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Abstract
We consider maintaining strongly connected components (SCCs) of a directed graph subject to edge
insertions and deletions. For this problem, we show a randomized algebraic data structure with
conditionally tight O(n1.529) worst-case update time. The only previously described subquadratic
update bound for this problem [Karczmarz, Mukherjee, and Sankowski, STOC’22] holds exclusively
in the amortized sense.

For the less general dynamic strong connectivity problem, where one is only interested in
maintaining whether the graph is strongly connected, we give an efficient deterministic black-box
reduction to (arbitrary-pair) dynamic reachability. Consequently, for dynamic strong connectivity
we match the best-known O(n1.407) worst-case upper bound for dynamic reachability [van den
Brand, Nanongkai, and Saranurak FOCS’19]. This is also conditionally optimal and improves upon
the previous O(n1.529) bound. Our reduction also yields the first fully dynamic algorithms for
maintaining the minimum strong connectivity augmentation of a digraph.
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1 Introduction

Two vertices of a directed graph G = (V, E) are strongly connected if they can reach
each other via a path in G. Pairwise strong connectivity is an equivalence relation and
the strongly connected components of G are the equivalence classes of that relation. The
graph G is called strongly connected if it has a single strongly connected component, or,
equivalently, the transitive closure of G is a complete digraph. Testing strong connectivity
and computing strongly connected components (SCCs) are among the most fundamental
algorithmic problems on digraphs. Tarjan [24] famously showed a DFS-based linear-time
algorithm for finding SCCs, which now, along with later alternatives [11, 23], is often taught
in basic algorithms courses and appears in textbooks [9].

We study maintaining strong connectivity and strongly connected components in dynamic
setting. A dynamic graph data structure is called incremental if it can handle edge insertions
only, decremental if it can handle edge deletions only, and fully dynamic if it can handle both.
When designing dynamic graph data structures, one is typically interested in optimizing
both the (amortized or worst-case) update time of the data structure, and the query time.
In the partially dynamic settings (i.e., incremental or decremental) one usually optimizes the
total update time, i.e., the time needed to process the entire sequence of updates. In the
following, let n = |V | and m = |E|.
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68:2 On Fully Dynamic Strongly Connected Components

In this paper, we focus on the fully dynamic setting with single-edge updates. We are
interested in maintaining the information about the global structure of SCCs of G, as opposed
to supporting pairwise strong-connectivity queries. The information of interest may be either:
(a) a single bit indicating whether G is strongly connected (let us call this variant SC ),
(b) the number of SCCs of G (#SCC ),
(c) a representation of the SCCs allowing very efficient access to the individual SCCs, that

is, computing the size in O(polylog n) time, or reporting the elements in O(polylog n)
time per element (SCCs).

In particular, (c) can be achieved by maintaining an explicit Θ(n)-sized partition of V into
SCCs, which also allows for O(1)-time pairwise strong connectivity queries. On the other
hand, using pairwise strong connectivity queries cannot easily provide any of the considered
global information. In the following, for simplicity, we assume the desired information is
explicitly recomputed after each update so that there is no need to consider query time.
Thus, our sole goal is to optimize the worst-case update time.

Lower bounds. Note that if one is required to maintain the SCCs of a fully dynamic graph
explicitly, then a single update can cause quite dramatic Ω(n)-sized change in the set of
SCCs (consider a directed cycle). Abboud and Vassilevska Williams [1] showed that even for
maintaining a single-bit information whether G has more than two SCCs (the SC2 problem),
a data structure with O(n1−ϵ) amortized time1 is unlikely, as it would break the Orthogonal
Vectors conjecture, which is implied by SETH [15, 27]. The SETH-hardness of [1] does
not seem to extend to SC though, which suggests that #SCC (or even SC2) might be a
computationally harder problem.

The more recent OMv conjecture [14] implies that one cannot achieve O(n1−ϵ) update
time even for SC. This suggests that for sparse graphs with m = Õ(n) the trivial recompute-
from-scratch approach might be the best possible approach for SC and SCCs.

van den Brand, Nanongkai, and Saranurak [26] developed a few extensions of the OMv
conjecture and proved, based on those, that fully dynamic s, t-reachability (where s, t ∈ V are
fixed) currently requires Ω(n1.406) amortized update time, and fully dynamic single-source
reachability (with only the source s fixed) currently requires Ω(n1.528) time per update.2
This means that the state-of-the-art data structures [26, 20] for the respective variants are
near-optimal. By known reductions (see, e.g., [1]), one obtains that SC requires Ω(n1.406)
update time, whereas SCCs require Ω(n1.528) update time.

Upper bounds. Abboud and Vassilevska Williams [1] showed that in order to have Õ(n2−ϵ)
amortized update time for SC using fast matrix multiplication (FMM) is essential, thus
ruling out non-trivial combinatorial approaches. And indeed, FMM-based algebraic dynamic
reachability algorithms [20, 26] allow breaking the quadratic update bound. This is because

1 Abboud and Vassilevska Williams[1] actually write that Ω(m1−o(1)) is the best bound one can hope for.
However, since this bound is a function of m exclusively, it is required to hold only for some density
regime, e.g., sparse graphs.

