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Abstract
In this paper, we investigate computational power of threshold circuits and other theoretical models
of neural networks in terms of the following four complexity measures: size (the number of gates),
depth, weight and energy. Here, the energy of a circuit measures sparsity of their computation, and
is defined as the maximum number of gates outputting non-zero values taken over all the input
assignments.

As our main result, we prove that any threshold circuit C of size s, depth d, energy e and weight
w satisfies log(rk(MC)) ≤ ed(log s + log w + log n), where rk(MC) is the rank of the communication
matrix MC of a 2n-variable Boolean function that C computes. Thus, such a threshold circuit C is
able to compute only a Boolean function of which communication matrix has rank bounded by a
product of logarithmic factors of s, w and linear factors of d, e. This implies an exponential lower
bound on the size of even sublinear-depth and sublinear-energy threshold circuit. For example, we
can obtain an exponential lower bound s = 2Ω(n1/3) for threshold circuits of depth n1/3, energy n1/3

and weight 2o(n1/3). We also show that the inequality is tight up to a constant factor when the
depth d and energy e satisfies ed = o(n/ log n).

For other models of neural networks such as a discretized ReLU circuits and descretized sigmoid
circuits, we define energy as the maximum number of gates outputting non-zero values. We then prove
that a similar inequality also holds for a discretized circuit C: rk(MC) = O(ed(log s+log w+log n)3).
Thus, if we consider the number gates outputting non-zero values as a measure for sparse activity of
a neural network, our results suggest that larger depth linearly helps neural networks to acquire
sparse activity.
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1 Introduction

Background. DiCarlo and Cox argued that constructing good internal representations
is crucial to perform visual information processing, such as object recognition, for neural
networks in the brain [5]. Here, an internal representation is described by a vector in a
very high dimensional space, where each axis is one neuron’s activity and the dimensionality
equals to the number (e.g., ∼1 million) of neurons in a feedforward neural network. They
call a representation good if, for a given pair of two images that are hard to distinguish at
the input space, there exist representations for them that are easy to separate by simple
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classifiers such as a linear classifier. While such internal representations are likely to play
fundamental role in information processing in the brain, it is also known that a neuron needs
relatively high energy to be active [18, 27], and hence neural networks are forced to acquire
representations supported by only a small number of active neurons [7]. These observations
pose a question: for what information processing can neural networks construct good internal
representations?

In the paper [42], Uchizawa et al. address the question from the viewpoint of circuit
complexity. More formally, they employed threshold circuits as a model of neural networks [23,
24, 28, 31, 34, 35, 36], and introduced a complexity measure, called energy complexity, for
sparsity of their internal representations. A threshold circuit is a feedforward logic circuit
whose basic computational element computes a linear threshold function, and energy of a
circuit is defined as the maximum number of internal gates outputting ones over all the input
assignments. (See also [6, 16, 33, 37, 45] for studies on energy complexity of other types
of logic circuits). Uchizawa et al. then show that the energy complexity is closely related
to the rank of linear decision trees. In particular, they prove that any linear decision tree
of l leaves can be simulated by a threshold circuit of size O(l) and energy O(log l). Thus,
even logarithmic-energy threshold circuits have certain computational power: any linear
decision tree of polynomial number of leaves can be simulated by a polynomial-size and
logarithmic-energy threshold circuit.

Following the paper [42], a sequence of papers show relations among other major complex-
ity measures such as size (the number of gates), depth, weight and fan-in [22, 38, 39, 43, 41, 40,
44]. In particular, Uchizawa and Takimoto [43] showed that any threshold circuit C of depth
d and energy e requires size s = 2Ω(n/ed) if C computes a high bounded-error communication
complexity function such as Inner-Product function. Even for low communication complexity
functions, an exponential lower bound on the size is known for constant-depth threshold
circuits: any threshold circuit C of depth d and energy e requires size s = 2Ω(n/e2e+d loge n)

if C computes the parity function [41]. These results provide exponential lower bounds
if the depth is constant and energy is sub-linear [43] or sub-logarithmic [41], while both
Inner-Product function and Parity function are computable by linear-size, constant-depth,
and linear-energy threshold circuits. Thus these results imply that the energy complexity
strongly related to representational power of threshold circuits. However these lower bounds
break down when we consider threshold circuits of larger depth and energy, say, non-constant
depth and sub-linear energy.

