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Abstract
FM-indexes are a crucial data structure in DNA alignment, but searching with them usually takes
at least one random access per character in the query pattern. Ferragina and Fischer [6] observed in
2007 that word-based indexes often use fewer random accesses than character-based indexes, and thus
support faster searches. Since DNA lacks natural word-boundaries, however, it is necessary to parse
it somehow before applying word-based FM-indexing. Last year, Deng et al. [4] proposed parsing
genomic data by induced suffix sorting, and showed the resulting word-based FM-indexes support
faster counting queries than standard FM-indexes when patterns are a few thousand characters or
longer. In this paper we show that using prefix-free parsing – which takes parameters that let us
tune the average length of the phrases – instead of induced suffix sorting, gives a significant speedup
for patterns of only a few hundred characters. We implement our method and demonstrate it is
between 3 and 18 times faster than competing methods on queries to GRCh38. And was consistently
faster on queries made to 25,000, 50,000 and 100,000 SARS-CoV-2 genomes. Hence, it is very clear
that our method accelerates the performance of count over all state-of-the-art methods with a minor
increase in the memory.
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1 Introduction

The FM-index [5] is one of the most famous data structures in bioinformatics as it has been
applied to countless applications in the analysis of biological data. Due to the long-term
impact of this data structure, Burrows, Ferragina, and Manzini earned the 2022 ACM Paris
Kanellakis Theory and Practice Award2. It is the data structure behind important read
aligners – e.g., Bowtie [10] and BWA [11] – which take one or more reference genomes
and build the FM-index for these genomes and use the resulting index to find short exact
alignments between a set of reads and the reference(s) which then can be extended to
approximate matches [10, 11]. Briefly, the FM-index consists of a sample of the suffix array
(denoted as SA) and the Burrows–Wheeler transform (BWT) array. Given an input string S

and a query pattern Q, count queries that answer the number of times the longest match of Q

appears in S, can be efficiently supported using the BWT. To locate all of these occurrences
the SA sample is needed. Hence, together the FM-index efficiently supports both count and
locate queries. We mathematically define the SA and BWT in the next section.

There has been a plethora of research papers on reducing the size of the FM-index (see,
e.g., [13, 9, 7]) and on speeding up queries. The basic query, count, returns the number of
times a pattern Q appears in the indexed text S, but usually requires at least |Q| random
accesses to the BWT of S, which are usually much slower than the subsequent computations
we perform on the information those accesses return. More specifically, a count query for
Q use rank queries at |Q| positions in the BWT; if we answer these using a single wavelet
tree for the whole BWT, then we may use a random access for every level we descend in the
wavelet tree, or Ω(|Q| log σ) random access in all, where σ is the size of the alphabet; if we
break the BWT into blocks and use a separate wavelet tree for each block [9], we may need
only one or a few random accesses per rank query, but the total number of random accesses is
still likely to be Ω(|Q|). As far back as 2007, Ferragina and Fischer [6] addressed compressed
indexes’ reliance on random access and demonstrated that word-based indexes perform fewer
random accesses than character-based indexes: “The space reduction of the final word-based
suffix array impacts also in their query time (i.e. less random access binary-search steps!),
being faster by a factor of up to 3.”

Thus, one possibility of accelerating the random access to genomic data – where it is
widely used – is to break up the sequences into words or phrases. In light of this insight,
Deng et al. [4] in 2022 applied a grammar [18] that factorizes S into phrases based on the
leftmost S-type suffixes (LMS) [17]. Unfortunately, one round of that LMS parsing leads to
phrases that are generally too short, so they obtained speedup only when Q was thousands
of characters. The open problem was how to control the length of phrases with respect to
the input to get longer phrases that would enable larger advances in the acceleration of the
random access.

Here, we apply the concept of prefix-free parsing to the problem of accelerating count in
the FM-index. Prefix-free parsing uses a rolling hash to first select a set of strings (referred
to as trigger strings) that are used to define a parse of the input string S; i.e., the prefix-free

2 https://awards.acm.org/kanellakis
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parse is a parsing of S into phrases that begin and end at a trigger string and contain
no other trigger string. All unique phrases are lexicographically sorted and stored in the
dictionary of the prefix-free parse, which we denote as D. The prefix-free parse can be stored
as an ordered list of the phrases’ ranks in D. Hence, prefix-free parsing breaks up the input
sequence into phrases, whose size is more controllable by the selection of the trigger strings.
This leads to a more flexible acceleration than Deng et al. [4] obtained.

We assume that we have an input string S of length n. Now suppose we build an FM-index
S, an FM-index for the parse P, and a bitvector B of length n with 1’s marking characters
in the BWT of S that immediately precede phrase boundaries in S, i.e., that immediately
precede a trigger string. We note that all the 1s are bunched into at most as many runs as
there are distinct trigger strings in S. Also, as long as the ranks of the phrases are in the
same lexicographic order as the phrases themselves, we can use the bitvector to map from the
interval in the BWT of S for any pattern starting with a trigger string to the corresponding
interval in the BWT of P, and vice versa. This means that, given a query pattern Q, we can
backward search for Q character by character in the FM-index for S until we hit the left end
of the rightmost trigger string in Q, then map into the BWT of P and backward search for
Q phrase by phrase until we hit the left end of the leftmost trigger string in Q, then map
back into the BWT of S and finish backward searching character by characters again.