2 More specifically, based on their OMv conjecture variants, van den Brand, Nanongkai, and Saranurak [26]
proved, for any ϵ > 0, an Ω(mina,b∈[0,1](na+b +nω(1,a,1)−a +nω(1,a,b)−b) ·n−ϵ) lower bound for dynamic
s, t-reachability, and an Ω(n1+ρ−ϵ) lower bound for dynamic single-source reachability (SSR), where
ρ < 0.529 satisfies 1 + 2ρ = ω(1, ρ, 1). Here O(nω(a,b,c)) denotes the time needed to multiply an na × nb

boolean matrix by an nb × nc boolean matrix. These two conditional lower bounds become Ω(n1.406)
and Ω(n1.528), respectively, assuming the current exponents of rectangular matrix multiplication.
Furthermore, they become Ω(n1+1/4−ϵ) and Ω(n1+1/2−ϵ), respectively, assuming ω = 2.
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SC easily reduces to maintaining reachability to and from an arbitrary single vertex [26].
As a result, O(n1.529) worst-case update time is possible in this case. This state-of-the-art
bound does not match the O(n1.406) lower bound [26], though. More generally, since the fully
dynamic data structure of Sankowski [20] allows relatively cheap O(n0.529)-time arbitrary-
pair reachability queries3 at the cost of O(n1.529) update time, this approach generalizes to
maintaining some at most k distinct SCCs of G in O(kn1.529) worst-case time per update. In
particular, for k = 2 this trivially yields a solution to SC2 with O(n1.529) worst-case update
time. This matches the best known upper bound for SC. Consequently, the state-of-the-art
bound for SC does not reflect the intuition of [1] that SC2 might be a harder problem.

The described approach, however, does not easily allow recomputing all SCCs of G, or
even counting them, within subquadratic update time. In fact, the more general #SCC
and SCCs problems do not seem to reduce to inspecting some O(n2−ϵ)-sized subset of
the reachability matrix of G. Nevertheless, Karczmarz, Mukherjee, and Sankowski [17]
recently showed that SCCs (and thus #SCC) can be maintained in O(n1.529) amortized time
per update. Their approach is a mix of combinatorial and algebraic methods and critically
depends on the efficiency of a decremental SCCs data structure. Bernstein, Probst Gutenberg,
and Wulff-Nilsen [7] gave a near-optimal data structure maintaining SCCs explicitly under
edge deletions with Õ(m) total update time. Although the O(n1.529) amortized bound is
near-optimal, the worst-case update time of the data structure of [7] might be Θ(n2), and
thus the worst-case update time of the fully dynamic SCCs data structure [17] may be as
much as Θ(n2) as well. To the best of our knowledge, no non-trivial worst-case bound for
either #SCC or SCCs under fully dynamic edge updates has been described to date.

1.1 Our results
First of all, we close the gaps between the best known lower- and upper (worst-case) bounds
for both fully dynamic strong connectivity (SC) and fully dynamic strongly connected
components (SCC) in general directed graphs. See also Table 1. We achieve that by showing
novel combinatorial reductions to the known fully dynamic arbitrary-pair reachability data
structures [26, 20].

Fully dynamic strongly connected components. For fully dynamic SCCs we prove:

▶ Theorem 1. Let G be a digraph. Suppose there is a fully dynamic reachability data
structure D processing single-edge updates and arbitrary-pair queries on G in U(n) and Q(n)
time respectively. Suppose the answers produced by D are correct with high probability4.

Then one can explicitly maintain the SCCs of G subject to single-edge insertions and
deletions in Õ(U(n) + n · Q(n)) time per update (worst-case if the bounds U(n), Q(n) are
worst-case). The obtained data structure is Monte Carlo randomized. The answers produced
are correct with high probability.

It is worth noting that the data structure trivially works against an adaptive adversary5

since the revealed information, the SCCs, depend only on the current graph G. As far as the
adversarial model of the assumed data structure D is concerned, no special requirements

3 Throughout, we use the term arbitrary-pair reachability to refer to the situation when the endpoints s, t
of a reachability pair of interest are a part of a query and may vary for different queries. The output of
a query is a single bit indicating whether s can reach t in the (current) graph.

4 That is, with probability at least 1 − 1/nc, where the constant c ≥ 1 can be set arbitrarily.
5 That can only see the output of the data structure, and not the random bits used by the data structure

internally.
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beyond high-probability correctness are needed. Indeed, the query interface of D does not
leak any information about the potential random choices made by D internally (unless D errs,
which we treat as a low-probability failure anyway) since the correct answers are uniquely
determined by the graph maintained in D.

Sankowski [20] showed a Monte Carlo randomized data structure with U(n) = O(n1+ρ)
and Q(n) = O(nρ) (both worst-case), where ρ < 0.529 is such that 1 + 2ρ = ω(1, ρ, 1). As a
result, Theorem 1 implies a data structure with O(n1.529) worst-case update bound for fully
dynamic SCCs. To the best of our knowledge, we are the first to achieve a non-trivial O(n2−ϵ)
worst-case update time for SCCs and even #SCC. Moreover, via a folklore6 reduction from
fully dynamic single-source reachability and the conditional lower bound of [26], the obtained
O(n1.529) bound is tight for SCCs. Hence, our data structure constitutes the final answer to
the problem (up to polylog factors), unless the Mv-hinted Mv variant of the OMv conjecture
of [26, Conjecture 5.7] fails. That being said, it is not clear whether our bound is tight for
the counting variant #SCC whose output is a single number, as opposed to n bits in SSR.

The worst-case update time guarantee allows applying Theorem 1 in the fault-tolerant
model, where the goal is to recompute a graph property for a query set of at most k failed
edges or vertices. Georgiadis, Italiano, and Parotsidis [12] showed that after optimal linear
preprocessing, one can compute the SCCs of G after removing any single vertex/edge in
optimal O(n) time. Baswana, Choudhary, and Roditty [2] showed that after polynomial
preprocessing, one can find the SCCs of G after removing k vertices/edges in Õ(2k · n) time.
Thus, the known results could only handle at most log n failures faster than recompute-from-
scratch, for any density of G. Our result implies that for m = Ω(n1.53) one can recompute
SCCs faster than from scratch even under polynomially many (that is, k = O(m/n1.529))
vertex/edge failures7. That being said, the purely combinatorial data structures [2, 12] are
significantly faster if, e.g., k is constant.

