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Abstract
A weighted directed graph G = (V, A, c), where A ⊆ V × V and c : A → R, naturally describes a
road network in which an electric car, or vehicle (EV), can roam. An arc uv ∈ A models a road
segment connecting the two vertices (junctions) u and v. The cost c(uv) of the arc uv is the amount
of energy the car needs to travel from u to v. This amount can be positive, zero or negative. We
consider both the more realistic scenario where there are no negative cycles in the graph, as well as
the more challenging scenario, which can also be motivated, where negative cycles may be present.

The electric car has a battery that can store up to B units of energy. The car can traverse an
arc uv ∈ A only if it is at u and the charge b in its battery satisfies b ≥ c(uv). If the car traverses
the arc uv then it reaches v with a charge of min{b − c(uv), B} in its battery. Arcs with a positive
cost deplete the battery while arcs with negative costs may charge the battery, but not above its
capacity of B. If the car is at a vertex u and cannot traverse any outgoing arcs of u, then it is stuck
and cannot continue traveling.

We consider the following natural problem: Given two vertices s, t ∈ V , can the car travel from s

to t, starting at s with an initial charge b, where 0 ≤ b ≤ B? If so, what is the maximum charge
with which the car can reach t? Equivalently, what is the smallest depletion δB,b(s, t) such that the
car can reach t with a charge of b − δB,b(s, t) in its battery, and which path should the car follow
to achieve this? We also refer to δB,b(s, t) as the energetic cost of traveling from s to t. We let
δB,b(s, t) = ∞ if the car cannot travel from s to t starting with an initial charge of b. The problem
of computing energetic costs is a strict generalization of the standard shortest paths problem.

When there are no negative cycles, the single-source version of the problem can be solved using
simple adaptations of the classical Bellman-Ford and Dijkstra algorithms. More involved algorithms
are required when the graph may contain negative cycles.
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1 Introduction

A weighted directed graph G = (V, A, c), where A ⊆ V × V and c : A → R, naturally
describes a road network in which an electric car can roam. An arc uv ∈ A models a road
segment connecting the two vertices (junctions) u and v. The cost c(uv) of the arc uv is the
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42:2 Optimal Energetic Paths for Electric Cars

amount of energy the electric car needs to travel from u to v. This amount can be positive,
e.g., if the road segment is uphill; zero; or negative, e.g., if the road segment is downhill. We
consider both the more realistic scenario where there are no negative cycles in the graph, as
well as the more challenging scenario, which can also be motivated, where the graph may
contain negative cycles. (A cycle is negative if the sum of its arc costs is negative.)

An electric car is equipped with a battery that can store up to B units of energy, where
B > 0 is a parameter. We assume that the electric car cannot be charged along the way and
has to rely on the initial charge available in its battery. If the car is currently at vertex u

with charge b in its battery, where 0 ≤ b ≤ B, then it can traverse an arc uv ∈ A if and only
if c(uv) ≤ b. If this condition holds, and the car traverses the arc, then it reaches v with
a charge of min{b− c(uv), B}. In particular, the charge in the battery cannot be negative
and cannot exceed B. The car can traverse uv if b − c(uv) > B (which can hold only if
c(uv) < 0), but the battery will not charge beyond its capacity of B. We may assume that
c(uv) ∈ [−B, B] for every uv ∈ A, as arcs with c(uv) > B can never be used, and thus can
be removed, and costs c(uv) < −B can be changed to c(uv) = −B.

We consider the following natural problem: Given two vertices s, t ∈ V , can the car
travel from s to t, starting at s with an initial charge b, where 0 ≤ b ≤ B? If so, what is
the maximum final charge αB,b(s, t) with which the car can reach t? Equivalently, what is
the minimum depletion δB,b(s, t) such that the car can reach t with a charge of b− δB,b(s, t)
in its battery, and which path should the car follow to achieve this? (If b < B then the
minimum depletion δB,b(s, t) may be negative.) We also refer to δB,b(s, t) as the energetic
cost of traveling from s to t. Note that δB,b(s, t) = b − αB,b(s, t). We let αB,b(s, t) = −∞
and δB,b(s, t) =∞ if the car cannot travel from s to t starting with an initial charge of b.

We also consider the related problem of finding the minimum initial change at s, if any,
that will allow the car to travel to t, ending with a charge of at least b in the battery. We
denote this quantity by βB,b(s, t). We show that minimum initial charges can be computed
by computing maximum final charges, or minimum energetic costs, on the reversed graph.

If all arc costs are non-negative, then δB,b(s, t) = δ(s, t), if δ(s, t) ≤ b ≤ B, where δ(s, t)
is the standard distance, i.e., the length of a shortest path, from s to t in the graph G,
where c(uv) is the length of uv. Otherwise, δB,b(s, t) =∞. If there are negative arc costs
but no negative cycles, δB,b(s, t) = δ(s, t) if and only if there exists a shortest path P from s

to t such that the length of every prefix of P is in the interval [b−B, b]. In general, energetic
costs may be larger than distances, since the charge in the battery is constrained to remain
in the interval [0, B], i.e., it is not allowed to go negative and it is capped at B. (For example,
the electric car may not be able to traverse a mountain pass and may need to take a detour.)
It is always true that δB,b(s, t) ≥ δ(s, t).

The problem of computing minimum energetic costs is thus a strict generalization of
the standard shortest paths problem, even if there are no negative cycles in the graph.
Interestingly, the energetic costs δB,b(s, t) are well-defined even if there are negative cycles in
the graph. The problem is then an interesting variant of one-player energy games with a
reachability objective. It is also related to the 1-VASS (Vector Addition Systems with States)
problem. (See references Section 1.2.) The presence of negative cycles poses interesting
algorithmic challenges. The corresponding minimum energetic paths are still finite, but
are not necessarily simple. A minimum energy path from s to t may need to go through a
sequence of negative cycles, using each one of them to gain sufficient energy to reach the
next negative cycle, and eventually the target t.

When there are no negative cycles, the single-source version of the energetic cost problem
can be solved using simple, but subtle, adaptations of the classical Bellman-Ford [4, 15]
and Dijkstra [11] algorithms. Similar algorithms, some less efficient, are explicit or implicit
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in previous papers (see Section 1.2). We present simpler, self-contained versions of these
algorithms with simpler correctness proofs. We also present efficient algorithms for finding
minimum energetic paths in the presence of negative cycles.