Our Results for Threshold Circuits. In this paper, we prove that simple Boolean functions
are hard even for sub-linear depth and sub-linear energy threshold circuits. Let C be a
threshold circuit with Boolean input variables x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn).
A communication matrix MC of C is a 2n × 2n matrix where each row (resp., each column) is
indexed by an assignment a ∈ {0, 1}n to x (resp., b ∈ {0, 1}n to y), and the value MC [a, b]
is defined to be the output of C given a and b. We denote by rk(MC) the rank of MC over
F2. Our main result is the following relation among size, depth energy and weight.

▶ Theorem 1. Let s, d, e and w be integers satisfying 2 ≤ s, d, 10 ≤ e, 1 ≤ w. If a threshold
circuit C computes a Boolean function of 2n variables, and has size s, depth d, energy e and
weight w, then it holds that

log(rk(MC)) ≤ ed(log s + log w + log n). (1)
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The theorem implies exponential lower bounds for sub-linear depth and sub-linear energy
threshold circuits. As an example, let us consider a Boolean function CDn defined as follows:
For a 2n input variables x1, . . . , xn and y1, . . . , yn,

CDn(x, y) =
n∨

i=1
xi ∧ yi.

We note that CDn is a biologically motivated Boolean function: Maass [21] defined CDn to
model coincidence detection or a pattern matching, and Lynch and Musco [19] introduced
a related problem, called Filter problem, for studying theoretical aspect of spiking neural
networks. Since CDn is the complement of the disjointness function and has rank 2n, the
theorem implies that

n ≤ ed(log s + log w + log n) (2)

holds if a threshold circuit C computes CDn. Arranging Eq. (2), we can obtain a lower
bound 2n/(ed)/(wn) ≤ s which is exponential in n if both d and e are sub-linear and w is
sub-exponential. For example, we can obtain an exponential lower bound s = 2Ω(n1/3) even
for threshold circuits of depth n1/3, energy n1/3 and weight 2o(n1/3). We can obtain similar
lower bounds for the Inner-Product function and the equality function, since they have linear
rank.

Comparing the lower bound s = 2Ω(n/ed) given in [43] to ours, our lower bound is
meaningful only for sub-exponential weight, but improves on it in two-fold: the lower bound
is exponential even if d is sub-linear, and provide a nontrivial lower bound for Boolean
functions with much weaker condition: Threshold circuits need exponential size even for
Boolean functions of the standard rank Ω(n).

Threshold circuits have received considerable attention in circuit complexity, and a number
of lower bound arguments have developed for threshold circuits under some restrictions
on computational resources including size, depth, energy and weight [1, 2, 3, 9, 10, 13, 15,
22, 26, 30, 32, 41, 43, 44]. However, the arguments for lower bounds are designated for
constant-depth threshold circuits, and hence cannot provide meaningful ones when the depth
is not constant. In particular, CDn is computable by a depth-2 and linear-size threshold
circuit. Thus, directly applying known techniques are unlikely to yield an exponential lower
bound for CDn.

To complement Theorem 1, we also show that the lower bound is tight up to a constant
factor if the product of e and d are small:

▶ Theorem 2. For any integers e and d such that 2 ≤ e and 2 ≤ d, CDn is computable by a
threshold circuit of size

s ≤ (e − 1)(d − 1) · 2
n

(e−1)(d−1) .

depth d, energy e and weight

w ≤
(

n

(e − 1)(d − 1)

)2
.

Substituting s, d, e and w of a threshold circuit given in Theorem 2 to the right hand side of
Eq. (2), we have

ed(log s + log w + log n)

≤ ed

(
n

(e − 1)(d − 1) +log(e − 1)(d − 1)+log
(

n

(e − 1)(d − 1)

)2
+log n

)
≤ 4n + O(ed log n),

MFCS 2023
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which almost matches the left hand side of Eq. (2) if ed = o(n/ log n). Thus, Theorem 1
neatly captures the computational aspect of threshold circuits computing CDn. Recall that
any linear decision tree of polynomial number of leaves can be simulated by a polynomial-size
and logarithmic-energy threshold circuit [42]. Also, it is known that any Boolean function
is computable by a threshold circuit of depth two and energy one if an exponential size is
allowed [22]. Thus, we believe that the situation ed = o(n/ log n) is not too restrictive. We
also show that the lower bound is also tight for the equality function.