It is worth noting that a reduction of computing SCCs to a reachability problem has
been known in the parallel setting [21]. That static reduction does not seem to be applicable
in the dynamic setting using algebraic techniques, though. More specifically, Schudy [21]
reduces computing SCCs of G to a number of adaptively generated instances of multi-source
reachability (which in turn reduces to the single-source case by adding a super-source) on
induced subgraphs of G of total size Õ(m). In the dynamic setting, spending time linear
in m per update is prohibitive, and furthermore it is not clear how to efficiently simulate
adaptively generated multi-source reachability queries for the following reasons. First, using
the super-source trick would either require performing possibly Ω(n) edge updates (which
are very costly, i.e., super-linear using algebraic methods) in the reachability data structure.
If we wanted to avoid that, i.e., handle each source separately, we would possibly end up
performing Ω(n2) single-pair reachability queries. Our reduction for dynamic SCCs relies
on being able to query Õ(n) arbitrary reachability pairs after each update. Crucially, these
pairs cannot be grouped into, e.g., polylog(n) multi-source queries. Such an n-arbitrary-pairs
reachability problem looks much more difficult even in the static setting and does not seem
to be solvable in linear time like multi-source reachability. In fact, we believe no static bound
beyond O(min(nm, nω)) is known.

6 It is enough to maintain a graph G′ obtained from G by adding a super-sink t and edges vt for all
v ∈ V . Then for a query source s, vertices reachable from s in G are those in the SCC of s in G′ + ts.

7 Vertex failures can be easily simulated by splitting each v ∈ V into vin, vout, that inherit the incoming
and outgoing edges of v, resp, and introducing an edge ev = vinvout. Then the failure of v is equivalent
to the failure of ev.
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Strong connectivity. For the less general dynamic strong connectivity (SC), we give an even
more efficient and deterministic black-box reduction to dynamic arbitrary-pair reachability.

▶ Theorem 2. Let G be a digraph. Suppose there is a fully dynamic reachability data structure
processing single-edge updates and arbitrary-pair reachability queries on G in at most T (n)
time. Then one can maintain whether G is strongly connected subject to single-edge insertions
and deletions in O(T (n) log n) time per update (worst-case if the T (n) bound is worst-case).

van den Brand, Nanongkai, and Saranurak [26] showed a Monte Carlo randomized fully
dynamic arbitrary-pair reachability data structure with O(n1.407) worst-case update and
query time. Therefore, Theorem 2 implies O(n1.407) worst-case update bound for fully
dynamic strong connectivity. This improves upon the known O(n1.529) bound following
from the trivial reduction to dynamic single-source reachability. By the conditional lower
bound of [26], we essentially close the complexity of fully dynamic strong connectivity (up to
polylogarithmic factors), unless the uMv-hinted uMv conjecture of [26, Conjecture 5.12] fails.

Whereas the obtained O(n1.407) update bound is Monte Carlo randomized, this is only
caused by the Schwartz-Zippel-lemma-style randomization inside the used reachability data
structure. Obtaining a deterministic subquadratic fully dynamic reachability data structure
would immediately imply a deterministic subquadaratic bound for SC.

Interestingly, our reduction does not seem to generalize to maintaining whether G has
more than two SCCs (SC2), which was the case for the trivial reduction. As a result,
O(n1.529) currently remains the sharpest update bound for SC2. At the same time the
tightest conditional lower bound we have for SC2 is Ω(n1.407) because SC2 does not seem to
be easily reducible from dynamic single-source reachability, which was the case for dynamic
SCCs. This is a consequence of the fact that the output in the SCC problem is n numbers,
whereas in SC2 it is just a single bit. Obtaining a faster dynamic algorithm for SC2 or
coming up with a plausible lower bound beyond O(n1.407) is an interesting next step.

Table 1 Comparison of state-of-the art conditional lower- and upper bounds for the problems
SC, SC2, #SCC, and SCC, and new upper bounds obtained via our reductions. Each problem in
the table generalizes the preceding one. For SC and SCC, our obtained upper bounds are tight.

problem known conditional
lower bound

prev. worst-case
update bound

previous amortized
update bound

our new worst-case
update bound

SC
Ω(n1.406)
[1]+[26]

O(n1.529)
[26, 20]

same as
worst-case

O(n1.407)
Theorem 2+[26]

SC2 –
#SCC

O(n2)
trivial

O(n1.529)
[17]

O(n1.529)
Theorem 1+[20]SCC Ω(n1.528)

[26] via SSR

Generalizations. The reduction of Theorem 2 does generalize in two different ways. First,
within the same update bound (see Theorem 11) we can actually maintain the exact size
χ(G) of the minimum strong connectivity augmentation [10] of G. The minimum strong
connectivity augmentation is a smallest possible set of edges that one needs to add to G

to make it strongly connected. χ(G) can be seen as an alternative and “orthogonal” (to
the number of SCCs) measure of how much G is not strongly connected. As shown by
Eswaran and Tarjan [10], in the static setting, the value χ(G) and some minimum strong
connectivity augmentation can be computed in linear time.

ESA 2023



68:6 On Fully Dynamic Strongly Connected Components

As is typical for algebraic data structures8, maintaining an object – some minimum
strong augmentation in our case – is trickier than maintaining only the optimal value χ(G).
Our algorithm can be nevertheless extended to maintain some χ(G)-sized augmentation Y

within the same O(n1.407) worst-case bound and against an adaptive adversary, as long as
χ(G) = O(n0.703). On the other hand, for larger χ(G), e.g., χ(G) = Θ(n), some minimum
augmentation Y can be maintained in O(n1.529) worst-case time per update.

Interestingly, the weighted version of the minimum strong connectivity augmentation
problem, where the costs of different potential edges to be added vary, is NP-hard [10].

Moreover, the reduction behind Theorem 2 enables universal reachability queries, even
if G is not strongly connected. That is, in O(n1.407) time, we can decide whether a query
vertex v can reach all vertices in G, or find some vertex that v cannot reach. See Theorem 14.
The O(n1.529) query time follows trivially (simply issue all the n possible reachability queries
from v) from the fully dynamic single-source reachability data structure [20].

