A 3-colorable graph can be (efficiently) colored with
Õ(n0.19996) colors.”

Graph Type Lower Bound Upper Bound
3-Colorable graphs 5 [6], O(1)∗ [18] Õ(n0.19996)[24]
k-Colorable graphs, k ≥ 3 2k − 1 [6], O(1)∗[18] O(n1− 3

k+1 ) [23]
General graphs n1−ϵ [22, 35] O(n(log log n)2(log n)−3) [19]
3-Uniform 2-colorable hypergraphs O(1) [11] Õ(n 1

5 ) [29]

comparison, the complexity landscape of graph coloring is well studied and we have a general
understanding of what it looks like. (See Table 1.) In contrast, the problem of coloring
tournaments has been studied very little from the algorithmic or complexity perspective.
This paper is an effort to address this disparity.

1.1 Previous Work
The problem of coloring a 2-colorable tournament with few colors is a special case of coloring
a 2-colorable 3-uniform hypergraph with few colors. Deciding if a 3-uniform hypergraph is
2-colorable is NP-hard [31] and more recently it was proved to be NP-hard to color with any
constant number of colors [11]. On the positive side, a 2-colorable 3-uniform hypergraph can
be colored in polynomial time with Õ(n1/5) colors [1, 7, 29], a result which uses tools from
and is analogous to that of [23] for 3-colorable graphs. Thus, Õ(n1/5) is the best-known upper
bound on the number of colors needed to efficiently color a 2-colorable tournament. Deciding
if a tournament is 2-colorable is NP-hard [8] and furthermore, deciding if a tournament is
k-colorable for any k ≥ 2 is NP-hard [15]. It is consistent with these results that we can, say,
efficiently color a 2-colorable tournament with three colors.

From a structural graph theory perspective, the problem of coloring tournaments has
been widely studied due to its connection to the famous Erdős-Hajnal Conjecture [12, 9],
which has an equivalent formulation in terms of tournaments [2]. The latter posits that
for any tournament H, there is a constant ϵH (where 0 < ϵH ≤ 1) such that any H-free
tournament on n vertices has a transitive subtournament of size at least O(nϵH ). [4] exactly
characterize the tournaments for which ϵH = 1, which they call heroes. Forbidding a hero in
a tournament T actually results in T being colorable with a constant number of colors [4],
which yields a transitive induced subtournament of linear size. These results are existential
and do not provide an efficient algorithm to color an H-free tournament with a constant
number of colors, when H is some fixed hero.

1.2 Our Results
We consider some basic algorithmic and computational complexity questions on the subject of
coloring tournaments. Our main algorithmic tool, presented in Section 2, is a decomposition
lemma which can be used to obtain efficient algorithms for coloring tournaments in various
cases when certain conditions are met. On a high level, it bears some resemblance to
decompositions previously used to prove bounded dichromatic number in tournaments and
in dense digraphs with forbidden subgraphs [4, 20]. To apply our decomposition lemma
to 2-colorable tournaments, we use an observation used by [1, 7, 29] which states that
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Table 2 Best known polynomial time inapproximability results and approximation algorithms
for various tournament coloring problems. Previous results are indicated with a citation. All the
results without a citation are established in this paper. Lower bounds are under the assumption
P ̸= NP except those marked with a ∗, which hold under the d-To-1 Conjecture [26]. The function
g(k) denotes the number of colors needed to efficiently color a k-colorable graph, while f(k) is the
number of colors needed to efficiently color a k-colorable tournament. The entry indicated by † is a
hardness of approximation result.

Tournament Type Lower Bound Upper Bound
2-Colorable tournaments 2[8], 3 10
3-Colorable tournaments 5, O(1) ∗ Õ(n0.19996)
k-Colorable tournaments, k ≥ 2 2k − 1, O(1) ∗ 5 · f(k − 1) · g(k)
2-Colorable light tournaments in P? 5
Light tournaments in P? 9
General tournaments n

1
2 −ϵ † n/ log n[13]

there is an efficient algorithm to partition a 2-colorable tournament into two tournaments
that are each light. A light tournament is one in which for each arc uv, the set of vertices
N(uv) = {w | uvw forms a directed triangle} is transitive. (Let C3 denote a directed triangle.
A light tournament is H-free where H is the hero (C3, 1, 1).)