Unlike the standard shortest paths problem, the single-target version of the minimum
energetic paths problem is not equivalent to the single-source version. In particular, one
cannot solve the single-target problem by running a single-source algorithm backward.
Although there is always a tree of minimum energetic paths from a source vertex s to all
other vertices reachable from it, there are simple examples in which there is no tree of
minimum energetic paths to a target vertex t from all vertices that can reach it.

1.1 Our results
We show that the single-source version of the minimum energetic paths problem with negative
arc costs but no negative cycles can be solved in O(mn) time using a simple adaptation of
the Bellman-Ford [4, 15] algorithm, where m = |A| and n = |V |. Furthermore, if a valid
potential function p : V → R is given, i.e., a function for which c(uv) + p(u)− p(v) ≥ 0 for
every uv ∈ A, then the single-source version can be solved in O(m + n log n) time using an
adaptation of Dijkstra’s [11] algorithm equivalent to the A∗ search heuristic (see, e.g., Hart
et al. [21]). Since a valid potential function can be found in O(mn) time using the standard
Bellman-Ford algorithm, the all-pairs version of the minimum energetic paths problem can
be solved O(mn + n2 log n) time.

The O(mn) bound matches the time bound of the standard Bellman-Ford algorithm,
which is still the fastest known algorithm for the single-source shortest paths problem in a
directed graph with general (real) arc costs, and no negative cycles. The O(mn + n2 log n)
bound almost matches the best time bound of O(mn + n2 log log n) obtained by Pettie [31]
for the standard APSP problem with general arc costs. (For a survey of other related results,
see Zwick [38].)

Much faster algorithms are known for the standard single-source shortest paths problem
when arc costs are integral. Bringmann et al. [8], improving a breakthrough result of
Bernstein et al. [5], obtained an O(m log2 n log(nW ) log log n)-time algorithm when arc costs
are integers that are at least −W , where W ≥ 1. By using these algorithms to find a valid
potential function, and then using the energetic version of Dijkstra’s algorithm, we get the
same improved time bound for the single-source version of the minimum energetic paths
problem with negative arc costs but no negative cycles.

We also present a more involved O(mn + n2 log n)-time algorithm for solving the single-
source minimum energetic cost problem in the presence of negative cycles. This gives, of
course, an O(mn2 + n3 log n)-time algorithm for the all-pairs and single-target versions of
the problem.

When the capacity B of the battery is sufficiently large, we show that the all-pairs version
of the minimum energetic cost problem can be solved in O(mn + n2 log n) time.

1.2 Related results
Various adaptations of the Bellman-Ford and Dijkstra algorithms for problems similar or
equivalent to the minimum energetic paths problem defined here, when there are no negative
cycles in the graph, were given by several authors. Eisner et al. [14], improving upon Artmeier
et al. [2], and Brim and Chalupka [6] give versions of these algorithms with the same running
times as ours, but using a slightly different approach. Baum et al. [3] give a version of
Dijkstra’s algorithm but with a much slower running time. They also show that the maximum
charge with which t can be reached when starting at s with charge b is a piece-wise linear
function of b with at most O(n) breakpoints.
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42:4 Optimal Energetic Paths for Electric Cars

Brim and Chalupka [6] consider the related problem of solving one-player energy games
and the more complicated problem of solving two-player energy games. (For more on energy
games, see also Brim et al. [7] and Dorfman et al. [12].) The problem of finding minimum
energy paths in the presence of negative cycles may be seen as a variant of one-player energy
games with a reachability objective. The minimum energetic paths problem is also related to
the 1-VASS problem. (See, e.g., Almagor et al. [1] and Künnemann et al. [26].)

Khuller et al. [23] consider a related problem in which the battery (or the fuel tank)
can be recharged at intermediate vertices, with a possibly different price per unit of charge
at each intermediate vertex. All arc costs are non-negative. They give various algorithms
for computing a cheapest path from s to t. Among these algorithms is a O(n2∆ log n)-time
algorithm for the single-target version, where ∆ is a bound on the number of rechargings
allowed, and an O(n3)-time algorithm for the single-target version when the number of
rechargings is unbounded.

Several authors, including Lehmann [27], Tarjan [33] and Mohri [30] considered generalized
versions of the shortest paths problem defined by semirings. If (R,⊕,⊗) is a semiring and P

is an s-t path whose arcs have costs ci, the cost of P is defined to be c(P ) = ⊗k
i=1ci. The goal

is to find ⊕P c(P ), where P ranges over all s-t paths, assuming this quantity is well defined.
The standard shortest paths problem corresponds to the tropical semiring (R, min, +). All
these results assume, as part of the definition of a semiring, that ⊗ is associative. Thus, as
we shall see, none of these results apply to our problem, as our operation ⊗ is not associative.

Generalized versions of Dijkstra’s algorithm were obtained by various authors, most
notably by Knuth [25]. These generalizations are of a different nature and are apparently
not related to the version given here.

Other non-standard versions of the shortest paths problem were also considered. Perhaps
the most famous one is the bottleneck shortest paths problem. See, e.g., [17, 9] for the
single-pair version, and [36, 13] for the all-pairs version. Vassilevska [35] considered an
interesting non-standard non-decreasing version of the shortest paths problem related to
reading train schedules. Finally, Madani et al. [29] considered the discounted shortest paths
problem. All these problems are quite different from the problem considered here.

2 Minimum energetic paths

To simplify the presentation, we concentrate on the computation of δB(s, t) = δB,B(s, t),
i.e., the energetic cost of traveling from s to t when starting with a fully charged battery
of capacity B. Computing δB,b(s, t), for an arbitrary 0 ≤ b ≤ B, can easily be reduced to
computing δB(s, t): Add a new vertex s′ and an arc s′s of cost c(s′s) = B − b. Then, it is
easy to see that δB,b(s, t) = δB(s′, t)− (B − b). A similar idea can be incorporated directly
into the algorithms that we describe. We begin by defining the energetic cost of a path.

▶ Definition 2.1 (Energetic cost of a path). A path P = u0u1 . . . uk is traversable if it can
be traversed when starting from u0 with a fully charged battery. If P is traversable, the
final charge in the battery when reaching uk is B − dB(P ), where dB(P ) is defined to be the
depletion, or the energetic cost of the path. Note that 0 ≤ dB(P ) ≤ B. If the path is not
traversable, we let dB(P ) =∞.