1.2 Further related work
Since the known lower bounds [1, 14] imply that fully dynamic (or partially dynamic with
worst-case bounds) SCCs data structures are possible only for sufficiently dense graphs and
using algebraic methods, most of the previous work regarding maintaining SCCs dealt with
partially dynamic settings with the goal of optimizing total update time.

Maintaining SCCs has been studied in the incremental setting [5, 3, 13]. The current best
known randomized solution for sparse graphs [5] has Õ(m4/3) total update time, whereas
the best known deterministic data structure [3] has O(m3/2) total update time. For denser
graphs, Bender et al. [3] gave a near-optimal deterministic data structure with Õ(n2) total
update time. All these data structures maintain SCCs explicitly.

Decremental SCCs maintenance has been studied even more extensively [6, 7, 8, 18, 19].
Bernstein, Probst Gutenberg, and Wulff-Nilsen [7] gave a randomized data structure with
near-optimal Õ(m) total update time. The current best known deterministic total update
time bound of Õ(mn2/3) for general digraphs is due to Bernstein, Probst Gutenberg, and
Saranurak [6]. For planar graphs, the near-optimal Õ(n) total update time can be achieved
deterministically [16].

In the case of (global) strong connectivity, incremental graph search from/to an arbitrary
single source yields optimal O(m) total update time. It is not clear if decremental strong
connectivity is easier, in any sense, than decremental SCCs, and no specialized data structures
beyond those for SCCs maintenance [7, 6] are known for decremental strong connectivity.

2 Preliminaries

In this paper we deal with directed graphs. We write V (G) and E(G) to denote the sets of
vertices and edges of G, respectively. We omit G when the graph in consideration is clear
from the context. A graph H is a subgraph of G, which we denote by H ⊆ G, if and only if
V (H) ⊆ V (G) and E(H) ⊆ E(G). We write e = uv ∈ E(G) when referring to edges of G.
By GR we denote G with edges reversed.

A sequence of vertices P = v1 . . . vk, where k ≥ 1 is called an s → t path in G if s = v1,
vk = t and there is an edge vivi+1 in G for each i = 1, . . . , k − 1. We sometimes view a path
P as a subgraph of G with vertices {v1, . . . , vk} and (possibly zero) edges {v1v2, . . . , vk−1vk}.

8 For example, for dynamic reachability and exact distances, the known algebraic data structures [25, 26, 20]
are polynomially faster than the known solutions to their respective path-reporting variants [4, 17].
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For convenience, we sometimes consider a single edge uv a path. If P1 is a u → v path and
P2 is a v → w path, we denote by P1 · P2 (or simply P1P2) a path obtained by concatenating
P1 with P2. A vertex t ∈ V (G) is reachable from s ∈ V (G) if there is an s → t path in G.

3 Fully dynamic strongly connected components

In this section we describe our fully dynamic strongly connected components data structure.
Suppose there exists a reachability data structure maintaining an n-vertex digraph

subject to single-edge insertions and deletions and answering arbitrary-pair reachability
queries. Denote by U(n) and Q(n) the update and query (resp.) time bounds of the assumed
data structure.

We start by proving the following key observation, that tracking the vertices v ∈ V

strongly connected to some vertex t out of a chosen subset T ⊆ V can be reduced to
maintaining some n cells of the transitive closure matrix (reachability pairs) of a certain
auxiliary graph GT .

▶ Lemma 3. Let G = (V, E) be a digraph, and let T ⊆ V . Let G′ be a graph with vertices
V ′ = {v′ : v ∈ V }, and edges E′ = {u′v′ : uv ∈ E}, i.e., G′ is a copy of G with vertices
primed. Consider a graph GT obtained from G ∪ G′ by adding edges tt′ for each t ∈ T . Then,
for any v ∈ V , v is strongly connected with some t ∈ T in G if and only if there is a path
v → v′ in GT .

Proof. Suppose that v is strongly connected with some t ∈ T in G. Then, there exists a
path P = v → t in G, and a path Q = t → v in G. As a result, there is a corresponding path
Q′ = t′ → v′ in G′. Since tt′ ∈ E(GT ), we conclude there is a v → v′ path P · tt′ · Q′ in GT .

Now suppose there is a v → v′ path in GT . Note that a path R starting in the G-part of
GT can only depart from G for G′ through an edge tt′, t ∈ T , and it cannot go back to G.
As a result, R can be expressed as R1 · (tt′) · R′

2, where R1 = v → t is a path in G, and R′
2 is

a t′ → v′ path in G′. But R′
2 has a corresponding path R2 = t → v in G. The paths R1, R2

certify that v and t are strongly connected. Consequently, v is strongly connected to some
vertex of T in G. ◀

To make use of Lemma 3 we will employ the unique witness trick (usually attributed
to [22]) that have been used for computing witnesses of various matrix products, also in the
dynamic setting [4]. However, in our case, we will use this technique with a conceptually
very different purpose: to select a certain root of every SCC that ever appears in G throughout
edge updates.

▶ Lemma 4. [22] Let X ⊆ V be a subset with n/2k+1 ≤ |X| ≤ n/2k for an integer k ≥ 0.
Let S ⊆ V be a subset obtained by sampling 2k elements of V uniformly at random and
independently (with replacement). Then, with probability at least 1/6, |X ∩ S| = 1.

Proof. The probability that only the i-th sampled vertex is a unique element of X ∩ S is

|X|
n

·
(

1 − |X|
n

)2k−1
≥ 1

2k+1 ·
(

1 − 1
2k

)2k−1
≥ 1

2k+1e
.