In fact, due to this observation and the fact that [4] showed that light tournaments have
constant dichromatic number, it cannot be NP-hard (unless NP= co-NP) to color a 2-colorable
tournament with O(1) colors. (This does not however immediately imply that there is an
efficient algorithm, since there are many search problems that are believed to be intractable
even though their decision variant is easy, e.g., those in the class TFNP.) Although [4] did not
provide an efficient algorithm to color a light tournament with a constant number of colors,
a careful modification of their techniques indeed results in a polynomial-time algorithm using
around 35 colors to color a light tournament.

Like some other lemmas which show that the dichromatic number of a tournament is
bounded (i.e., constant) if the out-neighborhoods of vertices have bounded dichromatic
number [21], our decomposition lemma also has a local-to-global flavor: If the sets N(uv)
can be efficiently colored with few colors for all arcs uv and if there are two vertices s and t

such that the out-neighborhood of s and the in-neighborhood of t can be efficiently colored
with few colors, then our decomposition lemma yields an efficient algorithm to color the
whole tournament with few colors.

We give applications of our algorithmic decomposition lemma in Section 3. Specifically,
we show that 2-colorable tournaments can be efficiently colored with ten colors and that
light tournaments can be efficiently colored with nine colors. We then use our toolbox to
study 3-colorable tournaments. Here we show that the problem of coloring a 3-colorable
tournament has a constant-factor reduction to the problem of coloring 3-colorable graphs.

Next, we strengthen the lower bounds by showing in Section 4 that it is NP-hard to color
a 2-colorable tournament with three colors. We then give a reduction from coloring graphs
to coloring tournaments, which implies, for example, that it is hard to color 3-colorable
tournaments with O(1) colors under the d-To-1 Conjecture of Khot [26]. Finally, we show
that it is NP-hard to approximate the number of colors required for a general tournament to
within a factor of O(n1/2−ϵ) for any ϵ > 0. Our results are summarized in Table 2.

ESA 2023
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1.3 Notation and Preliminaries
Let T = (V, A) be a tournament with vertex set V and arc set A. Sometimes, we use V (T )
to denote its vertex set and A(T ) to denote its arc set. For S ⊂ V , we use T [S] to denote
the subtournament induced on vertex set S, although we sometimes abuse notation and refer
to the subtournament itself as S. We define uv ∈ A to be an arc directed from u to v. We
define N+(v) to be all w ∈ V such that arc vw ∈ A and N−(v) to be all w ∈ V such that
arc wv ∈ A. We let N+[v] = N+(v) ∪ {v} and N−[v] = N−(v) ∪ {v}. For S ⊂ V , we define
N+(S) =

⋃
v∈S N+(v), and we define N−(S), N+[S], N−[S] analogously. We use N±(S) to

denote vertices in V \ S that have at least one in-neighbor and at least one out-neighbor in
S. Sometimes we refer to N±(S) of a set as its mixed neighborhood.

For S, U ⊂ V such that S ∩ U = ∅, we use S ⇒ U to indicate that all arcs between S and
U are directed from S to U . Let C3 denote a directed triangle; usually, we refer to this simply
as a triangle. Define N(uv) ⊂ V to contain all vertices w such that uvw forms the directed
triangle consisting of arcs uv, vw and wu. In other words, N(uv) = N−(u) ∩ N+(v). For
three tournaments T1, T2 and T3, we use ∆(T1, T2, T3) to denote the tournament resulting
from adding all arcs from T1 to T2, all arcs from T2 to T3 and all arcs from T3 to T1.

A tournament T = (V, A) is k-colorable if there is a partition of V into k vertex-disjoint
sets, V1, V2, . . . , Vk, such that T [Vi] is transitive for all i ∈ {1, . . . , k}. We use χ⃗(T ) to denote
the dichromatic number of T (i.e., the minimum number of transitive subtournaments into
which V (T ) can be partitioned). Computing the value χ⃗(T ) is in general NP-hard [8]. We
therefore use χ⃗C(T ) to denote the number of colors by which T can be efficiently colored.
Our goal is to find upper and lower bounds on χ⃗C(T ).

We remark that we will always assume that a tournament T which we want to color is
strongly connected; if this were not the case, we can color each strongly connected component
separately. Therefore, each vertex has an out-neighborhood containing at least one vertex.

2 Efficient Tournament Decomposition for Coloring

We present a decomposition for a tournament that can be computed in polynomial time and
yields an efficient method to color a tournament tournaments with few colors in certain cases.

▶ Definition 1. We define a c-vertex chain (vi)0≤i≤k of a tournament T the following way:
Let v0 and vk be a pair of vertices such that χ⃗C(N+(v0) ∪ N−(vk)) ≤ c, and let (vi)0≤i≤k be
the vertices in the shortest directed path from v0 to vk.