To obtain a simple formula for dB(P ) we define the following operations:

x⊕B y = [x + y]B0 , [z]B0 =


0 if z < 0
z if 0 ≤ z ≤ B

∞ otherwise
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We assume that x+∞ =∞+x =∞ for every x ∈ [−B, B]∪{∞}. For brevity, we sometimes
write x⊕ y instead of x⊕B y when B is understood from the context. 1 Note that for every
x, y ∈ R and B > 0 we have x+y ≤ x⊕B y. It is important to note that ⊕B is not associative.
(For example, B ⊕ (B ⊕−B) = B while (B ⊕B)⊕−B =∞, and (−1⊕−2)⊕ 2 = 2 while
−1⊕ (−2⊕ 2) = 0, assuming B ≥ 2.)

▶ Lemma 2.2. Let P = u0u1 . . . uk be a directed path, let P ′ = u0 . . . uk−1, and let ci =
c(ui−1ui), for i = 0, 1, . . . , k. Let B be the capacity and initial charge of battery at u0. If
k = 0 then dB(P ) = 0. If k > 0 then

dB(P ) = dB(P ′)⊕ ck = ((· · · ((0⊕ c1)⊕ c2)⊕ · · · )⊕ ck−1)⊕ ck .

Proof. Let bi be the charge of the battery at ui and let di = B − bi be the depletion of
the battery at ui, for i = 0, 1, . . . , k. Clearly d0 = 0. It is easy to prove by induction that
di = di−1 ⊕B ci. The lemma follows. ◀

As mentioned, the operation ⊕B is not associative. Thus, in general, dB(P ) ̸= 0⊕ (c1 ⊕
(· · ·⊕ (ck−2⊕ (ck−1⊕ ck)) · · · )). In Section 7 we show, however, that c1⊕ (c2⊕ (· · ·⊕ (ck−1⊕
(ck ⊕ 0)) · · · )) also has an interesting meaning.

▶ Definition 2.3 (Energetic costs, minimum energetic paths). The energetic cost δB(s, t) of
traveling from s to t, starting from s with a fully charged battery of capacity B, is defined as

δB(s, t) = min{ dB(P ) | P is an s-t path in G } .

If δB(s, t) < ∞ and P is an s-t path satisfying δB(s, t) = dB(P ), then P is said to be a
minimum energetic path from s to t.

If there are no negative cycles in the graph, then for every path P from s to t there is a
simple path P ′ such that dB(P ′) ≤ dB(P ). (It is in fact enough to require that there are no
traversable negative cycles in the graph.) Thus, the minimum in the definition above can be
taken over simple paths only. The definition of δB(s, t) is also meaningful in the presence of
negative cycles, though minimum energetic paths are not necessarily simple.

It is not difficult to see, and it will also follow from the correctness of the algorithms that
we present in the next sections, that for every source vertex s ∈ V there is always a tree
of minimum energetic paths to all other vertices that can be reached from it. The simple
example given in Figure 1 shows that a tree of minimum energetic paths to a given target
vertex t does not always exist.

To deal with negative cycles, we need the following definition.

▶ Definition 2.4 (Entry-exit pairs). Let C be a negative cycle in G = (V, A, c) and let B be
the maximum capacity of the battery. A pair of vertices (x, y) on C is an entry-exit pair
of C if the car can start at x with an empty battery and eventually reach y, possibly after
going several times around the cycle, with a full battery, i.e., with a charge of B.

The following lemma, similar to the gasoline puzzle of Lovász [28, p. 31] (see also Klarner
[24, p. 283] and Winkler [37, p. 2]), says that every negative cycle has an entry-exit pair.

▶ Lemma 2.5. Any negative cycle C in G = (V, A, c) contains at least one entry-exit pair.
Such a pair can be found in O(|C|) time.

1 Note that ⊕ is not related to the semiring framework mentioned in Section 1.2.
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42:6 Optimal Energetic Paths for Electric Cars

Figure 1 A simple but illustrative example. Assume B ≥ 3. The two numbers next to each
vertex u are δB(s, u) and δB(u, t). The bold arcs constitute a tree of minimum energetic paths from
the source vertex s to all other vertices. Another such tree can be obtained by replacing the arc ct

by bt. On the other hand, the only minimum path from a to t is abct, while the only minimum path
from b to t is the arc bt. Thus, there is no tree of minimum paths to t from all other vertices.

Proof. We show first that every negative cycle has an entry x, i.e., a vertex x from which
the cycle can be traversed, starting with an empty battery, when the capacity of the battery
is ignored. We next show that the entry x has a corresponding exit y when the capacity of
the battery is not ignored.

Let C = v0v1 · · · vℓ−1v0 be a negative cycle in G of length ℓ. Let cj = c(vjvj+1), for
j = 0, 1, . . . , ℓ − 1. (We let vℓ = v0.) For j ≥ ℓ, let cj = cj mod ℓ. Let si =

∑i−1
j=0 cj be the

prefix sums of the costs around the cycle, starting from v0. (We allow i > ℓ by wrapping
around the cycle.) Note that sℓ =

∑ℓ−1
j=0 cj < 0 as the cycle is negative. This also implies

that sℓ+i < si for every i. Vertex v0 is an entry if and only if s1, . . . , sℓ−1 ≤ 0. If v0 is not an
entry, let k be the index for which sk is maximized. Note that 0 ≤ k < ℓ. We claim that vk is
an entry. Let s′

i =
∑i−1

j=0 ck+j be the prefix sums starting from vk. Then s′
i = sk+i − sk ≤ 0,

by the definition of k, for every i.
Assume, without loss of generality, that v0 is an entry on C. Let si =

∑i−1
j=0 cj as above

and let i = min{j |sj ≤ −B}(mod ℓ). Then (v0, vi) is an entry-exit pair. It is not difficult to
find i in O(ℓ) time. ◀

The following lemma characterizes the structure of minimum energetic paths when the
graph may contain negative cycles. It is not difficult to give a direct proof of the lemma. Its
correctness also follows from the correctness of the algorithms that we present.