Our Result for Discretized Circuits. Besides threshold circuits, we consider other well-
studied models of neural network, where an activation function and weights of an com-
putational element are discretized (such as, discretized sigmoid or ReLU circuits). The
size, depth, energy and weight are important parameters also for artificial neural networks.
The size and depth are major topics on success of deep learning. The energy is related to
important techniques for deep learning method such as regularization, sparse coding, or
sparse autoencoder [11, 17, 25]. The weight resolution is closely related to chip resources in
neuromorphic hardware systems [29], and quantization schemes received attention [4, 12].

We define energy for a discretized circuit as the maximum number of gates outputting
non-zero values, and show that any discretized circuit can be simulated by a threshold circuit
with a moderate increase in size, depth, energy, and weight. Consequently, combining with
Theorem 1, we can show that its rank is bounded by a product of the polylogarithmic factors
of s, w and linear factors of d, e for discretized circuits. For example, we can obtain the
following proposition for discretized sigmoid circuits:

▶ Theorem 3. If a discretized sigmoid circuit C of size s, depth d, energy e, and weight w

computes a Boolean function f , then it holds that

log(rk(MC)) = O(ed(log s + log w + log n)3).

Maass, Schnitger and Sontag [20] showed that a sigmoid circuit could be simulated by
a threshold circuit, but their simulation was optimized to be depth-efficient and did not
consider energy. Thus, their result does not fit into our purpose.

Theorems 1 and 3 imply that a threshold circuit or discretized circuit are able to compute
a Boolean function of bounded rank. Thus, we can consider these theorems as bounds on
corresponding concept classes. According to the bound, c times larger depth is comparable
to 2c times larger size. Thus, large depth could enormously help neural networks to increase
its expressive power. Also, the bound suggests that increasing depth could also help a neural
network to acquire sparse activity when we have hardware constraints on both the number
of neurons and the weight resolution. These observations may shed some light on the reason
for the success of deep learning.

Organization. The rest of the paper is organized as follows. In Section 2, we define terms
needed for analysis. In Section 3, we present our main lower bound result. In Section 4, we
show the tightness of the lower bound. In Section 5, we show a bound for discretized circuits.
In Section 6, we conclude with some remarks.

2 Preliminaries

For an integer n, we denote by [n] a set {1, 2, . . . n}. The base of the logarithm is two unless
stated otherwise. In Section 2.1, we define terms on threshold circuits and discretized circuits.
In Section 2.2, we define communication matrix, and give some known facts.
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2.1 Circuit Model
In Sections 2.1.1 and 2.1.2, we give definitions of threshold and discritized circuits, respectively.

2.1.1 Threshold Circuits
Let k be a positive integer. A threshold gate g with k input variables ξ1, ξ2, . . . , ξk has weights
w1, w2, . . . , wk, and a threshold t. We define the output g(ξ1, ξ2, . . . , ξk) of g as

g(ξ1, ξ2, . . . , ξk) = sign
(

k∑
i=1

wiξi − t

)
=
{

1 if t ≤
∑k

i=1 wiξi;
0 otherwise

To evaluate the weight resolution, we assume single synaptic weight to be discrete, and that
w1, w2, . . . , wn are integers. The weight wg of g is defined as the maximum of the absolute
values of w1, w2, . . . , wk. In other words, we assume that w1, w2, . . . , wk are O(log wg)-bit
coded discrete values. Throughout the paper, we allow a gate to have both positive and
negative weights, although biological neurons are either excitatory (all the weights are
positive) or inhibitory (all the weights are negative). As mentioned in [21], this relaxation
has basically no impact on circuit complexity investigations, unless one cares about constant
blowup in computational resources.

A threshold circuit C is a combinatorial circuit consisting of threshold gates, and is
expressed by a directed acyclic graph. The nodes of in-degree 0 correspond to input variables,
and the other nodes correspond to gates. Let G be a set of the gates in C. For each gate
g ∈ G, the level of g, denoted by lev(g), is defined as the length of a longest path from an
input variable to g on the underlying graph of C. For each l ∈ [d], we define Gl as a set of
gates in the lth level: Gl = {g ∈ G | lev(g) = l}.