Additionally, we define an arc chain (ei)1≤i≤k corresponding to a vertex chain, where ei

is the arc from vi−1 to vi. The main idea behind this decomposition is to build zones that
can be efficiently colored, and such that all arcs between zones at distance more than four
(i.e., long arcs) go backwards.

▶ Definition 2. Given a c-vertex chain, a path decomposition of a tournament T is defined
as:

D0 = N+(v0).
For 1 ≤ i ≤ k, Di = N(ei) \ (∪0≤j≤i−1Dj).
Dk+1 = N−(vk) \ (∪0≤j≤kDj).

First we prove that this is indeed a decomposition of T .

▶ Lemma 3. Let T = (V, A) be a tournament and let (D0, . . . , Dk+1) be a path decomposition
of T . Then V = ∪0≤i≤k+1Di.
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Proof. We will prove this lemma by contradiction: Suppose there is a vertex w ∈ V that
does not belong to any Di. Assume that w does not belong to the vertex chain. Since w is
neither in D0 nor in Dk+1, then w ∈ N−(v0) and w ∈ N+(vk). Take the smallest integer
i such that w ∈ N+(vi). There must be one since w ∈ N+(vk). Notice that i ≥ 1 since
w /∈ N+(v0), so ei belongs to the arc chain and w ∈ N(ei). Therefore, w ∈ Di, which is a
contradiction.

Now consider the case in which w is in the vertex chain. An arc with both endpoints
in the vertex chain that is not in the arc chain is backwards. Thus, vi ∈ N(ei+2) for all
0 ≤ i ≤ k − 2. Notice that vk−1 can belong to Dk+1 (if it does not belong to Dj for some
j < k + 1). Finally, vk ∈ N(ek−1). ◀

We remark that, for the sake of simplicity and to more easily visualize the decomposition,
it might be easier to not include the vertices in the vertex chain in the path decomposition.
In this case, these vertices can be colored with two extra colors. Since all arcs not in the arc
chain with both endpoints in the vertex chain go backwards (with respect to the arc chain;
otherwise there would be an even shorter path), we can use two colors so that all forwards
arcs (those in the arc chain) are bicolored.

▶ Lemma 4. Let 0 ≤ i, j ≤ k + 1 and let j ≥ i + 5. For u ∈ Di and w ∈ Dj, we have
u ∈ N+(w).

Proof. We will prove this by contradiction. Suppose j ≥ i + 5 and u ∈ N−(w). Then
there is a path of three arcs from vi to vj−1, namely (vi, u, w, vj−1). (By definition of the
decomposition, u ∈ Di implies u ∈ N+(vi) and w ∈ Dj implies w ∈ N−(vj−1).) This is not
possible since by the definition of the vertex chain as the shortest path, there can be no path
between vi and vj−1 with fewer than four arcs (since (j − 1) − i ≥ (i + 5 − 1) − i = 4). ◀

▶ Lemma 5. If T has a c-vertex chain that can be found in polynomial time and if χ⃗C(N(e)) ≤
c for each arc e in the corresponding arc chain, then χ⃗C(T ) ≤ 5c.

Proof. Given a c-vertex chain, we construct a path decomposition. We make five palettes
of c colors each with labels from 0 to 4. We color each Di using the color palette with
label i mod 5. Let us show that we can do this in polynomial time. First, note that the set
of colors used is of size c for every Di. Then, let us consider D0: N+(v0) can be colored
efficiently with c colors by definition of a vertex chain. Similarly, Dk+1 is a subset of N−(vk)
and can thus also be efficiently colored with c colors. Finally, for every 1 ≤ i ≤ k, Di is a
subset of N(ei), which can be colored efficiently with c colors by the condition of the lemma.

Our goal is now to prove that this is a proper coloring of T . We will do this by showing
that all forward arcs between different Di are bicolored. By Lemma 4, there are no forwards
arcs between Di and Dj when j ≥ i + 5. Furthermore, by the definition of the coloring, no
vertex in Di and Dj can share a color for i + 1 ≤ j ≤ i + 4. Thus all forward arcs from Di

to Dj will be bicolored. Since every Di is properly colored, and all forward arcs between
different Di are bicolored, T is properly colored. ◀

The next lemma has essentially the same proof as Lemma 5.

▶ Lemma 6. If T has a c-vertex chain that can be found in polynomial time and if χ⃗C(N(e)) ≤
d for each arc e in the arc chain and if c > d, then χ⃗C(T ) ≤ c + 4d.