The probability that |X ∩ S| = 1 is at least the probability of one of the above disjoint events
happening, i.e., at least 2k · 1

2k+1e
= 1

2e ≥ 1/6. ◀

ESA 2023



68:8 On Fully Dynamic Strongly Connected Components

Let ℓ = (γ + 2) · log6/5 n for a constant γ > 0 that can be adjusted to control the error
probability. Let B be the smallest integer such that n < 2B, so that B = O(log n). For a
non-negative integer m, put [m] := {0, . . . , m}. Let us identify V with the B-bit numbers
{1, . . . , n}. Moreover, let

T = {Tk,l,b : k ∈ [B − 1], l ∈ [ℓ − 1], b ∈ [B − 1]}

be a family of subsets of V obtained as follows. For k ∈ [B − 1], l ∈ [ℓ − 1] let Tk,l be a subset
of V obtained by sampling 2k elements of V uniformly at random and independently, with
replacement. Then, set Tk,l,b to be a subset of numbers v ∈ Tk,l such that the b-th (0-based)
bit of v in the binary equals 1. Clearly, the family T has O(log3 n) subsets.

First of all, we maintain the graph G itself in the assumed fully dynamic reachability data
structure D. For each T ∈ T , we set up another assumed data structure DT maintaining the
graph GT , as defined in Lemma 3. Note that each edge update to the graph G is reflected
using just two edge updates to each graph GT since GT consists of two copies of G. As a
result, every edge update can be processed in O(U(n) · |T |) = Õ(U(n)) time (worst-case if
the bound U(n) is worst-case).

We now describe how the SCCs of G are recomputed after an update. We build an
auxiliary graph H whose construction follows. For each v ∈ V , k ∈ [B − 1], and l ∈ [ℓ − 1],
we do the following. For every b ∈ [B − 1], we query the data structure DTk,l,b

whether there
exists a path v → v′ in GTk,l,b

. Let sv,k,l be a number (vertex) such that the b-th bit is set
to 1 if and only if the corresponding path in GTk,l,b

exists. If sv,k,l ∈ {1, . . . , n} (so that sv,k,l

is indeed a vertex of G) and v is strongly connected with sv,k,l (which can be tested using
two queries to D), we add an undirected edge {v, sv,k,l} to H.

Observe that the graph H is constructed by performing Õ(n) queries to the assumed
data structures D and DT , T ∈ T . The cost of these queries is Õ(n · Q(n)) (worst-case if
Q(n) is worst-case).

Having constructed the undirected graph H, we output its connected components as the
SCCs of G. Since H has Õ(n) edges, this can be done in Õ(n) additional worst-case time.

▶ Lemma 5. With probability at least 1 − 1/nγ, the connected components of H and the
strongly connected components of G are equal.

Proof. By the construction, if two vertices u, v ∈ V are connected by an edge (or more
generally, a path) in H, then they are strongly connected in G. Hence, we only need to prove
that if u, v ∈ V are strongly connected in G, then they are connected in H as well.

Let C be the SCC of G containing both u and v. Let z ∈ [B − 1] be such an integer that
we have n/2z+1 ≤ |C| ≤ n/2z. By Lemma 4, for each l ∈ [ℓ − 1], Tz,l satisfies |Tz,l ∩ C| = 1
with probability at least 1/6. As a result, with probability at least 1 − (5/6)ℓ ≥ 1 − 1/nγ+2,
at least one of the sets Tz,l, say Tz,y, satisfies |Tz,y ∩ C| = 1. Let s be the unique element of
Tz,y ∩ C. Observe that for b ∈ [B − 1], we have Tz,y,b ∩ C = {s} if the b-th bit of s equals 1
and Tz,y,b ∩ C = ∅ otherwise. As a result, by Lemma 3, for both u and v the query to the
data structure DTz,y,b

will return true if and only if the b-th bit of s is 1. Equivalently, we
will have s = sv,k,l = su,k,l ̸= 0. Since both edges {v, s} and {u, s} are added to H, u and v

are indeed connected in H.
As there are at most n2 pairs (u, v), the implications hold with probability at least

1 − n2 · (1/nγ+2) = 1 − 1/nγ . ◀

Note that the above lemma holds for any version of G since, unless the algorithm makes
a mistake (which happens with low probability), we do not reveal any random bits to the
adversary as the output is always unique. To summarize, we obtain the following.
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▶ Theorem 1. Let G be a digraph. Suppose there is a fully dynamic reachability data
structure D processing single-edge updates and arbitrary-pair queries on G in U(n) and Q(n)
time respectively. Suppose the answers produced by D are correct with high probability.

Then one can explicitly maintain the SCCs of G subject to single-edge insertions and
deletions in Õ(U(n) + n · Q(n)) time per update (worst-case if the bounds U(n), Q(n) are
worst-case). The obtained data structure is Monte Carlo randomized. The answers produced
are correct with high probability.

Sankowski [20] showed that there exists a fully dynamic reachability data structure with
U(n) = Õ(n1+ρ) worst-case update time and Q(n) = Õ(nρ) query time, where ρ < 0.529 is
such that 1 + 2ρ = ω(1, ρ, 1). By Theorem 1 it follows that there exists a fully dynamic data
structure maintaining SCCs explicitly with Õ(n1+ρ) = O(n1.529) worst-case update time.

4 Reducing dynamic strong connectivity to dynamic reachability

In this section we show how to maintain whether the graph G is strongly connected subject
to edge insertions and deletions using a fully dynamic reachability data structure supporting
single-edge updates and arbitrary-pair reachability queries. Our reduction is deterministic and
incurs only polylogarithmic overhead. Again, assume that n < 2B for an integer B = O(log n).
The vertices are numbered 1 through n and thus can be seen as B-bit numbers.

Let us define a source strongly connected component of G to be an SCC of G with no
incoming edges from other SCCs of G. Clearly, if G is strongly connected, it has precisely
one source SCC. The main idea is to maintain a source set Z ⊆ V such that Z contains
precisely one vertex z of every source SCC of G. For example, if G is strongly connected,
then Z can be any single-element subset of V . We also have the following simple property.

▶ Observation 6. For every vertex v ∈ V (G) there exists some source SCC S of G such
that v is reachable from every s ∈ S.