In this paper, we consider a threshold circuit C for a Boolean function f : {0, 1}2n → {0, 1}.
Thus, C has 2n Boolean input variables x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn),
and a unique output gate, denoted by gclf , which is a linear classifier separating internal
representations given by the gates in the lower levels (possibly together with input variables).
Consider a gate g in C. Let wx

1 , wx
2 , . . . , wx

n (resp., wy
1 , wy

2 , . . . , wy
n) be the weights for

x1, x2, . . . , xn (resp., y1, y2, . . . , yn), and tg be threshold of g. For each gate h directed to g,
let wh,g be a weight of g for the output of h. Then the output g(x, y) of g is defined as

g(x, y) = sign (pg(x, y) − tg)

where pg(x, y) denotes a potentials of g invoked by the input variables and gates:

p(x, y) =
n∑

i=1
wx

i xi +
n∑

i=1
wy

i yi +
lev(g)−1∑

l=1

∑
h∈Gl

wh,gh(x, y).

We sometimes write px
g(x) (resp., py

g(y)) for the potential invoked by x (resp., y):

px
g(x) =

n∑
i=1

wx
i xi and py

g(y) =
n∑

i=1
wy

i yi.

Although the inputs to g are not only x and y but the outputs of gates in the lower levels,
we write g(x, y) for the output of g, because x and y inductively decide the output of g. We
say that C computes a Boolean function f : {0, 1}2n → {0, 1} if gclf(a, b) = f(a, b) for every
(a, b) ∈ {0, 1}2n.

MFCS 2023
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Let C be a threshold circuit. We define size s of C as the number of the gates in C, and
depth d of C as the level of gclf . We define the energy e of C as

e = max
(a,b)∈{0,1}2n

∑
g∈G

g(a, b).

We define weight w of C as the maximum of the weights of the gates in C: w = maxg∈G wg.

2.1.2 Discretized Circuits
Let φ be an activation function. Let δ be a discretizer that maps a real number to a
number representable by a bitwidth b. We define a discretized activation function δ ◦ φ as
a composition of φ and δ, that is, δ ◦ φ(x) = δ(φ(x)) for any number x. We say that δ ◦ φ

has silent range for an interval I if δ ◦ φ(x) = 0 if x ∈ I, and δ ◦ φ(x) ̸= 0, otherwise. For
example, if we use the ReLU function as the activation function φ, then δ ◦ φ has silent
range for I = (−∞, 0] for any discretizer δ. If we use the sigmoid function as the activation
function φ and linear partition as discretizer δ, then δ ◦ φ has silent range for I = (−∞, tmax]
where tmax = ln(1/(2b − 1)) where ln is the natural logarithm.

Let δ ◦ φ be a discretized activation function with silent range. A (δ ◦ φ)-gate g with k

input variables ξ1, ξ2, . . . , ξk has weights w1, w2, . . . , wk and a threshold t, where each of the
weights and threshold are discretized by δ. The output g(ξ1, ξ2, . . . , ξk) of g is then defined
as

g(ξ1, ξ2, . . . , ξk) = δ ◦ φ

(
k∑

i=1
wiξi − t

)
.

A (δ ◦ φ)-circuit is a combinatorial circuit consisting of (δ ◦ φ)-gates except that the top gate
gclf is a threshold gate, that is, a linear classifier. We define size and depth of a (δ ◦ φ)-circuit
same as the ones for a threshold circuit. We define energy e of a (δ ◦ φ)-circuit as the
maximum number of gates outputting non-zero values in the circuit:

e = max
(a,b)∈{0,1}2n

∑
g∈G

Jg(a, b) ̸= 0K

where JPK for a statement P denote a notation of the function which outputs one if P is true,
and zero otherwise. We define weight w of C as w = 22b, where 2b is the bitwidth possibly
needed to represent a potential value invoked by a single input of a gate in C.