Proof. We find the path decomposition using the c-vertex chain. We can color the set
S = D0 ∪ Dk+1 with c colors and the remaining sets Di for 1 ≤ i ≤ k with d colors each.
For the last c − d of the colors used for S, we can remove these vertices from S since these

ESA 2023
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v0 v1 v2 v3 v4 v5 v6

D0 D1 D2 D3 D4 D5 D6 D7

e0 e1 e2 e3 e4 e5

Figure 1 A path decomposition of T . The red arcs (ei) form a shortest path from v0 to vk, thus
all the arcs not depicted between the vi’s go backward. All the vertices in a given Di are colored
from the color palette indicated by the color of the Di. Notice that because there are no long forward
arcs between the Di’s, all arcs between Di’s that share a color palette are backwards.

colors will not be used again and call the remaining vertices in S (colored with the first d

colors) S′. For the remaining vertices in S, we decompose them into D0 := D0 ∩ S′ and
Dk+1 := Dk+1 ∩ S′ Now we have sets D0, D1, . . . , Dk+1 each colored with d colors. We color
these sets using five color palettes of d colors each and use the palette i mod 5 for set Di.
By Lemma 4, this does not create any monochromatic forward arcs. Thus, the total number
of colors used is (c − d) + 5d = c + 4d. ◀

3 Algorithms for Coloring Tournaments

We consider various special cases of tournaments and show how to use our tools to color
them with few colors.

3.1 2-Colorable Tournaments
A tournament T = (V, A) is 2-colorable if χ⃗(T ) = 2, and a 2-coloring of tournament T is a
partition of V into two vertex sets, V1 and V2, such that T [V1] and T [V2] are each transitive.
In this section, our goal is to prove Theorem 7.

▶ Theorem 7. Let T be a 2-colorable tournament. Then χ⃗C(T ) ≤ 10.

We say an arc uv in A is heavy if there exist three vertices a, b, c ∈ N(uv) which form
a triangle abc. If a tournament contains no heavy arcs, then it is light. We will use the
following observation.

▶ Observation 8. Let T be a 2-colorable tournament. Then T can be partitioned into two
light subtournaments T1 and T2 such that χ⃗C(T ) ≤ χ⃗C(T1) + χ⃗C(T2).

This observation appears in [1, 7, 29] where it is stated more generally for 2-colorable
3-uniform hypergraphs. We include a proof here for completeness.

▶ Lemma 9. In a 2-coloring of a tournament T , each heavy arc must be 2-colored.

Proof. If u and v are both, say, blue, then each vertex in N(uv) would be red, forcing a
triangle in N(uv) to be all red (i.e., monochromatic), which is not possible in a 2-coloring. ◀
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▶ Corollary 10. In a 2-colorable tournament, the heavy arcs form a bipartite graph.

Now we can prove Observation 8.

Proof of Observation 8. All heavy arcs can be easily detected. By Corollary 10, the set of
heavy arcs forms a bipartite graph. The vertex set of this bipartite graph can be colored
with two colors (red and blue), such that the tournament induced by each color does not
contain a heavy arc. Then we partition the vertices into two sets one containing all the blue
vertices and the other containing all the red vertices. The uncolored vertices can go in either
set. Since neither of these sets contains any heavy arcs, we can partition the vertices of a
2-colorable tournament into two light subtournaments. ◀

Theorem 7 will follow from Observation 8 and the following theorem.

▶ Theorem 11. Let T be a 2-colorable light tournament. Then χ⃗C(T ) ≤ 5.

Our goal it to use Lemma 5 to prove Theorem 11. In other words, we want to show that
a 2-colorable light tournament has a 1-vertex chain. We first prove a useful claim.

▶ Lemma 12. Let T be a k-colorable tournament. Then there exist vertices u and w such
that N+(u) ∪ N−(w) is (k − 1)-colorable.

Proof. Since T = (V, A) is k-colorable, there exist k transitive sets X1, . . . , Xk such that
V = ∪k

i=1Xi. Then take u to be the vertex in X1 that has only incoming arcs from other
vertices in X1 (i.e., the sink vertex for X1). Similarly, take w to be the vertex in X1 that
has only outgoing arcs to other vertices in X1 (i.e., the source vertex for X1). The out-
neighborhood of u and the in-neighborhood of w are both subsets of V \ X1, and thus so is
their union, which is therefore (k − 1)-colorable. ◀

Now we are ready to prove that we can find a 1-vertex chain.