We implement this method, which we refer to as PFP-FM, and extensively compare against
the FM-index implementation in sdsl [8], RLCSA [19], RLFM [13, 12], and FIGISS [4] using
sets of SARS-CoV-2 genomes taken from the NCBI website, and the Genome Reference
Consortium Human Build 38 with varying query string lengths. When we compare PFP-FM
to FM-index in sdsl using 100,000 SARS-CoV-2 genomes, we witnessed that PFP-FM was
able to perform between 2.1 and 2.8 more queries. In addition, PFP-FM was between 64.38%
and 74.12%, 59.22% and 78.23%, and 49.10% and 90.70% faster than FIGISS, RLCSA, and
RLFM, respectively on 100,000 SARS-CoV-2 genomes. We evaluated the performance of
PFP-FM on the Genome Reference Consortium Human Build 38, and witnessed that it was
between 3.86 and 7.07, 2.92 and 18.07, and 10.14 and 25.46 times faster than RLCSA, RLFM,
and FIGISS, respectively. With respect to construction time, PFP-FM had the most efficient
construction time for all SARS-CoV-2 datasets and was the second fastest for Genome
Reference Consortium Human Build 38. All methods used less than 60 GB for memory for
construction on the SARS-CoV-2 datasets, making the construction feasible on any entry level
commodity server – even the build for the 100,000 SARS-CoV-2 dataset. Construction for the
Genome Reference Consortium Human Build 38 required between 26 GB and 71 GB for all
methods, with our method using the most memory. In summary, we develop and implement
a method for accelerating the FM-index, and achieve an acceleration between 2 and 25 times,
with the greatest acceleration witnessed with longer patterns. Thus, accelerated FM-index
methods – such as the one developed in this paper – are highly applicable to finding very long
matches (125 to 1,000 in length) between query sequences and reference databases. As reads
get longer and more accurate (i.e., Nanopore data), we will soon be prepared align long reads
to reference databases with efficiency that surpasses traditional FM-index based alignment
methods. The source code is publicly available at https://github.com/marco-oliva/afm.

2 Preliminaries

2.1 Basic Definitions
A string S of length n is a finite sequence of symbols S = S[0..n − 1] = S[0] · · · S[n − 1] over
an alphabet Σ = {c1, . . . , cσ}. We assume that the symbols can be unambiguously ordered.
We denote by ε the empty string, and the length of S as |S|. Given a string S, we denote
the reverse of S as rev(S), i.e., rev(S) = S[n − 1] · · · S[0].

WABI 2023
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We denote by S[i..j] the substring S[i] · · · S[j] of S starting in position i and ending in
position j, with S[i..j] = ε if i > j. For a string S and 0 ≤ i < n, S[0..i] is called the i-th
prefix of S, and S[i..n − 1] is called the i-th suffix of S. We call a prefix S[0..i] of S a proper
prefix if 0 ≤ i < n − 1. Similarly, we call a suffix S[i..n − 1] of S a proper suffix if 0 < i < n.

Given a string S, a symbol c ∈ Σ, and an integer i, we define S.rankc(i) (or simply rank if
the context is clear) as the number of occurrences of c in S[0..i−1]. We also define S.selectc(i)
as min({j − 1 | S.rankc(j) = i} ∪ {n}), i.e., the position in S of the i-th occurrence of c in
S if it exists, and n otherwise. For a bitvector B[0..n − 1], that is a string over Σ = {0, 1},
to ease the notation we will refer to B.rank1(i) and B.select1(i) as B.rank(i) and B.select(i),
respectively.

2.2 SA, BWT, and Backward Search
We denote the suffix array [14] of a given a string S[0..n − 1] as SAS , and define it to be the
permutation of {0, . . . , n − 1} such that S[SAS [i]..n − 1] is the i-th lexicographical smallest
suffix of S. We refer to SAS as SA when it is clear from the context. For technical reasons,
we assume that the last symbol of the input string is S[n − 1] = $, which does not occur
anywhere else in the string and is smaller than any other symbol.

We consider the matrix W containing all sorted rotations of S, called the BWT matrix
of S, and let F and L be the first and the last column of the matrix. The last column
defines the BWT array, i.e., BWT = L. Now let C[c] be the number of suffixes starting with
a character smaller than c. We define the LF-mapping as LF(i, c) = C[c] + BWT.rankc(i)
and LF(i) = LF(i, BWT[i]). With the LF-mapping, it is possible to reconstruct the string
S from its BWT. It is in fact sufficient to set an iterator s = 0 and S[n − 1] = $ and for
each i = n − 2, . . . , 0 do S[i] = BWT[s] and s = LF(s). The LF-mapping can also be used to
support count by performing the backward search, which we now describe.

Given a query pattern Q of length m, the backward search algorithm consists of m steps
that preserve the following invariant: at the i-th step, p stores the position of the first row of
W prefixed by Q[i, m] while q stores the position of the last row of W prefixed by Q[i, m].
To advance from i to i − 1, we use the LF-mapping on p and q, p = C[c] + BWT.rankc(p) and
q = C[c] + BWT.rankc(q + 1) − 1.

2.3 FM-index and count Queries
Given a query string Q[0..m − 1] and an input string S[0..n − 1], two fundamental queries are:
(1) count which counts the number of of occurrences of Q in S; (2) locate which finds the
location of each of these matches in S. Ferragina and Manzini [5] showed that, by combining
SA with the BWT, both count and locate can be efficiently supported. Briefly, backward
search on the BWT is used to find the lexicographical range of the occurrences of Q in S;
the size of this range is equal to count. The SA positions within this range are the positions
where these occurrences are in S.