2.2 Communication Matrix and its Rank
Let Z ⊆ {0, 1}n. For a Boolean function f : Z × Z → {0, 1}, we define a communication
matrix Mf over Z as a |Z| × |Z| matrix where each row and column are indexed by a ∈ Z

and b ∈ Z, respectively, and each entry is defined as Mf (a, b) = f(a, b). We denote by
rk(Mf ) the rank of Mf over F2. If a circuit C computes f , we may write MC instead of Mf .
If a Boolean function f does not have an obvious separation of the input variables to x and
y, we may assume a separation so that rk(Mf ) is maximized.

Let k and n be natural numbers such that k ≤ n. Let

Zk = {a ∈ {0, 1}n | The number of ones in a is at most k}.

A k-disjointness function DISJn,k over Zk is defines as follows:

DISJn,k(x, y) =
n∧

i=1
xi ∨ yi

where the input assignments are chosen from Zk. The book [14] contains a simple proof
showing that DISJn,k has full rank [14].
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▶ Theorem 4. rk(MDISJn,k
) =

∑k
i=0
(

n
i

)
. In particular, rk(MDISJn,n

) = 2n.

CDn is the complement of DISJn,n. We can obtain the same bound for CDn, as follows:

▶ Corollary 5. rk(MCDn
) = 2n.

We also use well-known facts on the rank. Let A and B be two matrices of same
dimensions. We denote by A + B the summation of A and B, and by A ◦ B the Hadamard
product of A and B.

▶ Fact 1. For two matrices A and B of same dimensions, we have
(i) rk(A + B) ≤ rk(A) + rk(B);
(ii) rk(A ◦ B) ≤ rk(A) · rk(B).

3 Lower Bound for Threshold Circuits

In this section, we give the inequality relating the rank of the communication matrix to the
size, depth, energy and weight.

▶ Theorem 6 (Theorem 1 restated). Let s, d, e and w be integers satisfying 2 ≤ s, d, 10 ≤ e,
1 ≤ w. Suppose a threshold circuit C computes a Boolean function of 2n variables, and has
size s, depth d, energy e, and weight w. Then it holds that

log(rk(MC)) ≤ ed(log s + log w + log n).

We prove the theorem by showing that MC is a sum of matrices each of which corresponds
to an internal representation that arises in C. Since C has bounded energy, the number of
internal representations is also bounded. We then show by the inclusion-exclusion principle
that each matrix corresponding to an internal representation has bounded rank. Thus, Fact
1 implies the theorem.

Proof. Let C be a threshold circuit that computes a Boolean function of 2n variables, and
has size s, depth d, energy e and weight w. Let G be a set of the gates in C. For l ∈ [d],
let Gl be a set of the gates in l-th level of C. Without loss of generality, we assume that
Gd = {gclf}. We evaluate the rank of MC , and prove that

rk(MC) ≤
(

c · s

e − 1

)e−1
·

((
c · s

e − 1

)e−1
· (2nw + 1)e−1

)d−1

· (2nw + 1) (3)

where c < 3. Equation (3) implies that

rk(MC) ≤
(

c · s

e − 1 · (2nw + 1)
)(e−1)d

≤ (snw)ed
,

where the last inequality holds if e ≥ 10. Taking the logarithm of the inequality, we obtain
the theorem.

Below we verify that Eq. (3) holds. Let P = (P1, P2, . . . , Pd), where Pl is a subset of Gl

for each l ∈ [d]. Given an input (a, b) ∈ {0, 1}2n, we say that an internal representation P
arises for (a, b) if, for every l ∈ [d], g(a, b) = 1 for every g ∈ Pl, and g(a, b) = 0 for every
g ̸∈ Pl. We denote by P∗(a, b) the internal representation that arises for (a, b) ∈ {0, 1}2n.
We then define P1 as a set of the internal representations that arise for (a, b) such that
gclf(a, b) = 1:

P1 = {P∗(a, b) | gclf(a, b) = 1}.

MFCS 2023
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Note that, for any P = (P1, P2, . . . , Pd) ∈ P1, we have |P1| + |P2| + · · · + |Pd−1| ≤ e − 1 and
|Pd| = 1. Thus a standard upper bound on a sum of binomial coefficients implies that

|P1| ≤
e−1∑
k=0

(
s

k

)
≤
(

c · s

e − 1

)e−1
. (4)

For each P ∈ P1, let MP be a 2n × 2n matrix such that, for every (a, b) ∈ {0, 1}2n,

MP(a, b) =
{

1 if P = P∗(a, b);
0 if P ̸= P∗(a, b).