▶ Lemma 13. Let T be a 2-colorable, light tournament. Then T contains a 1-vertex chain
that can be found in polynomial time.

Proof. By Lemma 12, there exist u and w such that N+(u) ∪ N−(w) is transitive. To find
them, we can test the transitivity of N+(u) ∪ N−(w) for every pair of vertices in T . Then
we simply need to find a shortest path from u to w, which can be done in polynomial time.
Let k denote the length of the path, and define v0 = u, vk = w, and (vi)1≤i≤k−1 the rest of
the vertices in the path. ◀

The proof of Theorem 11 follows from Lemma 13, Lemma 5 and the fact that χ⃗C(N(e)) ≤ 1
for every arc e in a light tournament.

Certificates of Non-2-Colorability
In Section 3.1, we presented an algorithm to color a 2-colorable tournament with ten colors.
Suppose we run this algorithm on an arbitrary tournament T (e.g., one that is not 2-colorable).
Then our algorithm will either color T with ten colors or it will produce at least one certificate
that T is not 2-colorable. A certificate will have the following form: either a) there is an odd
cycle of heavy arcs in T , or b) for every ordered pair of vertices (u, v), the subtournament
T [N+(u) ∪ N−(v)] is not transitive. In particular, an 11-chromatic tournament must contain
such a certificate.

ESA 2023
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3.2 3-Colorable Tournaments
Coloring 3-colorable tournaments turns out to be closely related to coloring 3-colorable graphs.
This seems surprising since the techniques for 3-colorable graphs were applied to coloring
2-colorable 3-uniform hypergraphs, which are a generalization of 2-colorable tournaments.

We will first show that we can adapt ideas of [34] and [5] to the problem of coloring
3-colorable tournaments by using our algorithm for coloring 2-colorable tournaments with
ten colors as a subroutine.

▶ Lemma 14. A 3-colorable tournament can be colored with O(
√

n) colors in polynomial
time.

Proof. Let T = (V, A) be a 3-colorable tournament. Notice that T has at least three vertices
each of whose out-neighborhoods is 2-colorable. To see this, consider any proper 3-coloring
of T . Each color spans a transitive subtournament and each transitive subtournament has a
sink vertex that has outgoing arcs only towards the other two colors.

For any vertex, if its out-neighborhood is 2-colorable, we can color its out-neighborhood
with 10 colors by Theorem 7. So we can try to run the algorithm for the out-neighborhood of
every vertex, and the algorithm will successfully produce a 10-coloring of the out-neighborhood
of at least three vertices.

Therefore, if the minimum outdegree is at least
√

n, we find a transitive set of size at
least

√
n/10. On the other hand, if the minimum outdegree is smaller than

√
n, we will make

progress another way. In this case, let u be a vertex with outdegree smaller than
√

n. Then,
we add u to a set S, and continue the algorithm on the subtournament of T induced on
V \ N+[u]. We continue this until we find a transitive subtournament of size at least

√
n/20

or until we have removed half the vertices. In the first case, we will have found a transitive
set of size Ω(

√
n), and in the second case, the set S will be transitive, and also of size Ω(

√
n).

In conclusion, since we can find a transitive set of size Ω(
√

n) in polynomial time, we can
repeat the procedure recursively to find a coloring with O(

√
n) colors in polynomial time

(see [5] for example). ◀

We can also use the decomposition of Section 2 to get a coloring with fewer colors based
on a reduction to coloring 3-colorable graphs.

▶ Theorem 15. If we can efficiently color a 3-colorable graph G with k colors, then we can
efficiently color a 3-colorable tournament with 50k colors.

Proof. Let T = (V, A) be a 3-colorable tournament. For every arc e ∈ A, try coloring N(e)
with 10 colors using Theorem 7. If the algorithm fails, the neighborhood of the edge is not
2-colorable, and thus the edge is not monochromatic in any 3-coloring. Let F ⊂ E denote
the set of arcs whose neighborhoods cannot be colored with 10 colors using our algorithm.
Ignore the direction of the arcs in F and consider the graph G = (V, F ). This graph must be
3-colorable, since no arc in F is monochromatic in any 3-coloring of T .