2.4 Prefix-Free Parsing
As we previously mentioned, the Prefix-Free Parsing (PFP) takes as input a string S[0..n−1],
and positive integers w and p, and produces a parse of S (denoted as P) and a dictionary
(denoted as D) of all the unique substrings (or phrases) of the parse. We note that w defines
the length of the trigger strings and p is used in the rolling-hash. We briefly go over the
algorithm for producing this dictionary and parse. First, we assume there exists two symbols,
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say # and $, which are not contained in Σ and are lexicographically smaller than any symbol
in Σ. Next, we let T be an arbitrary set of w-length strings over Σ and call it the set of trigger
strings. As mentioned before, we assume that S[n−1] = $ and consider S to be cyclic, i.e., for
all i, S[i] = S[i mod n]. Furthermore, we assume that $S[0..w − 2] = S[n − 1..n + w − 2] ∈ T ,
i.e., the substring of length w that begins with $ is a trigger string.

We let the dictionary D = {d1, .., d∣∣D∣∣} be a (lexicographically sorted) maximum set
of substrings of S such that the following holds for each di: i) exactly one proper prefix
of di is contained in T , ii) exactly one proper suffix of di is contained in T , iii) and no
other substring of di is in T . These properties allow for the SA and BWT to be constructed
since the lexicographical placement of each rotation of the input string can be indentified
unambiguously from D and P [2, 3, 16]. An important consequence of the definition is that
D is prefix-free, i.e., for any i ̸= j, di cannot be a prefix of dj .

Since we assumed S[n − 1..n + w − 2] ∈ T , we can construct D by scanning S′ =
$S[0..n − 2]S[n − 1..n + w − 2] to find all occurrences of T and adding to D each substring of
S′ that starts and ends at a trigger string being inclusive of the starting and ending trigger
string. We can also construct the list of occurrences of D in S′, which defines the parse P.

We choose T by a Karp-Rabin fingerprint f of strings of length w. We slide a window of
length w over S′, and for each length w substring r of S′, include r in T if and only if f(r) ≡ 0
(mod p) or r = S[n − 1..n + w − 2]. Let 0 = s0 < · · · < sk−1 be the positions in S′ such that
for any 0 ≤ i < k, S′[si..si + w − 1] ∈ T . The dictionary is D = {S′[si..si+1 + w − 1] | i =
0, . . . , k − 1}, and the parse is defined to be the sequence of lexicographic ranks in D of the
substrings S′[s0..s1 + w − 1], . . . , S′[sk−2..sk−1 + w − 1].

As an example, suppose we have S′ = $AGACGACT#AGATACT#AGATTCGAGACGAC$A, where
the trigger strings are highlighted in red, blue, or green. It follows that we have D =
{$AGAC, AC$A, ACGAC, ACT#AGATAC, ACT#AGATTC, TCGAGAC} and P = 0, 2, 3, 4, 5, 2, 1.

3 Methods

As we previously mentioned, we will use prefix-free parsing to build a word-based FM-index
in a manner in which the length of the phrases can be controlled via the parameters w and p.
To explain our data structure, we first describe the various components of our data structure,
and then follow with describing how to support count queries in a manner that is more
efficient than the standard FM-index.

3.1 Data Structure Design
It is easiest to explain our two-level design with an example, so consider a text

S[0..n − 1] = TCCAGAAGAGTATCTCCTCGACATGTTGAAGACATATGAT$

of length n = 41 that is terminated by a special end-of-string character $ lexicographically
less than the rest of the alphabet. Suppose we parse S using w = 2 and a Karp-Rabin hash
function such that the normal trigger strings occurring in S are AA, CG and TA. We consider S

as cyclic, and we have $S[0..w − 2] = $T as a special trigger string, so the the dictionary D is

D[0..5] = {$TCCAGAA, AAGACATA, AAGAGTA, CGACATGTTGAA, TATCTCCTCG, TATGAT$T} ,

with the phrases sorted in lexicographic order. (Recall that phrases consecutive in S overlap
by w = 2 characters.) If we start parsing at the $, then the prefix-free parse for S is

P[0..5] = (0, 2, 4, 3, 1, 5) ,

where each element (or phrase ID) in P is the lexicographic rank of the phrase in D.

WABI 2023
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0 2 4 3 1 5
1 5 0 2 4 3
2 4 3 1 5 0
3 1 5 0 2 4
4 3 1 5 0 2
5 0 2 4 3 1

$TCCAGAAGAGTATCTCCTCGACATGTTGAAGACATATGAT
AAGACATATGAT$TCCAGAAGAGTATCTCCTCGACATGTTG
AAGAGTATCTCCTCGACATGTTGAAGACATATGAT$TCCAG
CGACATGTTGAAGACATATGAT$TCCAGAAGAGTATCTCCT
TATCTCCTCGACATGTTGAAGACATATGAT$TCCAGAAGAG
TATGAT$TCCAGAAGAGTATCTCCTCGACATGTTGAAGACA

Figure 1 The BWT matrix for our prefix-free parse P (left) and the cyclic shifts of S that start
with a trigger string (right), in lexicographic order.