By the definitions of P1 and MP, we have

MC =
∑

P∈P1

MP,

and hence Fact 1(i) implies that

rk(MC) ≤
∑

P∈P1

rk(MP).

Thus Eq. (4) implies that

rk(MC) ≤
(

c · s

e − 1

)e−1
· max

P∈P1
rk(MP).

We complete the proof by showing that, for any P ∈ P1(C), it holds that

rk(MP) ≤

((
c · s

e − 1

)e−1
· (2nw + 1)e−1

)d−1

· (2nw + 1).

In the following argument, we consider an arbitrary fixed internal representation P =
(P1, P2, . . . , Pd) in P1. We call a gate a threshold function if the inputs of the gate consists
of only x and y. For each g ∈ G, we denote by τ [g, P] a threshold function defined as

τ [g, P](x, y) = sign
(
px

g(x) + py
g(y) + tg[P]

)
.

where tg[P] is a threshold of g, being assumed that the internal representation P arises:

tg[P] =
lev(g)−1∑

l=1

∑
h∈Pl

wh,g − tg.

For each l ∈ [d], we define a set Tl of threshold functions as Tl = {τ [g, P] | g ∈ Gl}. Since
every gate in G1 is a threshold function, T1 is identical to G1.

For any set T of threshold functions, we denote by M [T ] a 2n × 2n matrix such that, for
every (a, b) ∈ {0, 1}2n,

M [T ](a, b) =
{

1 if ∀τ ∈ T, τ(a, b) = 1;
0 if ∃τ ∈ T, τ(a, b) = 0.

It is well-known that the rank of M [T ] is bounded [8, 9], as follows. We give a proof for
completeness.

▷ Claim 7. rk(M [T ]) ≤ (2nw + 1)|T |.
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Proof. Let z = |T |, and τ1, τ2, . . . , τz be an arbitrary order of threshold functions in T . For
each k ∈ [z], we define

Rk = {px
τk

(a) | a ∈ {0, 1}n}.

Since a threshold function receives a value between −w and w from a single input, we have
|Rk| ≤ 2nw + 1. For r = (r1, r2, . . . , rz) ∈ R1 × R2 × · · · × Rz, we define R(r) = X(r) × Y (r)
as a combinatorial rectangle where

X(r) = {x | ∀k ∈ [z], pτk
(x) = rk}

and

Y (r) = {y | ∀k ∈ [z], tτk
≤ rk + py

τk
(y)}.

Clearly, all the rectangles are disjoint, and hence M [T ] can be expressed as a sum of rank-1
matrices given by R(r)’s taken over all the r’s. Thus Fact 1(i) implies that its rank is at
most |R1 × R2 × · · · × Rz| ≤ (2nw + 1)z. ◁

For each l ∈ [d], based on Pl in P, we define a set Ql of threshold functions as

Ql = {τ [g, P] | g ∈ Pl} ⊆ Tl

and a family T (Ql) of sets T of threshold functions as

T (Ql) = {T ⊆ Tl | Ql ⊆ T and |T | ≤ e − 1}.

Following the inclusion-exclusion principle, we define a 2n × 2n matrix

H[Ql] =
∑

T ∈T (Ql)

(−1)|T |−|Ql|M [T ].

We can show that MP is expressed as the Hadamard product of H[Q1], H[Q2], . . . , H[Qd]:

▷ Claim 8. MP = H[Q1] ◦ H[Q2] ◦ · · · ◦ H[Qd].

Proof. Consider an arbitrary fixed assignment (a, b) ∈ {0, 1}2n. We show that

H[Q1](a, b) ◦ H[Q2](a, b) ◦ · · · ◦ H[Qd](a, b) = 0,

if MP(a, b) = 0, and

H[Q1](a, b) ◦ H[Q2](a, b) ◦ · · · ◦ H[Qd](a, b) = 1,

if MP(a, b) = 1. We write P∗ = (P ∗
1 , P ∗

2 , . . . , P ∗
d ) to denote P∗(a, b) for a simpler notation.