Now let us show that from a coloring of G with k colors, we can obtain a coloring of
T with 50k colors. Consider a coloring of the graph G = (V, F ) and let Vi be the vertices
colored with color i in this coloring. Consider the induced subtournament T ′ = T [Vi]; it
has no arc in F and thus the neighborhood of every arc in this tournament can be colored
efficiently with 10 colors. Furthermore, by Lemma 12 and Theorem 7, there are vertices u

and v in T ′ such that N+
T ′(u) ∪ N−

T ′(v) is efficiently 10-colorable. So by Lemma 5, we can
efficiently color T ′ with 50 colors. We can do this for the subtournament T [Vi] for each of
the i colors used to color G. ◀
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Combining this Lemma with approximation algorithm [24], which colors a 3-colorable
graph with fewer than n

1
5 colors, we obtain the same asymptotic bound for 3-colorable

tournaments.

▶ Corollary 16. Let T be a 3-colorable tournament on n vertices. Then, χ⃗C(T ) ≤ O(n0.19996).

We can extend Theorem 15 to a more general case.

▶ Lemma 17. Let f and g be functions such that we can efficiently color k-colorable
graphs (respectively, k-colorable tournaments) with g(k) (respectively, f(k)) colors. Then
f(k) ≤ 5 · f(k − 1) · g(k).

Proof. We use the same reduction as in the proof of Theorem 15, but now F is the set of
arcs whose neighborhoods cannot be efficiently f(k − 1)-colored. Then each Vi in G is colored
with 5 · f(k − 1) colors. So we need a total of 5 · f(k − 1) · g(k) colors. ◀

3.3 Light Tournaments
Our goal in this section is to prove the following theorem.

▶ Theorem 18. Let T be a light tournament. Then χ⃗C(T ) ≤ 9.

We will prove Theorem 18 by showing that every light tournament has a c-vertex chain
for some constant c. To do this, we will find one vertex whose in-neighborhood we can
color efficiently with a constant number of colors, and another whose out-neighborhood we
can color efficiently with a constant number of colors. We will start by establishing some
structural claims about light tournaments which are adapted from [4].

Throughout this section T = (V, A) will denote a light tournament. Note that we do not
assume that T is necessarily 2-colorable. Recall that a C3 is a directed triangle.

▶ Definition 19. Define a C3-chain of length ℓ in T to be a set of ℓ vertex disjoint C3’s,
X = (X1, X2, X3, . . . , Xℓ), such that for each i ∈ {1, . . . , ℓ − 1}, Xi ⇒ Xi+1.

A backwards arc in a C3-chain is an arc uv with u ∈ Xi and v ∈ Xj for j < i.

▶ Lemma 20. A C3-chain has no backwards arcs.

This follows from the following claim.

▷ Claim 21. If X = (X1, X2, . . . , Xℓ) is a C3-chain of length ℓ, then Xi ⇒ Xj for i < j,
where 1 ≤ i < j ≤ ℓ.

Proof. Notice that there are no arcs from Xi+1 to Xi, since by definition of a C3-chain, we
have all arcs from Xi to Xi+1. Moreover, there is no arc uv from Xi+2 to Xi since otherwise
triangle Xi+1 would appear in the neighborhood N(uv), meaning that uv is heavy, which is
a contradiction. This implies that all arcs go from Xi to Xi+2 (since T is a tournament).
Now suppose j > i + 2. If there is a back arc uv from u ∈ Xj to v ∈ Xi, then uv is a heavy
arc, because Xj−1 would be in N(uv) since by induction we have all arcs from Xi to Xj−1
and from Xj−1 to Xj . ◁

Let us fix X = (X1, X2, . . . , Xℓ) to be a C3-chain in T , and let W = V (T ) \ V (X).
Initially, X can be of any length ℓ ≥ 1.

▷ Claim 22. For w ∈ W :
1. If w ⇒ Xi, then w ⇒ Xj for all j ≥ i.
2. If Xi ⇒ w, then Xj ⇒ w for all j ≤ i.
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Proof. Suppose w ⇒ Xi and there is an arc uw with u ∈ Xj for j > i. Then uw is a heavy
arc. Similarly, suppose Xi ⇒ w and there is an arc wu with u ∈ Xj for j < i, then wu is a
heavy arc. ◁

We partition the vertices in W into zones (Z0, Z1, . . . , Zℓ) using the following criteria.
For w ∈ W , if i is the highest index such that Xi ⇒ w, then w is assigned to zone Zi. If
there is no such Xi, then w is assigned to zone Z0.

Say a vertex w ∈ W is clear if w ⇒ Xi or Xi ⇒ w for all Xi in H. Let C ⊆ W be the
set of clear vertices.

▷ Claim 23. If C is not transitive, we can extend X.

Proof. If the set Zi ∩ C contains a triangle, then we can extend X by adding a new triangle
to the chain between Xi and Xi+1.