Proof. Let C be the SCC of v in G. Let G∗ be the condensation of G obtained from G

by contracting the SCCs. Then, G∗ is a DAG. In a DAG, every vertex is reachable from a
source (that is, a vertex with no incoming edges). In particular, C is reachable from some
source S of G∗. Consequently, any vertex s ∈ S can reach v in G by construction of G∗. ◀

The following lemma shows how a data structure maintaining some source set of G can be
used to maintain strong connectivity of G.

▶ Lemma 7. Let GR be the reverse of G. Let Z be some source set of G and let ZR be some
source set of GR. Then G is strongly connected if and only if |Z| = |ZR| = 1 and t ∈ ZR

can reach s ∈ Z in G.

Proof. Clearly, if G is strongly connected, then Z = {s}, ZR = {t} for some s, t ∈ V .
Moreover, t can reach s in G.

Now suppose Z = {s} and ZR = {t}. Consider any x, y ∈ V . By Observation 6, y is
reachable from s. Similarly, by Observation 6 applied to GR, x is reachable from t in GR, i.e.,
t is reachable from x in G. By the assumption, t can reach s in G. Thus, there exist a path
x → t → s → y in G. Since the pair x, y was arbitrary, G is indeed strongly connected. ◀

By Lemma 7, we can maintain strong connectivity using a fully dynamic source set data
structure built on G, a fully dynamic source set data structure built on GR, and a fully
dynamic reachability data structure built on G. Every edge update translates to a single edge
update in the three data structures, and a single query to the reachability data structure.

Let us now focus on maintaining a source set Z of G subject to edge updates. We have:
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▶ Lemma 8. For any w ∈ V , there exists at most one z ∈ Z such that w can reach z in G.
Moreover, w is in a source SCC (containing z) if and only if such a z ∈ Z exists.

Proof. Let z ∈ Z and let C be the source SCC of G with z ∈ C. By the definition of a
source SCC, the only vertices of V that can reach z are those in C. As a result, if w can
reach z, then w ∈ C. Therefore, w /∈ C ′ for other source SCCs C ′ ̸= C, and thus w cannot
reach any other z′ ∈ Z, z′ ̸= z. On the other hand, if w ∈ C for some source SCC C, then w

can clearly reach the unique element of Z ∩ C. ◀

Maintained data structures. First of all, let Ḡ be the graph G extended with a super
source s /∈ V (G) and edges sz for all z ∈ Z. We store Ḡ in a fully dynamic reachability data
structure D. Note that using a single reachability query to D we can check whether some
query vertex v ∈ V is reachable from Z in Ḡ. Since G ⊆ Ḡ and s has no incoming edges, the
data structure D can also handle usual reachability queries in G.

For b ∈ [B − 1], let Gb be the graph G extended with a super sink t /∈ V (G), and edges zt

for all z ∈ Z such that the b-th bit of the number z equals 1. We store the O(log n) graphs
Gb in fully dynamic reachability data structures D0, . . . , DB−1. Note that since every v ∈ V

has at least one bit set,
⋃B−1

i=0 Gb contains edges zt for all z ∈ Z. As a result, a vertex w ∈ V

can reach some vertex of Z if and only if w can reach t in
⋃B−1

i=0 Gb. Moreover, by Lemma 8,
if w can reach some vertex of Z, then it can reach precisely one such z ∈ Z. The individual
data structures Gb can be used to find that z: observe that w can reach t (equivalently, reach
z) in Gb precisely if and only if z has the b-th bit set. As a result, we have the following.

▶ Lemma 9. For any w ∈ V one can find the unique z ∈ Z that w can reach in G (if one
exists) using O(log n) queries to the fully dynamic reachability data structures D0, . . . , DB−1.

Whenever the graph G is updated or the set Z undergoes an update, the update is passed
to all the O(log n) relevant data structures D and D0, . . . , DB−1 so that they reflect the
current graphs Ḡ and G0, . . . , GB−1 respectively.

We now proceed with describing how the updates are processed. In the following, denote
by G′ the graph G after the edge update, whereas G denotes the graph before the edge
update considered.

Edge insertions. First consider an insertion of edge uv. If there exists a path u → v in G

(a single query to D), the SCCs of G do not change due to the insertion. No source SCC
gets an incoming edge from another SCC. Therefore, Z remains a valid source set.

Let us thus assume that there is no u → v path in G. In particular, u and v are not
strongly connected in G. Let us denote by Sv the SCC containing v in G. Inserting uv cannot
break any of the existing SCCs of G, but might cause some SCCs of G (in particular Sv)
merge in G′. Let S∗ denote the SCC of v in G′. We have Sv ⊆ S∗, but potentially S∗ = Sv.

Let us now argue that Sv is the only SCC of G that might lose the status of a source
SCC due to the insertion. Indeed, if Sv ̸= S∗, then every other SCC S′ ≠ Sv of G, such that
S′ ⊂ S∗, is reachable from Sv since the insertion of uv makes Sv and S′ strongly connected.
As a result, S′ is not a source SCC of G. Moreover, the respective sets of incoming inter-SCC
edges of other SCCs S′′ of G such that S′′ ∩ S∗ = ∅ do not change, so such S′′ is a source
SCC of G′ if and only if S′′ is a source SCC of G.

By Lemmas 8 and 9 we can test whether Sv is a source SCC (and possibly find the unique
z ∈ Sv ∩ Z) by performing O(log n) queries to the data structures D0, . . . , DB−1. The next
step is to remove z (if it exists) from Z, and update all the data structures D, D0, . . . , Db

accordingly. Next, we apply the insertion of uv to all these data structures so that they store
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(supergraphs) of the updated graph G′. Observe that at this point the set Z might miss at
most one element, if S∗ turns out to be a source SCCs of G′. In order to detect whether this
is the case we check whether v ∈ S∗ can be reached from Z in G′. Recall that this amounts
to a single query to D about the existence of a path from s to u in Ḡ. If so, S∗ is reachable
from some other SCC, and thus is not a source SCC. Otherwise, S∗ is indeed a source SCC
and thus we add to Z an arbitrary element of S∗, e.g., the vertex v, so that Z again becomes
a valid source set of G′.