Suppose MP(a, b) = 0. In this case, we have P ̸= P∗, and hence there exists a level
l ∈ [d] such that Pl ̸= P ∗

l while Pl′ = P ∗
l′ for every l′ ∈ [l − 1]. For such l, it holds that

τ [g, P∗](a, b) = τ [g, P](a, b) (5)

for every g ∈ Gl. We show that H[Ql](a, b) = 0 by considering two cases: Pl\P ∗
l ≠ ∅ and

Pl ⊂ P ∗
l .

Consider the case where Pl\P ∗
l ̸= ∅, then there exists g ∈ Pl\P ∗

l . Since g ̸∈ P ∗
l , we have

τ [g, P∗](a, b) = 0. Thus, Eq. (5) implies that τ [g, P](a, b) = 0, and hence M [T ](a, b) = 0
for every T such that Ql ⊆ T . Therefore, for every T ∈ T (Ql), we have M [T ](a, b) = 0, and
hence

H[Ql](a, b) =
∑

T ∈T (Ql)

M [T ](a, b) = 0.
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Consider the other case where Pl ⊂ P ∗
l . Let Q∗

l = {τ [g, P∗] | g ∈ P ∗
l }. Equation (5)

implies that M [T ](a, b) = 1 if T satisfies Ql ⊆ T ⊆ Q∗
l , and M [T ](a, b) = 0, otherwise.

Thus,

H[Ql](a, b) =
∑

T ∈T (Ql)

(−1)|T |−|Ql|M [T ] =
∑

Ql⊆T ⊆Q∗
l

(−1)|T |−|Ql|

Therefore, by the binomial theorem,

H[Ql](a, b) =
|Q∗

l |−|Ql|∑
k=0

(
|Q∗

l | − |Ql|
k

)
(−1)k = (1 − 1)|Q∗

l |−|Ql| = 0.

Suppose MP(a, b) = 1. In this case, we have P = P∗. Thus, for every l ∈ [d], Eq. (5)
implies that M [T ](a, b) = 1 if T = Ql, and M [T ](a, b) = 0, otherwise. Therefore,

H[Ql](a, b) =
∑

T ∈T (Ql)

(−1)|T |−|Ql|M [T ](a, b) = (−1)|Ql|−|Ql| = 1.

Consequently, H[Q1](a, b) ◦ H[Q2](a, b) ◦ · · · ◦ H[Qd](a, b) = 1, as desired. ◁

We finally evaluate rk(MP). Claim 8 and Fact 1(ii) imply that

rk(MP) = rk (H[Q1] ◦ H[Q2] ◦ · · · ◦ H[Qd]) ≤
d∏

l=1
rk(H[Ql]). (6)

Since

|T (Ql)| ≤
(

c · s

e − 1

)e−1

Fact 1(i) and Claim 7 imply that

rk(H[Ql]) ≤
∑

T ∈T (Ql)

rk(M [T ])

≤
(

c · s

e − 1

)e−1
· (2nw + 1)e−1 (7)

for every l ∈ [d − 1], and

rk(H[Qd]) ≤ 2nw + 1. (8)

Equations (6)-(8) imply that

rk(MP) ≤

((
c · s

e − 1

)e−1
· (2nw + 1)e−1

)d−1

· (2nw + 1)

as desired. We thus have verified Eq. (3). ◀

Combining Corollary 5 and Theorem 6, we obtain the following corollary:

▶ Corollary 9. Let s, d, e and w be integers satisfying 2 ≤ s, d, 10 ≤ e, 1 ≤ w. Suppose a
threshold circuit C of size s, depth d, energy e, and weight w computes CDn. Then it holds
that

n ≤ ed(log s + log w + log n).

Equivalently, we have 2n/(ed)/(nw) ≤ s.
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Theorem 6 implies lower bounds for other Boolean functions with linear rank. For
example, consider another Boolean function EQn asking if x = y:

EQn(x, y) =
n∧

i=1
xi ⊕ yi

Since MEQn
is the identity matrix with full rank, we have the same lower bound.

▶ Corollary 10. Let s, d, e and w be integers satisfying 2 ≤ s, d, 10 ≤ e, 1 ≤ w. Suppose a
threshold circuit C of size s, depth d, energy e, and weight w computes EQn. Then it holds
that

n ≤ ed(log s + log w + log n).