Next, we consider the BWT matrix for P. Figure 1 illustrates the BWT matrix of P for
our example. We note that since there is only one $ in S, it follows that there is only one
0 in P; we can regard this 0 as the end-of-string character for (a suitable rotation of) P

corresponding to $ in S. If we take the i-th row of this matrix and replace the phrase IDs by
the phrases themselves, collapsing overlaps, then we get the lexicographically i-th cyclic shift
of S that start with a trigger string, as shown on the right of the figure. This is one of the
key insights that we will use later on.

▶ Lemma 1. The lexicographic order of rotations of P correspond to the lexicographic order
of their corresponding rotations of S.

Proof. The characters of P are the phrase IDs that act as meta-characters. Since the
meta-characters inherit the lexicographic rank of their underlying characters, and due to the
prefix-freeness of the phrases, the suffix array of P permutes the meta-characters of P in the
same way as the suffix array of S permutes the phrases of S. This means that the order of
the phrases in the BWT of S is the same as the order of the phrase IDs in P. ◀

Next, we let B[0..n − 1] be a bitvector marking these cyclic shifts’ lexicographic rank among
all cyclic shifts of S, i.e., where they are among the rows of the BWT matrix of S. Figure 2
shows the SA, BWT matrix and BWT of S, together with B; we highlight the BWT – the last
column of the matrix – and the cyclic shifts from Figure 1 in red. We note that B contains
at most one run of 1’s for each distinct trigger string in S so it is usually highly run-length
compressible in practice.

In addition to the bitvector, we store a hash function h on phrases and a map M from
the hashes of the phrases in D to those phrases’ lexicographic ranks, which are their phrase
IDs; M returns NULL when given any other key. Therefore, in total, we build the FM-index
for S, the FM-index for P, the bitvector B marking the cyclic rotations, the hash function h

on the phrases and the map M . For our example, suppose

h($TCCAGAA) = 91785
h(AAGACATA) = 34865
h(AAGAGTA) = 49428

h(CGACATGTTGAA) = 98759
h(TATCTCCTCG) = 37298

h(TATGAT$T) = 68764

M(91785) = 0
M(34865) = 1
M(49428) = 2
M(98759) = 3
M(37298) = 4
M(68764) = 5

and M(x) = NULL for any other value of x.
If we choose the range of h to be reasonably large then we can still store M in space

proportional to the number of phrases in D with a reasonably constant coefficient and
evaluate M(h(·)) in constant time with high probability, but the probability is negligible
that M(h(γ)) ̸= NULL for any particular string γ not in D. This means that in practice we
can use M(h(·)) as a membership dictionary for D, and not store D itself.
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i SA[i] B[i] T [SA[i]..(SA[i] − 1) mod n] BWT[i]
0 40 1 $TCCAGAAGAGTATCTCCTCGACATGTTGAAGACATATGAT
1 28 1 AAGACATATGAT$TCCAGAAGAGTATCTCCTCGACATGTTG
2 5 1 AAGAGTATCTCCTCGACATGTTGAAGACATATGAT$TCCAG
3 31 0 ACATATGAT$TCCAGAAGAGTATCTCCTCGACATGTTGAAG
4 20 0 ACATGTTGAAGACATATGAT$TCCAGAAGAGTATCTCCTCG
5 3 0 AGAAGAGTATCTCCTCGACATGTTGAAGACATATGAT$TCC
6 29 0 AGACATATGAT$TCCAGAAGAGTATCTCCTCGACATGTTGA
7 6 0 AGAGTATCTCCTCGACATGTTGAAGACATATGAT$TCCAGA
8 8 0 AGTATCTCCTCGACATGTTGAAGACATATGAT$TCCAGAAG
9 38 0 AT$TCCAGAAGAGTATCTCCTCGACATGTTGAAGACATATG