If there is no i such that Zi ∩ C contains a triangle, then we claim that C is transitive.
This follows from the observation that there are no backwards arcs from Zj ∩ C to Zi ∩ C

for i < j. Indeed, should such an arc uv from Zj ∩ C to Zi ∩ C exist, then Xi+1 ⊂ N(uv),
so uv would be heavy. ◁

We say that X is a maximal C3-chain if C is transitive. Let us also now define the unclear
vertices U , where U = W \ C. In a maximal C3-chain X = (X1, . . . , Xℓ), notice that for a
vertex a ∈ X1, we have N−(a) ∩ U ⊆ N±(X1). (This is because if a vertex u ∈ N−(a) has
u ⇒ Xi, then u would be a clear vertex.)

▷ Claim 24. We can efficiently find two directed triangles X1 = abc and Xℓ = xyz such that
the set S = {v | v ⇒ X1 or Xℓ ⇒ v} is transitive.

Proof. Find a maximal C3-chain X and let ℓ be the length of this chain. Let abc = X1 and
xyz = Xℓ. The set of vertices {v | v ⇒ X1 or Xℓ ⇒ v} is a subset of C and is therefore
transitive. ◁

▷ Claim 25. Let xyz be a directed triangle. Then χ⃗C(N±({x, y, z})) ≤ 3.

Proof. Each vertex v ∈ N±({x, y, z}) belongs to N(xy), N(yz) or N(zx). Since each of these
sets is transitive, we conclude that N±({x, y, z}) can be colored with three colors. ◁

We can now easily prove Theorem 18, which is a corollary of Lemma 6 and the following
lemma.

▶ Lemma 26. Let T be a light tournament. Then T has a 5-vertex chain.

Proof. Recall that for a vertex a ∈ X1, we have N−(a) ∩ U ⊆ N±(X1). If X1 = abc,
notice that for v ∈ N−(a) ∩ U , v /∈ N(ca). Thus, N−(a) ∩ U ⊆ N(ab) ∪ N(bc), which is
efficiently 2-colorable. Making an analogous argument for N+(z) ∩ U , we conclude that
(N+(z) ∪ N−(a)) ∩ U is efficiently 4-colorable. The rest of the vertices in N+(z) ∪ N−(a)
belong to the set S defined in Claim 24 and can be colored with one color. Therefore
χ⃗C(N+(z) ∪ N−(a)) ≤ 5, so we can use z and a as the endpoints of a 5-vertex chain. ◀

The approach in this section can be extended to bound the chromatic number of a more
general subclass of heroes. See the full version [28] for details.
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4 Hardness of Approximate Coloring in Tournaments

In this section, we examine the hardness of approximate coloring of tournaments. [8] showed
that deciding if a tournament can be 2-colored is NP-hard. Later, [15] proved that for any k,
it is NP-hard to decide if a tournament is k-colorable.

We will first improve upon these NP-hardness results and then show hardness of coloring
k-colorable tournaments for k ≥ 3 with O(1) colors under the d-To-1 conjecture. The d-To-1
conjecture was first introduced by Khot alongside the famous Unique Games conjecture [26],
and has since been used to show hardness of coloring 3-colorable graphs with O(1) colors [18].

First notice that the search problem must be at least as hard as its decisional equivalent.

▶ Observation 27. Let k < ℓ be any two constants. If we can color k-colorable tourna-
ments with ℓ colors, then we can distinguish k-colorable tournaments from tournaments with
chromatic number at least ℓ + 1.

This comes immediately from the fact that if we could ℓ-color all k-colorable tournaments,
then we could see that they do not have chromatic number ℓ + 1 or greater. The hardness
of distinguishing between chromatic number k and greater or equal to ℓ + 1 is therefore
commonly established as a way of implying the hardness of coloring k-colorable graphs with
ℓ colors (see for example [6]).

All proofs of the theorems in this section are provided in the full version [28].

4.1 NP-Hardness of Approximate Coloring of k-Colorable Tournaments
It was shown previously that it is NP-hard to color a 2-colorable tournament with 2 colors [8,
15]. We prove a stronger theorem, that it is NP-hard to 3-color a 2-colorable tournament.

▶ Theorem 28. It is NP-hard, given a tournament T , to distinguish whether χ⃗(T ) = 2 or
χ⃗(T ) ≥ 4.

The proof of this Theorem relies on a reduction from the problem of coloring 2-colorable
tournaments with three colors to the problem of coloring 2-colorable 3-uniform hypergraphs
with six colors. This problem is NP-hard, since it was proven that coloring 2-colorable
3-uniform hypergraphs with any constant number of colors is NP-hard [11].