▶ Lemma 2.6. If there is an s-t path P with dB(P ) ≤ B, then there is an s-t path P ′ such
that dB(P ′) ≤ dB(P ) and such that P ′ has the following form (see Figure 2): either P ′ is
simple, or there is a sequence C1, C2, . . . , Ck of simple negative cycles, where k < n, with
entry-exit pairs (x1, y1), (x2, y2), . . . , (xk, yk) on them, such that P ′ is composed of a simple
path from s to x1, followed by sufficiently many traversals of C1 that end in y1 with a full
battery, followed by a simple path from y1 to x2, followed by sufficiently many traversals
of C2 that end in y2 with a full battery, and so on, and finally a simple path from yk to t.
Furthermore, all entries x1, x2, . . . , xk are distinct, and all exits y1, y2, . . . , yk are distinct.

3 An energetic version of the Bellman-Ford algorithm

Recall that for any x and y, x⊕B y ≥ x + y. This implies that in a graph without negative
cycles, if there is a traversable path from s to t, there is such a path that is simple and hence
contains at most n− 1 arcs. This means that if there are no negative cycles, we can solve
the single-source minimum energetic paths problem using the Ford-Bellman [4, 15] shortest
path algorithm: We merely replace + by ⊕B .

We base our description of the algorithm on that in [34], which uses a queue as suggested
by Gilsinn and Witzgall [18].
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Figure 2 Generic structure of minimum energetic paths in the presence of negative cycles. If
δB(s, t) ≤ B, then there is a minimum energetic path from s to t of the form shown, where C1, . . . , Ck

are simple negative cycles and (xi, yi) is an entry-exit pair on Ci, for i = 1, 2, . . . , k. All entries
x1, x2, . . . , xk are distinct and all exits y1, y2, . . . , yk are distinct. The paths P1, P2, . . . , Pk+1 are
simple but necessarily disjoint from the cycles C1, C2, . . . , Ck.

The algorithm maintains a tentative energetic cost d(v) for each vertex v, equal to the
minimum of the energetic costs of paths from s to v found so far. Initially d(s) = 0 and
d(v) =∞ for v ̸= s, where s is the source. It also maintains a queue Q, initially containing s.
The algorithm repeats the following step until Q is empty:

Scan a vertex: Delete the front vertex u on Q. For each arc uv, if δ(u)⊕B c(uv) < δ(v),
relax uv: Set δ(v)← δ(u)⊕B c(uv), set π(v)← u, and add v to the back of Q if it is
not on Q.

Pseudocode of the algorithm, which we call e-BF , is given on the left of Figure 3. The
correctness proof and analysis of the standard Bellman-Ford algorithm in the absence of
negative cycles (see e.g., Tarjan [34]) translates directly to this version.

▶ Theorem 3.1. If G = (V, A, c) has no traversable negative cycles then e-BF finds minimum
energetic paths from s to all vertices in O(mn) time.

Proof. We define passes over the queue. Pass 0 is the first scan step of s. Given that pass k

is defined, pass k + 1 is the sequence of scan steps of vertices added to Q during pass k. A
straightforward induction on k shows that for each vertex v that has a minimum-energy
path of at most k arcs, d(v) is the energetic cost of such a path after k passes. It follows
that the energetic costs are correctly computed. The π values computed describe a tree of
minimum-energy paths from s to all vertices reachable from s using a fully charged battery of
capacity B. Since each pass takes O(m) time, the total time of the algorithm is O(mn). ◀

In addition to the non-existence of negative cycles, the only thing required for correctness
of the algorithm is that ⊕B is non-decreasing in its second argument: If y ≤ z, x⊕ y ≤ x⊕ z.

As in the standard version of the Bellman-Ford algorithm, one can add subtree disassem-
bly [32, 10], which does not improve the worst-case time bound but is likely to speed up the
algorithm in practice. It is also easy to modify the algorithm so that it finds a traversable
negative cycle that can be reached from s, if one exists.

The correctness of e-BF implies the following corollary, which we use to prove the
correctness of the energetic variant of Dijkstra’s algorithm:

▶ Corollary 3.2. If each d(v) < ∞ corresponds to the energetic cost of some path from s

to v, and d(v) ≤ d(u)⊕B c(uv) for every uv ∈ A, then d(v) = δB(s, v), for every v ∈ V .

4 An energetic version of Dijkstra’s algorithm

If all arc costs are non-negative, Dijkstra’s algorithm [11] with + replaced by ⊕B will solve the
single-source problem. This algorithm replaces the queue Q in the Bellman-Ford algorithm
by a heap H. The key of a vertex v in the heap is d(v). Each scan step deletes a vertex of
minimum key from the heap. When a relaxation decreases the key of a vertex in the heap,

ESA 2023



42:8 Optimal Energetic Paths for Electric Cars

e-BF(G = (V, A, c), B, s):
for u ∈ V do

d(u)←∞
π(u)← null

d(s)← 0

Q← Queue()
Q.insert-last(s)

while Q ̸= ∅ :
u← Q.DeleteF irst()
for uv ∈ A do

if d(v) > d(u)⊕B c(uv) :
d(v)← d(u)⊕B c(uv)
π(v)← u

if v /∈ Q :
Q.InsertLast(v)

return d

e-Dijkstra(G = (V, A, c), p, B, s):
for u ∈ V do

d(u)←∞
π(u)← null

d(s)← 0

H ← min-heap()
H.insert(s,−p(s))

while H ̸= ∅ :
v ← H.delete-min()
for uv ∈ A do

if d(v) > d(u)⊕B c(uv) :
d(v)← d(u)⊕B c(uv)
π(v)← u

if v /∈ H :
H.insert(u, d(v)−p(v))

else:
H.decrease-key(u, d(v)−p(v))

return d

Figure 3 Energetic variants of the Bellman-Ford and Dijkstra algorithms.

the algorithm does the appropriate decrease-key operation on the heap. If all arc costs are
non-negative, the algorithm deletes each vertex from H at most once, and when a vertex v

is deleted from H, d(v) is the minimum energetic cost of a path from s to v. The proof of
correctness mimics that of the standard Dijsktra algorithm. The algorithm does at most n

heap insertions, at most n heap deletions, and at most m decrease-key operations. If the
heap is a Fibonacci heap [16] or equally efficient data structure, e.g., [20], the total running
time is O(m + n log n). In fact, the algorithm is identical to the standard algorithm with d(v)
values greater than B replaced by ∞.