10 33 0 ATATGAT$TCCAGAAGAGTATCTCCTCGACATGTTGAAGAC
11 11 0 ATCTCCTCGACATGTTGAAGACATATGAT$TCCAGAAGAGT
12 35 0 ATGAT$TCCAGAAGAGTATCTCCTCGACATGTTGAAGACAT
13 22 0 ATGTTGAAGACATATGAT$TCCAGAAGAGTATCTCCTCGAC
14 2 0 CAGAAGAGTATCTCCTCGACATGTTGAAGACATATGAT$TC
15 32 0 CATATGAT$TCCAGAAGAGTATCTCCTCGACATGTTGAAGA
16 21 0 CATGTTGAAGACATATGAT$TCCAGAAGAGTATCTCCTCGA
17 1 0 CCAGAAGAGTATCTCCTCGACATGTTGAAGACATATGAT$T
18 15 0 CCTCGACATGTTGAAGACATATGAT$TCCAGAAGAGTATCT
19 18 1 CGACATGTTGAAGACATATGAT$TCCAGAAGAGTATCTCCT
20 13 0 CTCCTCGACATGTTGAAGACATATGAT$TCCAGAAGAGTAT
21 16 0 CTCGACATGTTGAAGACATATGAT$TCCAGAAGAGTATCTC
22 27 0 GAAGACATATGAT$TCCAGAAGAGTATCTCCTCGACATGTT
23 4 0 GAAGAGTATCTCCTCGACATGTTGAAGACATATGAT$TCCA
24 30 0 GACATATGAT$TCCAGAAGAGTATCTCCTCGACATGTTGAA
25 19 0 GACATGTTGAAGACATATGAT$TCCAGAAGAGTATCTCCTC
26 7 0 GAGTATCTCCTCGACATGTTGAAGACATATGAT$TCCAGAA
27 37 0 GAT$TCCAGAAGAGTATCTCCTCGACATGTTGAAGACATAT
28 9 0 GTATCTCCTCGACATGTTGAAGACATATGAT$TCCAGAAGA
29 24 0 GTTGAAGACATATGAT$TCCAGAAGAGTATCTCCTCGACAT
30 39 0 T$TCCAGAAGAGTATCTCCTCGACATGTTGAAGACATATGA
31 10 1 TATCTCCTCGACATGTTGAAGACATATGAT$TCCAGAAGAG
32 34 1 TATGAT$TCCAGAAGAGTATCTCCTCGACATGTTGAAGACA
33 0 0 TCCAGAAGAGTATCTCCTCGACATGTTGAAGACATATGAT$
34 14 0 TCCTCGACATGTTGAAGACATATGAT$TCCAGAAGAGTATC
35 17 0 TCGACATGTTGAAGACATATGAT$TCCAGAAGAGTATCTCC
36 12 0 TCTCCTCGACATGTTGAAGACATATGAT$TCCAGAAGAGTA
37 26 0 TGAAGACATATGAT$TCCAGAAGAGTATCTCCTCGACATGT
38 36 0 TGAT$TCCAGAAGAGTATCTCCTCGACATGTTGAAGACATA
39 23 0 TGTTGAAGACATATGAT$TCCAGAAGAGTATCTCCTCGACA
40 25 0 TTGAAGACATATGAT$TCCAGAAGAGTATCTCCTCGACATG

Figure 2 The SA, BWT matrix and BWT of T , together with the bitvector B in which 1s
indicate rows of the matrix starting with trigger strings. The BWT is highlighted in red, as are the
columns marked by 1s.

WABI 2023
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3.2 Query Support
Next, given the data structure that we define above, we describe how to support count
queries for a given pattern Q. We begin by parsing Q using the same Karp-Rabin hash we
used to parse S, implying that we will have all the same trigger strings as we did before
and possibly additional ones that did not occur in S. However, we will not consider Q to be
cyclic nor assume an end-of-string symbol that would assure that Q starts and ends with a
trigger string.

If Q is a substring of S, then, since Q contains the same trigger strings as its corresponding
occurrence in S, the sequence of phrases induced by the trigger strings in Q must be a
substring of the sequence of phrases of S. Together with the prefix and suffix of Q that are a
suffix and prefix of the phrases in S to the left and right of the shared phrases, we call this
the partial encoding of Q, defined formally as follows.

▶ Definition 2 (partial encoding). Given a substring S[i..j] of S, the partial encoding of
S[i..j] is defined as follows: If no trigger string occurs in S[i..j], then the partial encoding of
S[i..j] is simply S[i..j] itself. Otherwise, the partial encoding of S[i..j] is the concatenation
of: (1) the shortest prefix α of S[i..j] that does not start with a trigger string and ends with
a trigger string, followed by (2) the sequence of phrase IDs of phrases completely contained
in S[i..j], followed by (3) the shortest suffix β of S[i..j] that begins with a trigger string and
does not end with a trigger string.

So the partial encoding partitions S[i..j] into a prefix α, a list of phrase IDs, and a suffix
β. If S[i..j] begins (respectively ends) with a trigger string, then α (respectively β) is the
empty string.

Parsing Q can be done in time linear in the length of Q.

▶ Lemma 3. We can represent M with a data structure taking space (in words) proportional
to the number of distinct phrases in D. Given a query pattern Q, this data structure returns
NULL with high probability if Q contains a complete phrase that does not occur in S.
Otherwise (complete phrases of Q occur in S), it returns the partial encoding of Q. In either
case, this query takes O(|Q|) time.

Proof. We keep the Karp-Rabin (KR) hashes of the phrases in D, with the range of the
KR hash function mapping to [1..n3] so the hashes each fit in O(log n) bits. We also keep a
constant-time map (implemented as a hash table with a hash function that’s perfect for the
phrases in D) from the KR hashes of the phrases in D to their IDs, that returns NULL given
any value that is not a KR hash of a phrase in D. We set M to be the map composed with
the KR hash function.

Given Q, we scan it to find the trigger strings in it, and convert it into a sequence of
substrings consisting of: (a) the prefix α of Q ending at the right end of the first trigger
string in Q; (b) a sequence of PFP phrases, each starting and ending with a trigger string
with no trigger string in between; and (c) the suffix β of Q starting at the left end of the last
trigger string in Q.

We apply M to every complete phrase in (b). If M returns NULL for any complete phrase
in (b), then that phrase does not occur in S, so we return NULL; otherwise, we return α,
the sequence of phrase IDs M returned for the phrases in (b), and β.

Notice that, if a phrase in Q is in S, then M will map it to its lexicographic rank in D;
otherwise, the probability the KR hash of any particular phrase in Q but not in D collides
with the KR hash of a phrase in D, is at most n/n3 = 1/n2. It follows that, if Q contains
a complete phrase that does not occur in S, then we return NULL with high probability;
otherwise, we return Q’s partial encoding. ◀
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▶ Corollary 4. If we allow O(|Q|) query time with high probability, then we can modify M

to always report NULL when Q contains a complete phrase not in S.