Edge deletions. Edge deletions can be handled essentially symmetrically to edge insertions.
Suppose an edge uv ∈ E(G) is deleted. Again, if the deletion does not make v unreachable
from u (which can be tested by performing a single update and query on D), neither the
SCCs of G nor the source SCCs of G change. So suppose u cannot reach v after the deletion.

Let S′
v be the SCC containing v in G′ and let S∗ be the SCC containing v in G. We have

S′
v ⊆ S∗ and potentially S′

v = S∗. If S∗ is a source SCC in G, we can find z ∈ S∗ ∩ Z using
O(log n) reachability queries from v to t in D0, . . . , DB−1 by Lemmas 8 and 9.

Observe that S′
v is the only SCC contained in S∗ that might potentially be a source SCC

of G′: if S′ ̸= S′
v is an SCC of G′, and S′ ⊂ S∗, then S′ is surely reachable from S′

v in G′

and thus S′ is not a source SCC of G′. Similarly as we did when processing an insertion, we
remove z (if exists) from Z. At this point, Z might need inserting at most one element in
order to become a valid source set of G′. This is the case precisely when S′

v is a source SCC
of G′. We can check that, again, by issuing a single s → v reachability query to D after the
deletion is reflected in D. If S′

v happens to be a source SCC of G′, we add v ∈ S′
v to Z.

Note that processing an edge update causes at most two element updates to the set Z.
Each of these updates, and also the edge update itself, is reflected in O(log n) fully dynamic
reachability data structures D, D0, . . . , DB−1. Moreover, only O(log n) reachability queries
are performed on these data structures. Consequently, we obtain the following.

▶ Lemma 10. Suppose there is a fully dynamic reachability data structure processing single-
edge updates and arbitrary-pair reachability queries on G in at most T (n) time. Then one
can maintain a source set Z of G explicitly subject to single-edge insertions and deletions in
O(T (n) log n) time per update (worst-case if the T (n) bound is worst-case).

By Lemma 10 and the discussion after Lemma 7, we obtain:

▶ Theorem 2. Let G be a digraph. Suppose there is a fully dynamic reachability data structure
processing single-edge updates and arbitrary-pair reachability queries on G in at most T (n)
time. Then one can maintain whether G is strongly connected subject to single-edge insertions
and deletions in O(T (n) log n) time per update (worst-case if the T (n) bound is worst-case).

The currently best known bound on the maximum of query time and update time of
a fully dynamic arbitrary-pair reachability data structure is T (n) = O(n1.407) worst-case
(Monte Carlo randomized) due to [26]. Consequently, Theorem 2 combined with [26] yields
O(n1.407) worst-case update time for fully dynamic strong connectivity.

Strong connectivity augmentation. Due to a result of Eswaran and Tarjan [10], using
Lemma 10 we can actually prove a more general result.

▶ Theorem 11. Let G be a digraph. Let T (n) be defined as in Theorem 2. Then one can
maintain the size χ(G) of a minimum strong connectivity augmentation of G subject to
single-edge insertions and deletions in O(T (n) log n) time per update. (worst-case if the T (n)
bound is worst-case).
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Proof. Let Z and ZR be source sets of G and GR respectively. Define a sink SCC to be
an SCC of G that is a source SCC in GR. Eswaran and Tarjan [10] prove that if G is not
strongly connected, then χ(G) equals max(s, t) + q, where s denotes the number of source
SCCs that are not sink SCCs, t denotes the number of sink SCCs that are not source SCCs,
and q denotes the number of “isolated SCCs” that are both source and sink SCCs. If G is
strongly connected then χ(G) = 0 holds trivially.

Note that with s, t, q defined like this, we have |Z| = s + q and |ZR| = t + q. Hence, if
G is not strongly connected, then max(|Z|, |ZR|) = max(s, t) + q = χ(G). As a result, it is
enough to maintain some sets Z and ZR, and test whether G is strongly connected using
Lemmas 10 and 7. Clearly, we need only O(T (n) log n) time for this. ◀

Again, by combining Theorem 11 with [26], we obtain that the size χ(G) of a minimum
strong connectivity augmentation can be maintained in O(n1.407) worst-case time per update.

Theorem 11 does not immediately yield any actual set Y of edges such that |Y | = χ(G)
and G + Y is strongly connected. We now discuss how such an augmentation Y can be
maintained. To this end we now sketch the method [10] of obtaining an augmentation with
max(|Z|, |ZR|) edges in case G is not strongly connected. Observe that in such a case, the
quantity max(|Z|, |ZR|) is clearly a lower bound on the size of Y .

Suppose wlog. that |Z| ≥ |ZR|. For each z ∈ Z, let tz ∈ ZR be arbitrary such that z

can reach tz in G; note that at least one such tz always exists. Similarly, for each z′ ∈ ZR,
let sz′ ∈ Z be arbitrary such that z′ is reachable from sz′ in G.

Consider a set of edges F = {ztz : z ∈ Z} ∪ {sz′z′ : z′ ∈ ZR}. Let M be a maximal
matching in F (possibly allowing self-loops), that is, a maximal subset {y1y′

1, . . . , yky′
k} ⊆ F

such that all y1, . . . , yk are distinct and all y′
1, . . . , y′

k are distinct.
Put A := {y1, . . . , yk}, and B = {y′

1, . . . , y′
k}. Moreover, put Z \ A = {z1, . . . , zp} and

Z ′ \ B = {z′
1, . . . , z′

q}, where p ≥ q. By the maximality of M , we have that for all z ∈ Z \ A,
tz ∈ B, that is, z can reach some vertex from B in G. Similarly, for all z′ ∈ ZR \ B, z′ is
reachable from a vertex of A.