Equivalently, we have 2n/(ed)/(nw) ≤ s.

4 Tightness of the Lower Bound

In this section, we show that the lower bound given in Theorem 6 is tight if the depth and
energy are small.

4.1 Definitions
Let z be a positive integer, and f be a Boolean function of 2n variables. We say that f is
z-piecewise with f1, f2, . . . , fz if the following conditions are satisfied: Let

Bj = {i ∈ [n] | xi or yi are fed into fj},

then
(i) B1, B2, . . . , Bz compose a partition of [n];
(ii) |Bj | ≤ ⌈n/z⌉ for every j ∈ [z];
(iii)

f(x, y) =
z∨

j=1
fj(x, y) or f(x, y) =

z∨
j=1

fj(x, y).

We say that a set of threshold gates sharing input variables is a neural set, and a neural
set is selective if at most one of the gates in the set outputs one for any input assignment. A
selective neural set S computes a Boolean function f if for every assignment in f−1(0), no
gates in S outputs one, while for every assignment in f−1(1), exactly one gate in S outputs
one. We define the size and weight of S as |S| and maxg∈S wg, respectively.

By a DNF-like construction, we can obtain a selective neural set of exponential size that
computes f for any Boolean function f .

▶ Theorem 11. For any Boolean function f of n variables, there exists a selective neural set
of size 2n and weight one that computes f .

4.2 Upper Bounds
The following proposition shows that we can construct threshold circuits of small energy for
piecewise functions.

MFCS 2023
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▶ Lemma 12. Let e and d be integers satisfying 2 ≤ e and 2 ≤ d, and z be an integer.
Suppose f : {0, 1}2n → {0, 1} is a z-piecewise function with f1, f2, . . . , fz. If fj is computable
by a selective neural set of size at most s′ and weight w′ for every j ∈ [z], f is computable by
a threshold circuit of size

s ≤ z · s′ + 1,

depth d, energy e and weight

w ≤ 2n

z
· w′.

Clearly, CDn is a piecewise function, and so the lemma gives our upper bound for CDn.

▶ Theorem 13 (Theorem 2 restated). For any integers e and d such that 2 ≤ e and 2 ≤ d,
CDn is computable by a threshold circuit of size

s ≤ (e − 1)(d − 1) · 2
n

(e−1)(d−1) .

depth d, energy e and weight

w ≤
(

n

(e − 1)(d − 1)

)2
.

We can also obtain a similar proposition for EQn.

▶ Theorem 14. For any integers e and d such that 2 ≤ e and 2 ≤ d, EQn is computable by
a threshold circuit of size

s ≤ (e − 1)(d − 1) · 2
2n

(e−1)(d−1) .

depth d, energy e and weight

w ≤ n

(e − 1)(d − 1) .

5 Simulating Discretized Circuits

In this section, we show that any discretized circuit can be simulated using a threshold circuit
with a moderate increase in size, depth, energy, and weight. Thus, a similar inequality holds
for discretized circuits, as follows.

▶ Theorem 15. Let δ be a discretizer and φ be an activation function such that δ ◦ φ has
a silent range. If a (δ ◦ φ)-circuit C of size s, depth d, energy e, and weight w computes a
Boolean function f , then it holds that

log(rk(MC)) = O(ed(log s + log w + log n)3).

We prove the theorem by showing that, given a (δ ◦ φ)-circuit C, we can safely replace
any (δ ◦ φ)-gate g in C by a set of threshold gates that simulate g. Our simulation is based
on a binary search of the potentials of a discretized gate, and employ a conversion technique
from a linear decision tree to a threshold circuit given in [42]. We omit our proof of the
theorem due to the page limitation.
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6 Conclusions

In this paper, we prove that a threshold circuit is able to compute only a Boolean function
of which communication matrix has rank bounded by a product of logarithmic factors of size
and weight, and linear factors of depth and energy. This bound implies that any threshold
circuit of sub-linear depth, sub-linear energy and sub-exponential weight needs exponential
size to compute CDn, EQn, and the Inner-Product function. We show that the bounds
are tight up to a constant factor. We also prove that a similar bound holds for discretized
circuits. Thus, increasing depth could help a neural network to acquire sparse activity. This
observation may shed some light on the reason for the success of deep learning.
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