Proof. We augment each Karp-Rabin (KR) hash stored in the hash table with the actual
characters of its phrase such that we can check, character by character, whether a matched
phrase of Q is indeed in D. In case of a collision we recompute the KR hashes of D and
rebuild the hash table. That is possible since we are free to choose different Karp-Rabin
fingerprints for the phrases in D. ◀

Continuing from our example above where the trigger strings are AA, CG and TA, suppose
we have a query pattern Q,

Q[0..34] = CAGAAGAGTATCTCCTCGACATGTTGAAGACATAT

we can compute the parse of Q to obtain the following

CAGAA, AAGAGTA, TATCTCCTCG, CGACATGTTGAA, AAGACATA, TAT.

Next, we use M(h(·)) to map the complete phrases of this parse of Q to their phrase IDs
– which is their rank in D. If any complete phrase maps to NULL then we know Q does not
occur in T . Using our example, we have the partial encoding

CAGAA, 2, 4, 3, 1, TAT.

Next, we consider all possible cases. First, we consider the case that the last substring
β in our parse of Q ends with a trigger string, which implies that it is a complete phrase.
Here, we can immediately start backward searching for the parse of Q in the FM-index for P.
Next, if β is not a complete phrase then we backward search for β in the FM-index for S.
If this backward search for β returns nothing then we know Q does not occur in S. If the
backward search for β returns an interval in the BWT of P that is not contained in the BWT
interval for a trigger string then β does not start with a trigger string so Q = β and we are
done backward searching for Q.

Finally, we consider the case when β is a proper prefix of a phrase and the backward
search for β returns a BWTS interval contained in the BWTS interval for a trigger string.
In our example, β = TAT and our backward search for β in the FM-index for S returns the
interval BWTS [31..32], which is the interval for the trigger string TA. Next, we use B to map
the interval for β in the BWTS to the interval in the BWTP that corresponds to the cyclic
shifts of S starting with β.

▶ Lemma 5. We can store in space (in words) proportional to the number of distinct trigger
strings in S a data structure B with which,

given the lexicographic range of suffixes of S starting with a string β such that β starts
with a trigger string and contains no other trigger string, in O(log log n) time we can find
the lexicographic range of suffixes of P starting with phrases that start with β;
given a lexicographic range of suffixes of P such that the corresponding suffixes of S all
start with the same trigger string, in O(log log n) time we can find the lexicographic range
of those corresponding suffixes of S.

Proof. Let B[0..n − 1] be a bitvector with 1s marking the lexicographic ranks of suffixes
of S starting with trigger strings. There are at most as many runs of 1s in B as there are
distinct trigger strings in S, so we can store it in space proportional to that number and
support rank and select operations on it in O(log log n) time.
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If BWTS [i..j] contains the characters immediately preceding, in S, occurrences of a
string β that starts with a trigger string and contains no other trigger strings, then
BWTP[B.rank1(i)..B.rank1(j)] contains the phrase IDs immediately preceding, in P, the
IDs of phrases starting with β.

If BWTP[i..j] contains the phrase IDs immediately preceding, in P, suffixes of P such that
the corresponding suffixes of S all start with the same trigger string, then BWTS [B.select1(i+
1)..B.select1(j + 1)] contains the characters immediately preceding the corresponding suffixes
of S.

The correctness follows from Lemma 1. ◀

Continuing with our example mapping BWTS [31..32] yield the following interval:

BWTP[B.rank1(31), B.rank1(32)] = BWTP[4..5]

as shown in Figure 1. Starting from this interval in BWTP, we now backward search in the
FM-index for P for the sequence of complete phrase IDs in the parse of Q. In our example,
we have the interval BWTP[4..5] which yields the following phrase IDs: 2 4 3 1.

If this backward search in the FM-index for P returns nothing, then we know Q does not
occur in S. Otherwise, it returns the interval in BWTP corresponding to cyclic shifts of S

starting with the suffix of Q that starts with Q’s first complete phrase. In our example, if
we start with BWTP[4..5] and backward search for 2 4 3 1 then we obtain BWTP[2], which
corresponds to the cyclic shift

AAGAGTATCTCCTCGACATGTTGAAGACATATGAT$TCCAG

of S that starts with the suffix

AAGAGTATCTCCTCGACATGTTGAAGACATAT

of Q that is parsed into 2, 4, 3, 1, TAT.
To finish our search for Q, we use B to map the interval in BWTP to the corresponding

interval in the BWTS , which is the interval of rows in the BWT matrix for S which start
with the suffix of Q we have sought so far. In our example, we have that BWTP[2] maps to

BWTS [B.select1(2 + 1)] = BWTS [2].

We note that our examples contain BWT intervals with only one entry because our example
is so small, but in general they are longer. If the first substring α in our parse of Q is a
complete phrase then we are done backward searching for Q. Otherwise, we start with this
interval in BWTS and backward search for α in the FM-index for S, except that we ignore
the last w last characters of α (which we have already sought, as they are also contained in
the next phrase in the parse of Q).

In our example, α = CAGAA so, starting with BWTS [2] we backward search for CAG, which
returns the interval BWTS [14]. As shown in Figure 2,

S[SA[4]..n] = S[2..n] = CAGAAGAGTATCTCCTCGACATGTTGAAGACATATGAT$

does indeed start with

Q = CAGAAGAGTATCTCCTCGACATGTTGAAGACATAT .