More interesting is that if arc costs can be negative, but there are no negative cycles,
we can use a variant of the A∗ search algorithm, which is a modification of Dijkstra’s
algorithm, to solve the single-source minimum energetic paths problem in O(m + n log n)
time, provided that we have a valid potential function p : V → R. A potential p is valid if
c(uv) + p(u)− p(v) ≥ 0 for every arc uv ∈ A. It is well-known that a valid potential function
exists if and only if the graph contains no negative cycles.

The A∗ search algorithm is almost identical to Dijkstra’s algorithm. The only difference
is that the key of vertex v in the heap is d(v)− p(v), and not just d(v), where p is a valid
potential function. In the original setting of the A∗ search heuristic, −p(v) is an estimate
of the distance from v to the destination t. The correctness of the algorithm only requires,
however, that p is a valid potential function. If p is valid, the A∗ algorithm deletes each
vertex v from the heap at most once, and when v is deleted, d(v) = δB(s, v), the energetic
cost of traveling from s to v.

An energetic version of the A∗ is obtained simply by replacing + by ⊕B in relaxations.
We assume the algorithm is given a potential p that is valid for +, not ⊕B . The algorithm
begins with d(s) = 0 and d(v) =∞ for each vertex v ∈ V \ {s}, and H containing s. The key
of a vertex v in H is d(v)− p(v). The algorithm repeats the following step until H is empty:
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Scan a vertex: Delete from H a vertex u with minimum key d(u)− p(u). For each
arc uv, if d(u)⊕B c(uv) < d(v), relax uv: Set d(v)← d(u)⊕B c(uv); π(v)← u; add v

to H with key d(v)− p(v) if v /∈ H, or decrease the key of v to d(v)− p(v) if v ∈ H.

Pseudocode of the resulting algorithm, which we call e-Dijkstra, is given on the right of
Figure 3. The main step towards establishing the correctness of e-Dijkstra is the following:

▶ Lemma 4.1. If p is a valid potential then e-Dijkstra maintains the following invariant: if u

has been deleted from H while v has not been deleted from H yet, then d(u)−p(u) ≤ d(v)−p(v).
As a consequence, each vertex u is inserted and deleted from H at most once.

Proof. We prove the lemma by induction on the number of heap operations. The lemma
is true initially, as no vertex was deleted from H yet. Suppose it is true just before u is
deleted from H. Since d(u) − p(u) is minimum among all u ∈ H, and since d(v) = ∞ for
all vertices not yet inserted into H, the invariant holds just after u is deleted from H. By
the induction hypothesis, d(u)− p(u) is now maximum over all u′ already deleted from H.
Suppose the invariant holds just before the relaxation of an arc uv. Just after the relaxation,
d(v) = d(u)⊕B c(uv) ≥ d(u) + c(uv). Hence

d(v)− p(v) ≥ d(u) + c(uv)− p(v) ≥ d(u)− p(u) ,

where the last inequality follows by the validity of p. Since the relaxation strictly decreased
d(v), it follows that v could not have already been deleted from H, since it would violate
the claim that d(u) + p(u) is maximum over all vertices already deleted from H. Thus, v

is either in H or was not inserted into H yet. Decreasing the key of v to d(v) − p(v), or
inserting v into H with this key, does not violate the invariant. ◀

The proof of Lemma 4.1 is the same as the proof of the corresponding lemma for the
standard version of A∗ except for the use of the inequality x⊕B y ≥ x + y. Using Lemma 4.1
we can easily prove the correctness of the algorithm.

▶ Theorem 4.2. If G = (V, A, c) has no negative cycles and p is a valid potential for G, then
e-Dijkstra finds minimum energetic paths from s to all vertices in O(m + n log n) time.

Proof. When a vertex u is removed from H, all outgoing arcs uv are scanned and all
appropriate relax operations are performed. By Lemma 4.1, d(u) will not be changed again.
Thus, when the algorithm terminates d(v) ≤ d(u) ⊕B c(uv) for every arc uv ∈ A. By
Corollary 3.2, we have d(v) = δB(s, v), for every v ∈ V . As in the proof of Theorem 3.1 we
get that the π values describe a tree of minimum energetic paths from s to all vertices that
can be reached from s.

The algorithm performs at most n heap insertions, at most n heap deletions, and at
most m decrease-key operations. With an efficient heap implementation the total running
time is O(m + n log n). ◀

To obtain a valid potential function we can use any standard shortest path algorithm: If s

is an arbitrary source from which all vertices are reachable, there are no negative cycles, and
p(v) = δ(s, v), where δ(s, v) is the standard distance from s to v, then c(uv)+p(u)−p(v) ≥ 0,
for every arc uv, by the triangle inequality. (If there is no such vertex s in the graph, add a
new vertex s and connect it with zero-cost arcs to all other vertices.)

Thus we can compute minimum energetic paths from k sources in O(m+n log n) time per
source plus the time to solve one standard single-source shortest path problem with the given
arc costs. The extra time needed for this preprocessing is O(mn) if we use Bellman-Ford,
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or O(m log2 n log(nW ) log log n) if all arc costs are integral and we use the algorithm of
Bringmann et al. [8]. (The faster algorithm is helpful only if k = Ω(log2 n log(nW ) log log n),
where k is the number of sources.)

▶ Corollary 4.3. The all-pairs minimum energetic paths problem on a graph G = (V, A, c)
with no negative cycles can be solved in O(mn + n2 log n) time.

The resulting all-pairs algorithm is very similar to Johnson’s [22] algorithm for the
standard all-pairs shortest paths problem.

5 Finding minimum paths in the presence of negative cycles

In this section we describe an algorithm e-Negative(G, B, s) that finds minimum energetic
costs from a source vertex s ∈ V to all other vertices in a directed graph G = (V, A, c)
that may contain negative cycles. It is not difficult to extend the algorithm to return a
succinct description of the minimum energetic paths. We assume that s has no incoming
arcs. (Incoming arcs of s are not useful as we start from s with a full battery.)

Algorithm e-Negative maintains a set R of reachable vertices that were already processed,
a set of reachable vertices Q that are waiting to be processed, and a set Y ⊆ R of exits.
Initially R = ∅, Q = {s} and Y = ∅. Let GR,Y be the graph obtained from G by removing the
outgoing arcs of vertices not in R, removing the incoming arcs of vertices in Y , and for every
y ∈ Y , adding a 0-cost arc sy. (Note that vertices in V \R may have incoming arcs in GR,Y ,
but no outgoing arcs.) We may assume that the vertex set of GR,Y is VR,Y = R ∪ N(R),
where N(R) are the out-neighbors of the vertices of R. We also have Q ⊆ N(R).) The
algorithm maintains the invariant that GR,Y has no negative cycles and p : VR,Y → R is a
valid potential function for it, and that all vertices in R ∪Q can be reached when starting
from s with a full battery.