Put yk+1 := y1. Consider an augmentation:

Y = {y′
iyi+1 : i = 1, . . . , k} ∪ {z′

max(i,q)zi : i = 1, . . . , p}.

We have |Y | = k + p = |Z| = max(|Z|, |ZR|). Eswaran and Tarjan [10] argue rather easily
that G + Y is strongly connected: (1) the source and sink vertices in A ∪ B are pairwise
strongly connected since they are arranged in a cycle, (2) every vertex in ZR \ B can reach
A ∪ B via Z \ A and the edges in Y , and (3) every vertex in Z \ A can be reached from
A ∪ B via ZR \ B and the edges in Y .

The above construction reduces, in O(n) time, the problem of maintaining an optimal Y

to maintaining:
(1) for each vertex z ∈ Z, an arbitrary vertex tz ∈ ZR reachable from z in G,
(2) for each vertex z′ ∈ ZR, an arbitrary vertex sz′ ∈ Z that can reach z′ in G.

If χ(G) = max(|Z|, |ZR|) is small enough, we can achieve the above by simply maintaining
the (Z ∪ ZR) × (Z ∪ ZR) submatrix of the transitive closure of G. van den Brand, Forster,
and Nazari [25] showed the following.

▶ Theorem 12. [25] Let G be a directed graph. Let S be a dynamic subset of V be such that
|S| = O(n0.85) at all times. There exists a data structure explicitly maintaining reachability
between all-pairs of vertices in S subject to fully dynamic single-edge updates to G and
single-element additions/deletions to S in O(n1.407 + |S|2) worst-case time per update.
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Recall that if G is subject to fully dynamic single-edge updates, then Z and ZR undergo at
most two element updates per update to G. As a result, by putting S = Z ∪ ZR in the above
theorem and combining with Lemma 10, we can maintain a minimum strong connectivity
augmentation Y in O(n1.407) time as long as χ(G)2 = O(n1.407).

If χ(G) = Θ(n), however, the above method would have quadratic update time. We now
argue that if we expect χ(G) to be large, then some desired sets {tz ∈ ZR : z ∈ Z}, and
{sz′ ∈ Z : z′ ∈ ZR} can be maintained in O(n1.529) worst-case time per update anyway.
This is possible using the below simple existential reachability data structure.

▶ Lemma 13. Let G be a directed graph. Suppose there is a fully dynamic reachability
data structure processing single-edge updates and arbitrary-pair reachability queries on G in
U(n) = poly(n) and Q(n) = poly(n) time respectively.

Let X ⊆ V be a dynamic subset. There is a data structure maintaining G subject to fully
dynamic edge updates and X subject to single-element insertions and deletions with Õ(U(n))
update time supporting the following queries in Õ(Q(n))-time. Given a query vertex s ∈ V ,
find some vertex x ∈ X that s can reach in G (if such an x exists).

Proof sketch. Suppose wlog. that the vertices of G are identified with {1, . . . , n} and n is a
power of two. Let G′ be obtained from G as follows. First, we augment G with an auxiliary
full binary tree T with n leaves labeled l1, . . . , ln from left to right, so that V (T ) ∩ V (G) = ∅.
The edges in T are directed from children to their parents. Second, for every x ∈ X, we add
an edge xlx to G′. Note that the graph G′ has at most 3n vertices.

We maintain the graph G′ using the assumed reachability data structure D. Whenever G

is subject to an edge insertion or deletion, that update is also applied to G′. Similarly, if an
element x is inserted/deleted from X, this is reflected in G′ by adding/deleting the edge xlx.

The binary tree T allows locating some (or even the minimum-label) vertex of X that
a query vertex s can reach within O(log n) queries to D. Indeed, note that s can reach a
vertex w ∈ V (T ) in G′ if and only if s can reach in G some vertex x ∈ X such that w is an
ancestor of the leaf lx ∈ V (T ). In particular, s can reach X in G if and only if s can reach
the root of T in G′. If this is the case, the search starts in the root of T and descends down
the tree maintaining the invariant that one of the leaves in the current subtree is reachable
from s in G′. Once we reach a leaf lx, we report x ∈ X as reachable from s. ◀

With Lemma 13 in hand (applied twice, to the graph G with X := ZR and to the graph
GR with set X := Z), using fully dynamic reachability data structure of [20] with O(n1.529)
worst-case update time and O(n0.529) query time, we can find the desired sets by issuing
O(n) existential reachability queries. Recall that the sets Z and ZR undergo O(1) updates
per edge update to G, so the worst-case update time is O(n1.529).

Finally, we note that the described algorithms for maintaining the minimum strong con-
nectivity augmentation Y work against an adaptive adversary. Indeed, they are deterministic
if provided with the required reachability information about G. That in turn is uniquely
defined and maintained correctly with high probability by the data structures of [25, 20].

Universal reachability. By maintaining the source set Z, we can also achieve the following.

▶ Theorem 14. Let G be a digraph. Let T (n) be defined as in Theorem 2. There exists
a data structure maintaining G under single-edge insertions and deletions and answering
queries whether a given vertex v can reach all vertices in G (and if not, providing an example
of an unreachable vertex) with Õ(T (n)) update and query time.
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Proof. Let Z be again a source set of G. Clearly, if |Z| > 1, then no vertex of G can reach
all other vertices. Otherwise, if |Z| = 1, then some v can reach all of V if and only if v

can reach (or, equivalently, is strongly connected to) the only element z ∈ Z. As a result,
given Z and the data structure D, we can check whether v can reach all vertices in G by
issuing a v → z query to D in Õ(T (n)) time. If v cannot reach some vertex of G, then it
cannot reach some z′ ∈ Z. Since there is at most one z ∈ Z that v can reach, to find some
unreachable z′ ∈ Z, it is enough to issue two queries to D. ◀
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