This concludes our explanation of count.
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To conclude, we give some intuition as to why we expect our two-level FM-index to be
faster in practice than standard backward search. First, we note that standard backward
search takes linear time in the length of Q and usually uses at least one random access per
character in Q. Whereas, prefix-free parsing Q takes linear time but does not use random
access; backward search in the FM-index of S is the same as standard backward search but
we use it only for the first and last substrings in the parse of Q. Backward search in the
FM-index for P is likely to use about lg |D| random access for each complete phrase in the
parse of Q: the BWT of P is over an effective alphabet whose size is the number of phrases
in D. Therefore, a balanced wavelet tree to support rank on that BWT should have depth
about lg |D| and we should use at most about one random access for each level in the tree.

In summary, if we can find settings of the prefix-free parsing parameters w and p such
that

most query patterns will span several phrases,
most phrases in those patterns are fairly long,
lg |D| is significantly smaller than those phrases’ average length,

then the extra cost of parsing Q should be more than offset by using fewer random accesses.

4 Results

We implemented our algorithm and measured its performance against all known competing
methods. We ran all experiments on a server with AMD EPYC 75F3 CPU with the Red
Hat Enterprise Linux 7.7 (64bit, kernel 3.10.0). The compiler was g++ version 12.2.0. The
running time and memory usage was recorded by SnakeMake benchmark facility [15]. We
set a memory limitation of 128 GB of memory and a time limitation of 24 hours.

Datasets. We used the following datasets. First, we considered sets of SARS-CoV-2
genomes taken from the NCBI website. We used three collections of 25, 000, 50, 000, and
100, 000 SARS-CoV-2 genomes from EMBL-EBI’s COVID-19 data portal. Each collection is
a superset of the previous. We denote these as SARS-25k, and SARS-50k, SARS-100k. Next,
we considered a single human reference genome, which we denote as GRCh38, downloaded
from NCBI. We report the size of the datasets as the number of characters in each in Table
1. We denote n as the number of characters.

Implementation. We implemented our method in C++ 11 using the sdsl-lite library [8]
and extended the prefix-free parsing method of Oliva, whose source code is publicly available
here https://github.com/marco-oliva/pfp. The source code for PFP-FM is available at
https://github.com/marco-oliva/afm.

Competing methods. We compared PFP-FM against the following methods the standard
FM-index found in sdsl-lite library [8], RLCSA [19], RLFM [13, 12], and FIGISS [4]. We note
that RLCSA and FIGISS have publicly-available source codes, while RLFM is provided only as
an executable. We performed the comparison by selecting 1,000 strings from the genome file
at random of the specified length, performing the count operation on each query pattern,
and measuring the time usage for all the methods under consideration. It is worth noting
that FIGISS and RLCSA only support count queries where the string is provided in an input
text file. More specifically, the original FIGISS implementation supports counting with the
entire content of a file treated as a single pattern. To overcome this limitation, we modified
the source code to enable the processing of multiple query patterns within a single file. In
addition to the time consideration for count, we measured the time and memory required to
construct the data structure.
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Figure 3 Illustration of the impact of w, p and the length of the query pattern on the acceleration
of the FM-index. Here, we used SARS-100K dataset and varied the length of the query pattern to
be equal to 125, 250, 500, and 1000. The y-axis corresponds to p and the x-axis corresponds to w.
The heatmap illustrates the number of queries that can be performed in a CPU second with the
acceleration versus the standard FM-index from sdsl, i.e., PFP-FM / sdsl. The second value in each
block represents the average length of phrases.

4.1 Acceleration versus Baseline
In this subsection, we compare PFP-FM versus the standard FM-index in sdsl with varying
values of window size (w) and modulo value (p), and varying the length of the query pattern.
We calculated the number of count queries that were able to be performed in CPU second
with PFP-FM versus the standard FM-index. We generated heatmaps that illustrate the
number of count queries of PFP-FM verses sdsl for various lengths of query patterns, namely,
125, 250, 500, and 1,000. We performed this for each SARS-CoV-2 set of genomes. Figure 3
shows the resulting heatmaps for SARS-100K. As shown in this figure, PFP-FM was between
2.178 and 2.845 times faster than the standard FM-index with the optimal values of w and p.
In particular, an optimal performance gain of 2.6, 2.3, 2.2, and 2.9 was witnessed for pattern
lengths of 125, 250, 500, and 1,000, respectively. The (w, p) pairs that correspond to these
results are (6, 50), (6, 30), (8, 50), and (8, 50).

4.2 Results on SARS-CoV-2 Genomes
We used the optimal parameters that were obtained from the previous experiment for this
section. We constructed the index using these parameters for each SARS-CoV-2 dataset
and assessed the time consumption for performing 1,000 count queries using all competing
methods and PFP-FM. We illustrate the result of this experiment in Figure 4. It is clear
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Figure 4 Illustration of the impact of the dataset size, and the length of the query pattern on
the query time for answering count. We vary the length of the query pattern to be equal to 125,
250, 500, and 1000, and report the times for SARS-25K, SARS-50K, and SARS-100K. We illustrate the
cumulative time required to perform 1,000 count queries. The y-axis is in log scale.

from this PFP-FM consistently exhibits the lowest time consumption and a gradual, stable
trend. For the SARS-25K dataset, the time consumption of FIGISS was between 451% and
568% higher than our method. And the time consumption of RLCSA and RLFM was between
780% and 1598%, and 842% and 1705% more than PFP-FM, respectively. The performance
of FIGISS surpasses that of RLFM and RLCSA when using the SARS-25k dataset; however
for the larger datasets FIGISS and RLCSA converge in their performance .Neither method
was substantially better than the other. In addition, on the larger datasets, when the
query pattern length was 125 and 250, RLFM performed better than RLCSA and FIGISS but
was slower for the other query lengths. Hence, it is very clear that PFP-FM accelerates the
performance of count over all state-of-the-art methods.