The algorithm is composed of rounds. In each round the algorithm removes a vertex
u ∈ Q and processes it, i.e., adds it to the set R. If GR∪{u},Y does not contain negative
cycles, all we need to do is find a valid potential function for GR∪{u},Y and update the set Q

of vertices reachable in GR∪{u},Y when starting from s with a full battery.
To check whether GR∪{u},Y contains a negative cycle we construct a graph Ḡ = ḠR,Y,u

as follows. The graph is obtained by starting from GR,Y , adding a new source vertex ū,
and for every uv ∈ A, adding an arc ūv with c(ūv) = c(uv). We also remove s and its
outgoing arcs. (Note that u /∈ R has no outgoing arcs in Ḡ.) The new graph Ḡ does
not contain negative cycles. The function p is a valid potential function for Ḡ if we let
p(ū) = maxuv∈A(p(v)− c(uv)). 2 All negative cycles in GR∪{u},Y must pass through u. Thus,
GR∪{u},Y contains a negative cycle if and only if δḠ(ū, u) < 0.

We thus run Dijkstra on Ḡ staring from the source ū using the potential function p. If
δḠ(ū, u) < 0 then a shortest path from ū to u becomes a negative cycle C in GR∪{u},Y when
we replace ū with u. (Any path of negative cost from ū to u will do. We can thus stop the
algorithm as soon as such a path is discovered.) In O(|C|) time we find an exit y on C and
add it to Y . This removes the incoming arcs of y from GR∪{u},Y and adds a 0-cost arc sy.
We update the graph Ḡ accordingly, i.e., remove the incoming arcs of y, and run Dijkstra
again. (Note that p is still a valid potential function for Ḡ, since s is not included in it.)

2 This works as ū has no incoming arcs. Equivalently we can use the fact that Dijkstra’s algorithm works
correctly even if the reduced costs of some of the outgoing arcs of the source are negative, which follows
as p(ū) does not really affect the running of the algorithm. (It only affects the key of ū when it is alone
in the heap.
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When no more negative cycles are found, the graph GR∪{u},Y ′ , where Y ′ is the new set of
exits, does not contain negative cycles. We still need to find a valid potential function for it.
To do this it is enough to find distances from s to all other vertices. Let δ(s, v) be the distance
from s to v in GR∪{u},Y ′ . Let δ′(s, v) be the distance from s to v in GR,Y ′ . Finally, let δ′′(ū, v)
be the distance from ū to v in ḠR,Y ′,u. Clearly, δ(s, v) = min{δ′(s, v), δ′(s, u) + δ′′(ū, v)},
since each shortest path in GR∪{u},Y ′ either does not pass through u, in which case its length
is δ′(s, v), or it does pass through u in which case its length is δ′(s, u) + δ′′(ū, v).

To find the distances δ′(s, v) we simply run Dijkstra on GR,Y ′ using the potential
function p, after we set p(s) = maxsv∈A(p(v)− c(sv)). The distances δ′′(ū, v) were already
computed. Thus we can easily compute the distances δ(s, v) in GR∪{u},Y ′ and then set
p(v) = δ(s, v), for every v ∈ VR∪{u},Y ′ .

Given the newly computed potential function p, we can now run e-Dijkstra on GR∪{u},Y ′

to compute energetic costs and the new set of vertices Q′ that are reachable from s but are
not in R∪ {u}. The algorithm then lets R← R∪ {u}, Y ← Y ′ and Q← Q′. This completes
the round. If Q = ∅ the algorithm terminates. Otherwise it proceeds to the next round,
processing the next vertex from Q.

We claim that the energetic costs computed by the last e-Dijkstra, which are also the
values returned by e-Negative, are exactly the energetic costs δB(s, v) in the input graph
G = (V, A, c). (If v /∈ R, then δB(s, v) =∞.)

▶ Theorem 5.1. Algorithm e-Negative(G, B, s) finds minimum energetic costs in a graph
G = (V, A, c) that may contain negative cycles when the capacity of the battery is B. Its
running time is O(mn + n2 log n).

Proof. The correctness of the algorithm follows from the explanations above combined with
a few simple observations. It follows by induction that at the beginning of each round GR,Y

contains no negative cycles, p is a valid potential function for it, and all vertices in R ∪Q

can be reached when starting from s with a full battery.
In each round, the algorithm moves a vertex u from Q to R. To do this, it repeatedly

finds negative cycles in the graph GR∪{u},Y . All such negative cycles must pass through u.
As explained, there is such a negative cycle in GR∪{u},Y if and only if δḠ(ū, u) < 0, where
Ḡ = ḠR,Y,u. A negative path from ū to u corresponds to a negative cycle C, since ū and u

represent the same vertex. If a negative cycle C is found, an exit y on C is identified and
added to Y . (Note that this removes arcs from Ḡ since the incoming arcs of y are removed.)
The arc sy is added to GR∪{u},Y ∪{y} but not to Ḡ = ḠR,Y ∪{y},u.

We next argue that δB(s, y) = 0, for every y ∈ Y . Indeed, each vertex y added to Y is an
exit on a negative cycle C all whose vertices can be reached when starting from s with a
full battery. In particular, the entry x on C corresponding to y can be reached, and by the
definition of entry-exit pairs, y can be reached with full battery, i.e., δB(s, y) = 0. This also
justifies the addition of the 0-cost arc sy.

Let δ′
B(s, v) be the energetic costs computed by the last call to e-Dijkstra on the final

GR,Y . We assume that δ′(s, v) =∞ for every v /∈ R. Let δB(s, v) be the energetic costs in
the input graph G. It is easy to see that δB(s, v) ≤ δ′(s, v), for every v ∈ V . This follows
as GR,Y , without the arcs {sy | y ∈ Y }, is a subgraph of G, and the addition of the arcs
{sy | y ∈ Y }, as argued, does not change the energetic costs.