We then use a recursive construction that starts with the tournament obtained in the
proof of Theorem 28 to generalize the hardness of approximation to k-colorable tournaments
for any constant k.

▶ Theorem 29. It is NP-hard, given a tournament T and a constant k, to distinguish whether
χ⃗(T ) = k or χ⃗(T ) ≥ 2k.

4.2 Reduction from Coloring Graphs to Coloring Tournaments
In Section 3.2, we showed that if we can color a 3-colorable graph with k colors, then we can
color a 3-colorable tournament with 50k colors. We give a reduction in the other direction:
We show that the problem of coloring a k-colorable graph with ℓ colors is reducible to the
problem of coloring a k-colorable tournament with ℓ colors.

▶ Theorem 30. Given any two constants k, ℓ ≥ 3, if we can efficiently distinguish k-colorable
tournaments and tournaments with chromatic number at least ℓ, then we can efficiently
distinguish k-colorable graphs and graphs with chromatic number at least ℓ.
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Figure 2 3-chromatic light tournament.

A corollary of this reduction is the hardness of coloring tournaments under the d-To-1
Conjecture of Khot [26]; [18] showed that assuming the d-To-1 Conjecture, it is hard to color
3-colorable graphs with O(1) colors, and using our reduction, we can extend this hardness to
tournaments.

▶ Corollary 31. Let 3 ≤ k < ℓ be any two constants. Then if the d-To-1 conjecture is true,
we cannot distinguish between tournaments with chromatic number k and tournaments with
chromatic number at least ℓ.

4.3 Hardness of Approximation for General Tournaments
Coloring digon-free digraphs has been shown to be NP-hard to approximate within a factor
of n1/2−ϵ [14]. This proof can easily be extended to the case of tournaments, which provides
the following theorem.

▶ Theorem 32. Given any arbitrarily small constant ϵ > 0, it is NP-hard to approximate
the chromatic number of tournaments within a factor of n1/2−ϵ.

5 Conclusion

There are many open questions related to the theorems we have presented since all the
rows in Table 2 present gaps between the upper and lower bounds. One example is light
tournaments: What is the maximum number of colors required to color a light tournament?
From Theorem 18, we know that light tournaments have dichromatic number at most 9.
On the other hand, there exist light tournaments that are not 2-colorable. An example of
such a tournament is the Paley tournament P7, one of the four 3-chromatic tournaments on
seven vertices [33]. This tournament is represented in Figure 2. We have not found any light
tournament with chromatic number at least four. The Paley tournament P11 is the unique
4-chromatic tournament on 11 vertices [33]. A light 4-chromatic tournament would have to
have at least 13 vertices as [3] proved that any 4-chromatic tournament on 12 vertices must
contain an induced copy of P11 and P11 is not light.

Moreover, notice that if we could show that it is hard to color a 2-colorable tournament
with four colors (rather than three as per Theorem 28), this would imply hardness of coloring
a 2-colorable light tournament with two colors by Observation 8. Indeed, we have no hardness
results for coloring light tournaments. Any upper bound of c on their dichromatic number
would imply that it cannot be NP-hard to color them with c colors, because the property of
being light is checkable in polynomial time (unlike the property of being, say, 2-colorable).

Another observation is the relation of coloring tournaments and the feedback vertex set
(FVS) problem on tournaments. There is an elegant 2-approximation for this problem [30].
Notice that Theorem 7 implies that in a 2-colorable tournament, we can efficiently find a FVS
of size at most 9n/10. In contrast, the algorithm in [30] could just return the whole vertex set
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if the two transitive sets were of roughly equal size. Finally, we mention that, analogous to a
well-studied question for general graphs [10, 27], one can ask what is the largest transitive
induced subtournament that one can efficiently find in a 2-colorable tournament? Is it larger
than n/10?

Finally, we remark that an implication of Theorem 15 is that proving any hardness of
coloring 3-colorable tournaments would then provide hardness of coloring 3-colorable graphs
with 50 times fewer colors. Since it has taken around 20 years to go from proving NP-hardness
of coloring a 3-colorable graph with four colors [25, 16, 17] to NP-hardness of coloring a
3-colorable graph with five colors [6], it would be interesting to see if we can prove hardness
of coloring 3-colorable tournaments for a constant larger than five (at least five is shown in
Theorem 29), or perhaps show that the two problems are actually equivalent.
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