The gap in performance between PFP-FM and the competing methods increased with the
dataset size. For SARS-50K, FIGISS, RLCSA and RLFM were between 3.65 and 13.44, 3.65 and
16.08, and 4.25 and 12.39 times slower, respectively. For SARS-100K, FIGISS, RLCSA and
RLFM were between 2.81 and 3.86, 2.45 and 4.59, and 1.96 and 10.75 times slower, respectively.

Next, we consider the time and memory required for construction; which is given in
Table 1. Our experiments revealed that all methods used less than 60 GB of memory on
all SARS-CoV-2 datasets; PFP-FM used the most memory with the peak being 54 GB on
the SARS-100K dataset. Yet, PFP-FM exhibited the most efficient construction time across
all datasets for generating the FM-index, and this gap in the time grew with the size of the
dataset. More specifically, for the SARS-100K dataset, PFP-FM used 71.04%, 65.81%, and
73.41% less time compared to other methods. In summary, PFP-FM significantly accelerated
the count time, and had the fastest construction time. All methods used less than 60 GB,
which is available on most commodity servers.

4.3 Results on Human Reference Genome

After measuring the time and memory usage required to construct the data structure across
all methods using the GRCh38 dataset, we observed that PFP-FM exhibited the second most
efficient construction time but used the most construction space (71 GB vs. 26 GB to 45
GB). More specifically, PFP-FM was able to construct the index between 1.25 and 1.6 times
faster than the FIGISS and RLFM.

Next, we compare the performance of PFP-FM against other methods by performing 1,000
count queries on, and illustrate the results in Figure 5. Our findings demonstrate that PFP-FM
consistently outperforms all other methods. Although RLCSA shows better performance than
RLFM and FIGISS when the pattern length is over 125 but is still 3.9, 6.2, 3.4, and 7.1 times
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Figure 5 Comparison of query times for count between the described solutions when varying the
length of the query pattern. For each pattern length equal to 125, 250, 500, and 1000, we report the
times for the GRCH38 dataset. We plot the cumulative time required to perform 1,000 count queries.
The y-axis is in log scale. PFP-FM is shown in blue, RLFM is shown in orange, RLFM is shown in red,
and FIGISS is shown in green.

slower than PFP-FM. Meanwhile, the RLFM method exhibits a steady increase in time usage,
and it is 2.9, 14.2, 12.8, and 18.07 times slower than PFP-FM. It is worth noting that the
FIGISS grammar is less efficient for non-repetitive datasets, as demonstrated in the research
by Akagi et al. [1], which explains its (worse) performance on GRCh38 versus the SARS-100K
dataset. Hence, FIGISS is 10.1, 25.5, 13.6, and 14.8 times slower than PFP-FM. These results
are inline with the performance of our previous results, and demonstrate that PFP-FM has
both competitive construction memory and time, and achieves a significant acceleration.

5 Conclusion

In this work, we presented PFP-FM that shows significant acceleration over existing state-
of-the-art methods. Hence, this work begins to resolve a relatively long-standing issue in
data structures as to how we can parse input that has no natural word boundaries in a
manner that enables acceleration of the FM-index. We note that it is possible to similarly
augment locate queries since for that we need the suffix array samples only in the final step
when matching α (or β in case that Q = β), which can be done by the usually suffix array
samplings for the FM-index. If α is empty, then we can instead match the first block of the
pattern with the FM-index on S and not on P. We leave this for future work. With respect
to practical applications, as reads are getting longer and more accurate, we will soon see
an opportunity to apply accelerations of finding patterns that have length between 125 and
1,000. Hence, a larger area that warrants future consideration is accelerating the backward
search with approaches such as PFP-FM for aligning Nanopore reads to a database. Our last
experiment shows significant acceleration with query patterns of length 1,000 to a full human
reference genome, giving proof that the research community is in the position to begin such
an endeavour.
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Table 1 Comparison of the construction performance with the construction time and memory
for all datasets. The number of characters in each dataset (denoted as n) is given in the second
column. The time is reported in seconds (s), and the memory is reported in gigabytes (GB).

Dataset n Method Construction Memory (GB) Construction Time (s)

SARS-25k 751,526,774

RLCSA 9.90 322.85
RLFM 3.47 363.74

FIGISS 4.89 378.49
PFP-FM 12.99 117.29

SARS-50k 1,503,252,577

RLCSA 19.88 679.89
RLFM 6.94 701.36

FIGISS 12.44 795.70
PFP-FM 26.12 233.04

SARS-100k 3,004,588,730

RLCSA 39.47 1690.22
RLFM 25.01 1432.16

FIGISS 25.57 1840.80
PFP-FM 53.90 489.45

GRCh38 3,189,750,467

RLCSA 45.45 924.60
RLFM 26.31 1839.25

FIGISS 34.65 1440.19
PFP-FM 71.13 1154.12
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