We next show that when the algorithm terminates we have δB(s, v) = δ′
B(s, v), for

every v ∈ V . Suppose, for the sake of contradiction, that there is a vertex v for which
δB(s, v) < δ′

B(s, v). Let P be a minimum energetic path from s to v in G. If P passes
through a vertex of Y , let y be the last vertex from Y on P and let P ′ be path composed
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of the arc sy followed by the portion of P from the last occurrence of y on P to v. Since
δB(s, v) < δ′

B(s, v), it follows that P ′ is not a path in GR,Y . Thus, P ′ must contain a vertex
not in R. Let u be the first vertex not in R on P ′. It follows that δ′

B(s, u) <∞, since the
portion of P ′ from s to u is also a path in GR,Y . Since u /∈ R, we must have u ∈ Q and the
algorithm should not have terminated.

The algorithm performs at most 2n calls to Dijkstra, since following each such call either
an exit is added to Y or a vertex is added to R. The algorithm performs at most n calls to
e-Dijkstra. Thus, the running time of the algorithm is O(mn + n2 log n). ◀

6 A faster all-pairs algorithm for large batteries

In this section we obtain an O(mn + n2 log n)-time algorithm for the all-pairs energetic cost
problem, in graphs that may contain negative cycles, when the capacity of the battery B is
sufficiently large relative to the arc costs in the graph. The initial charge b may be arbitrary.
More specifically, we assume that B ≥ 3nM , where M = maxuv∈A |c(uv)|.

Recall that δB,b(s, t) is the energetic cost of getting from s to t, starting from s with a
charge b, where 0 ≤ b ≤ B, when the capacity of the battery is B. The energetic cost is
the difference between the initial charge, in this case b, and the final charge. Recall that
δB,b(s, t) ∈ [b−B, b]. (In particular, when b < B, the energetic cost may be negative.)

We started Section 2 with a simple reduction from the computation of δB,b(s, t) to that
of δB(s, t) = δB,B(s, t). The reduction introduces an arc of cost B − b, which may be much
larger than M , so we cannot use it when the battery capacity is large. To make our results
more general we work directly with δB,b(s, t).

The improved algorithm is obtained by using a preprocessing step, described in Section 6.1,
that finds sets of entries or exits that hit all negative cycles. When the battery is large,
such sets can be used to efficiently solve the single-source problem, from any source, in
O(m + n log n) time.

We first describe, in Section 6.2, an efficient algorithm when b ≥ nM . We then use this
algorithm in Section 6.3 to obtain an efficient algorithm when B ≥ 3nM and b is arbitrary.

6.1 Finding sets of entries or exits that hit all negative cycles
A vertex x is an entry if it is an entry on some negative cycle. Similarly, a vertex y is an exit
if it is an exit on some negative cycle.

A set of vertices Z ⊂ V is said to hit all negative cycles in a graph G if there are no
negative cycles in the graph G \ Z, or equivalently in the graphs G \ in(Z) or G \ out(Z),
where G \ Z is the graph obtained by removing all the vertices of Z from G and G \ in(Z)
and G \ out(Z) are the graphs obtained just by removing the incoming or outgoing arcs,
respectively, of the vertices in Z.

We are interested in hitting all negative cycles with either a set of entries, or a set of
exits. We show that this can be done efficiently.

▶ Lemma 6.1. A set Y ⊆ V of exits that hit all negative cycles in G, and a valid potential
function p for G \ in(Y ), can be found in O(mn + n2 log n) time.

Proof. Add to G an auxiliary source vertex s̄ and connect it with 0-cost arcs to all other
vertices of G. Running e-Negative of Section 5 on the resulting graph will construct a set Y

of exits that hit all negative cycles in G and a valid potential function p. ◀

By a slight adaptation of the algorithm, i.e., finding an entry on each negative cycle found
and removing its outgoing arcs, we can also get:
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▶ Lemma 6.2. A set X ⊆ V of entries that hit all negative cycles in G, and a valid potential
function p for G \ out(X), can be found in O(mn + n2 log n) time.

6.2 An algorithm for large initial charges
We assume that nM ≤ b ≤ B, i.e., the initial charge is sufficient to traverse any path of at
most n arcs. Let u⇝ v denote that there is a directed path from u to v in the graph.

Suppose that C is a negative cycle in G and that (x, y) is an entry-exit pair on it. Suppose
that s is the current source. Since x and y are on a cycle we clearly have s⇝ x if and only
if s⇝ y. Furthermore, if s⇝ y then there is also a simple path from s to x, i.e., a path that
uses at most n− 1 arcs. Since we start from s with a sufficiently large initial charge, we can
reach x and eventually, by the definition of entry-exit pairs, reach y with a fully charged
battery. This justifies the following algorithm.

Find a set Y of exits that hit all negative cycles and find a valid potential function p

for G \ in(Y ). For any given source s, find the set Ys ⊆ Y of exits reachable from s. (This
can be easily done in linear time.) Next, construct a graph Gs obtained from G \ in(Y )
by adding arcs of cost b − B from s to every y ∈ Ys. (These arcs ensure that we reach y

with a fully charged battery without needing to use the incoming arcs of y.) Run e-Dijkstra
on Gs using p, after suitably adjusting the potential of s. (We need a slight modification of
e-Dijkstra that works when starting from s with an initial charge b. Alternatively, we can
add an auxiliary source s̄, add an arc s̄s of cost B − b, and run e-Dijkstra from s̄.) This
takes only O(m + n log n) time per vertex, giving an O(mn + n2 log n)-time algorithm for
the all-pairs problem.

6.3 An algorithm for large batteries
We now describe an algorithm for 3nM ≤ B, and any value of b. If nM ≤ b, we can use the
algorithm of the previous section. We can thus assume that b ≤ nM and thus B − b ≥ 2nM ,
i.e., the battery is initially far from being fully charged.

Start by using the algorithm from Section 6.1 to find a set X of entries that hit all
negative cycles of G.

Let P be a minimum energetic path from s to t. We may assume that all cycles on P , if
any, are negative, since otherwise they can be removed without increasing the energetic cost.
If P does not pass through any vertex of X, then it is also a path in G \ out(X). Otherwise,
let x ∈ X be the first entry appearing on P . Suppose that x is an entry of a negative cycle C

and that y is a corresponding exit on C. In general, the path P may not pass through y.
This is one of the main difficulties that algorithm e-Negative had to deal with. However,
when B − b ≥ 2nM , we show that there must exist a minimum energetic path P ′ from s to t

that passes through both x and y. We can further assume that during the last visit of y, the
battery is fully charged.

The path P must reach the first entry x ∈ X after traversing at most n− 1 arcs. If P

is simple, this is obviously true. Otherwise, a cycle C ′ must be formed after traversing at
most n arcs. By definition, there is an entry x ∈ C ′ ∩X. (Note that x is not necessarily an
entry of C ′, but it is an entry of some negative cycle C with a corresponding exit y.)

If bx is the charge in the battery when reaching the first entry x on P , then B− bx ≥ nM .
(The additional charge gained by traversing the portion of P from s to x is at most nM .)
Since x is an entry of C, we can traverse C and get back to x, passing y along the way, with
a charge that is at least bx. (Note that it is important here that the battery is not close to
being fully charged when starting from x, otherwise the claim is not necessarily true.) This
gives us the path P ′.
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This suggests the following algorithm. Start, as mentioned, by finding a set X of entries
that hit all negative cycles and a potential function p for G \ out(X).

For each vertex s ∈ V , run e-Dijkstra on G \ out(X) starting from s using the potential
function p. This finds minimum energetic paths from s that do not pass through X. It also
finds the set Xs of entries that can be reached when staring from s with an initial charge of b.
Let Ys be the set of exits that correspond to the entries in Xs. Construct a new graph Gs as
follows. Remove from G all the outgoing arcs of s. For each y ∈ Ys add a 0-arc from s to y.
Now run the algorithm of Section 6.2, staring from s with a fully charged battery. (Assuming
that a set Y of exits that hit all negative cycles of G was already precomputed.) Subtract
B − b from the results obtained, to adjust for the fact that the initial charge is actually b

and not B, and take the minimum with the results returned by e-Dijkstra call.
The computation of the hitting sets X and Y takes O(mn + n2 log n). For every source

we need only O(m + n log n) time. The total time of the algorithm is thus O(mn + n2 log n).

7 Minimum initial charges and maximum final charges

To end the paper, we consider two problems that are closely related to the minimum energetic
paths problem. Let G = (V, A, c) be a graph with no (traversable) negative cycles and let B

be the capacity of the battery. For two vertices s, t ∈ V , we let αB(s, t) be the maximum
final charge with which it is possible to reach t when starting at s with a full battery, or
−∞, if it is not possible to travel from s to t. We also let βB(s, t) be the minimum initial
charge required at s for getting to t, or ∞, if no initial charge (of at most B) is sufficient.

The maximum final charge problem is not really a new problem as αB(s, t) = B− δB(s, t).
As noted in the introduction, βB(s, t) is the smallest b such that δB,b(s, t) ≤ b, or equivalently
δB,b(s, t) <∞, if there is such a b. Thus, if B and all arc costs are integral, then we can find
βB(s, t), for a specific pair s and t, by a binary search.

There is, however, a more interesting relation between the minimum initial-charge problem
and the minimum energetic cost problem. Namely, βB(s, t) is equal to δ

←
G
B (t, s) the energetic

cost of traveling from t to s in the reversed graph
←
G, the graph obtained by reversing all the

arcs in the graph G and retaining all arc costs. This relation follows easily from the following
lemma, analogous to Lemma 2.2, whose simple proof is omitted. For a path P from s to t,
let bB(P ) be the minimum initial charge at s with which the path P can be traversed.

▶ Lemma 7.1. Let P = u0u1 . . . uk be a directed path, let P ′ = u1 . . . uk, and let ci =
c(ui−1ui), for i = 1, . . . , k. Let B be the capacity of the battery. If k = 0 then bB(P ) = 0. If
k > 0 then

bB(P ) = c1 ⊕B bB(P ′) = c1 ⊕ (c2 ⊕ (· · · ⊕ (ck−1 ⊕ (ck ⊕ 0)) · · · )) .

▶ Corollary 7.2. For every s, t ∈ V , βB(s, t) = δ
←
G
B (t, s).

As immediate corollaries, it follows that we can solve the single-target version of the
minimum initial-charge paths problem in O(m+n log n) time, if we are given a valid potential,
and the all-pairs version of the problem in O(mn + n2 log n).

8 Concluding remarks and open problems

We have presented a clear definition of the minimum energetic paths problem, which is a
strict extension of the standard shortest paths problem, and explained its relation to two
other related problems: minimum initial-charge paths and maximum final-charge paths. We
have also presented efficient algorithms for the minimum energetic paths problem in three
different settings.
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When there are no negative cycles in the graph, the minimum energetic paths problem
can be solved using relatively simple adaptations of the classical Bellman-Ford and Dijkstra
algorithms. We present simple descriptions and simple correctness proofs of these algorithms.
In particular, we have obtained an O(mn)-time algorithm for the single-source version, when
arc costs may be negative but there are no negative cycles, and an O(mn + n2 log n)-time
algorithm for the all-pairs version.

An interesting feature of the minimum energetic paths problem is that it is well defined
even if the graph contains negative cycles. Furthermore, minimum energetic costs are always
obtained by finite length, though not necessarily simple, minimum energetic paths. (This is
not the case for the standard shortest paths problem.) Using new algorithmic techniques,
we have obtained an O(mn + n2 log n)-time algorithm for the single-source version of the
problem. Our best algorithm for the all-pairs version runs the single-source algorithm from
each vertex, yielding a running time of O(mn2 + n3 log n).

We have obtained a more efficient algorithm for the all-pairs version when the capacity
of battery is sufficiently large, i.e., B ≥ 3nM , where M = maxuv∈A |c(uv)| is the maximum
absolute value of an arc cost. The running time of the improved algorithm is O(mn+n2 log n).

The obvious open problems are whether any of our time bounds can be improved. In
particular, is it possible to get an O(mn)-time algorithm for the single-source version when
the graph may contain negative cycles? Is there an O(n3)-time algorithm for the all-pairs
version when the graph may contain negative cycles?

Another interesting problem is whether the new techniques of Bernstein et al. [5] and
Bringmann et al. [8], or the older technique of Goldberg [19] can be used to obtain an
improved algorithm for the single-source version of the minimum energetic paths problem,
when negative cycles may be present in the graph.

Finally, as mentioned, the single-target version of the minimum energetic paths problem
is not equivalent to the single-source version. Currently, our fastest algorithms for the
single-target version actually solve the all-pairs version. Is there a faster solution? The fact
that there may not be a tree of minimum energetic paths to a given target may indicate that
the single-target version is harder than the single-source version.
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